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Abstract : 
 
Biophysical individual-based models (IBMs) have been used to study aspects of early life history of 
marine fishes such as recruitment, connectivity of spawning and nursery areas, and marine reserve 
design. However, there is no consistent approach to validating the spatial outputs of these models. In 
this study, we hope to rectify this gap. We document additions to an existing individual-based 
biophysical model for Alaska walleye pollock (Gadus chalcogrammus), some simulations made with this 
model and methods that were used to describe and compare spatial output of the model versus field 
data derived from ichthyoplankton surveys in the Gulf of Alaska. We used visual methods (e.g. 
distributional centroids with directional ellipses), several indices (such as a Normalized Difference Index 
(NDI), and an Overlap Coefficient (OC), and several statistical methods: the Syrjala method, the Getis-
Ord Gi⁎ statistic, and a geostatistical method for comparing spatial indices. We assess the utility of 
these different methods in analyzing spatial output and comparing model output to data, and give 
recommendations for their appropriate use. Visual methods are useful for initial comparisons of model 
and data distributions. Metrics such as the NDI and OC give useful measures of co-location and 
overlap, but care must be taken in discretizing the fields into bins. The Getis-Ord Gi⁎ statistic is useful 
to determine the patchiness of the fields. The Syrjala method is an easily implemented statistical 
measure of the difference between the fields, but does not give information on the details of the 
distributions. Finally, the geostatistical comparison of spatial indices gives good information of details of 
the distributions and whether they differ significantly between the model and the data. We conclude that 
each technique gives quite different information about the model-data distribution comparison, and that 
some are easy to apply and some more complex. We also give recommendations for a multistep 
process to validate spatial output from IBMs. 
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1.1 Introduction 

Model validation (i.e. the comparison of model output to external, independently 

derived data) is a necessary part of the development and use of ecological models.   

Individual-based biophysical models (IBMs) of larval fish dispersal and early life history 

have been used in fisheries for several decades, but are often not well validated; there is 

much room for improvement (North et al, 2009).  Depending on the purpose of the 

model, the type of validation will differ.  In drift and connectivity studies, the emphasis is 

on validating spatial distributions and trajectories of larvae.  Investigations examining 

growth, mortality and recruitment will need different types of validation; these are not 

discussed here.  Spatial outputs of biophysical individual-based models are often 

compared to data by placing maps side-by-side for the reader, which is a good first step, 

but it is not quantitative.  Several measures or indices have been used to compare 

individual-based model spatial outputs to empirical data, however there has been no 

consistent approach using multiple methods.   

There are limited methods that can be used validate model predictions of larval 

dispersal and transport of individuals.  One method compares trajectories from model 

predictions to those from satellite-tracked drifters (North et al. 2009).  This comparative 

method is usually based on a relatively limited numbers of drifters that were deployed at 

fixed depths, incorporate wind effects, and adds cost to the model validation.  

Characteristics of drifters predispose satellite-tracked drifter tracks to diverge from larval 

fish trajectories, such as the effect of wind on the drifter, or use of a constant depth of the 

drogue when individual fish often move vertically in the water column.  

An alternative approach could be to use uniquely marked individual animals.  

Chemical marking has been attempted (North et al. 2009), and might be a useful 

validation technique but is only applicable when populations are small, mortality is low, 

and the likelihood of recapture is reasonable.  Elemental fingerprinting has been used to 

infer natal origin of animals captured during distribution and abundance surveys 

(Thorrold et al. 2001, DiBacco and Levin 2000, Zacherl et al. 2003, Becker et al. 2007), 

and might be used to validate individual-based model (IBM) connectivity between 

spawning and nursery grounds, but detectable differences in seawater trace elemental 

composition between sites is required, and still, actual trajectories remain unknown. The 



required gradient and resolution to detect change among sites may vary with factors other 

than seawater composition (e.g. temperature, salinity), and it adds cost to the validation.  

The use of otolith microchemistry enables assessment of larval fish natal origin 

(Campana, 1999; Thorrold et al., 2001), and seascape genetics or genetic fingerprinting 

may be used in some situations (Coscia et al., 2013, Selkoe et al., 2008, Galindo et al. 

2010, Palumbi, 2003), but source populations must be known and characterized by 

detectable genetic differences (Hedgecock et al., 2007).  Model error quantification 

techniques used for hydrodynamic models include cost functions (Delhez et al., 2004; 

Radach and Moll, 2006), root-mean-square error of modeled vs. observed values, model 

skill scores (Warner et al., 2005), and Taylor diagrams (Taylor, 2001). 

One of the most straightforward ways to validate dispersal and transport IBMs is 

by comparing modeled spatial distributions with empirical distributions of larvae and 

juveniles. Although it cannot be known if individuals from spawning sites are the same 

individuals that are caught during surveys, this comparative approach can be useful when 

the sources of individuals caught in the field are relatively well known.  Several studies 

using IBMs have used several different measures to analyze spatial distributions (overlap 

index, Hinrichsen et al. 2005, Morisita’s simplified overlap index, Utne and Huse, 2012, 

centroids (center of gravity), Vikebø et al. 2005, Castaño-Primo et al. 2014, (defined as 

convex hull), Petrik et al. 2014 and Utne and Huse 2012,  Jaccard’s Coefficient, 

Weidmann et al., 2012, a Correlation Index based on linear regression, Pedersen, et al. 

2009, Root Mean Square Deviation (RMSD), Utne and Huse, 2012), the local index of 

collocation (Petrik et al, 2014),  but no comparison of methods has been published. 

We use walleye pollock (Gadus chalcogrammus) in the Gulf of Alaska (GOA) as 

a case study to validate the spatial output from an individual-based dispersal model.  

Walleye pollock has been studied intensively for several decades, and many lab studies 

and field surveys have been done.  We used 1987 as our test year in this study, as there 

were several sequential surveys of different early life stages done in that year.    Walleye 

pollock in the Gulf of Alaska have a life history where spawning and nursery habitat 

appear to be spatially disaggregated, and most of the currents in the region where pollock 

spawn are highly advective.  Historically, a large part of the egg production of pollock 

has been located at the southwestern entrance to Shelikof Strait, an area between Kodiak 



Island and the Alaska Peninsula (Fig. 1, Kendall et al., 1987; Schumacher and Kendall, 

1991). Pollock eggs are spawned between mid-March and early May, with spawning 

peaking at the beginning of April (Doyle and Mier, This issue). By May, larvae are 

advected southwest by the Alaska Coastal Current (ACC) along the Alaska Peninsula. By 

summer and through early fall, juveniles arrive at their primary nursery area in the 

vicinity of the Shumagin Islands (Hinckley et al., 1991; Spring and Bailey 1991; Wilson 

et al., 1996; Hinckley et al., 2001). Other potential spawning and nursery areas have been 

reported in the literature (Wilson, 2000; Bailey et al., 1999; Mazur et al., 2007), but their 

relative contribution to the recruitment of pollock in the GOA is not known, nor is how 

their contributions may have changed over time.  Spatial and temporal variability in 

spawning and the variability of current patterns may determine which locations function 

as pollock nursery habitats in the GOA, and explain some of the variability in pollock 

abundance. Connectivity between spawning and nursery areas is important to 

understanding recruitment, as differentiating between possible sub-populations is needed 

to clarify stock management areas. 

A biophysical model, consisting of an IBM coupled with a hydrodynamic model, 

has been used to assess pollock spawning-nursery area connectivity in the GOA (Parada 

et al., This issue). The spatially-explicit features of biophysical models and the 

Lagrangian approach enable tracking of particles representing individuals from spawning 

area release locations to nursery destinations as juveniles. The work described here 

extends previous work that explored the life history of walleye pollock (Hinckley et al. 

1996, Hinckley et al. 2001, Megrey and Hinckley, 2001, Hermann et al. 2001).  

In this study, we update the IBM for pollock, and compare methods to validate 

modeled spatial distributions. Our goal is to see if this biophysical model can reproduce 

observed distributions of early life stages of walleye pollock between early larvae in the 

spring and juveniles in September. Spatial and temporal matches between model outputs 

and observed distributions will be compared using multiple methods. This will enable 

evaluation of various techniques which could be used to validate IBM outputs, and 

increase understanding of walleye pollock early life history. 

 

 



2.1 Methods 

The individual based biophysical model we use for walleye pollock has been 

described in detail elsewhere (Hinckley et al., 1996, Megrey and Hinckley, 2001).  Here 

we give an overview of the model, and describe additions and updates to the model in 

detail. 

 

2.1.1 The Walleye Pollock Individual-based Model 

The pollock IBM, originally developed by S. Hinckley, B. Megrey and A. 

Hermann, simulates four developmental stages (eggs, yolk-sac larvae, feeding larvae, and 

juveniles) of 0-age pollock from spawning to the autumn of their spawning year.  

Processes in the model are stage-dependent (Hinckley et al., 1996; Megrey and Hinckley 

2001). Egg development was driven by age and temperature (Blood et al., 1994). Yolk-

sac larval growth depended on degree days which were accumulated for every day after 

hatch using temperature information from the physical model for each location and time 

step. A feeding probability for yolk-sac larvae was calculated prior to entering the 

feeding larval stage, unless they passed the point of no return without feeding, in which 

case they died. Dry weight of feeding larvae and juveniles depended on consumption (a 

function of individual weight and temperature, as described in Hinckley et al. 1996) and a 

bioenergetics formulation.  The bioenergetics submodel for larvae included assimilation 

efficiency (Houde, 1989) and daily respiration rate (Yamashita and Bailey, 1989), and for 

juveniles, was estimated according to a modified version of Ciannelli et al.’s model 

(1998, see below) model. Net growth in weight (g) of larvae and juveniles was updated at 

each time step and converted to growth in length (mm). 

