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Abstract — Many subjective choices are required to perform an objective interpolation (OI) analysis of
environmental variables. Herein, we consider the effects on the statistical analysis of sea surface temperature
(SST) using (1) a structure function or covariance analysis, (2) different analytical expressions to represent the
statistics of the raw data, and (3) different historical SST data sets. The historical data sets are the well-sampled
Comprehensive Ocean—Atmospheric Data Set (COADS) and the poorly sampled historical expendable
bathythermograph (XBT) data set. Results from these analyses are used to generate error maps for a
poorly-sampled, two month XBT array and a proposed well-sampled profiling float array. For the relatively
data-rich COADS analysis, decorrelation scales are the same using either the structure function or covariance
analyses. Results differ for the data-poor XBT analysis. Representative decorrelation scales in the Pacific
(Atlantic) are about 11-14 (6—10) degrees in the zonal direction and 4-7 (3—-6) degrees in the meridional
direction. As COADS SST data are less precise than XBT SST data, error and signal variances are greater for
the former. The choice of analytical fit to the raw data (needed to generate error maps) has a dramatic effect
on the resulting uncertainty fields. Gaussian fits, because of their parabolic shape near the origin, result in
smaller errors than exponential fits for the same observing array. Finally, the proposed float array can achieve
the accuracies needed to resolve satisfactory upper layer heat content changes over larger areas than the present
XBT network. © 2000 Ifremer/CNRS/IRD/Editions scientifiques et médicales Elsevier SAS
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Résumé — Effet de choix subjectifs sur ’analyse objective des données de température superficielle dans les eaux
tropicales des océans Altantique et Pacifique. Dans I'interpolation objective des variables environnementales, de
nombreux choix sont subjectifs. Leurs effets sur I’analyse statistique de la température superficielle de I'eau
(STT) sont comparés en utilisant : a) une fonction de structure ou analyse de covariance, b) des expressions
analytiques des données brutes et c) des séries de données historiques. Celles-ci proviennent de séries completes
de données océan—atmosphere (COADS) et de séries fragmentaires de données de bathythermographes (XBT).
Les résultats de ces analyses sont utilisés pour établir des cartes d’erreurs dans le cas d’un échantillonnage
fragmentaire par réseau de bathythermographes sur une durée de deux mois et dans le cas du réseau de flotteurs
proposé pour I'enregistrement des profils. Pour les séries COADS relativement riches en données, les échelles de
décorrélation sont les mémes dans les analyses par fonction de structure ou convariance. Les résultats différent
pour les séries XBT fragmentaires ; les échelles de décorrélation dans le Pacifique sont environ 11-14° dans la
direction zonale et 4—7° dans la direction méridienne ; dans 1’Atlantique, elles sont respectivement de 6—10° et
3-6°. Les données COADS étant moins précises que les données XBT, les variances d’erreur et de signal sont
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plus grandes pour les premieres. Le choix de I’ajustement analytique pour les données brutes (nécessaire pour
établir les cartes d’erreur) a un effet important sur les champs d’incertitude qui en résultent. Les ajustements
gaussiens, par leur forme parabolique au voisinage de 'origine, donnent des erreurs inférieures a celles des
ajustements exponentiels pour un méme réseau d’observation. Pour résoudre la variabilité des échanges de
chaleur dans la couche superficielle, le réseau de flotteurs proposé donne une précision satisfaisante sur des zones
plus étendues que I'actuel réseau de bathythermographes. © 2000 Ifremer/CNRS/IRD/Editions scientifiques et

médicales Elsevier SAS
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1. INTRODUCTION

Upper ocean temperature (UOT) data are an impor-
tant component of many oceanographic studies (e.g.
the World Ocean Circulation Experiment (WOCE),
WMO [18], the Tropical Ocean Global Atmosphere
(TOGA) experiment, NRC [12]). Objectives for these
data include initializing climate forecast models and
estimating upper layer heat content changes. The
majority of the data collected for these programs
have been obtained from a volunteer observing ship
(VOS) network. The VOS network is comprised of
merchant ships that typically have fixed routes on
which ship’s crew members deploy expendable
bathythermographs (XBTs).

