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Abstract : 
 
An improved knowledge of habitat utilization by demersal species is a pre-requisite for their spatial 
management. Based on scientific survey data collected over the period 1994-2010, the present study 
investigates relationships between 4 environmental factors and 10 demersal species in the Gulf of Lions 
(northwestern Mediterranean Sea). Generalized linear models provided statistically satisfying results in 
terms of both model explanatory and predictive powers. The 'biological zone' factors, based on the 
percentage of light penetration to the sea bottom and bottom temperature, were the most important 
factors, while sediments and benthic macrofauna were only significant for a few species. The type of 
associations varied among species, resulting in different spatial predictions among species. The spatial 
structures of species distributions appeared to be due more to habitat preferences that are spatially 
auto-correlated than to intra-specific population dynamics. The use of a spatial optimization procedure 
on the predicted species distributions allowed the detection of a set of 7 zones covering 17% of the 
studied region, that included at least 20% of each species' abundance and that reflected the diversity of 
the species' habitats. This preliminary result illustrates the potential of further analyses on Marine 
Protected Areas as a tool for the conservation of the demersal community in this region. 
 

Keywords : Fish habitat, Marine living resources, Mediterranean, Generalized linear models, Model 
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Introduction 

 
The role of Marine Protected Areas (MPAs) is to serve conservation purposes and  maximize ecological 
services (Freire & Garcia-Allut 2000, Apostolaki et al. 2002). However, MPAs are often designed without 
adequate information on how the ecosystem works, thus failing to meet the objectives for which they 
were implemented in the first place (Roberts et al. 2003). Modelling spatial distributions of the exploited 
species can help stakeholders and managers to decide where to place MPAs and the type of 
management strategies that are most viable for the species of concern, e.g. protection of 
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certain life stages of specific species or overall enhancement of multiple fisheries 59 

(Sumaila et al. 2007, Elith & Leathwick 2009). An accurate understanding of fish 60 

ecological niches is also useful to predict the spatial distributions of target species and 61 

can help to better understand the effects of changing environmental conditions on these 62 

distributions (Guisan & Thuiller 2005, Ramírez-Bastida et al. 2008). Habitats models 63 

have been widely used for either terrestrial or aquatic species thanks to development of 64 

statistical tools, such as Generalized Linear Models (GLMs), Generalized Additive 65 

Models (GAMs), Random Forests and Boosted Regression Trees (Guisan & 66 

Zimmermann 2000, Breiman 2001, Elith & Leathwick 2009). In particular, GLMs have 67 

been used successfully to predict the mean response of various species to environmental 68 

factors, and are flexible as they can be applied to data that are not necessarily normally 69 

distributed, such as those collected during scientific trawl surveys (McCullagh & Nelder 70 

1989). 71 

 72 

This study focuses on the Gulf of Lions, located along the French coast in the 73 

northwestern Mediterranean Sea, a marine biodiversity hotspot that is subject to various 74 

anthropogenic pressures, such as pollution, fishing and climate changes (Bethoux et al. 75 

1990, Caddy et al. 1995, Myers et al. 2000, Bianchi & Morri 2000, Mittermeier et al. 76 

2005, Coll et al. 2010). A wide continental shelf extends until 200 m depth and ends by 77 

an abrupt slope eroded by several submarine canyons. This area is one of the most 78 

productive of the Mediterranean Sea owing to a number of hydrographic features, 79 

including the Rhone river run-off, frontal activities due to the geostrophic circulation  80 

and wind-driven upwellings cells (Millot 1990). The continental slope and submarine 81 

canyons may constitute a refuge from exploitation for large individuals of several 82 

commercial species, as these areas are less accessible to bottom trawlers. This may 83 

explain that the Gulf of Lions is still the host for a high level of biodiversity, despite the 84 

intense fishing effort since the mid-20th century, resulting in a growth overexploitation 85 

for several species, such as hake (Merluccius merluccius), red mullet (Mullus barbatus) 86 

and horned octopus (Eledone cirrhosa) (Aldebert 1997, Papaconstantinou & Farrugio 87 

2000, Gaertner et al. 2007, GFCM 2011).  88 

 89 

Previous analyses in the Gulf of Lions highlighted that demersal fish communities are 90 

distributed mainly along a depth gradient (from the coastal zone to the upper slope) and 91 

also along a longitudinal gradient, in associations with benthic macrofauna and 92 



 

substratum (Gaertner et al. 1999, 2002, Gaertner 2000). These studies, however, 93 

employed multivariate techniques, which do not include species distribution modeling. 94 

Thus the present study investigated the habitat of ten demersal species in the Gulf of 95 

Lions and predicted their spatial distribution in abundance using a GLM approach 96 

incorporating four environmental variables (temperature, sediment, light penetration and 97 

benthos macrofauna) as explanatory factors (McCullagh & Nelder 1989). The inter 98 

annual stability of the spatial distributions of the ten species in May and June (Morfin et 99 

al., 2012) makes it relevant to investigate their temporally persistent habitats. 100 

 101 

From predicted maps of species densities (individuals per km2), we examined the 102 

possibility to define an MPA for the ten species, using a MARXAN procedure (Ball & 103 

