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Abstract − In this paper, I present a method developed to detect ‘extra’, or novel, changes in diversity in a naturally
fluctuating environment. When comparing samples in order to evaluate changes in community structure, the sampling
procedure will inevitably induce randomness in observed species composition and abundance, so two samples may show
considerable differences, even if they come from exactly the same community. Sometimes the effort put into the
sampling varies as well, leading to the expectation of a further increase in difference. Finally, if there were a temporal
distance between the samples, we would like to correct for variations in species abundance occurring naturally due to
fluctuating environmental conditions. The test method presented here includes a model of the sampling procedure, and
corrects for differential sampling efforts. The population dynamics is modelled by a diffusion process, its variance
mimicking the effect a fluctuating environment has on species abundances. We are thereby able to test the null hypothesis
of no unnatural change in diversity, against the alternative of additional changes in community structure due to for
example human disturbances. © 2001 Ifremer/CNRS/IRD/Éditions scientifiques et médicales Elsevier SAS

Résumé − La détection de changements de diversité dans un environnement fluctuant, basée sur la simulation
de processus stochastiques.Cet article décrit une méthode pour détecter les changements de diversité dans un
environnement fluctuant. Dans la comparaison d’échantillons pour évaluer les changements de structure de la
communauté, l’échantillonnage induit inévitablement du « hasard » dans la composition des espèces et de leur
abondance. Deux échantillons peuvent présenter de fortes différences même s’ils proviennent de la même communauté.
Parfois, l’effort déployé dans l’échantillonnage varie également, ce qui conduit à attendre un nouvel accroissement des
différences. Finalement, en cas d’intervalle de temps suffisant entre les échantillons, nous proposons de corriger les
données des variations d’abondance des espèces dans ces conditions environnementales fluctuantes. La méthode inclut
un modèle de méthodologie d’échantillonnage et corrige les différences dans l’effort d’échantillonnage. La dynamique
des populations est modélisée par un processus de diffusion, sa variance simulant l’effet d’un environnement fluctuant
sur l’abondance spécifique. Nous sommes à même de tester l’hypothèse nulle d’un changement de diversité qui ne serait
pas naturel, en face de changements additionnels hypothétiques de la structure de la communauté dus, par exemple, à
l’action humaine. © 2001 Ifremer/CNRS/IRD/Éditions scientifiques et médicales Elsevier SAS
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1. INTRODUCTION

Some of the most pressing ecological problems today are
to describe and explain the variety and abundance of
species, their expected future development, possibly
across centuries (Pimm, 1991), and the prediction of
extreme conditions such as species extinction. How are
species abundances distributed in nature, and how can
they be influenced, or caused, by interactions between
individuals or species and by the abiotic forces of their
environment? These are all problems where the develop-
ment and application of an appropriate stochastic model
is of great significance. Ecologists are often interested in
comparing two, or more, samples in order to test for
temporal changes, or spatial differences, in community
structure. The samples are either taken at different times
from the same community, or from locations spatially
separated. For example, we may want to monitor a
community over time in order to detect trends or sudden,
acute changes, or we may want to compare different
habitat types. The major goal is then to infer the possible
causes for any observed difference between samples.

Any attempt to study community ecology must first deal
with the questions of how to define the term ‘community’
and how to delimit it, that is, choices of taxonomic,
spatial and temporal scales. The most inclusive definition
of a community is all the organisms in a prescribed area
(e.g. Roughgarden and Diamond, 1986). This definition is
in most practical applications restricted along the three
scales mentioned above, in order to describe a group of
species living closely enough together for the potential of
local interaction (Strong, 1984; Claridge, 1987; South-
wood, 1987; Magurran, 1988). Caution and ‘common
sense’ must be shown when delimiting the community;
the analysis will depend heavily on which species we
choose to sample, each of these species will at least have
slightly different geographical range and habitat, and the
seasonal variation in species abundance may be relatively
strong and unsynchronised. Patterns can be apparent if
one examines the community over a sufficiently large
area or for a sufficiently long time, but not show up if the
study is restricted in space and time.

Tolerating uncertainty is often necessary, not only due to
lack of information, but also due to the intrinsic stochas-
ticity and unpredictability in many ecological processes.
The effects of random sampling may, at least partially,
cause an observed difference between samples with
regard to community structure. Scientists unfortunately

sometimes ignore that they are dealing with a sample
rather than the population itself, a mistake which can
lead to substantial bias (Solow, 1998). An observed
difference may also occur due to possible variations in
sample size, or rather, sampling effort. Does a difference
in sample size reflect different sampling efforts or an
actual difference in community structure? A possible trap
here is that an observer who strives to obtain equal
sample sizes thereby differentiates the sampling effort
and camouflages an actual difference in species abun-
dance. Temporal variations in species abundance may
just be reflections of a naturally fluctuating environment.
This variance must be included in a dynamical model
before any inference on (unnatural) changes in commu-
nity structure can be performed. When methods for
estimation and prediction are constructed, the biological
uncertainties as well as statistical uncertainties due to
sampling must therefore be taken into account. The
observations may also be probable and not certain, for
example classification of trophic relations, therefore
introducing even more uncertainty. Such uncertainties
constitute an essential part of many controversial scien-
tific investigations and policy responses (e.g. global
warming). Modelling tools and approaches leading to
satisfactory conclusions are therefore of great impor-
tance.