Superindividual schemes (Scheffer et al., 1995, Megrey and Hinckley, 2001, 

Bartsch and Coombs, 2004) are approaches that allow the use of realistic mortality rates 

in IBMs by increasing the number of individuals represented by each particle (i.e. 

superindividual).  In this way, we can simulate larger numbers of fish in a population 

without adding to computer processing time.  The assumption behind this approach is that 

growth, feeding conditions, and the probability of mortality for each individual within a 

superindividual are the same (as they are at the same location).  At the beginning of the 

simulation, each superindividual is assigned a “count”, indicating how many individual 



fish the superindividual represents. This “count” is decreased by applying a random 

deviate from the daily mortality rate for that particular life stage. At any point in time, the 

total number of fish is the sum of the “count” variable over all superindividuals.  

The daily probability of mortality for eggs, yolk-sac larvae, feeding larvae and 

juveniles in the pollock model was given by an exponential function dependent on the 

instantaneous daily mortality rate of the respective stage. We assumed that each particle 

represented a cohort of pollock eggs released in the spawning areas. The number of 

surviving superindividuals was assessed at each time step.  

Each cohort of superindividuals was assigned to a particle that moved according 

to the directional (u,v and w) components of velocity following a Lagrangian trajectory, 

plus behavioral subroutines that differed by life stage. Particle tracking was based on the 

Euler method, and we used a Java tool developed by Lett et al. (Ichthyop, 2008) which 

used the Regional Ocean Modeling System (ROMS, see below) native grid. The unique 

trajectories of the particles integrated environmental conditions experienced by each 

individual. Each trajectory resulted in a unique pattern of growth, distribution, and 

survival.  

Algorithms for particle depth were stage dependent, as in Hinckley et al. (1996). 

The vertical position of each egg was calculated at each time step and depended on the 

terminal velocity (based on the density of the egg at each developmental stage) and the 

vertical component of water velocity, w, from the ROMS model. The terminal velocity 

was calculated based on Sundby (1983).  Parameters for calculating changes in egg 

vertical location are described in Hinckley et al. (1996).  Yolk-sac larvae were assumed 

to remain at the depth of hatch until first-feeding. Feeding larvae rose to the upper water 

column and began diel migrations at 6 mm with swimming speeds a function of length 

(Kendall et al., 1987; 1994). Larvae were found at the deepest level during midday and at 

the shallowest depth at dusk. They were found somewhat deeper at night than at dusk or 

at dawn.  Vertical and horizontal movements of juveniles are described below. 

 

2.1.2 Additions to the Pollock Model 

The following are additions to the original pollock IBM of Hinckley et al (1996) 

and Megrey and Hinckley (2001). 



 

2.1.2.1 Growth and Bioenergetics of 0-age Juveniles 

A Gerritsen and Strickler (1977) encounter model as simplified by Evans (1989), 

was adapted for the juvenile stage of this model, and used to calculate the number of each 

prey type encountered by feeding juvenile pollock per hourly time interval (Eggers, 

1977).  We assumed the visual field of foraging juveniles was uniform within the search 

volume and did not attempt to account for microhabitat differences in the position of prey 

within the visual field (Mazur and Beauchamp 2006).  Reaction distance was set at a 

constant distance for feeding during lighted periods; juvenile pollock were only allowed 

to feed during light periods of the diel cycle.  Diel observations of juvenile pollock 

consumption in situ suggested little feeding occurs outside of lighted periods of the day 

(Mazur et al. 2007).  

Prey consumption of juveniles was estimated using a bioenergetics-based 

foraging model for planktivorous fish (Tables 1, 2) developed by Bevelhimer and Adams 

(1993), evaluated by Stockwell and Johnson (1997), and subsequently field tested 

(Stockwell and Johnson 1999).  For a full description of this modeling approach see 

Eggers (1977) and Stockwell and Johnson (1997, 1999).  A similar approach was recently 

utilized to investigate pollock recruitment variability in the Eastern Bering Sea (Siddon et 

al. 2013).   Estimates of prey consumption per hourly time step were generated using a 

single-species functional response that was modified to use prey encounters rather than 

weight (Bevelhimer and Adams 1993, Stockwell and Johnson 1997). The prey field used 

in the model was based on the horizontal distribution of euphausiids, large copepods and 

small copepods from an NPZ model described in Hinckley (1999), for the inner shelf, the 

mid and outer shelf, and the offshelf areas.  Prey preferences were set following Wilson 

et al. (2006).  Consumption of each prey type was partitioned based on juvenile pollock 

body size and prey size and summed to estimate the total number of each prey type 

potentially available for consumption per hour.  Prey consumption was not allowed to 

exceed the theoretical maximum daily consumption (Cmax) for pollock of each size as 

estimated by the bioenergetics model (Ciannelli et al. 1998, Hansson et al. 1996). 

Consumption of prey during each hourly time step only occurred when space was 

available in the stomach following digestion and the daily maximum had not been 



reached or exceeded. Daily maximum feeding rates were reset following the dark “no 

feeding” period of each diel cycle.   

A new submodel for the bioenergetics of juvenile pollock was implemented in 

this IBM based on a modified version of Ciannelli et al.’s, (1998) model (Table 2). The 

energy consumed and subsequently digested (D) in the model was allocated between 

metabolism (R), egestion (F), excretion (U) and growth (G) (Hewett and Johnson, 1992): 

G = D-R-F-U 

Digestion was modeled hourly (Elliott and Pearson 1978) and used evacuation 

rates estimated for juvenile pollock (Merati and Brodeur 1996, Mazur et al. 2007). 

Numbers of each potential prey type were converted to weights and allowed to enter the 

diet based on available stomach capacity and prey preference.  Growth of juvenile 

pollock was estimated using the bioenergetics model and the amount of available prey 

energy digested on an hourly time step (Stockwell and Johnson 1997).  Prey energy 

density estimates for the Gulf of Alaska can be found in Mazur et al. (2007). Estimates of 

growth in weight (g) were updated each time step and converted to growth in length 

(mm) for use in subsequent foraging model time steps.             

 

2.1.2.2 Predation on Juveniles 

Groundfish predation on 0-age juveniles was added to the juvenile subroutine.  

Other sources of predation (seabirds, marine mammals) on pollock can be important, 

however, comprehensive data with enough spatial and temporal resolution, plus 

consumption rates, do not exist.  Predation rates were based on 8 years of groundfish 

predation data (K. Aydin, Alaska Fisheries Science Center, Seattle, WA, pers. comm., 

Table 3).  For years where no data were available, an average rate over the 8 years was 

used.  The predation rate was calculated using the total numbers of walleye pollock 

juveniles consumed by all groundfish predators in each year (Holsman and Aydin, 2015).  

We computed mortality rates assuming that the maximum number consumed was 

equivalent to a predation mortality rate of 0.3 per day (average).  Predation rates for other 

years were standardized relative to this maximum. 

 

2.1.2.3 Movement of Juveniles 



For vertical and horizontal movements of juveniles, new algorithms were 

incorporated into the original model of Hinckley et al. (1996).  The vertical movement of 

juveniles is idealized, based on findings in Brodeur and Wilson (1996), who found that 

there is vertical migration in juvenile pollock.  During the day, the distribution of 

juveniles is concentrated deeper in the water column, near 100 m or 30 m off the bottom, 

depending on water depth.  During the night, distributions are higher in the water column, 

and more diffuse.  Therefore, the migration algorithm added to this IBM is based on the 

time of day, where individuals are constrained to depth zones and within these depth 

zones, move up and down according to typical velocities of juveniles which are 

dependent on the length. 

The vertical position of juveniles at each new time step, 1+tZj (m), was calculated 

as in equation (1) where tZj  is depth at last time step, 
jw is the vertical mean velocity, 

and tD is the time step. 

twZjZj jtt D+=
+1

      (1) 

The mean magnitude of 
jw  depended on juvenile length and was inferred from 

Hurst (2007).  The mean magnitude of 
jw  added to the deviance of 

jw  was sampled 

randomly from a triangular distribution with mode, minimum (0.05
jw ) and maximum 

value (0.1
jw ) was used to obtain the position at each time step. The direction of 

jw  

(upward or downward) depended on a random deviate from a uniform distribution. The 

final depth in meters at each new time step was bounded with an upper and lower depth 

according to the hour (h) of the day in a 24 hour cycle (Equation 2 to 6).   

h < 2 am  40 m< 1+tZj < 60 m      (2) 

2 am< h < 5 am 40 m< 1+tZj  < 110m    (3) 

5 am< h < 2 pm 90m < 1+tZj < 110m    (4) 

2 pm < h < 6 pm  40m < 1+tZj  < 110m    (5) 

h > 6 pm  40 m< 1+tZj < 60m     (6) 

When a particle is in an area of shallower water and the movement intervals are 

deeper than the bottom depth, then the particles are positioned 10 meters above the 

bottom plus a random deviation.  Equations 2 and 6 show how pollock seek the euphotic 



zone during the night, presumably to reduce predation risk (Brodeur et al., 2000, 

Schabetsberger et al., 2003). Equation 4 is based on a vertical migratory behavior which 

assumes that juvenile pollock seek deeper depths during the day to avoid visual predation 

risk (Schabetsberger et al., 2003, Lang et al., 2000).  A transition period of broader 

dispersion through the water column at dawn and dusk is set in equations 3 and 5. 