Possingham 2000). MARXAN is one of the most widely used software for conservation 104 

planning. It is a stochastic optimization procedure that identifies from a set of candidate 105 

sites a subset of sites which achieves some particular biodiversity features, while 106 

attempting to minimize the cost for their implementation (McDonnell et al. 2002). This 107 

cost can be related to social, economical or ecological features, or a combination 108 

thereof.  109 

 110 

Materials & Methods 111 

Species data 112 

Species data were collected during the International Bottom Trawl Survey in the 113 

Mediterranean Sea (MEDITS) conducted every year from 1994 to 2010, in May and 114 

June. For the Gulf of Lions, 65 fixed sampling stations were chosen, using a random 115 

stratified design and are sampled since 1994 (see Figure 1 and Bertrand et al. (2002). 116 

Trawling was operated during 30 minutes (until 200 m depth) and one hour (from 200 m 117 

depth) in daylight following a standardized protocol (Fiorentini et al. 1999). 118 

Catchability and accessibility were supposed to be constant over the whole area, though 119 

the sites located on the slope were known to be less accessible to the trawl while adults 120 

of several species, like Merluccius merluccius, are more abundant in deeper area. To 121 

counterbalance this lower accessibility of the trawl, the MEDITS Group set a double 122 

sampling duration in deeper waters (> 200 m, Bertrand et al. (2002) for more details). 123 

Each catch content were then sorted by species, counted and weighted. 124 



 

Since the onset of the MEDITS survey, 300 different species have been identified in the 125 

Gulf of Lions. However, many are rare or low in abundance, which makes a habitat 126 

model irrelevant for them (Mérigot et al. 2007). Therefore, we have only considered the 127 

species present in at least 20% of the hauls and properly selected by the fishing gear. 128 

Furthermore,  we  focused on exploited species and selected species at different trophic 129 

and taxonomic (decapods, cephalopods, elasmobranchs, fish) positions (Bănaru et al. 130 

2012, Morfin et al. 2012). This selection led us to retain the following ten species: 131 

European hake (Merluccius merluccius), Atlantic horse mackerel (Trachurus trachurus), 132 

Mediterranean horse mackerel (Trachurus mediterraneus), grey gurnard (Eutrigla 133 

gurnardus), red gurnard (Aspitrigla cuculus), Norway lobster (Nephrops norvegicus), 134 

red mullet (Mullus barbatus), horned octopus (Eledone cirrhosa), small-spotted 135 

catshark (Scyliorhinus canicula) and elegant cuttlefish (Sepia elegans). Although both 136 

Trachurus species are pelagic, we considered that they were properly sampled by the 137 

MEDITS gear, as their distributions matched with those observed during the pelagic 138 

acoustic survey PELMED, carried out in the same region.  139 

 140 

Environmental variables 141 

According to previous studies on fish habitat and data availability, we considered the 142 

following five environmental variables: depth, biological zones, bottom temperature, 143 

sediment type and benthos type (Johnson et al. 2012). 144 

Depth data were obtained by a digital elevation model from data provided by the SHOM 145 

(Service Hydrographique et Océanographique de la Marine). In the study area the depth 146 

distribution is highly skewed, owing to the presence of the wide continental shelf and 147 

the abrupt slope (Figure 2). As a first trial, a logarithm transformation combined with 148 

polynomial terms appeared then necessary to establish a relationship with species 149 

distributions. However, predictions out of the range of observed depths were very 150 

sensitive to the polynomial fit. They were also very uncertain in the shelf-edge area 151 

where very few large depth observations were made. While bathymetry is one of the 152 

most used factor in demersal fish niche models, the causal link between depth and 153 

demersal species is hardly a direct one. Depth is more likely the driving factor of many 154 

other biological and physical processes which directly contribute to define demersal fish 155 

habitat.  156 



 

We thus considered biological zones as an alternative to bathymetry. Biological zones 157 

were modelled by the EuseaMap project and defined by the percentage of light 158 

penetration in the bottom, as a function of bathymetry and turbidity (Cameron & Askew 159 

2011). The “infralittoral” zone was allocated to values up to 1% of light penetration, the 160 

“circalittoral” zone to values between 1 and 5%, and the “bathyal” zone to values 161 

greater than 5%. These thresholds (1% and 5%) are known to impact photosynthetic 162 

activity and the presence of different kinds of algae that induce different biotopes 163 

(Cameron & Askew 2011). From a statistical point of view, the relationships with 164 

species distributions will be easier to establish as the coverage of the different zones are 165 

balanced in the study area. 166 

Bottom temperature was measured in situ during the survey by an onboard SCANMAR 167 

device from 1996 to 2010. We used a variance decomposition  method (Empirical 168 

Orthogonal Functions) to demonstrate the high inter annual temporal stability of bottom 169 

temperature the averaged values over the time period represented 78.2% of the total 170 

variance of the bottom temperature (details in supplementary material S1). These results 171 

legitimate the use in this study of averaged values of the bottom temperature over the 172 

whole period, at each site.  173 

A seabed sediment map was obtained from the EuSeamap project, which collated 174 

sediment data from various sources and built a map at 250 m resolution, with four 175 

sediment types: “gravels”, ”sand”, “muddy-sand”, “sandy-mud”, and “mud” (Cameron 176 

& Askew 2011). As only one site is associated to the “sand” class, gravels and sand 177 

classes were included in the same ”coarse sand” class for statistical purposes. 178 

Benthos macrofauna is an important factor for the habitat of demersal fishes (see e.g 179 

(Gaertner et al. 1999). Data on benthic species were collected by MEDITS survey, in 180 