The practical implications of stochastic models in biol-
ogy have recently been questioned (e.g. Caughley,
1994), because the analysis is often based on unrealistic,
simplifying assumptions, and on estimates with weak
empirical foundation. Another problem is that theoretical
models, which are validated in limited domains, are too
often generalised on insufficient evidence (Beck, 1997).
The search for generality increases our understanding of
nature, but this generalisation should be based on solid
information and not on excessive and dubious extrapo-
lations. The effect of time and place can often contribute
substantially to the variance, and since theories neces-
sarily are simplifications, they cannot be expected to
account for all the variance of a noisy world. Finally, the
majority of the present models are almost completely
biotic in their explanatory variables (Hall, 1988). Abiotic
variables are usually better behaved, and may often be
just as important in determining the basic properties and
the dynamics of community structure. One of the major
benefits of modelling is that assumptions must be articu-
lated, and reasoning made explicit. Thus, those partici-
pating in the analysis are likely to develop a clearer
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perception of the problems and begin to attack them in a
more unified manner.

2. MATERIALS AND METHODS

Studies of community patterns usually applies to an
assemblage of closely related species, since taxonomi-
cally distant taxa often have weak relationships. The kind
of data often analysed tends to have relatively vague
spatial and temporal boundaries, making a proper defini-
tion of the community difficult. For that reason, many
ecologists, Fisher included, often referred to ‘collections’
rather than ‘communities’. When the study aims at
comparing separate communities in space or the same
community over time, it is important that the other scales
are fixed throughout the study. The effect of for example
seasonal variation could otherwise be severe. When
comparing communities, we shall in most cases wish to
eliminate differences due to unequal sampling efforts.

2.1. Species abundance models

One aspect of community structure that has been given
particular attention is the pattern of abundances of all the
species in the community. The species may have a wide
range of abundances; some are very common and others
are rare. A species abundance model is a statistical model
describing this distribution of abundances. When adopt-
ing a parametric probability distribution we have param-
eters to draw inference on, the possibility to test for
differences in parameter values between different types of
communities, and the data from random samples can be
treated statistically. Ecologists often go further to inves-
tigate how the structure is generated, and search for
processes which can explain the observed pattern.

For all the classical models, it generally applies that the
set of observations is treated as a random sample from
some indefinitely large population. We further assume
Poisson-sampling, that is, if a species with abundance x is
represented by X individuals in the sample, then X is a
Poisson variate with a distribution

P� X = i � =
� mx �

i

i! e− mx

where ν is a measure of the sampling intensity, ν ∈ [0,1].
Let S be the number of species in the community. The

abundances of all the species in the community can then
be regarded as a sample of size S from some probability
distribution f(x). The probability that a species will be
represented by i individuals in a sample is then

pi = �
0

∞
� mx �

i

i! e− mx f� x � dx

for i = 0, 1, 2, …, that is, a compound Poisson distribu-
tion. We will only observe the truncated form of this
distribution, since the number of unobserved species
generally is unknown.

Fisher (Fisher et al., 1943) started out by assuming that
the abundances could be modelled by a gamma distribu-
tion

f� x � = bk

C� k �
xk − 1 e− bx

where k, � > 0. He then performed a limiting operation on
the compound Poisson distribution by sending the shape
parameter k to zero, and the number of species in the
sample to infinity, and ended up with Fisher’s ‘log-series
model’. If we instead let the shape parameter equal one,
we arrive at MacArthur’s ‘broken stick model’ (Mac-
Arthur, 1957), a model often applied due to its niche-
partitioning interpretation. When k is not fixed, but
allowed to run freely, we obtain the negative binomial
model, (e.g. Pielou, 1975; Engen, 1978). I will here
choose to denote it the gamma model, since it is the
abundance distribution that is interesting not necessarily
the compound sampling distribution. The gamma model
can be extended to include values of the shape parameter
between –1 and 0 (Engen, 1974), but then only the
truncated distribution is well defined. In figure 1, I have
illustrated the limitations caused by fitting the log-series
or broken stick models to a real data set instead of
applying the general gamma model (here with an esti-
mated k = 0.19). The data set presented, Malayan butter-
flies (Corbet, 1941), was originally used by Fisher et al.
(1943) to illustrate the fit of the log-series model.