Horizontally, the position of the juveniles was determined using a correlated 

random walk based on Kareiva and Shigesada (1983).  We modeled movement paths as a 

sequence of straight lines in which juvenile displacement depended on size class. The 

position of the juvenile at each new time step, 1+tXj and 1+tYj , depended on the position in 

the previous time step, tXj and tYj  the length of the juvenile Lj , and the turning angle at 

the time step, 1+ta . Turning angles were measured relative to the previous direction of 

movement according to the following equation, 

jtt qaa +=
+1        (7) 

where  αt was the turning angle at the previous time step, 1+ta was the turning angle at 

time t + 1 and jq  was chosen from a random normal probability distribution.  Then, the 

new positions were,       

)cos( 11 ++
+= ttt LjXjXj a      (8) 

)sin( 11 ++
+= ttt LjYjYj a      (9) 

 

2.1.2 The Hydrodynamic Model and Model Coupling 

This modeling approach involved coupling the walleye pollock IBM to a 

circulation model, the Regional Ocean Modeling System (ROMS). ROMS is a free-

surface, hydrostatic, primitive equation ocean circulation model that employs a nonlinear 

stretched vertical coordinate system that follows the bathymetry.  The horizontal space is 

discretized using orthogonal curvilinear coordinates on an Arakawa C-grid (numerical 

details can be found in Haidvogel et al. 2000, Shchepetkin and McWilliams, 2005). The 

ROMS simulations for this study used a 10 km (horizontal) grid (Northeast Pacific, NEP) 

with 42 vertical layers.  A finer resolution version of the ROMS model (CGOA) on a 3 

km grid has been developed since this exercise was done, however it was not available at 

the time.  The NEP grid includes the GOA and the Bering Sea (BS).  For this study, we 



used a subset of the output of a multi-decadal simulation of ROMS configured and run by 

Curchitser et al. (2005). Details of the physical model simulations and an assessment of 

the ROMS model’s ability to reproduce observed modes of variability and their impact in 

the northeast Pacific can be found in Curchitser et al. (2005) and Parada et al. (This 

issue).  The ROMS simulations were run with forcing scenarios (winds, freshwater and 

boundary conditions) appropriate for the year simulated. The hydrodynamic model 

produced daily averaged output consisting of salinity and temperature fields, 3D 

velocities and other variables.  These were used to drive the IBM (offline) for 1987, the 

year used for this analysis.   

A Java programming application (Ichthyop, Lett et al., 2008) was adapted to 

simulate the early life history of walleye pollock in the GOA. This application enabled us 

to calculate trajectories of particles representing individuals or groups of individual fish 

(superindividuals), and water properties (temperature, salinity) experienced by these 

particles during transport. The application used 3D fields of velocity, temperature, and 

salinity from simulations of ROMS to track particles within the model domain. The 

biological processes of the IBM are included as submodels within the modified Ichthyop 

application. The program stores information on the histories of individuals (e.g. time, 

longitude, latitude, depth, length, etc.). The Ichthyop application is distributed as a 

package that contains the program code and libraries. For this project, we used one of the 

early releases of the Ichthyops application and adapted it to our study requirements.  

We used the Euler method as a particle tracking algorithm.  We conducted a 

series of experiments comparing this method with the 4
th

 order Runge-Kutta method.  

The Runge-Kutta method was more stable than the Euler method, and converged quickly, 

however the Euler method did converge properly when enough iterations were used, and 

was much simpler and faster to run, and was therefore chosen for this study.   

 

2.1.3 Survey Data and Model Simulations 

A simulation experiment was run to examine the spatial and temporal matching 

between modeled fields and observations of the distributions of successive life stages of 

walleye pollock in the GOA for 1987 (1987 was the only year where there were multiple 

surveys).  The objective of the experiment was to use the coupled model to hindcast 



distributions of larvae in May, early juveniles in June/July and later juveniles in 

August/September for the year 1987, and to compare these model outputs to survey 

distributions of young pollock for the periods 18-29 May, 1987, 18 June-16 July, 1987, 

and 12 August-20 September, 1987.  Model output from the date nearest the midpoint of 

each survey was used to compare to survey data.  A specific date was chosen to avoid 

blurring of features that we wanted to be able to distinguish, such as patchiness and 

current variability, blurring that would occur if we averaged over time.  All tests were 

done within the survey boundaries, except for the centroid analysis and the hotspot 

analyses for the May time period. These analyses were done on both the very restricted 

May survey area, and the broader modeled area, to compare the results for both areal 

extents.  

Methods for the May larval survey are described in Matarese et al. (2003).  The 

survey area was restricted to the region between Shelikof Strait Sutwik Island (Fig. 1). 

The survey methods for the June/July and August/September cruises are covered in 

Hinckley et al. (1991). The June/July survey for early juveniles covered much of the 

western GOA on a regular grid, and used a Methot frame trawl (Methot 1986).  The 

August/September survey for late juveniles in 1987 made transects from Unimak Pass to 

the eastern side of Kodiak Island, trawling with a 24-m high-opening shrimp trawl 

(Hinckley et al. 1991).   

Eggs in the model were released in 14 areas (5000 in each) identified as potential 

spawning areas, on the 15
th

 of each of 4 months (Feb, Mar, Apr, May), which covered the 

bulk of the known spawning areas and times of pollock in the GOA (Kendall et al. 1996; 

Matarese et al., 2003, Bailey et al., 2005, Doyle and Mier, This issue).  The numbers of 

eggs released was proportional to the egg production estimates from the stock 

assessments for pollock, Dorn et al. 2005).  The model was run using forcing for 1987, 

through September.  Individual locations and other information were recorded once every 

five days.  

In order to focus the study only on the simulated individuals derived from 

spawning areas and times where fish caught in the surveys most likely originated, we 

obtained information on both spatial and temporal distribution of eggs (derived from the 

Alaska Fisheries Science Center (AFSC) Ichthyoplankton database, Matarese et al, 



2003), and on hatchdate distributions of larvae and juveniles caught in the surveys in 

1987, derived from otolith analysis (Brown and Bailey, 1992).   

Figure 2 shows the pollock egg spatial distribution from ichthyoplankton surveys 

in 1987.  It can be seen that the majority of eggs were found in North Shelikof Strait and 

the Shelikof Strait exit region.  The highest number of eggs was caught in the first half of 

April (Fig. 3) and catches of eggs were near zero by the end of May.  Hatchdates 

computed for larvae from the May survey and juveniles from the June/July and 

August/September surveys are presented in Brown and Bailey, 1992 (their Figure 5).  

This figure shows that hatchdates for all surveys were between the beginning of April and 

the end of May.  These pieces of information indicated that we should only follow 

individual particles in the model that were released in April and May, in the North 

Shelikof Strait and the Shelikof Strait Exit areas. 

 

2.1.4 Comparison Methods 

 Validation metrics included distributional centroids, their variance and directional 

ellipses, the Getis-Ord Gi* statistic (Ord and Getis, 1995), a normalized difference index 

(NDI), an overlap coefficient (OC) index, the Syrjala test statistics (Syrjala, 1996) and 

various other geostatistical spatial indices.  Comparisons were made within the survey 

domain for all validation metrics with the exception of analyses for May, which were 

computed over the whole model domain as well as the survey region (a subset of the 

model domain).  This was done due to the very small region surveyed in May. 

 Units for the surveys are densities (#/1000 m
3
) for May and June/July.  Units for 

the August/September survey were not normalized by area, but by time (# per 10 minutes 

tow).  Units for the modeled “individuals” are “superindividual number”, which is the 

number of individual fish represented by each individual particle in the model.  These 

densities and numbers can be thought of as weighting factors for the spatial comparison 

methods, as they are not directly comparable, and in the case of the model, were not 

related to actual abundance of fish.   

 

2.1.4.1 Distributional Centroids 



 We have calculated centroids (centers of gravity) for the model output and the 

survey data for each time period, May, June/July and August/September.  Each centroid 

was calculated from the model output using latitude, longitude and superindividual 

number for each particle, and by using latitude, longitude and density of fish (catch per 

1000 m
3
 for May and June/July surveys, and catch per 10 min tow for the 

August/September survey) for the survey data.  In the May case, centroids were 

calculated over the smaller survey area as well as the whole model domain for 

comparison purposes.  Variances around these centroids (inertia) were also calculated.  

Directional ellipses and the related isotropy (the square root ratio between the minimal 

and the maximal inertia associated with the main directions of the ellipse) of one standard 

deviation from the mean were calculated and plotted to indicate the directional trend of 

the data.  The centroids and directional ellipses of the model and the data were plotted to 

give a visual indication of how they compared.  These statistics also formed part of the 

geostatistical comparison of spatial indices described below. 

 

2.1.4.2 Hot/Coldspot Analysis   

 The Getis-Ord Gi* (Getis and Ord, 1992, Ord and Getis, 1995) is a technique 

used to examine spatial clustering of georeferenced data.  The Getis-Ord Gi* statistic 

looks at each data point in the context of its neighbors.  A data point with high values is 

only considered a statistically significant hotspot if it is surrounded by other points which 

also have high values, and the opposite for coldspots. 

 This statistic was calculated for each set of model output and survey data.  Given 

a set of weighted points, this statistic identifies spatial clusters of high values (hotspots) 

and of low values (coldspots).  The output of the analysis is Z scores and p-values for 

each feature, which represent the statistical significance of the spatial clustering of the 

values. Low or negative values of the Z score and low p-value indicate spatial clustering 

of low values, and the opposite for high or positive Z scores.  The higher (or lower) the Z 

score, the more intense the clustering.  A Z score near zero indicates no apparent spatial 

clustering.  A low p-value indicates a high (low) Z score is significantly different from 

zero, and hence the clustering of high (low) values is significant.  This analysis was 

implemented in ArcView Version 10.  



 

 Prior to the following two analyses, the distributions of early (May cruise) larvae, 

early juveniles (June/July cruise) and late juveniles (August/September cruise) and model 

results were discretized in three bin sizes:  1/4° (~25 k), 1/2° (~50 k), and 3/4° (~75 k) 

spatial resolution. Then two methods were tested to account for model and data 

discrepancies: a normalized difference index and an overlap coefficient.  

 

2.1.4.3 Normalized Difference Index (NDI)  

 A cost function was used to quantify the discrepancies between model and 

measurements, relating the difference to the variation of the measured variable.  This was 

calculated by normalizing the difference between the mean field (by cell) from the model  

���,� and observations �� ,� respectively, with the standard deviation of observations by 

cell, following Berntsen et al. (1996) and Søiland and Skogen (2000). The cost function 

field NDIi for each i-th cell for the modeled and data fields is defined by: 

!"#� = (���,� −  �� ,�)/(&'(�����,�) + 0.01)     (10) 

The overall cost function NDI is the area average of the absolute values of the cost 

function field and was computed as the sum over all bins. NDI is always positive, while 

NDIi has both negative and positive values.  The overall NDI was calculated for each bin 

size for the modeled and data fields for the May, June/July and August/September time 

periods. The overall smaller the overall NDI value the smaller the difference between 

model and data.  

