FN Archimer Export Format PT J TI Progress in satellite remote sensing for studying physical processes at the ocean surface and its borders with the atmosphere and sea ice BT AF SHUTLER, Jamie D. QUARTLY, Graham D. DONLON, Craig J. SATHYENDRANATH, Shubha PLATT, Trevor CHAPRON, Bertrand JOHANNESSEN, Johnny A. GIRARD-ARDHUIN, Fanny NIGHTINGALE, Philip D. WOOLF, David K. HOYER, Jacob L. AS 1:1;2:2;3:3;4:2;5:2;6:4;7:5;8:4;9:2;10:6;11:7; FF 1:;2:;3:;4:;5:;6:PDG-ODE-LOPS-SIAM;7:;8:PDG-ODE-LOPS-SIAM;9:;10:;11:; C1 Univ Exeter, Exeter EX4 4QJ, Devon, England. Plymouth Marine Lab, Plymouth, Devon, England. European Space Agcy, F-75738 Paris 15, France. Inst Francais Rech Exploitat Mer IFREMER, Nancy, France. NERSC, Bergen, Norway. Heriot Watt Univ, Edinburgh EH14 4AS, Midlothian, Scotland. Danish Meteorol Inst, Odense, Denmark. C2 UNIV EXETER, UK PML, UK ESA, FRANCE IFREMER, FRANCE NERSC, NORWAY UNIV HERIOT WATT, UK DANISH METEOROL INST, DENMARK SI BREST SE PDG-ODE-LOPS-SIAM UM LOPS IN WOS Ifremer jusqu'en 2018 copubli-europe IF 3.375 TC 19 UR https://archimer.ifremer.fr/doc/00333/44405/44318.pdf LA English DT Article DE ;Atmosphere-ocean interface;sea ice;remote sensing;surface currents;storm surge;surface heat fluxes;atmosphere-ocean gas fluxes;oceanography AB Physical oceanography is the study of physical conditions, processes and variables within the ocean, including temperature-salinity distributions, mixing of the water column, waves, tides, currents and air-sea interaction processes. Here we provide a critical review of how satellite sensors are being used to study physical oceanography processes at the ocean surface and its borders with the atmosphere and sea ice. The paper begins by describing the main sensor types that are used to observe the oceans (visible, thermal infrared and microwave) and the specific observations that each of these sensor types can provide. We then present a critical review of how these sensors and observations are being used to study: (i) ocean surface currents, (ii) storm surges, (iii) sea ice, (iv) atmosphere-ocean gas exchange and (v) surface heat fluxes via phytoplankton. Exciting advances include the use of multiple sensors in synergy to observe temporally varying Arctic sea ice volume, atmosphere-ocean gas fluxes, and the potential for four-dimensional water circulation observations. For each of these applications we explain their relevance to society, review recent advances and capability, and provide a forward look at future prospects and opportunities. We then more generally discuss future opportunities for oceanography-focused remote sensing, which includes the unique European Union Copernicus programme, the potential of the International Space Station and commercial miniature satellites. The increasing availability of global satellite remote-sensing observations means that we are now entering an exciting period for oceanography. The easy access to these high quality data and the continued development of novel platforms is likely to drive further advances in remote sensing of the ocean and atmospheric systems. PY 2016 PD APR SO Progress In Physical Geography SN 0309-1333 PU Sage Publications Ltd VL 40 IS 2 UT 000374038400003 BP 215 EP 246 DI 10.1177/0309133316638957 ID 44405 ER EF