Preston’s (1948) approach was to fit the lognormal
distribution to the species abundances instead of a gamma
distribution,

f� x � = 1
�2 p rx

e− 1

2 r2
� ln x − µ �2
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a model that was later refined by Grundy (1951) and
Bulmer (1974), leading to the truncated Poisson lognor-
mal model.

In Diserud and Engen (2000), we have developed a
general and dynamic class of species abundance models.
Let the expected change in species abundance be mod-
elled as rx(1 – (x/K)θ), that is, θ-logistic density regula-
tion (May, 1981; Hanski, 1994; Sæther et al., 1996;
Middleton and Nisbet, 1997) where r is the growth rate at
low densities and K the community’s carrying capacity
defined as the level where the expected change equals 0.
With an environmental variance acting simultaneously on
all the individuals in the community, the quasi-stationary
distribution corresponds to the gamma distribution for
θ = 1, and the lognormal distribution in the limit as θ
approaches 0.

A complete insight into the pattern of species abundances
can only be achieved by studying the full distribution, but
in many circumstances it can be helpful to adopt a single
summarising statistic, particularly when comparing dif-
ferent communities. Several authors have attempted to
find this single index that characterise the whole species
abundance distribution, with respect to diversity, even-
ness and dominance. Engen (1978) gives the relationship
between the parameters in species abundance models and
different indices of diversity. Diversity indices have
traditionally been more appealing to researchers, conser-
vationists and managers of natural resources due to their
intuitive interpretation and ease of calculation, while
applying species abundance models have been considered

a more difficult task (Tokeshi, 1993). Since diversity
indices are a one-dimensional description of community
structure, we should not expect them to be more than
measures of this specific dimension. If we want a more
robust analysis, we should either apply several different
indices or rely on a more complete description of the
community. The diversity index must be able to distin-
guish between not too different communities, it is the
more subtle changes for which we need to discover
analytic tools. A diversity index’ effectiveness will there-
fore depend on its ability to discriminate between the
possible states of a community, and the precision with
which it can be estimated from a sample (Kempton,
1979).

The community characteristic that has been given the
most attention is the number of species. Bunge and
Fitzpatrick (1993) have written a good and thorough
review on existing estimation techniques. They found
that the problem is quite resistant to statistical solution,
no matter how large the sample is, there will still be a
relatively large proportion of unobserved species. Be-
sides species richness, other common diversity indices
includes the Shannon index, Simpson’s index and Hill’s
index (e.g. Magurran, 1988). An indication of the lack of
information in many samples on the number of species S
in the community is shown by the fact that the gamma
and lognormal models, while often giving rather similar
fits to the species abundance distribution, provide totally
different estimates of S (Kempton, 1979). Indeed, when
k ≤ 0, the gamma model presumes an infinite pool of
species. The use of this parameter also suffers from the
difficulty of delimiting the community from which the
sample is drawn, or even accepting that such a discrete
community exists. As an illustration, the gamma, the
lognormal and our generalised model are fitted to the
Malayan butterfly data set (Corbet, 1941). All three
models fit reasonably well, but they give radically
different estimates of the number of unobserved species.
The gamma model estimates that 621 species have not
been sampled, the lognormal model estimates this num-
ber to be only 89, while our general model estimates
236 unobserved species.

2.2. Community limitation

Observed spatial differences in the value of the diversity
index could be due to different community sizes or
limitations. The natural, or defined, limitations of the two

Figure 1. The gamma, log-series and broken stick models fitted to
observations of Malayan butterflies (Corbet, 1941). The histogram is
truncated at the right; Corbet observed in addition 96 species with
counts in the range from 30 to 194.
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communities (spatial, temporal or taxonomical) may
vary, so we would expect differences in the value of most
diversity indices. A specific value of a diversity index
may describe an optimal diversity in one community,
whereas in another community of different ‘size’, this
value may indicate a rather poor diversity. This is a great
weakness when applying diversity indices; we do not
always have a clear perception of what is a ‘good’ or a
‘bad’ value. In figure 2, I have simulated species abun-
dances from a fixed lognormal model. The ‘size’ of the
community is represented by the total number of species
S. For each chosen value of S, I simulated 1 000 commu-
nities and calculated the mean and the 95 % confidence
interval for the Shannon index. The degree of change will
of course depend on choices of model, parameter values
and diversity index (figure 2 is to be regarded as an
illustration).