 

2.1.4.4 Overlap coefficient (OC) 

 This coefficient aims to estimate the spatial overlap between simulated and survey 

distributions of pollock and is based on Horn (1996) and Hinrichsen et al. (2005) studies. 

The overlap coefficient, OC, is 0 when no overlap is apparent and 1 when the two 

distributions are identical (Hinrichsen et al., 2005).  Hinrichsen et al (2005) applied this 

coefficient to determine how many larvae and prey were simultaneously present in the 

specified subareas of the central Baltic Sea (Hinrichsen et al., 2005). However, our 

application of OC is focused on model and data comparison and is defined by:  

*-� = 2 ∑ (4�. 45�  )67�89 /(∑ 4�: +67�89 ∑ 45�:
67�89 )     (11) 



Where 4; � and 4�  are modeled and observed cell values respectively (for each individual 

bin i, and where nk is the number of bins in each of the three (k=1:3) bin sizes. 

 

2.1.4.5 Syrjala Tests   

 Tests developed by Syrjala (1996) were applied to the model and survey 

distributions.  Syrjala’s test is a randomization test based on the Cramer von Mises 

statistic extended to bivariate distributions. These tests were developed to test the null 

hypothesis that there is no difference in the spatial distribution of two populations (here 

applied to the model and the survey distributions), versus the alternative hypothesis that 

the distributions are not the same.  Two tests were applied:  bivariate generalizations of 1) 

a Cramer-von Mises (CvM) type nonparametric test, and 2) a Kolmogirov-Smirnov (KS) 

type nonparametric test.  For both tests, no specific distribution is assumed for either 

population.  The data are normalized to the maximum densities for each distribution 

(model and data). These normalized values were then summed in 1/2° cells.  The choice 

of cell size was based on balancing resolution with the number of cells occupied by 

modeled particles.  The NDI and OC analyses showed that the 1/4° cells included very 

few particles, and the resolution of 3/4° was too coarse. The levels of abundance are not 

compared in these tests, just the spatial pattern. In these tests, the axes of the coordinate 

system describing the geographic locations which are being compared are rotated four 

times, once to each corner of the sampling grid, and an average of the test statistic for 

each rotation is calculated.  This is to ameliorate the fact that the test statistic is not 

invariant with respect to the coordinate system used, although it does not vary by much 

(Syrjala, 1996).  The significance of the test statistic is compared using a randomization 

test.  Distributions were only compared for cells that were represented in both the surveys 

and the model output. 

 

2.1.4.6 Geostatistical Simulation of Spatial Indices 

A hypothesis testing procedure was also used to compare spatial distributions 

observed during surveys to distributions from the model.  The null hypothesis used in the 

comparison was that 95% confidence intervals for the values of spatial indices derived 

from the survey data contain the values of spatial indices from the IBM output.   



To quantitatively describe walleye pollock spatial distributions, survey data and 

model output (June/July and August/September only) were characterized using spatial 

distribution indices developed by Woillez and colleagues (2007; 2009a).  Spatial 

distribution indices included: center of gravity (i.e. weighted location or centroid, as 

above), inertia (variance of the spatial distribution), isotropy (evenness of dispersion), 

positive area (the area occupied by densities > 0), spreading area (proportional area 

occupied per unit area), and equivalent area (area occupied if all data cells had the same 

density).  Measures were compared within the survey region for all indices. 

Confidence intervals for pollock spatial distribution indices derived from survey 

data were calculated using geostatistical conditional simulations (Lantuéjoul, 2002). The 

simulation of spatial distributions of young pollock was based on transformed Gaussian 

simulations and on a Gibbs sampler to treat zero densities (Woillez, 2007; Woillez et al., 

2009b). The variogram of the Gaussian variable to be simulated was inferred using the 

normal-scored, fish density variable, which included a concentration of values 

corresponding to zero densities. Based on the inferred variogram model, Gibbs sampling 

was used to simulate missing Gaussian values corresponding to these zeros, which were 

lower than a threshold (determined from the proportion of zeros), and on the Gaussian 

values of all other data points. The transformation was modeled as 0 below the threshold, 

and by a linear interpolation above (corresponding to the non-zero values). This model 

was also used at the end of the simulation to back-transform the Gaussian realizations to 

raw data values. Multiple Gaussian realizations using observed or calculated Gaussian 

values were produced and then back-transformed.  Multiple realizations of pollock spatial 

distributions were then used to compute spatial distribution index values. In this manner, 

survey uncertainty was propagated to spatial indices and 95% empirical confidence 

intervals were derived for each spatial index.  

It is noteworthy that the support (i.e. set of locations with non-zero density 

values) helps define the resolution to be used for IBM simulations of pollock larvae and 

juvenile distributions. In this case the support is small, as the survey data are collected 

from vertical tows at station locations.  First order distances from the survey data were 

computed, and the resolution of the simulation grid was set to 10 km, which was greater 



than the support and below that of the sampling lag. Variability in neighboring samples 

within cells (i.e. below resolution) was considered measurement error.  

The hypothesis test consisted of determining whether the survey confidence 

intervals contained the value of the IBM distribution index. Three combinations of 

spawning release areas (cf. Fig. 1: area 8 – North Shelikof Strait; area 11 – Shelikof Strait 

exit region, or the two areas combined, and spawning months: April, May or the two 

months combined, were two factors tested to identify the combination of factors for each 

distribution index value that provided the best match between the IBM output and the 

survey data. 

 

3.1 Results 

3.1.1 General Features of Young Pollock Distributions 

The survey area in May, 1987 was restricted to the area between Kodiak Island 

and Sutwik and Semidi Islands near the exit area of Shelikof Strait (Fig. 4).  The 

distribution of early walleye pollock larvae in the May survey showed high densities east 

of Sutwik Islands and the Semidi Islands 130 km downstream of the observed spawning 

region in Shelikof Strait.  The model output also showed a high density of early larvae in 

this area. An observed difference was that model showed a somewhat larger area of 

moderately high densities of early larvae in the broader region, to the northeast of the 

survey area in the exit region of Shelikof Strait, and to the southwest of the survey region, 

in areas which were not covered by the survey.  We have no way of knowing whether 

pollock larvae would have been found in these regions outside the survey area.  Note 

however, that centroids of pollock distribution from the model output and data centroids 

are in close proximity, near Sutwik Island, even given the larger model domain.  This 

supports the choice of the survey area as being the center of the pollock larval 

distribution at this time. 

The distribution of early juvenile walleye pollock in June/July in the survey data 

showed maximum densities between the Sutwik/Semidi Islands and the Shumagin Islands 

(Fig. 5). The model showed high density peaks located in the same area during the same 

time period.   It can be seen in Figure 5 that the centroids of distribution are downstream 

of those seen in May for both the survey data and the modeled individuals (the Alaska 



Coastal Current flows through Shelikof Strait from northeast to southwest) as described 

by Hinckley et al (1991), and that all centroids were clustered near the Shumagin Islands 

in close proximity to each other.  The centroid for the survey was a slightly to the east, 

however, compared to the model.   

The modeled distribution of later 0-age juvenile walleye pollock in 

August/September was located around the Shumagin Islands (Fig. 6). The highest 

densities of modeled individuals were somewhat to the east and inshore of the 

Shumagins. The survey data also showed maximum densities near the Shumagins (Fig 6).  

In the survey some juveniles were also found around Kodiak Island, which the model did 

not show, probably because individuals spawned outside Shelikof Strait were excluded.  

The survey did not cover the Bering Sea, however, the model showed juveniles transiting 

to this region (see Parada et al., This issue).  The centroids of the modeled distributions 

(excluding the fish that transited to the Bering Sea) and the survey distributions were both 

located in the area to the inside of the Shumagin Islands, near to the Alaska Peninsula.   

 Figure 7 shows directional ellipses of one standard deviation from the mean 

locations and are plotted to indicate the directional trend of the data.  The figure indicates 

that the directional trend of the survey and the model results were similar, both were 

oriented in the northeast/southwest directions. This is the main direction of currents in 

this area, although current strength in the region between Sutwik Island and the 

Shumagin Islands is not strong and can be somewhat variable in direction.  The larger 

size of the model ellipses in May represents the fact that the survey area was much 

smaller than the modeled area.  The relative size of the ellipses in June/July for model 

and data were similar.  The survey data ellipse was larger in August/September because, 

although the regions compared were the same (ie. model and data were only compared 

within the survey area boundaries), the survey found juvenile pollock around Kodiak that 

were not present in the model output for reasons we will consider in the Discussion. 

 

3.1.2 Hot/Coldspot Analysis 

The Getis-Ord Gi* statistic showed distinct hot and coldspots within the May 

survey distributions, indicating that the distribution was quite heterogeneous even within 

this small survey region (Fig. 8).  Locations with high densities (hotspots) were located in 



the northern part of the survey area, whereas locations with lower densities (coldspots) 

were more often found in the southern part of the distribution.  The modeled distribution 

for May, on the other hand, showed no distinct hot or coldspots, with the exception of 

some weak hotspots just to the east of the Shumagin Islands, which was, of course, 

outside the May survey area.  There were also no evident hot or coldspots in the modeled 

distribution when it was examined within the survey area  

The June/July survey distribution showed distinct clusters of hotspots (Fig. 9), 

mostly located between Sutwik I. and the Shumagin Islands, near the coast of the Alaska 

Peninsula.  The modeled distribution for this time period showed a few weak hotspots in 

this region, however several hotspots were also seen to the west of the Shumagins.  

Notable in the June/July modeled distribution was a large cluster of particles with low 

superindividual counts (coldspot) nearshore of the Shumagin Islands (seen in blue on Fig. 

9).  The data showed high catches in this region.  An analysis of the particles found in 

this model coldspot showed that 58% were spawned in April, with the rest spawned in 

May.  Also, 66% were spawned in the Shelikof Exit region, rather than North Shelikof 

Strait. 