Objective interpolation (OI) schemes are commonly
used to map onto a fixed grid a non-uniform distribu-
tion of temperature data from the VOS network and
to design ‘optimal’ sampling networks for the collec-
tion of these data. For both the mapping and design
functions, an accurate representation of the statistics
(i.e. noise and signal variances and decorrelation
scales) of the variable to be mapped is an essential
requirement of OI schemes. In mapping, these statis-
tics are required to define the coefficients for an
optimal linear predictor such that the mean square
error between the unknown true value and the esti-
mated value is minimized. Once the statistics are
determined, gridded values can be predicted and a
measure of the reliability, in the form of an error
map, can also be calculated. In design studies, both
the variability statistics (i.e. extracted from existing
data) used in mapping and various sampling strate-
gies (i.e. the locations of proposed observations) are
needed. Once the statistics are determined, the actual
values of the data are not required to calculate the
uncertainty estimates. Error fields are generated for a
variety of sampling patterns. An ‘optimal’ array is

determined subjectively based on operational costs
and accuracies desired.

There are several important subjective choices re-
quired in OI for both mapping and design. The effect
of these choices on the OI results is frequently am-
plified in oceanographic relative to meteorological
applications because of the paucity of the historical
data available to generate the statistics needed to map
the data. For example, an initial choice in OI is the
form of the statistical analysis used to represent the
characteristics of the field to be mapped. Historically,
the analysis of oceanographic data was typically
based on a correlation (covariance) analysis to esti-
mate scales and variances from historical data (e.g.
White [15], Meyers et al. [11], and Sprintall and
Meyers [14]). Recently, structure functions have been
used to represent the statistics of the variability, e.g.,
Festa and Molinari [S] and Hansen and Herman [7]).
When adequate data are available to obtain reliable
statistics, an analysis using either a structure or corre-
lation function will give the same estimates of vari-
ability (Cressie [2], Gandin [6], and Herzfeld [8]).
However, there are cases (e.g., Hansen and Herman
[7]) where it is difficult if not impossible to estimate a
covariance function and the statistical representation
can only be given in terms of a structure function
(e.g. a linear structure function).

In the application of OI to oceanographic problems,
analytical expressions are fitted to the raw autoco-
variance or structure function representations of the
historical data to provide the quantification of the
properties of the variability needed for mapping. The
fits are required as the raw data representations are
frequently noisy because of sparse data, and look-up
tables of these data may not possess the properties
needed to satisfy theoretical OI requirements (i.e. the
fit must be positive definite to satisfy OI theory,
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Isaaks and Skivastav [9]). Considerable subjectivity is
involved in the selection of a suitable analytical func-
tion (e.g. White et al. [16] and Meyers et al. [11]
employed Gaussian functions to represent spatial
statistics, while using similar data sets, Festa and
Molinari [5] and White [15] used exponential func-
tions). Using a Gaussian function instead of an expo-
nential function can result in the reporting of
significantly lower error estimates because of the
shape of the Gaussian function at short lags (Isaaks
and Skivastav [9]).

Finally, different oceanographic data sets are ob-
tained using instruments with different accuracies and
precisions. For example, SST from VOS use injection
and bucket instruments. However, the depth of the
ship’s intake varies considerably, causing sampling of
different levels of the near surface. Bucket tempera-
tures are sensitive to the construction of the instru-
ment. Thus, SST from VOS are generally less precise
than those from, for example, XBTs (i.e. a single
observing method).

Herein, we consider the effect on OI results of using
(1) a structure function or covariance analysis,
(2) different historical data sets, and (3) different
analytical expressions to represent the statistics of the
raw data. We begin with a brief description of the
analytical method, followed by a discussion of the
sources of the historical data. Examples are then
presented, using actual and proposed observational
locations, to illustrate the effect of different analysis
choices on the characteristics of the resulting error
maps. We conclude with a summary and a discussion
of the analysis of these data sets and their implica-
tions for design studies.