2.3. Sampling effects

Biologists unfortunately often treat the sample as if it
were the whole community, either by neglect or as a way
to avoid the problems introduced by stochasticity and
uncertainty due to sampling. Since censusing all individu-
als in a community usually is impossible or too expen-
sive, random sampling is considered to be the best
alternative; random in the sense that each individual,
regardless of the species, has the same probability of
being caught. This condition is in practice often hard to
achieve, its efficiency depending on the taxonomic dis-
tance between species. More often the ‘randomness’

refers to for example the location sampled which does not
necessarily lead to random sampling of individuals.
Another possible cause for observational error is that the
observer may be eager to sample rare species so that these
becomes overrepresented in the sample. When species
abundance distributions are fitted, it will then appear as if
even more rare species are undiscovered. Uncertain
species identification will also lead to sampling bias,
since the individuals questioned often are removed from
the sample rather than contributing to the rare species.
Some authors also mix counts of individuals of species
with counts only identified to genera (or a higher taxo-
nomic level) in the same data set. Such mixtures, with
possibly very dominant ‘genera groups’, may have a
significant influence on the values of the diversity indices.
In order to save time, money, or due to difficulties in
identifying the species, some researchers want to perform
the analysis of diversity entirely at a higher taxonomic
level. Depending on the structure of the change, the same
analysis performed on different taxonomic levels could
yield radically different results. Diversity indices which
handle mixed data sets, or data sets not identified down to
species, have been developed (e.g. Warwick and Clarke,
1995), but they are sensitive to the more or less arbitrarily
defined weights on the ‘taxonomic distances’. Implicit in
these indices is the view that species far from each other
are valued more than ‘close neighbours’. This approach
will be in conflict with what I mentioned earlier regarding
the taxonomical limitation of the community under study,
that is, we are often only interested in studying related
species with a potential for local interaction.

2.4. Two samples from the same community

When comparing two samples, we are often interested in
whether the two samples are from the ‘same’ community,
or more precisely, if they are sampled from the same
species abundance distribution. Even when they are
sampled from exactly the same distribution, we expect
differences in species number and composition, espe-
cially if the sampling intensities are varied.

Assume first that the community structure is such that
some species abundance model can describe it, and that
the two samples are from the same model and indepen-
dent. We further assume Poisson sampling; each indi-
vidual has thereby an equal probability of being sampled,
and we expect to sample a proportion ν of the total
number of individuals. The sampling intensity may vary

Figure 2. The dependency of the Shannon index on the number of
species in the community. The community is described by a fixed
lognormal species abundance model.
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between samples. Regardless of the species abundance
model, the number of individuals of a species in the first
sample, given the pooled count of this species in both
samples, then becomes binomially distributed (Diserud,
1999) with probability

p =
m1

m1 + m2
,m ∈ � 0,1 �

where ν1 and ν2 are the sampling intensities of the first
and second sample respectively. If ν1 = ν2, then π = 1/2
as expected. This probability π can be estimated rather
straightforwardly as p̂ = n1 /� n1 + n2 �, where n1 and n2

are the total number of individuals in the first and second
samples respectively. Note that this estimator may be-
come a pitfall if the size of the samples do not reflect the
effort put into the sampling. For example, if you know
that the number of man-hours put into collecting the two
samples differ significantly, but the sample-sizes come
out equal, then the ratio between the number of man-
hours spent may be a better estimator.

To illustrate the expected difference between two ‘equal’
samples, I have carried out a simulation from five related
gamma models. The scale parameter in all models is fixed

at the same value indicating a low sampling intensity (a
small fraction of the community is sampled), while the
shape parameter k is varied (values given in figure 3).
Fisher’s log-series model corresponds to k = 0, whereas
insect communities often yield estimates of k
around –0.2. The shape parameter of the gamma model
is often used as a diversity index itself. Note then that an
increase in k can indicate both a decrease in species
richness and an increase in evenness.

If the sampling intensities are unequal, the expected
difference between the samples will increase. A relevant
question could then be: how large must the second
sample be in order to observe almost all of the species
from the first? For illustration sake, we still simulate
from the same model, but now we keep the intensity of
the first sample fixed, while the intensity of the second is
increased (figure 4). We see that the probability of
observing a species in the first sample only first reaches
below say 0.05 when ν2/ν1 = (10, 6, 4, 2, 1) for
k = (–0.5, –0.2, 0, 0.2, 0.5), respectively. For Fisher’s
log-series model, the second sample must thereby be
more than four times as large as the first in order to
observe at least 95 % of the species registered in the first
sample.

Figure 3. The effect of random
sampling when the sampling inten-
sities of the two samples are in-
creased equally. All curves are
scaled to start at 100, but the rela-
tionship is linear so the curves
would have the same relative rela-
tionship regardless of initial value
of the scale parameter. Note that
the expected number of species in
one sample only is constant in
Fisher’s log-series model (k = 0).
(figure from Diserud, 1999).
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2.5. Temporal variability

One of the central problems in ecology is modelling the
dynamics of animal populations. Population dynamics is
the science of describing and understanding changes in
populations over time, alternatively why they do not
change but have reached some kind of equilibrium. The
classical species abundance models are not dynamic, they
just describe the composition of the community correctly
at a given point in time. The parameters can be consid-
ered as characterisations of the environment, different
environmental conditions giving models with different
parameter values.