2000-2002, 2004, and 2006, and grouped into 15 categories. To reduce the number of 181 

classes, we performed a cluster analysis, which led to retain three main benthos groups. 182 

The three groups were dominated by Mantis shrimp and tunicates, and mostly differed 183 

by their overall abundance whatever the type of fauna, rather than by their species 184 

composition. The group 1 is the more abundant while the group 3 the less abundant. 185 

Nonetheless, group 2 is the more abundant in sea urchins and polychaetes and group 3 is 186 

the more abundant in Cnidaria, crabs and crinoids (Figure S2). 187 

 188 

 189 



 

Model formulation and calibration 190 

Relationships between species count data and environmental variables were analysed 191 

following a GLM approach. In the present analysis, the retained variables of interest 192 

were the number of  individuals per species and site summed over the 17 years, as 193 

Morfin et al. (2012) have shown that the spatial distribution of those species studied 194 

were highly stable over time. The corresponding trawled surface (in km2) was accounted 195 

in the model as an offset. For count data, Poisson and Negative Binomial (NB) 196 

distributions are natural choices. Still, for all species the Poisson distribution appeared 197 

to be clearly inappropriate according to the inspection of the residuals. We thus 198 

developed NB models with a logarithm link function to approach linearity and maintain 199 

model predictions within a range of values consistent with the original data (Guisan & 200 

Zimmermann 2000). Nonetheless, non-linearities were detected between the log 201 

expectancy of the response variable and the bottom temperature (the only continuous 202 

covariate). The bottom temperature (BT) was thus tested using a first, second and third 203 

order polynomial terms, to reflect a potential optimum (second degree) in the response 204 

of species abundance to temperature, and a skewed form of the response around the 205 

optimum (third degree). The interactions between temperature and biological zones 206 

were also tested, resulting in 92 candidate models.  207 

As interactions and polynomial terms are often the source of multicollinearities, one 208 

possible multicollinearity diagnostic is the variance inflation factor (VIF) analysis, 209 

which is generalized for categorical variables in GVIF (Montgomery & Peck 1982). As 210 

a rule of thumb, multicollinearity may be problematic (increase the parameters 211 

variances and arise interpretation difficulties) when the GVIF1/2df is greater than 2 (Fox 212 

& Monette 1992). This problem was solved for polynomial terms by orthogonalizing 213 

them, but multicollinearities were still found for interaction terms. 214 

Models were implemented using R (R Development Core Team 2011). The “glm.nb” 215 

function of the MASS library was used for adjustment and prediction (Venables & 216 

Ripley 1994). 217 

 218 

Model selection 219 

Two criteria were used to select models, a corrected Akaike Information Criterion 220 

(AICc) and prediction performance index estimated by cross-validation. The necessary 221 

bias correction of AIC for small sample size was estimated by Gaussian approximation. 222 



 

In addition, AIC-based selection may result in overfitted models and/or in inappropriate 223 

promotion of complex hypotheses (Burnham & Anderson 2003). Cross-validation 224 

procedures have been proposed to overcome this problem and estimate how accurately a 225 

predictive model will perform in practice (Geisser 1975, Efron & Tibshirani 1993). 226 

Though less robust than “k-fold” cross-validation procedure, leave-one-out (Loo) cross-227 

validation was chosen to keep enough data in the “training” sample (Arlot & Celisse 228 

2010). Prediction performance was then measured by the Percentage of Mean Absolute 229 

Error (PMAE), i.e. MAE divided by mean abundance, on the data left out. A value 230 

greater than one indicates that the average prediction error is higher than the average 231 

abundance. Both selection procedures, AICc and Loo, were applied for comparison 232 

purposes, but we used models selected by Loo for the species distribution predictions 233 

(see below) as the criterion is based on the prediction performance. 234 

 235 

Model evaluation 236 

Species distribution models were evaluated using residual analysis and deviance 237 

estimates. A quantile-quantile plot of standardized residuals, deviance, was used to 238 

check the assumption on the model distribution residuals. Furthermore plots of these 239 

residuals against fitted values and each explanatory variable allowed for identifying 240 

unexpected patterns in the deviance. The proportion of deviance explained by the 241 

predictors was also calculated to assess the explanatory power of the model. 242 

To quantify and visualize the impact of the continuous explanatory bottom temperature 243 

variable, marginal effects were estimated by the average of abundance predictions from 244 

the selected model for several fixed values of this variable. The uncertainty around the 245 

fitted values of the response variable was estimated by a bootstrap procedure (Efron & 246 

Tibshirani 1993, McCullough 1994). 247 

 248 

Species Distribution Maps 249 

Predictions of species abundance were calculated from habitat models selected by the 250 

Loo procedure, as linear combinations of the explanatory variables on a 2’ x 2’ grid 251 

(Table 1). Species distributions over the Gulf of Lions were thus built using maps for 252 

each of the four predictor variables to predict each species’ habitat (Figure 2). The maps 253 

of benthos groups and bottom temperature were not available over the whole study area 254 



 

and were thus interpolated. Bottom temperature was interpolated on the prediction grid 255 

by ordinary kriging (Matheron 1963, Cressie 1993). As the benthos is a categorical 256 

variable, values were predicted using the Voronoï polygons (each pixel was associated 257 

to the group of the nearest observed site). 258 

 259 

MARXAN analysis 260 

MARXAN is an optimisation algorithm which implements an objective function to 261 

minimize, including a penalization term for not achieving the conservation target and 262 

the cost of the reserve. The planning units were created by dividing the study area into 263 

