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Abstract − The history of modelling plankton dynamics is already quite long and has been initiated by fishery science in
the early 20th century. The main aim of modelling population dynamics is to improve the understanding of the
functioning of food chains and webs and their dependence on internal and external conditions. Hence, mathematical
models of biological population dynamics have not only to account for growth and interactions but also for spatial
processes like random or directed and joint or relative motion of species as well as the variability of the environment.
Early attempts began with physicochemical diffusion, exponential growth and Lotka-Volterra type interactions. These
approaches have been continuously refined to more realistic descriptions of the development of natural populations. The
aim of this paper is to give an extensive introduction to the subject and the bibliography. The fascinating variety of
spatio-temporal patterns in such systems and the governing mechanisms of their generation and further dynamics are
described and related to plankton. © 2001 Ifremer/CNRS/IRD/Éditions scientifiques et médicales Elsevier SAS

Résumé – Mode de formation des modèles de dynamique planctonique. Une synthèse.L’histoire de la modélisation
de la dynamique du plancton est déjà plutôt longue puisqu’elle a débuté au début du 20e siècle avec les études sur les
pêches. L’axe de cette modélisation est d’améliorer la compréhension du fonctionnement du réseau trophique et de ses
relations avec les facteurs externes et internes. Aussi, les modèles mathématiques de dynamique des populations doivent
non seulement tenir compte des déplacements des espèces au hasard ou dirigés, relatifs ou combinés ainsi que de la
variabilité de l’environnement. Les premiers essais débutèrent avec la diffusion physico-chimique, la croissance
exponentielle et les interactions de type Lotka-Volterra. Ces approches ont été régulièrement affinées vers des
descriptions plus réalistes du développement des populations naturelles. L’objectif de cet article est d’introduire ce sujet
et la bibliographie afférente. La variété infinie des schémas spatio-temporels dans de tels systèmes et les mécanismes
directeurs de leur naissance ainsi que les futures dynamiques sont décrits et reliés au plancton.
© 2001 Ifremer/CNRS/IRD/Éditions scientifiques et médicales Elsevier SAS
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1. INTRODUCTION

The exploration of pattern formation mechanisms in
non-linear complex systems is one of the central prob-
lems of natural, social, and technological sciences. The
development of the theory of self-organized temporal,
spatial or functional structuring of non-linear systems far
from equilibrium has been one of the milestones of
structure research (Haken, 1977; Nicolis and Prigogine,
1977). The occurrence of multiple steady states and
transitions from one to another after critical fluctuations,
the phenomena of excitability, oscillations, waves and, in
general, the emergence of macroscopic order from mi-
croscopic interactions in various non-linear non-
equilibrium systems in nature and society has required
and stimulated many theoretical and, if possible, experi-
mental studies. Mathematical modelling has turned out to
be one of the useful methods to improve the understand-
ing of such structure generating mechanisms.

2. PLANKTON AND MODELS OF PLANKTON
DYNAMICS: OVERVIEW

In the 17th century, the Dutch pioneer microscopist Anton
van Leeuwenhoek was probably the first human being to
see minute creatures, which he called animalcules, in
pond water (Hallegraeff, 1988). The German Victor
Hensen who organized Germany’s first big oceano-
graphic expedition in 1889 (Hensen, 1892; Porep, 1970)
introduced the term plankton (from the Greek planktos
meaning made to wander).

Phytoplankton are microscopic plants that drive all ma-
rine ecological communities and the life within them.
Due to their photosynthetic growth, the world’s phy-
toplankton generate half of the oxygen that mankind
needs for maintaining life and it absorbs half of the
carbon dioxide that may be contributing to global warm-
ing. It is not only oxygen and carbon dioxide but also
other substances and gases that are recycled by phy-
toplankton, e.g. phosphorus, nitrogen and sulphur com-
pounds (Bain, 1968; Ritschard, 1992; Duinker and Wefer,
1994; Malin, 1997). Hence, phytoplankton are one of the
main factors controlling the further development of the
world’s climate and there is a vast literature supporting
that (cf. Charlson et al., 1987, Williamson and Gribbin,
1991).