Populations are generally not stable, for some communi-
ties each year can be considered almost as a new
situation, so we need to provide links between abundance
models for the same community at different points in
time. Accordingly, the variations can be modelled by
assuming that the parameters of the models change
stochastically from one year to the next. In conservation
biology, it is of major interest to estimate the probabilities
of for example reduction in species diversity or a threat-
ened species’ expected time of extinction. Both these
characteristics are closely linked to the community’s
stability. The relation between a stable community (in
equilibrium) and species diversity has long been a puzzle.
Hutchinson (1961) stated that a lack of equilibrium could
be an explanation of species diversity. Tilman (1996) has
suggested that although diversity may stabilise commu-

nity properties, it may also be associated with large
fluctuation of individual species, so population variations
in diverse natural communities may reflect strong con-
nections between species (e.g. compensatory fluctuations
due to competition), leading to dynamic and fragile
systems (Hanski, 1997).

For a majority of the animal populations surveyed, the
stochasticity seems to increase with the length of the
study period (Pimm, 1991). Populations tend to vary
relatively slightly at some level on short time scales.
When the time scale is prolonged, this level itself varies,
and even more than the short time variations. A possible
explanation was suggested by Davis (1986) who found
that climatic parameters also change through time, either
in a directional way or as variations around several values
rather than around a constant mean. Another possibility is
that speciation or extinction may disturb a community’s
quasi-equilibrium, and induce stepwise changes like the
ones observed. Regardless of explanation, this stochastic
time dependence makes long time predictions very un-
certain.

The understanding of the complex causality of population
fluctuations has far-reaching applications in areas ranging
from resource management to conservation biology
(Dennis et al., 1995). One way to comprehend the
observed fluctuations is to compare its pattern with that of
a theoretical model. The usual line of attack is to start
with a simple, basic model and as knowledge accumu-
lates, it can be generalised and elaborated in order to
obtain higher descriptive and predictive power. The next
step is therefore to include the dynamic aspect in the
stochastic abundance models, that is, modelling the
fluctuations in species abundances due to variations in
environmental conditions. The importance the environ-
mental variance has on the populations is suggested by
the relative fragility of juveniles of many organisms
(Chesson, 1986). If an acceptable estimate of this natural
variation in species abundance is established for a spe-
cific community, we would be able to predict the impact
of human interference (habitat reduction, fragmentation
or pollution) by performing theoretical calculations on
how different external changes represented by changes in
model parameters will affect the diversity of the commu-
nity. The few dynamical approaches that exist have little
practical value since they include only demographic
stochasticity due to the individual variation in birth and
death rates (e.g. Kendall, 1948). Recent research has
shown that the stochastic variations in populations are

Figure 4. We have again chosen the same five values for k, and kept
the scale parameter fixed in the gamma model, to show the effect an
increase in the second sampling intensity ν2 has on the probability of
observing a species in the first sample only (figure from Diserud,
1999).
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mainly due to fluctuations in the environment, and that
demographic stochasticity is of little importance (Lande,
1993).

When our two samples are taken at different times in a
fluctuating environment, we will therefore expect the
differences between the values of the diversity indices to
be even larger than that due to random sampling alone.
My suggested solution is to model the dynamics by a
diffusion process, and construct a test that detects if we
have observations or differences more extreme than what
we would expect under natural levels of environmental
fluctuations. This approach is presented in detail in
Diserud (1999). As test statistic, a diversity index will be
an intuitive choice. Different communities respond dif-
ferently to a stochastic environment; animal populations
may show a rapid response to climatic change, whereas
plant populations may respond more slowly. Temporal
variability will be greater where critical environmental
variables are themselves more variable (Pimm, 1991).
Population parameters, especially the growth rate, can
modify the variability, since they are able to negate the
effect of fluctuating conditions.

A necessary first step is to identify the deterministic
processes that are structuring the community. Determin-
istic growth equations for a species are often written as

d ln x
dt = r − g� x �

where r is the specific growth rate at small densities, and
g(x) the density regulating term defined as an increasing
function with g(0) = 0. Engen and Lande (1996a, 1996b)
and others (e.g. Leigh, 1981; Goodman, 1987), replaced
the constant r in the equation above by the process
r + σr(x)dB(t)/dt, reflecting the temporal stochasticity in
reproduction and mortality, and thereby obtained a real-
istic stochastic analogue to the deterministic growth
equation. B(t) is a standard Brownian motion with mean
and variance equal to 0 and 1 respectively, so that dB(t)/dt
is the so-called white noise. The variance in r is usually
written as

r r
2
� x � = rd

2 /x + re
2

where σd
2 is the demographic variance, and σe

2 the
environmental variance acting simultaneously on all in-
dividuals in the population (e.g. Engen and Sæther,
1998). Lande (1993) also included a term describing the
effect of natural catastrophes that produce sudden major
reductions in population size. Writing the variance like

this is only correct in the case of no demographic
covariance, that is, the variance due to interactions
between individuals, such as intraspecific competition.
Precise definitions of the concepts of demographic and
environmental stochasticity have been given by Engen et
al. (1998). This definition of the variability of species
abundances is approximately in accordance with the
argument that populations having identical sequences of
growth rates should yield the same variance estimates,
regardless of abundance (Gaston and McArdle, 1994).
Authors adopting this approach usually assume that σd