This analysis for the August/September time period shows more agreement 

between the model and the survey results.  The August/September survey distribution 

showed hotspots in several regions: near the coast just to the west of Sutwik Island, and 

to the west of the Shumagin Islands (Fig. 10).  The modeled distribution for this time 

period also showed several hotspots to the west and offshore of the Shumagin Islands, as 

well as the intense coldspot in the same location (nearshore of the Shumagin Islands) as 

in the June/July model output.  Of the particles/individuals found in the coldspot area in 

August/September, 66% were spawned in May, and 63% came from the Shelikof exit 

region. 

 

3.1.3 Normalized Difference Index 

 The cost function NDIi field (Figure 11) was calculated for each bin size (columns 

in the figure) for the modeled and data fields for the three time periods (rows in the 

figure).   Model and data were compared within the survey area for each time period.  

The overall NDI for the May time period showed minimum differences (132.4) at a bin 



size of 3/4° and a maximum NDI at a bin size of 1/4° (3245.5).  The NDIi fields showed 

positive differences (observed values greater than the model) in several cells near Sutwik 

and the Semidi Islands (Fig. 1).  At the 1/4° bin size during May, differences were seen in 

several cells on the northeast border of the survey area.  Little difference between model 

and observations were seen for May at the 3/4° bin size.  The overall NDI for the 

June/July time period again showed a maximum value at a bin size of 1/4° (7903.8), and 

a minimum NDI at a bin size of 3/4° (835.1).  During this time period, positive 

differences in NDIi (observed values greater than the model) were seen using the 1/4°  

and 1/2° bins at several scattered locations between Kodiak Island and the Shumagins, 

however the NDIi fields were spatially quite uniform  at the 3/4° bin sizes with only 

minor positive differences between model and data.  

  During the August/September time period, the overall NDI showed a large 

maximum (8843.0) at the 1/4° bin size, and a minimum at the 3/4° bin size (1620.5).  At 

the smallest bin size, positive NDIi values were seen in a cell near Sutwik Island, with 

several more just to the west of the Shumagin Islands. A positive NDIi was seen near 

Sutwik also in the 1/2° bin at this time period, and also in several cells to the northeast of 

Kodiak Island and to the west of the Shumagins.  At the 3/4° bin size during this period, 

differences were seen just offshore of the Shumagin Islands, and to the northeast of 

Kodiak Island, however there were more cells with no difference between model and 

data.  Overall, the differences between model and data were always positive, ie. the 

observed values were greater than the model.  The differences between model and data 

were smallest at the largest bin size.  During the June/July period, large areas showed no 

differences between the model and data. 

 

3.1.4 Overlap coefficient: 

 The OC estimates the spatial overlap between simulated and data distributions, 

with higher values indicating more overlap.  In May, the overall OC was the smallest at 

the smallest bin size, and largest at the largest bin size.  At all three bin sizes, the OCis in 

May were highest near Sutwik Island.  The local OC in May was highest at a bin size of 

1/4° with values of 0.4 to 0.8, while the local OCs at bin sizes of 1/2° and 3/4° were on 

the order of 0.3 and 0.1 respectively (Fig.12).  During the June/July time period, the 



overall OC showed the highest value (0.2) seen at the 1/4° bin size, and the lowest OC 

(0.07) at the 1/2° bin size.  Bins with higher local OCi during June/July were seen around 

and to the east of the Shumagin Islands at all three bin sizes.  During the 

August/September time period, the overall OC was the same (0.2)  at the smallest and 

largest bin sizes, with smaller OC seen using the 1/2° bin size (0.1).  At all three bin 

sizes, the highest local OCi values were seen around the Shumagin Islands and somewhat 

to the west.  In general the highest overlap between the model and data occurred during 

the June/July survey. 

 

3.1.5 Syrjala Tests 

 Both of the Syrjala test statistics for the May distributions showed no significant 

difference between the modeled and survey distributions at p = 0.05 (Table 4).  The 

power of this test was relatively low, as only there were only 13 cells in common 

between the model and the survey (as the survey area represented a very small portion of 

the total area occupied by the modeled distribution).  The Syrjala test statistics on the 

June/July distributions were different at the p = 0.05 level.  Neither test showed the 

August/September model and survey distributions to be significantly different.  

 

3.1.6 Geostatistical Simulation of Spatial Indices 

For both surveys (June/July and August/September), pollock density was highly 

skewed. A high (37.5%) proportion of zeros was observed in the 1987 June/July survey.  

In contrast, there were no zeros observed in the 1987 August/September survey, but there 

were low values in the data. To apply the simulation method to estimate confidence 

intervals (Woillez, et al. 2009b) for both surveys, values below a density of 17 per 10 min 

sample were considered zero values. The thresholded zero values represented 18.9% of 

the 1987 August/September survey data.  

The first step when calculating confidence intervals around the survey data was 

the normal-score transformation of fish densities. As shown in Figure 13 a,b, this 

transformation was  0 below the threshold value of 17 per 10 min sample, and linearly 

interpolated above that threshold.  As the Gaussian variable to be simulated was not 

known at all locations, the variogram model of the Gaussian variable was indirectly fit 



using the variogram of the normal-scored variable (Woillez, 2007). The variogram model 

of the Gaussian variable was a nested structure with a nugget of 0.25, a Gaussian 

component of 0.45 with a range of 150 kilometers, and a spherical component of 0.80 

with a range of 600 kilometers for the 1987 June/July survey (Fig. 13c).  A nested 

structure with a nugget of 0.4, a spherical component of 0.6 with a range of 175 

kilometers was the variogram model used for the 1987 August/September survey (Fig. 

13d).  

Gibbs sampling was used to simulate Gaussian values at locations corresponding 

to zeros. Then, a classical conditional simulation (i.e. a geostatistical simulation 

incorporating known data values) was performed to generate multiple realizations of the 

Gaussian variable, which were transformed to pollock densities values (Fig. 14). A total 

of 250 realizations of pollock spatial distributions were simulated over a 10 km x 10 km 

grid for the 1987 June/July (Fig. 14 a,b,c) and August/September (Fig. 14 d,e,f) survey 

areas. Highest pollock average densities were concentrated between the Semidi and 

Shumagin Island groups during June and July, as indicated by the center of gravity and 

inertia axes, shifting and extending southwest from the Shumagin Islands to Unalaska 

Island in the later survey.  

Spatial distribution index values and 95% confidence intervals for survey data and 

IBM outputs are summarized in Table 5.  For the June/July survey, all spatial indices 

computed from the survey data are contained within the confidence intervals generated 

by geostatistical conditional simulations from the survey data. The occurrence of index 

values calculated from model output occurring within confidence intervals depended on 

area and month. For the August/September survey, all spatial indices except inertia were 

contained within the confidence intervals. Inertia from 97.5% of the IBM simulated fields 

was higher than inertia index values computed from the survey data, and therefore this 

index wasn’t used for the comparison between the survey data and the individual based 

model. 

For both survey periods, the latitude of the center of gravity (i.e. ycg) was the 

model index most often included within the confidence intervals (Table 5) from the 

survey data, occurring within the confidence intervals for the June/July survey when 

particles were released in April area 11 (Shelikof Strait Exit region), and 8 (Shelikof 



Strait North) and 11 combined. For particles released in May or when April and May 

releases were combined, the latitudinal component of the center of gravity occurred 

within confidence intervals in both release areas. For the August/September survey, the 

latitude component of the center of gravity occurred inside the confidence intervals 

regardless of where particles were released in April, and in area 8 for both release months 

(Table 5). The longitude of the center of gravity only occurred inside the confidence 

interval in the June/July survey when particles were released in April, and in area 8 for 

both release months (Table 5). The isotropy metric was contained within the confidence 

intervals when particles were released in April in area 8 for the period June/July, and in 

April in area 11 and 8 & 11 for the period August/September (Table 5). Inertia was 

included only in the August/September confidence interval when particles were released 

in May and area 11, however this case is not meaningful as the inertia from the survey 

data was not contained in the confidence interval. Finally, none of the occupation area 

indices were included in the confidence intervals. The IBM produced spatial distributions 

which always occupied smaller areas than those from the surveys.  

To conclude this comparison, two (center of gravity and isotropy) of six spatial 

indices (inertia excluded) are included within survey data confidence intervals for each 

period independently or jointly. Particles from the IBM released in April in the Shelikof 

Strait exit region (Area 11) or when combined with the North Shelikof region (Area 8) 

produced spatial distributions that best matched spatial distributions from the two 

surveys. For the June/July survey data, the longitude and the latitude of the center of 

gravity were reproduced by the IBM output-derived indices. The latitude of the center of 

gravity and the isotropy indices from the IBM output data matched those in the 

August/September survey data. 

 

4.1 Discussion 

We used several methods to visualize the difference between the model output and the 

survey data (methods summarized in Table 6, results summarized in Table 7).  All of the 

methods applied in this study were useful in different ways.  The plotting of centroids and 

their variance and isotropy enables visualization of similarities and differences in overall 

observed and predicted spatial distributions.  The Getis-Ord Gi* statistic provides an 



index of spatial patchiness.  The NDI and OC identified differences and overlaps between 

the model output and the survey data, both globally and locally, and the NDI had the 

added advantage of indicating whether model values were higher than the data or the 

opposite, as well as where the differences were located.  The Syrjala statistics provide a 

statistical comparison of the two distributions, and were easy to apply, however they are 

not informative about the details of the distributions that cause agreement or differences.  

Despite its complexity of implementation, the geostatistical spatial indices comparison 

has the added advantage of identifying specific characteristics of survey spatial 

distributions that are reproduced by the IBM model.  If the objective is to use IBMs to 

reproduce observed spatial distributions, then the extent of match or mismatch in 

geostatistical spatial indices can be used to identify properties of the IBM for refinement. 

Visual inspection of the distributions, the centroids and their variance and 

directional ellipses, showed that the modeled distribution was consistent with the 

geostatistical comparison of spatial indices.  These measures showed reasonable good fit 

between model and data. Centroid analysis has been used to compare spatial distributions 

(Alvares et al., 2000, Castaño-Primo et al., 2014, Ernst et al., 2005; Vikebø et al. 2005), 

even though one of the drawbacks of this approach is that it is a global statistic that does 

not tell you about local aggregations.  This type of visual comparison can be a good first 

step in a model validation exercise.  Although global indicators of spatial association 

indicate whether mapped data exhibits an organized pattern, care must be taken in 

interpreting the results.  A global trend of spatial autocorrelation may mask the 

magnitude and direction of spatial heterogeneity.   