Zooplankton are the animals in plankton. In marine
zooplankton, both herbivores and predators occur; her-
bivores graze on phytoplankton and are eaten by zoo-
plankton predators. Together, phyto- and zooplankton
form the basis for all food chains and webs in the sea. In
its turn, the abundance of the plankton species is affected
by a number of environmental factors such as water
temperature, salinity, sunlight intensity, biogen availabil-
ity etc. (Raymont, 1980; Sommer, 1994). Temporal
variability of the species composition is caused by
seasonal changes and trophical prey-predator interac-
tions between phyto- and zooplankton. The latter have
first been introduced by Lotka (1925) and Volterra
(1926).

Because of its apparent importance, the dynamics of
plankton systems have been under continuous investiga-
tion during more than a hundred years. It should be noted
that, practically from the very beginning, regular plank-
ton studies have combined field observations, laboratory
experiments and mathematical modelling. It was in the
19th century that fisheries stimulated the interest in
plankton dynamics because strong positive correlations
between zooplankton and fish abundance were found.
The already mentioned German plankton expedition of
1889 was mainly motivated by fisheries interests. At the
same time, fishery science began to develop. In the
beginning of the 20th century, the first mathematical
models were developed in order to understand and to
predict fish stock dynamics and its correlations with
biological and physical factors and human interventions
(cf. Cushing, 1975; Gulland, 1977; Steele, 1977).

The contemporary mathematical modelling of phy-
toplankton productivity has its roots in the work of
Fleming (1939), Ivlev (1945), Riley (1946), Odum
(1956) and others. A review of the developments has
been given by Droop (1983). Recently, a collection of
the most frequently used models has been published
(Behrenfeldt and Falkowski, 1997).

The control of phytoplankton blooming by zooplankton
grazing has been modelled first by Fleming (Fleming,
1939), using a single ordinary differential equation for
the temporal dynamics of phytoplankton biomass. Other
approaches have been the construction of data-fitted
functions (Riley, 1946, 1963) and the application of
standard Lotka-Volterra equations to describe the prey-
predator relation of phytoplankton and zooplankton (Se-
gel and Jackson, 1972; Dubois, 1975; Levin and Segel,
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1976; Vinogradov and Menshutkin, 1977; Mimura and
Murray, 1978). More realistic descriptions of zooplank-
ton grazing with functional responses to phytoplankton
abundance have been introduced by Ivlev (1945) with a
certain modification by Mayzaud and Poulet (1978).
Holling-type response terms (Holling, 1959) which are
also known from Monod or Michaelis-Menten saturation
models of enzyme kinetics (Michaelis and Menten, 1913;
Monod and Jacob, 1961) are just as much in use (cf.
Steele and Henderson, 1981, 1992a, 1992b; Scheffer,
1991a, 1998; Malchow, 1993; Truscott and Brindley,
1994a, 1994b).

Observed temporal patterns are the well-known stable
prey-predator oscillations as well as the oscillatory or
monotonous relaxation to one of the possible multiple
steady states. Excitable systems are of special interest
because their long-lasting relaxation to the steady state
after a supercritical external perturbation like a sudden
temperature increase or nutrient inflow is very suitable to
model red or brown tides (Beltrami, 1989, 1996; Truscott
and Brindley, 1994a, 1994b).

Regarding the temporal variability of plankton species
abundance, the limits of its predictability are of particular
interest. At early stages, the development of mathematical
models of marine ecosystems was driven by the idea that
the more species were explicitly included into the model
the higher would be its predictive ability. As a result, a
number of many-species models appeared allowing for a
detailed structure of the food web of the community (cf.
DeAngelis, 1992; Jørgensen, 1994; Yodzis, 1994). How-
ever, the real predictive ability of this class of models is
not very high and rarely exceeds a few weeks. Moreover,
an increasing number of model agents may sometimes
even worsen the properties of the model. This apparent
paradox can be explained in terms of dynamical chaos
(May, 1974). It should be noted that, although the strict
evidence of chaotic behaviour of natural populations is
still absent, stronger and stronger indications in favour of
its existence are appearing (Scheffer, 1991b, 1998; Cos-
tantino et al., 1995, 1997; Dennis et al., 1995; Godfray
and Hassell, 1997; Huisman and Weissing, 1999). Cha-
otic population dynamics essentially changes the ap-
proach to the system predictability (cf. Scheffer, 1991b),
and makes conceptual few-species models of as much use
as many-species ones. Moreover, few-species models can
sometimes be even more instructive since they take into
account only the principal features of the community
functioning (cf. Pascual, 1993; Petrovskii and Malchow,