2. METHOD OF ANALYSIS

Gandin [6] initially developed the statistics of the
variable (Z) to be mapped in terms of the structure
function S; (i.e. the ‘known’ statistics) defined as

Sy =S(x, x) = <[Z(x) — Z(x)F > 0

the mean-square difference between the values of Z at
locations x; and x;. The structure function, or semi-
variogram (1/2 §;), is determined from previous ob-
servations of the variable considered. The value S,
can be represented by S(#) where & is the lag, a

measure of the distance between variable pairs. There
is a relationship between the structure function S(/)
and the autocorrelation function C(/), when both are
well defined (see Gandin [6]), such that

C(h) = 0.5%[S(o0) — S(h)] @)

Perhaps the most important step in either a structure
function or covariance analysis is the selection of an
analytical expression to approximate the statistics of
the raw data. In structure function analysis, this
expression is known as the semivariogram. When
semivariograms are only dependent on the magnitude
of the lag, the statistics are said to be isotropic. Two
commonly used isotropic forms are the exponential
and Gaussian structure functions written as

S(h) = Co+ C, *(1 —exp(-h/ (),
(3a)

Exponential:

Gaussian:  S(h) = Cy+ C, *(1 —exp(~h/C,)?).

(3b)

The value of the semivariogram at lag zero, C,, is
referred to as the nugget, which is a measure of both
the instrument and subgrid geophysical noise. In
these functional forms, the asymptotic value of the
semivariogram, C,+ C;, is known as the sill and
represents the total variance (noise and signal) of the
field. The value C, is a measure of the range over
which correlation exists and is equivalent to the e-
folding scale of the covariance function. The practical
range, i.e. the distance at which the correlation func-
tion effectively has reached zero, is given as 3*C, for
the exponential and ﬁ*Cz for the Gaussian func-
tion. The exponential model shows a linear behavior
near the origin, while the Gaussian model shows a
parabolic behavior.

When the variability of the semivariograms for two-
dimensional spatial variables (i.e. the sill and range)
depends on both magnitude and direction of the lag,
the statistics are said to be anisotropic. Anisotropies
typically result from the underlying physical pro-
cesses evolving differently in space. If an anisotropic
functional form (one with the same component sills
but different ranges) can be reduced to isotropic form
by a simple linear transformation of coordinates, the
anisotropy is referred to as geometric; otherwise, it is
known as zonal.

Figure 1 shows examples of east—west and north—
south isotropic and anisotropic semivariogram func-
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tions. The semivariograms are the same in each direc-
tion (i.e. they have the same sill and range) in the
isotropic example. In the geometric anisotropic exam-
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Figure 1. Model structure functions using exponential (solid lines)
and Gaussian (dashed lines) functions for the east—west (left
panels) and north—south (right panels) directions. Isotropic (up-
per panels), geometric anisotropic (middle panels), and zonal
anisotropic (lower panels) analytical forms are shown. Sills and
ranges of the fits are given by dotted lines.

ple, the sill, i.e. total variance, is the same in each
direction and the range in the north—south direction
is half of that in the east—west direction. A simple
linear transformation can reduce the semivariograms
to isotropic functions. In the zonal anisotropic exam-
ple, the variance in the north—south direction is 50 %
higher than in the east—west direction. It is not
possible to reduce these variograms to isotropic
functions.

3. DATA SOURCES AND ANALYSIS

The highly sampled COADS SST data and the
poorly sampled XBT data collected in the tropical
Atlantic and Pacific Oceans are used in this study. It
is recognized that XBT data are not ideal for per-
forming SST analysis because of limited spatial cov-
erage. However, they are adequate for the purposes
of this study. The COADS SST data are comprised
of measurements collected and reported, along with
surface meteorological observations, by merchant
ships. We use the monthly summary data on a 2
degree latitude by 2 degree longitude grid for the time
period of January 1950 through December 1989 (see
Woodruff et al. [17] for details of the data and
binning procedures).

The summary SST data contains both mean and
median values. We have chosen to present the 40-year
(1950-1989) median values analysis, since the median
is less likely to be affected by questionable data
values. Analysis has also been performed using mean
values and over shorter decadal time periods (i.e.
1950-1959, ..., 1980-1989). There is no significant
difference in the results. Results are also similar
between the 40-year and decadal time periods; in the
Pacific Ocean this occurs because of a uniform distri-
bution of El Nifio and La Nina events during the
decadal time periods.