2’x2’ squares and the target objectives were species distribution maps predicted by 264 

GLMs. The biodiversity target was formulated to ensure that at least 20% of abundance 265 

of each species was represented in a protected area network. This threshold was 266 

proposed at the 2002 Earth Summit and advocated as the minimum amount of each 267 

habitat to be represented in marine reserves (IUCN World Parks Congress 2003). 268 

Reserve area was used as a surrogate for cost the planning units, based on the 269 

assumption that the larger the reserve, the more costly the implementation and the 270 

management. As the optimal solution may be highly fragmented, a penalty for the total 271 

boundary length of the reserve (boundary length modifier, BLM) was included to get 272 

the best compromise between the total area of the conservation system and its 273 

compactness (Stewart & Possingham 2005). 274 

MARXAN uses a stochastic optimization algorithm (simulated annealing), which 275 

enables to find approximated solutions within a reasonable amount of time. Depending 276 

of the spatial distribution of each species and the form of the cost function, near-optimal 277 

solutions can be more or less difficult to detect. To ensure that the algorithm found 278 

stable solutions, we computed for one million of iterations and repeated the procedure 279 

for 500 different initial values. The number of times each planning unit was included in 280 

the resulting solutions among the 500 runs is a measure of how essential any particular 281 

unit is to forming a comprehensive system. Finally, we displayed the best solution and 282 

the selection frequency among the 500 runs for the scenarios with and without a 283 

boundary length penalty. 284 

 285 

 286 



 

Results 287 

Model evaluation and interpretation 288 

For all species, graphics of deviance residuals versus fitted values did not display any 289 

special pattern and less than 5% of the values were found outside the 95%-confidence 290 

interval (Figure S3). Quantile-quantile plots displayed no significant departure of 291 

deviance residuals from normal distribution, except for red gurnard (Figure S4). 292 

Deviations at extremities were observed for several species, still the normality of error 293 

is not a condition of GLM quality but simply a description of model behaviour. 294 

Variograms of deviance residuals presented some auto-correlation structure for three 295 

species: hake, catshark and octopus (Figure S5). For the two mackerels, the spatial 296 

structure is only present with the model selected by Loo.  297 

Several differences were detected between models selected with the Loo and AICc. 298 

However, no general rule can be established, except that for the same level of 299 

complexity the factors selected by AICc explained slightly higher percentages of 300 

deviance (in average 67.4% and 70.9% respectively, Table 1).  Overall the percentages 301 

of explained deviance were substantial, ranging from 31.6% (for red gurnard) to 89.6% 302 

(for Norway lobster) and correlated to number of parameters, varying from 6 to 15. 303 

Although no significant linear correlation was detected between covariates, there were 304 

some redundancies that make not possible to distinguish the part of deviance explained 305 

by each covariate. That is why the sum of deviance explained by each covariate 306 

separately may be much greater than the total explained deviance, e.g. Norway lobster, 307 

strongly associated with the two biological zones and the bottom temperature (Table 2). 308 

However, these results highlight that the factors that were not selected by both selection 309 

procedures generally explained very low percentage of deviance, except in two cases. 310 

Depending on the model selection, a strong association is established between red 311 

gurnard distribution and the temperature or substrate type; and between Norway lobster 312 

and benthos type and substratum. For a given species, the factors selected by both 313 

procedures displayed the same marginal effects. We thus focused on these factors for 314 

model interpretation.    315 

The biological zone variable was systematically selected except for small-spotted 316 

catshark and red gurnard. This factor explained 31.2% of species distribution deviance 317 

on average, with a maximum of 80.8% for Norway lobster. Cuttlefish was strongly 318 



 

associated with the circalittoral zone while Norway lobster with the bathyal zone. The 319 

seven other species were associated with both circalittoral and infralitorral zones 320 

(Figure S6).  321 

Apart from red gurnard, the bottom temperature was always selected in the models and 322 

also explained an important amount of the deviance: 36.3% in average and up to 69% 323 

for the Norway lobster. Densities of the two horse mackerel and cuttlefish increased 324 

linearly with temperature (Figure 3). Densities of hake and small-spotted catshark 325 

displayed an optimum around 13.5°C, while horned octopus and grey gurnard displayed 326 

an optimum around 14°C (Figure 3). For Norway lobster, densities were decreasing 327 

with temperature. 328 

Sediment type explained 9.4% of the deviance in average, with a maximum of 43.1% 329 

for red mullet. It was selected for all species expecting cuttlefish. Red gurnard, red 330 

mullet and horned octopus were associated with coarse sand; catshark was associated 331 

with muddy sand bottom; hake and Atlantic horse mackerel were associated with sandy 332 

mud bottom; Norway lobster and Mediterranean horse mackerel were associated with 333 

muddy bottoms (Figure S7).  334 

Benthos groups explained 6.7% of the deviance in average, with a maximum of 50.7% 335 

for Norway lobster. The group 2 was the referential because species were ordered in 336 

abundance, though each group displayed some differences in species composition (see 337 