The Getis-Ord Gi* statistic, or hot/coldspot analysis (Getis and Ord, 1992, Ord 

and Getis, 1995) quantifies patchiness of the distributions.  This statistic gives the sum of 

attribute values in a given region and the surrounding regions within a distance band 

relative to the sum of all values of the considered variable. Significant deviations of the 

Getis-Ord Gi* values from the expected value indicate local clustering.  If the deviation 

is significantly positive, the spatial cluster is called a hotspot (Kosfeld and Lauridsen, 

2012).  Care must be taken in deciding upon the size of the neighborhood (the distance 

band), as patterns may change with different size bands.  The results of this analysis were 



not consistent between model and data, probably due to the heterogeneity of currents in 

this area.   

 The Normalized Difference Index (NDI) and the Overlap Coefficient (OC) 

methodologies seem to be complementary, providing information in terms of the overlap 

between model and data, and the level of discrepancies between quantities assessed.  

However, the NDI and the OC analyses require binning survey data and the model 

information at a common resolution. The challenge is to determine an appropriate 

resolution that represents the information obtained from the model and the survey data. 

This is the “binning problem” that arises when comparing spatial model output and 

empirical data. In geography, this challenge is related to the modifiable areal unit 

problem (MAUP) arising from the imposition of artificial units of spatial reporting on 

continuous geographical phenomena, which may generate artificial spatial patterns 

(Heywood, 1988). When using these indices on output derived from a Lagrangian model, 

it is also important to consider that at the smallest bin size there will be a lower level of 

co-occurrence between survey stations and the occurrence of modelled particles.  A 

balance must be found between resolution and the number of occupied cells.   The 

binning problem and the selection of a given bin size may affect the outcomes of the 

analysis. Sensitivity analyses may be needed in order to make this choice.  In the case of 

the model output, the hydrodynamics model resolution will be indicative of the lowest 

limit of the bin size, while the upper level is definition is less clear.  These two indices 

showed local areas of differences which did vary with bin size.  The smallest differences 

and highest overlap were seen during the June/July time period.  

 Syrjala’s statistics were used to analyze the spatial difference between predicted 

and observed distributions of young pollock.  Results from the Syrjala tests showed 

agreement between the modeled and survey distributions for two of the three time 

periods.  The KS statistic used in the Syrjala tests measures the greatest difference 

between the two cumulative distributions.  It is therefore sensitive to small numbers of 

extreme values in the distributions (Syrjala, 1996).  Extreme values can be a difficulty, 

although this did not appear to be an issue with our datasets, as the results for both 

statistics were the same.  As noted by Syrjala, fish may be patchily distributed (due to 

concentration by currents, behavior, etc), yet fundamentally similar in overall 



distribution. The Syrjala tests (Syrjala, 1996) provided a statistical means to test the 

difference between the modeled versus survey distributions, that is very easy to 

implement, as it has been coded into the R language (in the Ecespa package). However, 

this test is a global analysis while the Getis-Ord Gi* analysis provide information in 

terms of local clustering. 

 Geostatistical simulation was used to derive confidence intervals for all spatial 

indices calculated using the survey data. Accuracy of the confidence intervals depends on 

the appropriate implementation of the geostatistical simulation used to evaluate survey 

uncertainty. Different approaches exist for validating geostatistical simulations.  Each of 

these approaches is appropriate for a different component of the simulation: the stochastic 

model, the spatial domain, and the simulation algorithm. For instance, a cross-validation 

exercise can be performed to check the accuracy of the simulation against a set of 

empirical data (Deutsch, 1997) to evaluate the simulation algorithm and the stochastic 

model. Statistical tests also exist for validating the simulation algorithm (Emery, 2008). 

These methods check whether the mean value, the dispersion variance, or the variogram 

are reproduced, and indicate whether observed fluctuations in output values are consistent 

with the random field model and with the size of the domain where simulation is 

performed. In our simulation, the mean value was tested, the variogram was visually 

checked, and the multivariate distributions (i.e. the two first moments) of the simulated 

random field were compared to those of the model.  

 The comparison of spatial indices showed that the center of gravity (centroid) and 

to a lesser extent, isotropy (for specific release dates and areas), were the indices that 

were the most similar for the IBM and the survey data.  Inertia, isotropy and measures of 

spatial coverage might not be expected to compare well in a region such as the GOA.  

The currents in this region are complex, and the hydrodynamic model cannot replicate 

this complexity to a high degree of accuracy, even though aggregate statistical 

comparisons of the modeled and observed currents do well.  Since the larvae follow the 

currents for much of their early life, and these currents differ in detail from the real 

world, details of the distributions of particles would not be expected to do as well as 

aggregate measures such as centroids. 



The purpose of the IBM was to generate realistic distributions and survival of 

young pollock over time. Spatial distributions produced from the two survey data sets 

analyzed in the geostatistical part of our study were treated as spatial point processes, 

where density or number weights were attributed to each point (i.e. the concept of 

superindividuals). Therefore, the predicted spatial distributions can only be considered as 

approximations of the true underlying spatial distribution.   A potential modification to 

improve matches between survey data and model predictions would be to propagate the 

uncertainty of model-predicted spatial distributions to the IBM-based spatial indices. 

Then, the comparison of spatial distributions between IBM and survey could be based on 

the overlap between survey and model spatial index confidence intervals. Such 

uncertainty in model-based spatial distributions may be one reason why occupation area 

indices of the survey-model comparison performed poorly.  

 Differences in spatial distributions between IBM model output and data from 

surveys may be attributed to several factors.  There may be differences between survey 

and model initial conditions (ie. the location and timing of spawning by fish caught in the 

survey compared to the initial distribution of particle releases in the model simulation).  

We addressed this possibility as best we could by examining only individuals released at 

times and locations of most of the known spawning for 1987 (Kendall et al. 1996).  There 

may have been fish caught in the surveys that were spawned in other locations at other 

times, however only small amounts of spawning have been observed in other locations 

(Wilson, 2000).  For example, it is thought that juvenile pollock found around Kodiak 

Island probably originated from spawning in areas around Kodiak other than Shelikof 

Strait (Bailey et al., 1999, Wilson, 2000).  Since we only examined model output from 

individuals released in Shelikof Strait, these Kodiak fish would have been excluded.   

This issue may have influenced the mismatch of area-occupied indices between empirical 

and modeled data.  

 Differences between survey and model estimates may also be a result of using 

locally random initial conditions for this model simulation in spite of choosing 

individuals from specific areas and times.  Individuals were released randomly within the 

North Shelikof and Shelikof Exit zones once per month.  Pollock spawning occurs 

continuously in very dense aggregations in Shelikof Strait; spawning is highly localized 



both in time and space, and is concentrated near line 8 (Fig. 1) in the first two weeks of 

April (Kendall, et al. 1996). 

 Differences between model output and survey data could also be related to the 

limitations of the hydrodynamic model.  The ROMs output used in these simulation had a 

relatively coarse resolution in the coastal regions of 10 km compared with more recent 

configurations of ROMS, such as the 3 km resolution model now in use (Dobbins et al. 

2009, Coyle et al. 2012). Physical processes with a higher spatial resolution are not 

resolved by simulations with the 10 km model.  Also, bottom topography is smoothed 

significantly in some regions in the 10 km model. This has implications for flow patterns.  

Divergence between the real and the modeled flow fields is a common problem for all 

numerical ocean models due to small and mesoscale factors such as eddies, meanders, 

and the chaotic behavior of the real fields, which the models cannot replicate.  This can 

be adjusted for if enough data exist which can be assimilated to correct the flow fields.  

This was not possible in our case due to the paucity of available data. 

Another model condition that may result in different empirical and model-

predicted juvenile fish distributions are the movement algorithms and the resulting 

interactions with the flow field (Hinckley et al. 1996, Werner et al. 1996, 2001, 

Hinrichsen et al. 2002, Fox et al. 2006, Staaterman and Paris, 2014).  The vertical and 

horizontal movements of fish are affected by their life stage (Clark et al. 2005), and thus 

by their size, which in turn is affected by several factors from temperature to 

consumption rates.  Inevitably, it is not possible, nor is it the goal, to replicate these 

patterns exactly in the models.  The horizontal movement submodel incorporated for 

older juvenile pollock in this IBM is based on a correlated random walk (CRW). Since 

most animals have a tendency to move in a forward direction, CRWs have been used to 

model animal paths (Siniff and Jessen 1969, Skellam 1973, Kareiva and Shigesada 1983, 

Bovet and Benhamou 1988, Turchin 1998, Willis, 2011).  As a caution, Codling et al. 

(2008) describe how CRWs can produce a local directional bias in which each step tends 

to point in the same direction as the previous one, although the influence of the initial 

direction of motion progressively diminishes over time, and step orientations are 

uniformly distributed in the long term (Benhamou 2006).  The algorithm implemented in 

this model seemed to produce distributions of older juveniles which agreed with data 



relatively well, in terms of several measures used (Table 7). However, distributions of 

juveniles which are more active later in the year may require refinements in the 

swimming algorithm, ie. consideration of factors such as more realistic modeling of 

directionality of swimming, such as movement towards food  (Huebert and Sponaugle, 

2009, see Staaterman and Paris, 2014 for a review). 