The tropical Atlantic and Pacific Oceans between 30°
S and 30° N, the former between 70° W and 15° E
and the latter between 150° E and 90° W, are consid-
ered in this study. For the COADS data, during the
period of January 1950 through December 1989,
long-term monthly means are calculated at each 2° by
2° grid node where there are at least five years of
data. Monthly anomaly fields are obtained by sub-
tracting the long-term monthly mean climatology
from the yearly values at each grid node.
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Figure 2. July XBT (left panels) and COADS (right panels) data distributions in the tropical Pacific for even-numbered years during the
period 1980-1988.
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Figure 3. Same as figure 2, except for the tropical Atlantic.

The historical XBT data have been compiled for the
Atlantic and Pacific Oceans within the same tropical
regions. In the Atlantic, the historical XBT data have
been quality controlled for the period of June 1966

through December 1991 using procedures similar to
those given in Daneshzadeh et al. [3] and in the Pacific
for the period of January 1979 through December
1993, Donoso et al. [4]. The XBT data are averaged
by month and year onto the COADS 2° by 2° data
grid. Long-term means and anomalies are calculated
using the same approach as applied to the COADS
data. Examples of the XBT and COADS data distri-
bution on this grid for the month of July are given in
figure 2 for the Pacific and figure 3 for the Atlantic.
The dramatic disparity between XBT and COADS
data availability, particularly in the later years, is
evident in the tropical Atlantic.

Mean squared difference values (i.e., structure func-
tions or semivariograms) in the north—south (merid-
ional) and east—west (zonal) direction were computed
for each 2 degree lag bin for each month and each year
with data. Monthly composites were formed by taking
the average value at any bin over the entire time period
of record. Seasonal (December—February, March—
May, June—August, and September—November) and
annual composites were calculated in a similar man-
ner. There is little seasonal variability in the COADS
semivariograms in either tropical ocean (not shown).
More variability, especially in the Atlantic, is evident
in the XBT semivariograms at all lags, which is the
result of the lack of sufficient data during any seasonal
time period. Thus, further discussion is limited to the
annual composite semivariograms.

Analytical functional forms are fitted to the binned
values using the following approach. First, the noise
variance (nugget) is calculated in each direction by
fitting only the first few bins through a simple linear
extrapolation to zero lag, Alaka and Elvander [1]. An
average nugget (C,) is then computed from these
values. The signal variance and decorrelation
scales are then determined by a fitting routine using
the previously estimated nugget. To arrive at ‘best-fit
parameters’, the signal variances (C;) are es-
timated from a review of the raw structure function
and e-folding scales (C,) are then calculated using
these values in the fitting scheme. This approach
satisfies the geostatisticians’ warning against blind
automatic fitting of parameters to the raw semi-
variograms (see Journel and Huijbregts [10], for exam-

ple).

Two realizations of data distribution are used. First,
XBT data collected and transmitted in real-time dur-
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ing January and February 1998 by NOAA’s VOS
program are assumed representative of a typical two-
month period. Additional XBT data are generally
available from non-NOAA sources but frequently not
in real-time. Second, an Array for Real-time
Geostrophic Oceanography (ARGO) has been pro-
posed, Smith [13]. ARGO includes a global deploy-
ment of Profiling ALACE (PALACE) floats. These
floats drift at a preselected depth (generally between

Pacific
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Figure 4. Annual composite SST structure functions for the
COADS (upper panel) and XBT data (lower panel) generated
from raw anomaly data in the tropical Pacific. The heavy solid
and dashed lines represent geometric anisotropic analytical fits to
the east—west (zonal) and north—south (meridional) direction,
respectively, computed using 25 lags (50°). The light solid line
represents a zonal anisotropic fit in the north—south direction
using 13 lags (26°).