2

and σe
2 are constants not depending on the population

size, an assumption which in general is not true (Sæther
et al., 1998). Note that a possible temporal or spatial
autocorrelation in environmental stochasticity may have
major impacts on population viability, but are often
ignored due to difficulties in estimation (Lande et al.,
1999). Positive temporal autocorrelation increases ex-
tinction risks, due to consecutive years with consistently
low population growth rates.

Engen and Lande (1996a, 1996b) developed dynamic
population models that were based on multivariate dif-
fusion processes, assuming the species to be indepen-
dent. This assumption can be relaxed to include inter-
specific density regulation and heterogeneity among
species. Diffusion processes are stochastic processes that
are continuous in state as well as time (Karlin and Taylor,
1981), but give fairly accurate approximations to discrete
population processes (e.g. May, 1973; Turelli, 1977;
Lande, 1993). Ignoring the demographic stochasticity,
which has little effect on the abundance curve (Engen
and Lande, 1996b), and applying the Ito-solution of the
corresponding stochastic differential equation for the
species abundances x (Karlin and Taylor, 1981), we find
that the dynamics of the species abundances can be
approximated by a diffusion process where the expected
change is described by the infinitesimal mean

m� x � = rx − xg� x �

and the variance of the change in abundance per time
unit is described by the infinitesimal variance

r2
� x � = re

2 x2

For small populations, notice that the demographic
variance can be the dominant form of stochasticity
(Lande, 1998). Now assume that new species enter the
community at times generated by a Poisson process with
parameter ω (the speciation rate). The species abun

O.H. Diserud / Oceanologica Acta 24 (2001) 505–517

512



dances will then, at a given point in time, be realisations
of an inhomogeneous Poisson process (Engen and Lande,
1996b) with the rate

k� x � = 2x 1
m� x �

e�1

x
2m� u �/r2� u � du

The number of species with abundances in any interval
[a, b] is then Poisson distributed with parameter
�a

bk� x � dx.

In our general species abundance model (Diserud and
Engen, 2000), we define the density regulating term g(x)
as r(x/K)θ, where r is the growth rate at low densities, K
the community’s carrying capacity defined by m(K) = 0,
and θ a parameter that express the strength of the density
regulation around K (e.g. May, 1981; Sæther et al., 1996;
Middleton and Nisbet, 1997). It will be the value of θ that
is crucial in determining the model; the limit θ = 0
indicates that the species abundances follow the lognor-
mal distribution (Engen and Lande, 1996b), whereas
θ = 1 corresponds to the gamma model (Engen and
Lande, 1996a). Large values of θ give a strong density
regulation above K, while smaller values of θ allow larger
fluctuations around K. When it comes to estimation, we
treat the species as being independent, and adopt the
above class of models based on inhomogeneous Poisson
processes. The expected number of species in the com-
munity is now given by ES = �0

∞k� x � dx while the
expected number of individuals becomes
EN = �0

∞xk� x � dx. Note that both the expected number of
species and individuals are proportional to the rate of
speciation ω. We now have a model that, in addition to
covering the classical abundance models as special cases
at a given point in time, include dynamic characteristics
such as speciation and environmental fluctuation.

By modelling and understanding the dynamics of a
community in natural quasi-equilibrium, that is, not
disturbed by human activities, we have the needed basic
knowledge for developing methods to detect if an obser-
vation (a year’s abundance) is more extreme that what our
model would predict. In Diserud (1999), we illustrate the
effect a fluctuating environment may have on a commu-
nity, and the expected difference between two samples
taken from the same location and same taxonomic scale,
but at different times. We can also evaluate the probable
effects of ‘extra’ changes in the environmental conditions
by changing the corresponding model parameters and
then simulate the population dynamics, since extinctions

may often be caused by novel variation in the environ-
ment such as a deteriorating habitat quality (Hanski,
1994).

3. RESULTS

The method will be illustrated by a constructed example
where the model will be kept as simple as possible in
order to make the effects of a fluctuating environment
more visible. Let us first assume that our simulated
populations are large, so that the demographic variance
can be ignored (σd

2 = 0). The environment is very vari-
able and the populations respond rather quickly, so we
may observe, under ‘natural’ conditions, that a population
doubled or halved from one year to the next. Between the
two sampling periods, the government increased our
funding, enabling us to double the sampling effort
(ν1/ν2 = 1/2). We can therefore not compare the samples,
or the calculated diversity indices, directly. There exists
several methods for manipulating the samples to ‘equal
sample sizes’, but then you throw away a lot of valuable
information, and risk falling in the same trap as men-
tioned previously; by forcing the samples to be of equal
sizes, you may camouflage an actual change in diversity.
In short, our null-model is now a diffusion process with
infinitesimal mean m(x) = 0, indicating no deterministic
trend, and infinitesimal variance σ2(x) = σe

2x2. We
thereby illustrate the expected difference between two
samples due to sampling and environmental variance
alone.