1999, 2001). Another interesting problem is the dynamics
of externally forced systems. This ideally periodic forcing
appears rather naturally due to daily, seasonal or annual
cycles of photosynthetically active radiation, tempera-
ture, nutrient availability, etc. (Evans and Parslow, 1985;
Truscott, 1995; Popova et al., 1997; Ryabchenko et al.,
1997). Natural forcings are of course subject to a certain
environmental noise. A number of forced models for parts
or for the complete food chain (from nutrients, phy-
toplankton and zooplankton to planktivorous fish) have
been investigated and many different routes to chaotic
dynamics have been demonstrated (Kuznetsov et al.,
1992; Ascioti et al., 1993; Doveri et al., 1993; Rinaldi and
Muratori, 1993; Rinaldi et al., 1993; Steffen and Mal-
chow, 1996a, 1996b; Scheffer et al., 1997; Steffen et al.,
1997).

The abundance of plankton species is not only subject to
temporal changes but also depends on space. The distinct
spatial heterogeneity of plankton distribution (patchiness)
is found in many field observations (Steele, 1974, 1978;
Fasham, 1978; Mackas and Boyd, 1979; Greene et al.,
1992; Abbott, 1993). This phenomenon takes place on all
scales, from centimetres to thousands of kilometres. A
number of explanations has been suggested, particularly,
relating the spatial structure of a plankton system to
marine turbulence (Platt, 1972) or to the unhomogeneity
of the temperature field in the ocean (Denman, 1976). A
well-studied stripy plankton pattern is due to the trapping
of populations of sinking microorganisms in Langmuir
circulation cells (Stommel, 1948; Leibovich, 1993).
Other physically determined plankton distributions such
as steep density gradients due to local temperature
differences, nutrient upwelling, turbulent mixing or inter-
nal waves have also been reported (Yoder et al., 1994;
Franks, 1997; Abraham, 1998).

On a small spatial scale of some tens of centimetres and
under relative physical uniformity, differences in the
‘diffusive’ mobility of individuals and the ability of
locomotion might create finer spatial structures, e.g. due
to bioconvection and gyrotaxis (Platt, 1961; Winet and
Jahn, 1972; Pedley and Kessler, 1992; Timm and Okubo,
1994). Until now for certain bacteria but not for plankton,
the mechanism of diffusion-limited aggregation (Witten
and Sander, 1981) has been proposed and experimentally
proven for the spatial fingering of colonies (Matsushita
and Fujikawa, 1990; Ben-Jacob et al., 1992).
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Thus, mathematical models of plankton population dy-
namics have not only to account for growth and interac-
tions but also for spatial processes like random or
directed and joint or relative motion of species as well as
the variability of the environment. According to a widely
accepted point of view, it is the interplay of phytoplank-
ton and zooplankton growth, interactions and transport
that yields the whole variety of spatio-temporal popula-
tion structures, in particular the phenomenon of plankton
patchiness (cf. Fasham, 1978; Okubo, 1980). The math-
ematical modelling requires the use of reaction-diffusion
and perhaps advection equations. A good introduction to
the latter field has been provided by Holmes et al. (1994).