1000 m and 1500 m) for some 10 to 15 days. They
return to the surface collecting profiles of tempera-
ture (and salinity, if equipped with a conductivity
sensor). At the surface they transmit their position
and profile data. Initial plans call for maintaining a
global deployment of about 3000 floats. Such an
array will provide about 300-km resolution of upper
layer properties. A random distribution of floats with
this average spacing is used to show the effect of
various OI choices on ARGO error fields.

4. RESULTS

4.1. Estimates of noise and signal variances and
decorrelation scales

Raw structure function values estimated from the
Pacific COADS and XBT SST data sets are shown in
figure 4 and from the Atlantic data in figure 5. For
illustrative purposes, the raw values in the zonal (+ )
and meridional (O) directions are plotted to 50 de-
grees (25 lags). However, the noise in the Atlantic
XBT structure function at longer lags (figure 5) ar-
gues for limiting analysis of these data to separations
less than about 26 degrees (13 lags).

The choice of data set has an effect on the resulting
noise and signal variances. Variances associated with
the COADS data are larger than the XBT variances
in both basins (figures 4, 5). SST observations from
XBT data are expected to be more precise than those
from VOS because of the many different measure-
ment techniques (e.g., bucket, intake, etc.) and sam-
pling depths (dependent on intake depth of the VOS)
used on the merchant ships. This lower precision
contributes to the higher variances estimated from
the COADS data and would contribute to larger
uncertainties when mapping SST data from VOS.

The Pacific meridional structure functions both show
the presence of what geostatisticians call a ‘hole’ (i.e.,
a decrease rather than increase with lag in the values
of the variogram, figure 4). Geophysically, the hole
structure, if real, is representative of solutions to
second order autoregressive processes (i.e., the pro-
cesses include periodic components, White [15], for
example). Anomaly plots constructed for the basin,
particularly during ENSO events, suggest that the
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Figure 5. Same as figure 4, except for the Atlantic and using only
13 lags (26°) for the XBT data.

structure is real. The ENSO anomaly pattern is char-
acterized by an anomaly pattern of one sign extend-
ing some 15-20 degrees on either side of the equator
bounded by anomalies of another sign. This anomaly
structure causes higher variances at shorter lags
(order 15 degrees) than longer lags (greater than 20
degrees).

The hole structure complicates the fitting of analyti-
cal forms to the raw variograms as the characteristics
of the fit, in particular, the signal variances, become
strongly dependent on the number of lags used in this

process. A common approach to fit these types of raw
structure functions is to assume geometric an-
isotropy, as at the longest lags the sills are approxi-
mately equal. The Atlantic XBT data are noisy
at the longest lags as noted above, so this approach is
not valid for these structure functions. A rep-
resentative sill is selected from the raw structure
functions and with the estimated nugget, decorrela-
tion scales are estimated from a fitting routine. The
COADS and XBT raw structure functions are
best represented by exponential fits (figures 4, 5).
The estimated properties of these fits are given in
table I.

In the Pacific, the decorrelation scales from both the
COADS and XBT data are very similar. White [15]
used correlation functions to estimate decorrelation
scales from the same XBT data set but with a some-
what different preconditioning applied to the raw
data using different averaging intervals. However, his
Pacific scales are very similar to those estimated using
structure functions. In addition, the variances esti-
mated from the XBT data indicate a signal to noise
ratio of approximately one, again similar to White’s
findings. In the Atlantic, the XBT and COADS
scales are different by a factor of two, with White’s
[15] estimates falling between the structure func-
tion estimates. A portion of these differences
can be explained by the use of fewer lags with the
XBT data because of the noise at the longer lags

(figure 5).

When fitting over longer lags (i.e., over the ‘hole
effect’ in the Pacific ), in order to maintain isotropic
behavior through a geometric transformation, the
meridional variances are underestimated at the
shorter lags (figures 4 and 5). Alternatively, the struc-
ture functions could be fitted using fewer lags,
thereby representing the data more faithfully. Using
the latter approach and the Pacific XBT data, merid-
ional signal variances for an exponential fit range
from (.32 °C)? to (.22 °C)? and zonal variances from
(.14 °C)? to (.21 °C)* when lags range between 10 and
20, respectively. Similarly, in the Atlantic, the differ-
ences in variances for a similar fit and lag choices are
(.07 °C)? in the meridional direction and negligible in
the zonal direction. The effect of different variances
on error maps will be demonstrated in the next
section.