The model presents some interesting results concerning the early life history of 

pollock in this region.  For example, the concentration of modeled particles near the coast 

of the Alaska Peninsula, inshore of the Shumagin Islands, as shown by the Getis-Ord Gi* 

statistic indicates that this may be a collection area for fish/particles.  This result 

corresponds to observations that high densities of juveniles are found in this region 

(Hinckley et al. 1991, Brodeur et al., 1995, Wilson et al. 1996, our data). Also, the 

percentages of modeled particles found which had low superindividual numbers in 

June/July that were spawned in April indicates that the individuals had been in the water 

longer than those spawned in May and had therefore been exposed to higher mortality 

than those found elsewhere. This pattern was reversed in the August/September period, 

with more particles in this region having been released in May rather than April.  This 

may reflect the addition of particles with time to this area. The majority of particles in the 

coldspot area were released in the Shelikof Strait Exit region rather than the more distant 

North Shelikof Strait, thus the trajectories of these individuals to the coldspot region were 

either less direct, or the individuals had remained in the coldspot area longer. The fact 

that this coldspot was present in both the June/July and the August/September time 

period indicates that the latter is more likely.  The model indicates that this region near 

the Shumagin Islands concentrates juvenile fish and may function as a productive nursery 

area. 

 The walleye pollock model correctly predicted that the Shumagin Island area, 

especially the nearshore areas, is an important nursery area, and also that the origin of 

many of the Shumagin Island juveniles is most likely to have been eggs spawned in 

Shelikof Strait in April. This is consistent with the idea of the Shelikof-Shumagin 

spawning-nursery area pair (Hinckley et al., 1991).  There is also evidence that the area 

near Sutwik Island may play a role as potential nursery areas (Mazur et al., 2007), which 

is consistent with the model predictions. 



In conclusion, we recommend a multistep process for the validation of spatial 

output of biophysical IBMs, starting with visual comparisons and simple descriptive 

statistics, then calculation of indices showing features of interest, and finally, using 

hypothesis testing statistical and geostatistical approaches that can give measures of 

statistical significance to the differences/similarity between spatial model output and 

data.   Model validation and model improvement is an iterative process where 

mismatches between model and data can be used to improve the model and the surveys 

(if they can be specifically designed to compare with model output).  However, for some 

purposes such as management applications, “success” in validation must be defined.  

Some methods, such as visual inspections, the NDI and the OC require the user to define 

“success” in matching model and data, as this can be dependent on bin size.  A new 

convention is needed to delineate success thresholds, perhaps from sensitivity analyses, 

for the validation process of biophysical IBMs.   
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Table 1. Parameters and feeding model for juvenile walleye pollock. 

 

Parameters and 

units  

Symbol Functions/Values References. 

Prey types k k=1, euphausids  

  k=2, large copepods  

  k=3, small copepods  

Density of prey k 

(num m
-3

) 

Offshelf area 

Inner shelf areas 

 

 

Mid and outer shelf  

jd** <120) 

 

 

 

120<=jd**<160 

!> 
 

 

 

 

 

Prey set to 0 

1.17838 (k=1) 

66.6632 (k=2) 

486.277 (k=3) 

 

0.29459 (k=1) 

16.6659 (k=2) 

121.569 (k=3) 

 

Linear increase to inner shelf 

values 

Hinckley, 1999 

Pollock size class 

(mm) 

j j=1:3  

Probability of 

preference for prey 

k size j 

Pkj 

 

0.0000  (k=1, j=1*) 

0.1429  (k=1, j=2*) 

0.8571  (k=1, j=3*) 

Wilson et al. 

(2006)  

  0.1270  (k=2, j=1*)  

0.2381  (k=2, j=2*) 

0.6349  (k=2, j=3*) 

 

 

  0.6481  (k=3, j=1*) 

0.3242  (k=3, j=2*) 

0.0278  (k=3, j=3*) 

 

 

Pollock mean swim 

speed (ms
-1

) 
4̅ 
 

0.15 Sogard and Olla 

(2000) 

 

Prey k swim speed 

(ms
-1

) 

vk 0.0285 (k=1) 

0.0100 (k=2) 

0.0020 (k=3) 

De Robertis et al. 

(2003) 

 

 

Conversion factor 

to hours 

A 1/60 

 

Handling time 

(seconds  prey
-1

) 

th 

 

0.33 

 

Stockwell and 

Johnson (1997) 

Reactive distance 

(m) 
'@  0.1 Link and Edsall 

(1996) 



Mean weight of 

prey k (g) 

 

 

AB> 
 

 

0.0402 (k=1) 

5.674x10
-4

 (k=2) 

1.122x10
-4

 (k=3) 

Winter el al. 

(2005),  

Dumont et al. 

(1975) 

Dumont et al. 

(1975) 

Stomach capacity 

Initialization 
CDE 
 

 

0.2Cmax*** 
 Mazur, M. Pers. 

Comm.  

Number of prey k 

eaten in h hours 

 

Ek,h 

 F>,E8 G H C>!>IJ>  
1 + C>DEKL

J
 

Gerritsen and 

Strickler (1977),, 

Stockwell and 

Johnson (1997) 

Search volume of 

pollock searching 

for prey k 

Sk 

 

 

C>8π':N4̅: + O>:  

 

Evans (1989) 

Total biomass eaten 

by hour Gh 

PE = ∑ F>,E AB>>   
Eggers (1977) 

Digestion per hour Dh 

 

 

"E = CDEQPE − CDERST

+ PE
'@

(1 − RST) 

Elliott and Persson  

(1978), 

Bevelhimer and 

Adams (1993) 

*Corresponds to juvenile pollock size classes where  j=1: 25mm <= length < 40, j=2: 

120mm > length >= 40mm and j=3: length >= 120mm. 

**jd=Julian days 

***Cmax= maximum consumption based on Hinckley et al., (2002) 

W=weight (g), T=temperature (
o
C) 

 

 

  



Table 2. Parameters in the bioenergetics model for juvenile walleye pollock.  

 

Parameter description and units  Symbol Values Reference 

Consumption  (gg
-1

 day
-1

) C  

Proportion of maximum  

consumption  P 0-2 1 

Intercept of the allometric function Ac 0.38 1 

Slope of the allometric function  Bc 0.68 1 

Temperature dependence coefficient  Qc 2.6 1 

Optimum temperature for 

  consumption (
o
C) Tco 10 1 

Maximum temperature for 

consumption (
o
C) Tcm 15 1 

 

Respiration  (gg
-1

 02 day
-1

)  R  

Intercept of the allometric function Ar 0.0075 1 

Slope of the allometric function  Br 0.251 1 

Temperature dependence coefficient  Qr 2.6 1 

Optimum temperature for 

respiration(
o
C) Tro 13 1 

Maximum temperature for respiration 

(
o
C) Trm 18 1 

Proportion of assimilated energy lost 

   for Specific Dynamic Action Ds 0.125 1 

Multiplier for active metabolism Am 1 1 

Respiration in Joules Rj   

Conversion from g of oxygen to 

joules convj 13560 2 

 

Egestion  F   

Proportion consumed energy  Fa 0.15 1 

 

Excretion  U   

Proportion of assimilated energy  Ua 0.11 1 

    

(1) Ciannelli et al. (1998), (2) Elliott and Davison (1975) 

  



Table 3. Daily mortality rates for egg, larvae and juveniles of walleye pollock used for 

IBM experiments.  

 

      

    

Year Eggs* Feeding larvae* Juveniles** 

1987 0.226 0.064 0.00005 

1988 0.300 0.036 - 

1989 0.170 0.157 - 

1990 0.150 0.073 0.01400 

1991 0.220 0.126 - 

1992 0.184 0.049 - 

1993 - 0.038 0.00607 

1994 - 0.057 - 

1996 - 0.037 0.01076 

1999 - - 0.00157 

2001 - - 0.00353 

Other 0.205*** 0.0200*** 0.00509
 

*For egg and larval daily mortality rates for pollock and 

methods of calculations, see Bailey et al. 1996.  

** Juvenile daily mortality was inferred from stomach contents 

from groundfish consumption and normalized to a maximum 

mortality, for missing values we used an average of the available 

data.  

*** Average values for missing years (Bailey, pers. comm.) 

 

 

 

Table 4.  Results of the Syrjala tests on the three sets of model vs. survey information, 

based on 1000 permutations.  Test uses normalized densities. 

 

 

 May survey vs. 

model 

June/July survey vs. 

model 

August/September 

survey vs. model 

 Cramer-von Mises test 

     Test statistic 0.591 1.232 1.399 

     P-value 0.417 0.023
* 

0.064 

     N 13 94 49 

 Kolmogorov-Smirnov test 

     Test statistic 0.405 0.319 0.452 

     P-value 0.353 0.019
* 

0.058 

     N 13 94 49 
*
 Significant at p=0.05 (Spatial distributions are different) 

 

 



Table 6.  Methods used in this study to compare modeled vs. survey distributions.  Listed 

are attributes that are addressed, and considerations/constraints in using these methods.  

 

 

Method Attribute Addressed Constraints/Considerations 

Weighted  

Centroids 

Center of gravity of a 

spatial distribution 

Global measure.  May be effected by 

sampling design (surveys) or initial 

conditions and modeling domain (IBM). 

Useful for initial visual comparison.  

May be effected by outliers. 

Inertia Variance of a spatial 

distribution 

Global measure. 

Directional 

Ellipses 

Orientation of 1 standard 

deviation ellipse around 

center of gravity 

Global measure.  May be affected by 

directionality/heterogeneity of currents. 

Useful for visual comparison.  May be 

effected by outliers. 

Isotropy Evenness of dispersion of a 

spatial distribution 

May be affected by currents (and 

hydrodynamic model match/mismatch) 

and topography 

Positive, 

Spreading and 

Equivalent 

Area 

 

Area occupied by positive 

densities, proportional area 

occupied per unit area, area 

occupied if all cells had the 

same density 

Affected by differences in measured vs. 

modeled currents.  Affected by IBM 

initial conditions. 

Getis-Ord 

Gi* 

Spatial clustering of 

georeferenced data,  

into clusters of high values 

(hotspots) and low values 

(coldspots) 

Small scale features may be in different 

places in model output versus data 

because of hydrodynamics model 

mismatch. Results not reliable with too 

few values (<30).  All features should 

have at least one neighbor. No feature 

should have all other features as 

neighbors.  Chosen scale important.  

Spatial clustering may imply underlying 

spatial processes. 

NDI Normalized difference 

index 

Strongly affected by bin size.  Indicates 

where model values are greater than data 

and vs. 