Since the classic paper by Turing (1952) on the role of
non-equilibrium reaction-diffusion patterns in biomor-
phogenesis, dissipative mechanisms of spontaneous spa-
tial and spatio-temporal pattern formation in a homoge-
neous environment are of continuous interest in
theoretical biology and ecology. Turing showed that the
non-linear interaction of at least two agents with consid-
erably different diffusion coefficients can give rise to
spatial structure. Segel and Jackson (1972) were the first
to apply Turing’s idea to a problem in population dynam-
ics: the dissipative instability in the prey-predator inter-
action of phytoplankton and herbivorous copepods with
higher herbivore motility. Levin and Segel (1976) sug-
gested this scenario of spatial pattern formation for a
possible origin of planktonic patchiness. Recently, local
bistability, predator-prey limit-cycle oscillations, plank-
ton front propagation and the generation and drift of
planktonic Turing patches were found in a minimal
phytoplankton-zooplankton interaction model (Malchow,
1993, 1994) that was originally formulated by Scheffer
(1991a), accounting for the effects of nutrients and
planktivorous fish on alternative local equilibria of the
plankton community.

Kierstead and Slobodkin (1953) and Skellam (1951) were
perhaps the first to think of the critical size problem for
plankton patches, presenting their nowadays called Kiss
model with the coupling of exponential growth and
diffusion of a single population. Of course, their patches
are unstable because this coupling leads to an explosive
spatial spread of the initial patch of species with surpris-
ingly the same diffusive front speed as the asymptotic
speed of a logistically growing population (Luther, 1906;
Fisher, 1937; Kolmogorov et al., 1937).

Populations with an Allee effect (Allee, 1931; Allee et
al., 1949), i.e. when the existence of a minimum viable
number of species of a population yields two stable
population states – extinction and survival – at its carry-
ing capacity, show a spatial critical size as well (Schlögl,
1972; Nitzan et al., 1974; Ebeling and Schimansky-
Geier, 1980; Malchow and Schimansky-Geier, 1985;
Lewis and Kareiva, 1993; Petrovskii, 1994). Population
patches greater than the critical size will survive, the
others will go extinct. However, bistability and the
emergence of a critical spatial size do not necessarily
require an Allee effect, and logistically growing preys
with a parametrized predator of type II or III functional
response can also exhibit two stable steady states and the
related hysteresis loops (cf. Ludwig et al., 1978; Wissel,
1989).

The consideration of dynamic predation leads to the full
spectrum of spatial and spatio-temporal patterns such as
regular and irregular oscillations, propagating fronts,
target patterns and spiral waves, pulses as well as
stationary spatial patterns. Many of these structures were
first known from oscillating chemical reactions (cf. Field
and Burger, 1985), but have never been observed in
natural plankton populations. However, spirals have
been seen in the ocean as rotary motions of plankton
patches on a kilometre scale (Wyatt, 1973). Furthermore,
they have been found to be important in parasitoid-host
systems (Boerlijst et al., 1993). For other motile micro-
organisms, travelling waves such as targets or spirals
have been found in the cellular slime mold Dictyostelium
discoideum (Gerisch, 1968, 1971; Keller and Segel,
1970; Segel and Stoeckly, 1972; Segel, 1977; Newell,
1983; Alt and Hoffmann, 1990; Siegert and Weijer, 1991;
Steinbock et al., 1991; Ivanitsky et al., 1994; Vasiev et
al., 1994; Höfer et al., 1995). These amoebae are
chemotactic species, i.e. they move actively up the
gradient of a chemical attractant and aggregate. Chemo-
taxis is a kind of density-dependent cross-diffusion
(Keller and Segel, 1971a, 1971b) and it is an interesting
open question whether there is preytaxis in plankton or
not. However, there is some evidence of chemotaxis in
certain phytoplankton species (Ikegami et al., 1995).
Bacteria like Escherichia coli or Bacillus subtilis also
show a number of complex colony growth patterns
(Shapiro and Hsu, 1989; Shapiro and Trubatch, 1991),
different to the already mentioned diffusion-limited ag-
gregation patterns. Their emergence requires co-
operativity as well as active motion of the species which
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has also been modelled as density-dependent diffusion
and predation (Kawasaki et al., 1995a, 1995b).