Material and Methods). Red mullet, red gurnard and catshark were associated to low 338 

benthos abundance level, grey gurnard and Atlantic horse mackerel to intermediate 339 

level, and hake and Norway lobster to high level (Figure S8).  340 

The predictive power of models was measured by PMAE, a value upper than one 341 

indicating a poor predictive capacity. Except for red gurnard (PMAE=114.6%), for the 342 

nine other species models selected by Loo had satisfying prediction performance 343 

(PMAE=30-75%, Table 1). The species distributions maps were thus predicted using the 344 

models selected by Loo. 345 

 346 

Species distribution maps 347 

Mapping model predictions over the Gulf of Lions highlighted, as expected, different 348 

spatial patterns across species (Figure 4). Species found close to the coasts were horse 349 

mackerels, cuttlefish and red mullet. Atlantic horse mackerel was also found in the west 350 



 

side of the slope, and red mullet in the west central part of the shelf. In contrast, Norway 351 

lobster was distributed in the eastern side of the shelf and over the whole slope (the 352 

greatest predicted values being obtained in the western sector of the slope). Hake, grey 353 

gurnard and octopus were mostly found in the central shelf, octopus being more 354 

abundant in the western side, while hake was more abundant in the eastern side. 355 

Prediction uncertainty was measured by the coefficient of variation (CV) of predictions, 356 

a value greater than 1 indicating a large uncertainty in prediction.  CV were generally 357 

lower than 1, with median values ranging from 0.16 (for horned octopus) to 0.71 (for 358 

Norway lobster), reflecting overall good predictions. Furthermore, values of CV were 359 

consistent with the index of prediction performance, PMAE, as median values of CV 360 

decreased with increasing PMAE (Table 1). Poorest predictions (CV>1) appeared due to 361 

values of the explanatory variables outside the range used to calibrate the models. These 362 

values covered 2% of the ten maps and were mostly detected in the eastern side of the 363 

slope and in the western side of the shelf, where temperature was not directly measured, 364 

but interpolated by kriging. In those areas, kriged values were significantly higher than 365 

the observations. The predictions for which CV were greater than one were discarded 366 

for the MARXAN analysis.  367 

 368 

MARXAN analysis 369 

Among 500 runs using different initializing values, we looked at the best solution and 370 

the frequency of selection of each planning unit (note that the penalty for not achieving 371 

the conservation targets in the objective function was set to the minimum value where 372 

all conservation targets were met). Without any boundary length constraint the set of 373 

planning units selected was highly scattered over the whole area, reflecting both the 374 

sparsity of some species distributions, e.g. grey gurnard, and the differences between 375 

species distributions, e.g. Norway lobster versus cuttlefish, the former being offshore 376 

while the latter is coastal (Figure 5).  377 

The weight allocated to boundary length penalty (named Boundary Length Modifier 378 

BLM), was set in order to get the best trade-off between the boundary length and the 379 

total area of the reserve system (Figure S10). The more optimal planning design 380 

solution according to the BLM (0.25) occupied 16.4% of the study region and was 381 

composed of seven disjointed zones (Figure 4, second line of  the right column). This 382 



 

solution includes the 3.2% of planning units selected more than 80% of times and 67% 383 

was selected more than 50% of times. Among the seven zones, one located on the west 384 

coast is a preferential habitat for the two mackerels, grey gurnard, horned octopus and 385 

cuttlefish, while on the middle of the coast only both mackerels and cuttlefish were 386 

found. Just next, three tiny coastal areas were selected because red gurnard is associated 387 

to their sandy bottoms (Figure 4). The last zone on the coast is the eastern area where 388 

hake and horned octopus were abundant. The two zones in the middle of the shelf 389 

corresponding to sandy bottoms patches were particularly important as all species 390 

except the two mackerels and cuttlefish are found in abundance (Figure 2). The last 391 

zone located on the slope was the only area where the most preferential habitat of 392 

Norway lobster and some other species overlapped. Furthermore they included the main 393 

types of physical habitats present in the Gulf of Lions in similar proportions, i.e. all the 394 

biological zones, the full range of bottom temperature, all the sediment types and the 395 

three benthos groups. 396 

 397 

Discussion 398 

In this study we characterized habitats and predict the distributions for ten demersal 399 

species in the Gulf of Lions, using a GLM approach. The selected species distribution 400 

models have a good explanatory power as the percentages of explained deviance were 401 

high for all species. Their predictive capabilities were also satisfying, except for red 402 

gurnard. For this species, the model performance was probably affected by the fact that 403 

its highest abundance was observed in the only sandy site. This strong association could 404 

not be clearly detected as we had no choice to mix this site with gravels bottom sites in 405 

the same “coarse-sand” category, for statistical significance. 406 

  407 

We compared the results from two different model selection procedures, Loo cross-408 

validation and AIC. Overall, results were quite similar. In theory, the former should be 409 

preferred for predictive models while the latter should be preferred for explanatory 410 

models. Still, there is no rule of thumb to choose a model selection procedure, and our 411 

goal was to highlight the uncertainty that it may involve. Unexpectedly, the AIC based 412 

procedure did not systematically select models with a higher explanatory power than the 413 

cross-validation procedure. While we tested several degrees of polynomials for 414 