OC Overlap coefficient Strongly affected by bin size.   

Syrjala Nonparametric statistical 

tests of the null hypothesis 

that the spatial distribution 

of two populations is the 

same. 

Global measure.  May be affected by bin 

size. KS test is sensitive to small numbers 

of extreme values.  Does not compare 

levels of abundance.  Easy to implement. 



Method Attribute Addressed Constraints/Considerations 

Geostatistical 

Comparison of 

Spatial Indices 

Allows tests of whether 

spatial indices from 

model/data are 

significantly different 

Appropriate implementation and 

validation of simulation components 

important.  If currents very 

heterogeneous, area occupied indices 

may not match.  Initial conditions must 

be as accurate as possible. 

 

 

 

  



Table 7.   Summary of results of methods used to compare IBM output and survey data. 

Method Results 

Centroids (May)   Data:    Centroid near of Sutwik I. 

             Model: Centroid near Sutwik I. 

(June/July)   Data:    Centroid just east of Shumagins Is. 

                     Model: Centroids just east of Shumagin Is. 

(Aug/Sept)   Data:    Centroid shoreward of Shumagin Is. 

                     Model: Centroids shoreward of Shumagin Is. 

(Spatial Indices Test)  

   June/July: 12 indices (of 18) within 95% CI 

   Aug/Sept: (5 of 18) within 95% CI 

Inertia (May) Survey spread smaller than model due to reduced survey area 

(June/July) Spread similar 

(Aug/Sept) Survey spread larger than model spread due to exclusion 

                   of Kodiak area fish 

(Spatial Indices Test)  

   June/July: 0 of 9 within 95% CI 

   Aug/Sept: 1 of 9 within 95% CI 

Directional  

Ellipses 

All model and surveys oriented along Alaska Peninsula 

Isotropy (Spatial Indices Test)  

   June/July: 1 of 9 within 95% CI 

   Aug/Sep:  2 of 9 within 95% CI 

Positive Area,  

Spreading Area, 

Equivalent Area 

(Spatial Indices Test) 

   June/July: 0 of 27 within 95% CI 

   Aug/Sept: 0 of 27 within 95% CI 

Getis-Ord Gi* (May)   Data: Hotspots present 

             Model: Few hotspots present 

(June/July) Data:    Hotspots between Sutwik-Shumagin Is., especially 

                                inshore of Shumagins 

                   Model: Coldspot inshore of Shumagins, hotspot just west  

                                of Shumagins 

(Aug/Sept) Data:    Hotspots near Sutwik, inshore & west of  

                                Shumagins  

                   Model:  Coldspot inshore of Shumagins, hotspots west of  

                                Shumagins 

NDI (May)          Low coverage, some areas of difference 

(June/July)  Low differences except in a few areas near Shumagins 

(Aug/Sept)  Some differences near Shumagins 

(All time periods) Data values higher than model 

OC (May)          Locally high areas of overlap  

(June/July)  Higher overlap, esp. between Sutwik and Shumagins 

(Aug/Sept)  Lowest overall overlap, high overlap near Shumagin Is. 



Syrjala (May)           No signifigant difference between survey and model for 

                     both CvM and KS tests 

(June/July)   Significant differences for both tests at p=0.05 

(Aug/Sept)   No significant differences for both tests 
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Figure 1.  The study area in the western Gulf of Alaska, where the surveys and model 

simulations took place.   

 

Figure 2.  Walleye pollock egg spatial distributions in 1987 from AFSC Ichthyoplankton 

surveys (Matarese et al., 2003) in the western Gulf of Alaska.  SSN refers to the 

Shelikof Strait North region (Area 8), SSE refers to the Shelikof Strait Exit region 

(Area 11). 

 

Figure 3.  Temporal distribution of walleye pollock egg catches in the western Gulf of 

Alaska by date from AFSC Ichthyoplankton data (Doyle et al., In press). 

 

Figure 4.  (Above) Distributions of walleye pollock late larval catch from May, 1987 

survey.  (Below) Distribution of modeled individuals in May (derived from 

individuals released in April and May, in the North Shelikof Strait and the 

Shelikof Strait Exit areas).  Included are centroids of the modeled particles, 

weighted by superindividual number (red), and the centroid of the data densities 

(green). 

 

Figure 5.  (Above) Distributions of walleye pollock early juvenile catch from June/July, 

1987.  (Below) Distribution of modeled individuals in June/July (derived from 

individuals released in April and May, in the North Shelikof Strait and the 

Shelikof Strait Exit areas).  Included are centroids of the modeled particles, 

weighted by superindividual number (red), and the centroid of the data densities 

(green).  

 

Figure 6.  (Above) Distributions of walleye pollock late juvenile catch from 

August/September, 1987.  (Below) Distribution of modeled individuals in 

August/September (derived from individuals released in April and May, in the 

North Shelikof Strait and the Shelikof Strait Exit areas).  Included are centroids of 

the modeled particles, weighted by superindividual number (red), and the centroid 

of the data densities (green).   

 

Figure 7.  Directional ellipses of one standard deviation from the mean locations 

(centroids) for the May (above left), June/July (above right), and 

August/September (below) survey and modeled distributions of young walleye 

pollock.  Solid stars are the data centroids, solid circles represent the modeled 

centroids, shaded ellipses are from the survey distributions, and unfilled ellipses 

are from the modeled distributions.  

 

Figure 8.  Distribution of Getis-Ord Gi* statistics from the survey and the model output 

for May, 1987.   

 



Figure 9.  Distribution of Getis-Ord Gi*statistics from the survey and the model output 

for June/July, 1987.   

 

Figure 10.  Distribution of Getis-Ord Gi* statistics from the survey and the model output 

for August/September, 1987. 

 

Figure 11.  Normalized difference indices (NDI) for the three time periods (rows) and bin 

sizes (column).  Small differences are indicated by hotter colors (lower numbers) 

and larger differences by cooler colors (higher numbers).  Overall NDIs are 

shown in the lower right of each panel.   

 

Figure 12.  Overlap coefficient (OC) for three time periods (rows) and bin sizes 

(columns).  Cooler colors (higher numbers) indicate higher overlap, while warmer 

colors (lower numbers) indicate lower overlap. Overall OCs (labeled C) are 

shown in the lower right corner of each panel. 

 

Figure 13. (a) Linear interpolation model for the normal score transformation of the 

pollock densities sampled in June/July. (b) Idem for the August/ September 

survey. (c) The experimental variogram of the normal score variable for the 

June/July survey with circles proportional to number of data is shown in light 

grey. The model of the Gaussian variable and the corresponding expression for 

the normal score variable are represented, respectively, by a dashed and solid 

black line. The experimental variogram of the Gaussian variable with circles 

proportional to number of values, obtained after the Gibbs sampling, is 

represented in dark grey and is consistent with the Gaussian model. (d) Idem for 

the August/September survey. 

 

Figure 14. Top: three realizations (max., med., and min.) of spatial average density 

values, respectively a, b, and c) of the pollock densities in June/July. Bottom: 

three realizations (max., med. and min.) of spatial average density values, 

respectively d, e, and f) of young pollock densities in August/September.  Only 

simulated values above zero have been colored.  As examples of the computation 

of spatial indices from those simulated fields, the center of gravity and axes of 

inertia have been represented in white. 

 

 

 

 

 



Figure



Figure



Figure



Figure



Figure



Figure



Figure



Figure



Figure



Figure



Figure



Figure



Figure



Figure



Table 5. Comparison of indices characterizing spatial distributions of pollock from the survey data and 

the IBM for June/July and August/September. Lower (lci: 2.5%) and upper (uci: 97.5%) confidence 

intervals associated with spatial indices computed from the survey data are shown. Values of spatial 

indices included within the confidence intervals appear shaded in grey. Longitude (in km, xcg) and 

latitude (in km, ycg) of the center of gravity, inertia (I), isotropy (Iso), positive area (pa), spreading area 

(sa) and equivalent area (ea) are the spatial indices used to describe each spatial distribution. Release 

spawning months (April, May) and areas (Area 8, North Shelikof Strait; Area 11, Shelikof Exit area) were 

tested.  

 

Spatial Indices xcg ycg I Iso pa sa ea 

(June/July spatial distribution) 

Survey 

 

 

 

lci -383 6183 45146 0,149 75000 33744 34331 

uci -289 6221 81629 0,218 90178 42528 43293 

data -352 6199 53347 0,165 84789 38756 38437 

Model 

 

 

 

 

 

 

 

 

 

 

 

April area 8 -338 6228 5319 0,186 1900 833 731 

area 11 -343 6212 7412 0,276 1900 1049 981 

areas 8 & 11 -342 6215 7136 0,273 3200 1183 1040 

May area 8 -361 6193 8668 0,370 1800 1233 1313 

area 11 -444 6181 19914 0,245 2900 1849 1840 

areas 8 & 11 -423 6184 18452 0,255 4100 2393 2336 

April & May area 8 -356 6201 8216 0,371 3200 1498 1557 

area 11 -408 6192 18042 0,252 4100 2238 2144 

areas 8 & 11 -397 6194 16413 0,264 6000 2692 2297 



(August/September spatial distribution) 

Survey 

 

 

 

lci -261 6209 14504 0,297 101645 30191 27815 

uci -218 6231 23930 0,426 120555 38365 37140 

data -241 6221 13693 0,386 111506 32988 28490 

Model 

 

 

 

 

 

 

 

 

 

 

April area 8 -342 6211 4553 0,243 1600 647 505 

area 11 -300 6215 6203 0,387 2500 1469 1166 

areas 8 & 11 -306 6214 6181 0,377 3600 1508 1062 

May area 8 -268 6212 2032 0,460 2500 1840 2011 

area 11 -301 6192 15578 0,204 4900 3051 3147 

areas 8 & 11 -294 6196 12925 0,217 6200 3867 3989 

April & 

May 

area 8 -282 6212 3295 0,429 3900 2091 2221 

area 11 -301 6198 13263 0,250 6700 3707 3050 

areas 8 & 11 -297 6201 11377 0,262 9000 4462 3474 

 

 