An important point is that the spatial dimensions of the
plankton community functioning also provide new routes
to chaotic dynamics. The emergence of diffusion-induced
spatio-temporal chaos has been found along a linear
nutrient gradient (Pascual, 1993). Chaotic oscillations
behind propagating diffusive fronts are found in a prey-
predator model (Sherratt et al., 1995, 1997); a similar
phenomenon is observed in a mathematically similar
model of a chemical reactor (Merkin et al., 1996; David-
son, 1998).

Recently it has been shown that the appearance of chaotic
spatio-temporal oscillations in a prey-predator system is a
somewhat more general phenomenon and must not be
attributed to front propagation or to an unhomogeneity of
environmental parameters (Petrovskii and Malchow,
1999, 2001). Conditions for the emergence of three-
dimensional spatial and spatio-temporal patterns after
differential-flow-induced instabilities (Rovinsky and
Menzinger, 1992) of spatially uniform populations were
derived (Malchow, 1995, 1996, 1998) and illustrated by
patterns in Scheffer’s model (Scheffer, 1991a). Instabili-
ties of the spatially uniform distribution can appear if
phytoplankton and zooplankton move with different ve-
locities regardless of which one is faster. This mechanism
of generating patchy patterns is more general than the
Turing mechanism which depends on strong conditions
on the diffusion coefficients; thus, one can expect a wide
range of its application in population dynamics.

Thus, the dynamics of the plankton communities, particu-
larly processes of pattern formation, have been under
intensive investigation during the past few decades. As a
result, considerable progress in understanding principal
features of plankton system functioning has been
achieved. Still, many mechanisms of the spatio-temporal
variability of natural plankton populations are not known
yet. Pronounced physical patterns like thermoclines, up-
welling, fronts and eddies often set the frame for the
biological processes. However, under conditions of rela-
tive physical uniformity, the temporal and spatio-
temporal variability can be a consequence of the coupled
non-linear biological and chemical dynamics (Levin and
Segel, 1976; Steele and Henderson, 1992a). Sommer
(1994, 1996) has emphasized the importance of biologi-
cal dynamics during phytoplankton blooms. Daly and
Smith (1993) concluded “ ... that biological processes may

be more important at smaller scales where behaviour such
as vertical migration and predation may control the
plankton production, whereas physical processes may be
more important at larger scales in structuring biological
communities ...” . O’Brien and Wroblewski (1973) intro-
duced a dimensionless parameter, containing the charac-
teristic water speed and the maximum specific biological
growth rate, to distinguish parameter regions of biologi-
cal and physical dominance (cf. also Wroblewski et al.,
1975; Wroblewski and O’Brien, 1976).

Physical and biological processes may differ significantly
not only at spatial but also at temporal scales. Particu-
larly, the effect of external hydrodynamical forcing on the
appearance and stability of non-equilibrium spatio-
temporal patterns has been studied (Malchow and Shige-
sada, 1994), making use of the separation of the different
time scales of biological and physical processes. A
channel under tidal forcing served as a hydrodynamical
model system with a relatively high matter detention
time. Examples were provided at different time scales: the
simple physical transport and deformation of a spatially
non-uniform initial plankton distribution as well as the
biologically determined formation of a localized spatial
maximum of phytoplankton biomass. Plankton pattern
formation is essentially dependent on the interference of
various physical (light, temperature, hydrodynamics) and
biological factors (nutrient supply, predation) (cf. Platt,
1972; Denman, 1976; Fasham, 1978). In nature, it has
been observed that the direction of motion of plankton
patches does not always coincide with the direction of the
water flow (Wyatt, 1971, 1973), and as the spatial scale
becomes greater than approximately 100 m, phytoplank-
ton behaves successively less like a simple passive
quantity distributed by turbulence (Nakata and Ishikawa,
1975; Powell et al., 1975; Powell and Okubo, 1994).
Similarly, the spatial variability of zooplankton abun-
dance differs essentially from the environmental variabil-
ity at scales less than a few dozens kilometres (Weber et
al., 1986). This indicates that biological factors play an
essential role in the emergence of plankton patchiness
(Steele and Henderson, 1981).
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