10
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Table 1. Properties (C,, C,, and C,) of analytical fits to the raw structure functions shown in figures 4 and 5 using exponential forms
(equation 3a) and assuming geometric anisotropy. C, is the nugget, C; the sill (or signal variance) and C, the range (or decorrelation scale).
N is the number of 2 degree lags used in the fitting routine (i.e. 20 lags =40 degrees). Values for the zonal anisotropic structure function
are also presented. The White data set decorrelation scales (C,) are from [15]. The units for C, are (°C)?, C, (°C)?, and C, (degrees). GA
and ZA correspond to the geometric anisotropic and zonal anisotropic values, respectively.

Data Set N C, C, C, C, C,
(Zonal) (Meridional) (Zonal) (Meridional)
Pacific:
COADS (GA) 20 0.33 0.42 0.42 13.7 3.8
XBT (GA) 20 0.19 0.21 0.21 13.9 3.9
COADS (ZA) 13 0.33 0.42 0.52 13.4 6.6
XBT (ZA) 13 0.19 0.21 0.27 14.1 6.4
White 11.2 5.6
Atlantic:
COADS (GA) 20 0.23 0.25 0.25 10.0 5.0
XBT (GA) 13 0.15 0.14 0.14 5.5 2.6
COADS (ZA) 13 0.23 0.25 0.27 9.8 6.2
XBT (ZA) 13 0.15 0.14 0.16 5.5 3.5
White 7.0 3.0

4.2. Error analysis

The effect of fitting choices on uncertainty estimates
is demonstrated by constructing error maps from
XBT data collected during January and February
1998 (a two-month interval is necessary because of
data sparsity during a one-month interval) and a
representative  ARGO-PALACE float array. The
ARGO array demonstrates the effect of the choices
on a well-sampled region and the XBT array, on a
poorly-sampled area. If the WOCE objective of
providing constraints on surface heat flux estimates is
chosen as a rationale for collection of the UOT data,
desired accuracies in the resulting fields can be
derived. To obtain a 15 W/m? accuracy in heat
content changes over a two-month interval and 40-m-
thick layer requires temperature uncertainties less
than 0.5°C. Thus, on the error maps generated,
uncertainties less than 0.5 °C are shaded.

Using the representative variances and scales derived
from the XBT data set (table I) and a geometric
anisotropic exponential fit, it is seen that in the
Pacific the ARGO data distribution can achieve accu-
racies of less than 0.55°C (17 W/m?) over the entire
basin, with many regions attaining the desired 0.5 °C
(15 W/m?) accuracy (figure 6). Using the same fit, the
sparse XBT data distribution includes large areas
where interpolation is not even possible. Desired
accuracies are only achieved in regions with dense

sampling along lines and/or contiguous transects

(figure 6).

White [15] estimated average zero-crossing decorrela-
tion scales for 10° bands in both basins. Averages for
the band 30° S to 30° N are given in table I. How-
ever, because of the large variability in scales in a
particular basin, White [15] goes on to suggest that
minimum scales (5.0 in the zonal direction and 2.5 in
the meridional direction) resulting from his analysis
of both surface and subsurface data should be em-
ployed in Ol mapping exercises. The shorter scales
degrade the accuracies for both the ARGO and XBT
data distributions (figure 6). Because of the shape of
the Gaussian fit near the origin (figure 1), the 0.5 °C
criteria is realized throughout the Pacific using the
ARGO data distribution.