Let Xi1 be the number of individuals of species No. i in
the first sample, and mi the total number of individuals of
species i in both samples. I showed in Diserud (1999) that
Xi1 ∼ Bin(mi, πi) regardless of the underlying type of
species abundance model, where πi is the probability that
an observed individual of species No. i will be in the first
sample. Note that πi can vary between species since the
species may respond differently to the fluctuating envi-
ronment. Let further xi1 and xi2 be the abundances of
species i at the times of the first and second sample
respectively, then

pi =
m1 xi1

m1 xi1 + m2 xi2
=

m1 /m2

m1 /m2 + xi2 /xi1

Note that we do not need to know the absolute values of
the sampling intensities, only their relative ratio. What
remains then is to model the relative change in abundance
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xi2/xi1 as a function of σe
2. By transforming y = ln x and

from general properties of the diffusion process, we get,
as an approximation, ∆yi = yi2 – yi1 ∼ N(0, σe

2(t2 – t1)),
where t1 and t2 are the times of the first and second
sample respectively (Diserud, 1999). If the species’
responses to the environmental fluctuations are corre-
lated, that is, they are not independent, we can write

Dyi = � qU + �1 − q2 Vi �re �t2 − t1

where U and Vi are i.i.d. N(0,1), and q describes the
correlation between species with regard to the effect of a
fluctuating environment. U will here describe the com-
mon response, while Vi denotes the species-specific
response.

I have chosen not to use a real pair of samples to illustrate
my method, but rather two reference samples, S1 and S2,
simulated from a null model of no unnatural change. This
is done in order to show what effect random sampling and
a naturally variable environment alone may have on the
structure of the samples. In order to obtain good estimates
of σe

2 and q we would need long-time series observa-
tions, they will here just be assumed as known. An
illustration of the method’s robustness with respect to
uncertain estimates of σe

2 and q is given in Diserud
(1999).

From a pooled sample m with 116 species, and a total of
2 935 individuals, I thereby simulated S1 and S2 with
ν1/ν2 = 1/2, σe

2 = 0.5 (since x2/x1 ∼ 2 ⇒ ∆y = ln x2 –

ln x1 ∼ ln 2 ∼ �0.5 � and q = 0.5. The ‘seed’ of my
simulations, the pooled counts m for the 116 species, is a
collection of Chironomidae-observations from the Nor-
wegian river Rauma (Arnekleiv et al., 1997). The actual
values are shown in figure 5C, but are of minor impor-
tance to my example. First, the number of individuals of
species No. i in S1 was generated according to

Xi1 ∼ Bin(mi, πi), where pi =
m1 /m2

m1 /m2 + eDyi
. The number of

individuals of species No. i in S2 is then merely
Xi2 = mi – Xi1. In a fixed community (σe

2 = 0) with
relatively low sampling intensities, we would expect
n1 = 978 and n2 = 1 957. What we ‘observed’ was
1 386 individuals distributed among 100 species in S1,
and 1 549 individuals from 98 species in S2, so the effect
of the fluctuating environment is obvious. If the envi-
ronmental variance had been ignored, a tempting con-
clusion would be that there had been a reduction in
diversity, based on the fact that we had doubled the
sampling intensity and observed fewer species. The
whole species abundance distributions for S1, S2 and the
pooled sample are shown in figure 5 with the general
species abundance model (Diserud and Engen, 2000)
fitted (solid line).

Let us continue by estimating ν1/ν2 straightforwardly as
n1/n2 ≈ 0.9, still assuming σe

2 and q to be known. When
simulating 1 000 new pairs of samples from a model
with these parameters, we would not see anything
suspicious. The differences in the values of the three

Figure 5. Histograms showing the
species abundance distributions of (a)
S1, (b) S2 and (c) the ‘original’ pooled
sample respectively. The histograms
are truncated at 30 in order to get a
more readable figure. The additional
observations in S1 were (52, 76, 77,
307, 349) and in S2 (31, 32, 32, 32, 37,
47, 51, 71, 85, 296, 351).
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most common diversity indices (Simpson, Shannon and
species richness) between the simulated pairs are pre-
sented in the histograms of figure 6A. The difference in
diversity between S1 and S2, indicated by the filled
circle, are placed neatly in the centre of the simulated
differences. Testing the null hypothesis of no unnatural
reduction in diversity, with the alternative hypothesis
being reduction in diversity, the Simpson’s index give a
P-value of 0.68, Shannon 0.71, and the species richness
0.30. If we instead use our information on the amount of
effort (e.g. in man-hours) put into sampling S1 and S2, we
estimate ν1/ν2 to be 1/2. The histograms in figure 6B
present the results from these new 1 000 simulations,
represented by the difference in the diversity indices. We
see that the Simpson and Shannon indices are robust
regarding the estimate of ν1/ν2, with P-values now equal
to 0.67 and 0.68, respectively, whereas the species
richness count now gives a P-value of 0.03, that is, below
the typical significance level of 0.05.