 

temperature, we kept fixed the number of classes for categorical variables. Thus, models 415 

including four classes of sediment type were systematically more penalized than the 416 

others. That is why any interpretation about identified habitat factors and the 417 

exploitation of predicted maps should be taken with caution if these aspects were 418 

investigated. 419 

 420 

While stable spatial auto-correlation patterns were previously observed for these ten 421 

species, for seven of them (Atlantic and Mediterranean mackerel, red and grey gurnard, 422 

red mullet, Norway lobster and cuttlefish), no spatial structure was found in the residual 423 

of the fitted models (Morfin et al. 2012). Such a result suggests that auto-correlation 424 

patterns found for those species were probably due to habitat preferences, that are 425 

spatially auto-correlated, than intra-specific population dynamics. The three other 426 

species (hake, catshark and horned octopus) were those for which models displayed the 427 

lowest percentages of explained deviance, suggesting that the remaining auto-428 

correlation in the residuals may be explained by external factors not included in the 429 

model. As this is not straightforward to implement for Binomial Negative distribution, 430 

the residual spatial auto-correlation has not been handled by the model. For these 431 

species, models outputs should be interpreted with greater care, as it may bias the 432 

influence of other factors.  433 

 434 

Searching for significant relationships between species abundance and measured habitat 435 

variables has been criticized for ascribing coincidental correlations or indirect 436 

relationships as direct causal links (Guisan & Thuiller 2005). However, insufficient 437 

knowledge still remain on factors influencing marine species, which make difficult to 438 

establish prior assumptions about causal relationships and to test them. Consequently, 439 

correlative approaches that make few or even no prior assumptions about underlying 440 

causal relationships are considered legitimate when attempting to understand the 441 

complex interactions between fish populations and their environment (Valavanis et al. 442 

2004). Those correlations can in turn be used as the basis for subsequent hypothesis-443 

driven studies aiming at determining demersal fish habitat requirements. However, 444 

model outputs must be interpreted with caution when the sampling design could not be 445 

totally controlled and balanced. For instance the range 13-13.5°C was only observed in 446 



 

the bathyal zone, where the relationship between temperature and the log of the species 447 

abundance was positive for several species, while it was negative in other ranges. In this 448 

case, interactions may be only statistics and reflect the non-linearity of the relationship 449 

between temperature and the log of the response variable, instead of a variation in the 450 

effect of temperature depending on biological zones. 451 

 452 

Geographical predictions using GLM require that explanatory variables are known over 453 

the whole area. In practice, this is rarely the case and explanatory variables need to be 454 

previously predicted over the whole area, as we did for temperature by kriging. This is 455 

another source of uncertainty which is not integrated in species predictions. For 456 

example, bottom temperature was slightly overestimated in the bathyal zone, resulting 457 

in spurious high densities for Atlantic horse mackerel and small-spotted catshark. 458 

However, the distribution of the same ten fish species performed by kriging (i.e. by 459 

direct spatial interpolation of the abundance, see Morfin et al. 2012) are very similar as 460 

those obtained in the present study (i.e. through habitat modeling). Such a result is 461 

primordial as it validates the pertinence of our approach and the external factors chosen. 462 

 463 

Biological zone and bottom temperature were the main factors explaining species 464 

distributions. These factors are strongly related to depth, which has often been reported 465 

to be the main gradient along which faunal changes occur when studying shelf and 466 

upper-slope demersal assemblages (Johnson et al. 2012). In the Bay of Biscay and 467 

Celtic Sea, juveniles of red gurnard and hake were primarily associated with bathymetry 468 

and secondarily to bottom temperature and salinity (Persohn et al. 2009). Juveniles of 469 

many demersal species occur predominantly within the inshore soft bottoms along the 470 

coast (Bartolino et al. 2008, Carlucci et al. 2009), where some ecological processes that 471 

enhance their survival take place (Kaiser et al. 1999). Accordingly, much of the essential 472 

marine fish habitat is in shallow coastal waters, even though some deep habitats such as 473 

rocky submarine canyons may constitute natural refuges for large individuals of  474 

demersal species (Yoklavich et al. 2000). However, the ecological relevance of the 475 

bathymetry is not demonstrated for these species as associations with depth may hide 476 

preferences for other physical factors or prey availability (Murawski & Finn 1988). In 477 

our case, bottom temperature is not necessarily a proxy of depth as it was not correlated 478 

to bathymetry inside each biological zone. We used Biological Zones rather than 479 



 

bathymetry as the distribution of the latter is highly skewed in the Gulf of Lions, which 480 

made difficult to model it and led to less satisfactory models (according to both model 481 

selection criteria) than the models using the Biological Zones. 482 

 483 

These results also revealed substrate and benthos as substantial drivers of demersal 484 

species distributions. The benthos variable was introduced because it constitutes the 485 

base diet of most of the species considered, but it may also be a proxy for other 486 

processes, as benthic macrofauna are more sensitive to some environmental factors (e.g. 487 

depth, sediment type, salinity, pollution…) than demersal fishes (Nicolas et al. 2007, 488 

Ferraro & Cole 2007). As some of these variables are already introduced in the model, 489 

the interpretation of this factor is not straightforward. 490 

The high percentages of explained deviance of most habitat models indicate that the 491 

fours habitat factors used in this study were sufficient to explain the bulk of the species 492 

distributions. However,  some additional factors could be included  in our models, such 493 

as salinity, organic carbon flux, prey resources,  pollution and fishing pressure 494 

(Sanchez-Vidal et al. 2009, Coll et al. 2012, Johnson et al. 2012). As species considered 495 

here are all generalist feeders and it is not possible to include all the potential prey 496 

abundance as covariates in such models, prey availability should be measured by some 497 

indicators (Quéro & Vayne 1997). Data of other factors were not yet available at fine 498 

resolution at the period of study.  499 

 500 

Distributions of species studied here were highly stable over the whole period 1994-501 