As indicated previously, because of the shape of the
meridional structure function, the level of the sill is
strongly dependent on the number of lags used to fit
the raw Pacific data (figure 4). As a worst case, a
nugget of (0.38°C)> and a signal variance of
(0.52°C)* were obtained from fitting the Pacific
COADS meridional structure functions with an expo-
nential fit. Error maps using these estimates and
decorrelation scales from table I show typical uncer-
tainties of about (0.75 °C)?, 22 W/m?, for the ARGO
data throughout the basin and the same for the XBT
data along the tracklines (figure 7).
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PALACE float grid (300 km spacing) XBT grid (January-February 1998)
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Figure 6. Pacific error fields (°C) for three cases: Upper panels: A 300-km spacing ARGO PALACE float grid (left panel) and the
January—February 1998 real-time XBT grid (right panel). Geometric anisotropic exponential analytical fits to the raw data (fit parameters
are given in fable I) were used to generate the error fields. Middle panels: same as upper panels, except for the use of White’s [15] minimal
decorrelation scales (zonal, 5°, meridional, 2.5°). Lower panels: same as upper panel except for the use of a Gaussian anisotropic analytical
expression in the fitting of the raw structure functions.

The nuggets and signal variances as well as the 5. SUMMARY AND CONCLUSIONS
decorrelation scales estimated from the Atlantic XBT

data are less than those estimated from the Pacific The noise and signal variances estimated from the
data (table I). Error maps have been generated using COADS data are greater than those generated from
the representative Atlantic values. The desired accu- the XBT data (order 0.2°C, 6 W/m?, in the Pacific,
racy of 0.5°C is achieved throughout the tropical table I). Thus, care must be taken when combining
Atlantic if ARGO spatial resolution is available and VOS and XBT data in a mapping exercise. The
within the area bounded by the tracklines if XBT higher COADS variances should be used to obtain
data are used (figure 8). more realistic error fields if both data are used.
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The results of the analysis of XBT data by White [15]
and that presented above are similar in the tropical
Pacific, both giving signal-to-noise ratios of about 1
and representative decorrelation scales of 11-14
degrees in the zonal direction and 4-7 degrees in the
meridional direction (table I). Thus, when adequate
data are available either a structure or correlation
function representation of the raw data is
appropriate.

At the sea surface the XBT data in the Atlantic give
decorrelation scales that are 50 % less than those
estimated from the COADS data and given by White
[15]. The noise in the XBT structure functions at
longer lags (figure 5) precludes using these data in the
analytical fitting operation, contributing to the

PALACE float grid (300 km spacing)

shorter scales. The White [16] and COADS results
suggest that for the Atlantic, representative decorrela-
tion scales in the zonal direction are of the order
7—-10 degrees and in the meridional direction 3-6
degrees (table I).

White [15] develops reasonable decorrelation scales in
the Atlantic using approximately the same XBT data
set as here but using different preconditioning of the
data (he uses 5 degrees of longitude by 2.5 degrees of
latitude bins, which limits the minimal scales he can
resolve). We conclude that preconditioning is an im-
portant step in the OI procedure. The resulting limits
in resolution caused by using larger averaging bins
must be considered in the mapping and design exer-
cises that use the results.

XBT grid (January-February 1998)
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Figure 7. Same as figure 6, upper panel, except for the use of a larger nugget and signal variance (see text).

PALACE float grid (300 km spacing)
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Figure 8. Same as figure 6, upper panel, except for the tropical Atlantic.
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For the same data set and form of isotropy, there is
little difference in the scales resulting from either an
exponential or Gaussian fit (not shown). The latter fit
does provide smaller error estimates because of the
shape of the function at the shortest lags (figure 1).
The raw XBT data are better represented by the
exponential function (figures 4 and 5), although oth-
ers use the Gaussian function for the same data [11].

The use of minimal scales as proposed by White [15]
would result in similar error fields to those obtained
from using the longer scales in table I (figure 6). As
stated previously, it is recognized that XBT data are
not the ideal observation to generate global SST
distributions. However, White [15] estimates that spa-
tial scales vary little at least to 200 m. Thus, using the
XBT distributions to map near surface temperature
distributions with a similar accuracy constraint would
require considerably greater coverage (and expense)
than is available with the present network. For in-
stance, using the scale analysis frequently quoted in
OI studies that two to three samples are required per
decorrelation scale, using the minimum scales of 5°
by 2.5° rather than the 13.0° by 5.0° scales in the
tropical Pacific would, at a minimum, more than
double the number of probes required.
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