The quick lesson to be learned from this simulation
example is how much the value of some diversity indices
may change under naturally fluctuating environmental
conditions. The Simpson index may for example natu-
rally change as much as ± 0.15 from one sample to the
next under our choice of model. The Simpson and
Shannon indices also behave well for poor estimates for
the ratio between the sampling intensities, while analysis
based solely on the species count may be far from the
‘right’ conclusion.

4. CONCLUSION

Biodiversity is now often considered a human resource,
our ‘insurance policy’ (e.g. Stork, 1993). Amongst ecolo-
gists there is a disagreement on the role of diversity in
ecosystem functioning. Some consider all species essen-
tial and important, while others believe that many spe-
cies, with the exception of some key species, could be
lost without much damage to the ecosystem. It is never-
theless important to know the number of species and how
their distributions are changing, since diversity is under
continuous threat as more natural ecosystems are pol-
luted, destroyed or affected by climate change. I believe
that our methods may help to map to what scale biodi-
versity will be altered by these environmental changes.

Models will always be simplifications of the investigated
system, ignoring several variables that may be important,
but the models will hopefully give new insight and
understanding of the real world. The quality we realisti-
cally can expect from a data set is seldom so good that a
more complex model will give any significant improve-
ment regarding estimation and prediction. The variables
in dynamical abundance models are by nature stochastic
(Engen and Sæther, 1998), so no model can correctly
predict the dynamical changes in species abundance but
rather present a prediction with intrinsic uncertainty, even
if all the parameters are known. The parameters in the
model can in general not be considered as constants, but
rather as variables in both time and space. This renders it

Figure 6. Histograms showing the dif-
ference in the calculated value of the
diversity index between the pairwise
simulated samples. The filled circle
indicates our ‘observed’ difference. The
upper row (A) shows the difference
when ν1/ν2 is estimated by n1/n2 ≈ 0.9,
and the bottom row (B) when ν1/ν2 is
estimated as 1/2.
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difficult, or unrealistic, to generalise, so we should expect
differences in organising forces rather than any single
globally dominant factor. This stochasticity, together with
the statistical uncertainties due to sampling, can not be
ignored when developing methods for prediction. Even
so, if the application of stochastic models is to be
successful, we are strongly dependent on the availability
of good long-term data sets from a variety of communi-
ties.

The diversity indices applied as test statistics in this paper
are just simple examples, the method is by no means
limited to, or dependent on, these indices. They inevitably
throw away a lot of information since they are invariant
under permutation of the species in the samples. Better
and more sensitive results could be obtained by applying
more advanced diversity indices, such as the entropy or
the G.S. index by corresponding Rao’s diversity indices
(Rao, 1982; Nayak, 1986).

We have so far assumed that independent diffusion
processes with equal parameters give all the species’
dynamics, an assumption that may often be erroneous.
The models can in that case be further elaborated (Engen
and Lande, 1996a, 1996b). Let Φ be the vector of
parameters of the diffusion, and λ(x; Φ) the correspond-
ing abundance model. If the parameters Φ for each new
species are drawn from a distribution f(Φ), the abun-
dances in the community would still be given by an
inhomogeneous Poisson-process with a rate that is a
mixture of the rates of each species with regard to f(Φ),
that is,

k� x � = �k� x; U � f� U � dU

The growth rate r could for instance vary between the
species. If we assume that ri ∼ N(r, δ2), where i denotes
the species number, we can now test if δ2 is zero or
positive, that is, if the growth rates are equal or if at least
one ri differs from the others. We can also include
interspecific density regulation in addition to the intraspe-
cific one. The complexity of the model would then
increase since the species diffusion processes are no
longer independent. If this effect were assumed equal for
all individuals in the community, the distribution of the
relative abundances in the lognormal model would not be
changed even if the distribution of the absolute abun-
dances would. In practice, this model still gives observa-
tions fitting the lognormal model (Engen and Lande,

1996b). The same result can be approximated for the
gamma model when the number of species is large
(Engen and Lande, 1996a).

Evolutionary ecology will therefore necessarily be char-
acterised by mixtures of pattern and uncertainty. Even
when patterns and trends can be extracted from the data,
predictions will need to be probabilistic statements.
Environmental decisions therefore need to be made with
full recognition of the limitations posed by the stochastic
terms of the models, the assumptions needed and the
scale dependency of the sampled data.
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