2010 (Morfin et al. 2012). This makes relevant the present study goal to determine 502 

determining species habitat that persisted over time. The strong association 503 

demonstrated in this analysis between averaged species abundance and temporally 504 

rather stable external factors (substrate, bottom temperature and biological zones) would 505 

certainly be still important in habitat models including temporal variability. Despite a 506 

strong temporal stability, Morfin et al. (2012) also documented a positive relationship 507 

between species occupancy area and total abundance over the 17 years. According to 508 

MacCall basin theory, habitat selection is density-dependent to some degree. At low 509 

abundance, individuals occupy the most suitable habitat, whereas they are expected to 510 

spread to marginal (sub-optimal) habitats when abundance increases because of 511 



 

intraspecific competition for food and/or space (Fretwell & Lucas 1970, MacCall 1990). 512 

The results of the present paper demonstrate that spatial  distribution of species are 513 

strongly associated to environmental factors. Furthermore, these associations were 514 

established from data averaged over the time period, and are thus independent from 515 

temporally variable habitats. Therefore, it is more likely that a spatial expansion of 516 

species at high abundance is due to a density-dependent process, as expected under 517 

MacCall basin theory, rather than to spatio-temporal variations in some key 518 

environmental variables. Therefore, we can expect that the deviance explained by these 519 

factors in temporal models would be lower if the density-dependent process is not taken 520 

into account. 521 

 522 

We performed a first quantitative analysis to investigate the potential relevance of an 523 

MPA in the Gulf of Lions, using MARXAN procedure (Ball & Possingham 2000). Our 524 

goal was to determine the minimum set of areas containing at least 20% of abundance 525 

of each of the ten target species, which is obviously more complicated than for one 526 

given species (Fromentin & Lopuszanski 2013). The first solution obtained without any 527 

boundary length constraint, was a set of areas highly scattered over the whole Gulf of 528 

Lions, reflecting the sparsity of some species distributions as well as the differences 529 

between species distributions. Such a solution was obviously not operational in terms of 530 

management. Once increasing the compactness of the protected areas by increasing its 531 

boundary length, we obtained more “manageable” solutions. The design realising the 532 

best compromise between total area and compactness covered 15.6% of the study region 533 

and was comprised of seven disjointed zones. As this design was still very sparse, we 534 

also considered a higher compactness constraint, which produced three distinct zones 535 

covering 17% of the study area (Figure 4, third line of the right column). This 536 

percentage should be interpreted relatively to the minimum area of 12% that 20% of 537 

horned octopus distribution covers. The high coverage appears more due to the sparsity 538 

of this species than the variability between species distributions. The conservation 539 

objective should probably be lowered as this region is highly exploited and closing 20% 540 

of the fishing grounds would probably be regarded as unacceptable by some 541 

stakeholders. Some choices and compromises at the ecological/scientific level, but also 542 

at the economic and political levels would be required (Sumaila et al. 2007, Yates & 543 

Schoeman 2013). Although this is beyond the scope of the present study, assessing the 544 



 

potential benefits of a MPA should also consider the effects of the redistribution of 545 

fishing effort outside the MPA and the spatial dynamics of species of the main species 546 

(Apostolaki et al. 2002).  547 

As the surveys are only carried out in May-June, this study can hardly tackle seasonal 548 

issues. This period has been selected as it is a recruitment period for many species. This 549 

might be problematic, as all species, excepting Norway lobster, make ontogenic 550 

migrations, which may induce seasonal variability. For many species, juveniles migrate 551 

between the coastal and bathyal zones according to seasons, as nurseries are located in 552 

both areas (GFCM 2010). Adults of hake, the most documented species, migrate to the 553 

middle of the shelf to spawn all over the year, the spawning peak being in winter and 554 

early spring. Nevertheless, too few information are available on species distributions in 555 

the Gulf of Lions during the other periods of the year. However, it would be interesting 556 

to perform the same analysis on juveniles and adults separately to identify nurseries and 557 

spawning areas. The potential habitat of young-of-the year individuals of hake 558 

determined by Druon et al. (2015) are consistent with our results (temperature range and 559 

bottom type). Colloca et al. (2015) investigated the overlap of several demersal species 560 

nurseries, using  spatial models. Although the overlap covered a too large area according 561 

to fishing activity, such an approach deserves further attention. The study of adults 562 

distributions requires models fitted to zero-inflated data, as adult specimens are 563 

observed in a very few proportion of sampled sites (Heilbron 1994). 564 

 565 

Finally this analysis indicates that designing an MPA network for several species of 566 

interest in the Gulf of Lions is not straightforward and deserves more dedicated 567 

investigations and co-constructions processes. Furthermore, several sources of 568 

uncertainties were highlighted throughout the analysis (model selection, predictions, 569 

optimization algorithm), which could lead to spurious conclusions. Bayesian framework 570 

is well adapted for uncertainty propagation, and new advances to integrate map 571 

uncertainty in MPA design software are on their way  (Carvalho et al. 2011, Kujala et al. 572 

2013). 573 

 574 

 575 
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Tables 779 

 780 

Table 1. Summary of selected models for the ten demersal species, using binomial 781 

negative regressions. For each species, first line includes results from the model selected 782 

by Leave-one-out cross-validation procedure, and second line (in italic) includes results 783 

from the model selected according to AICc. Predictors are biological zone (BZ), bottom 784 

temperature (T), substrate (SUB), benthos (BENT) and slope (S). Symbol ‘*’ between 785 

predictors indicates interactions between model predictors. “Ex Dev” column contains 786 

percentages of deviance explained by the covariates, “BZ Ex Dev” contains percentages 787 

of deviance explained by BZ variable only. “PMAE” is the Percentage of Mean 788 

Absolute Error calculated by cross-validation, an indicator of model prediction power.   789 

 790 



 

 791 

Species Selected model (number of parameters) Ex Dev (%)  PMAE (%) 

Hake 

 

ZB+T+T²+BENT+ZB*(T+T²) (12)            

ZB+T+SUB+ZB*T (10)                        

59.3 

61.5 

0.33 

0.46 

Atlantic horse 

mackerel 

ZB+T+BENT (7)                                  

ZB+T+SUB+ZB*T (10)                            

46.5 

76.3 

0.58 

0.63 

Mediterranean 

horse mackerel 

ZB+T+SUB (8)                                 

ZB+T+T²+T3+ZB*(T+T²+T3) (13)                

48.8 

72.2 

0.69 

0.72 

Grey gurnard 

 

ZB+T+T²+SUB+BENT+ZB*(T+T²) (15)         

ZB+T+T²+BENT+ZB*(T+T²) (12)                 

86.5 

85.2 

0.40 

0.40 

Red gurnard 

 

SUB+BENT (7)                                      

ZB+T+BENT+ZB*T (9)                               

31.6 

54.0 

11.46 

1513.8 

Norway lobster ZB+T+T²+BENT+ZB*(T+ T²) (12)                

ZB+T+T3+SUB+ZB*T3  (12) 

87.2 

89.6 

0.78 

0.79 

Red mullet ZB+T+T²+SUB +BENT+ZB*(T+T2) (15)                               

ZB+T3+SUB+BENT+ZB*(T3)(12)                           

81.1 

79.2 

0.64 

0.72 

Octopus ZB+T+T²+SUB (9)                         

ZB+T+T²+ZB*(T+T²)(9)                         

61.3 

66.4 

0.30 

0.31 

Small-spotted 

catshark 

T+SUB+BENT (8)                                         

T+T²+T3+SUB (8)                              

46.7 

49.3 

0.75 

0.79 

Cuttlefish 

 

ZB+T+T²+T3+BENT (9)                                                  

ZB+T+T² (6)                                         

76.5 

75.6 

0.47 

0.49 



 

Table 2. Proportion of deviance explained by each covariate included in the selected 792 

model.   793 

 794 

Species Biological Zones Temperature Benthos Substratum Interaction BZ:T 

Hake 

 

20.7/20.9 2.7/2.0 1.8/NA NA/9.4 32.0/25.7 

Atlantic horse 

mackerel 

42.0/43.0 10.2/10.4 3.4/NA NA/3.7 NA/27.4 

Mediterranean horse 

mackerel 

33.9/35.0 

 

18.6/34.6 NA 2.8/NA NA/25.7 

Grey gurnard 

 

19.3/23.7 3.0/3.7 5.3/6.7 2.0/NA 55.7/56.0 

Red gurnard 

 

NA/5.0 NA/14.2 14.7/15.0 30.0/NA NA/16.1 

Norway lobster 

 

70.8/71.6 56.2/63.0 50.7/NA NA/39.8 8.2/6.0 

Red mullet 

 

14.8/14.7 1.3/0.3 11.6/11.7 42.8/43.1 10.1/22.5 

Octopus 

 

37.9/38.3 22.5/22.7 NA 4.7/NA NA/6.4 

Small-spotted 

catshark 

NA 35.1/41.0 10.0/NA 8.8 NA 

Cuttlefish 

 

65.8 48.6/44.8 3.5/NA NA NA 
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 798 

Figure 1. Study area and sampling sites. 799 

Map of the Gulf of Lions and the 65 sampling sites (identified by crosses) during the 800 

whole MEDITS survey (1994-2010). The positions of the sites were set by a stratified 801 

sampling scheme, according to bathymetry (contour lines in grey and in meters).  802 



 

 803 

Figure 2. External variables 804 

Spatial distributions of the environmental factors considered to model species 805 

distributions. The Biological Zones variable was chosen instead of bathymetry in the 806 

habitat models. Variables are displayed at a 2’x 2’ scale.  807 

 808 



 

 809 

Figure 3. Model interpretation: marginal effects. 810 

Marginal response in species density depending on bottom temperature, as predicted by 811 

the model selected by Loo procedure. Distributions of the marginal response were 812 

estimated by bootstrap, solid lines display the means and dashed lines the 10% and 90% 813 

quantiles.  814 

 815 



 

 816 

Figure 4. MPA design 817 

MARXAN outputs, i.e. the minimum set of areas containing 20% of each species 818 

abundance. Results according to three different compacity constraints are displayed: 819 

Boundary Length Modifier (BLM=0) corresponds to no compacity constraint at all and 820 

BLM=0.25 is the best trade-off between area and boundary length (Figure S4). For each 821 

BLM value, the best solution (right) and the selection frequency of each planning unit 822 

(left) among 500 runs are displayed.  823 

 824 




