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ABSTRACT: Classical regression analysis can be used to model time series However, the assun~ption 
that model parameters are constant over t ~ m e  is not necessarily adapted to the data.  In phytoplankton 
ecology, the relevance of time-varying parameter values has been shown using a dynamic linear 
regression model (DLRM). DLRMs, belonging to the class of Bayes~an dynamic models, assume the 
existence of a non-observable time series of model parameters, which are estimated on-line, i.e. after 
each observation. The aim of this paper was to show how DLRM results could be  used to explain vari- 
ation of a time series of phytoplankton abundance. We applied DLRM to daily concentrations of Dino- 
physls cf. acumjnata, determined in Antlfer harbour (French coast of the English Channel),  along with 
physlcal and chemical covdriates (e .g .  wlnd velocity, nutrlent concentrations). A single model was built 
using 1989 and 1990 data,  and then applied separately to each year. Equ~valent stdtic regression mod- 
els were investigated for the purpose of comparison. Results showed that most of the Dinophysis cf. 
acuminata concentration variability was explained by the configuration of the sampling site, the wind 
regime and tide res~dual  flow. Moreover, the relationships of these factors with the concentration of the 
microalga varied with time, a fact that could not be detected with static regression. Application of 
dynamic models to phytoplankton time series, especially in a monitonng context, is discussed. 
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INTRODUCTION 

To investigate potential relationships between a set 
of covariates and some observed process, time series 
are commonly modelled uslng regression analysis. 
Regression constant parameters are estimated from the 
whole data set, assuming constant relationships over 
time between the dependent variable and covariates. 
However, these relationships may, in reality, vary over 
time. For example, the influence of a given covariate 
can be  highly significant during a certain time interval 
and non-significant the rest of the time. Alternatively, 
the influence can be significant over the whole time 
period but subject to large variations. In the first case, 
the covariate parameter value will be underestimated 

and thus found non-significant; in the second case, 
large variations will inflate the variance of the estima- 
tor and may lead to a conclusion of non-significance of 
the covariate. Thus, in classical (i.e. static) regression 
analysis, dynamic relationships between dependent 
and  independent variables cannot be properly taken 
into account. 

Dynamic Linear Regression Models (DLRMs) belong 
to the class of Bayesian dynamic models which assume 
tune-varying relationships. The parameters are allowed 
to evolve with time, and thus the model is adaptable 
because the values of the estimated parameters and  
the set of significant covariates may change with time. 
Dynamic models have been successfully used in the 
social and economic fields (Pole et al. 1994, West & 

Harrison 1997). In previous work, we applied a DLRM 
to the 1988 Dinophysis cf. acuminata (toxic microalga) 
time series a t  Antifer (Soudant et  al. 1997). High vari- 
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abilities of parameters of physical dnd chemical covari- Table l .  Simulated data for sequent~al estimation procedure 
ates (e.g insolation, phosphate) were detected. These example 

results illustrated the relevance of the time-varying 
influence assumption in phytoplankton ecology. 

f 

The aim of this paper was to show how DLRM results 
can be used to point out some factors explaining, at 

0, 0 5 0.5 0.5 0.5 
least in part, the evolution of Dinophysis cf. acuminata 0.00 0 8 9  2.11 2.91 1.48 0.92 0.39 0.05 

concentrations at Antifer using the 1989 and 1990 time 
series. Assuming that the same processes determined 
concentrations of the toxic microalga during both 
years, a single model was built and applied separately random variable, Eq. (2) shows that the parameter 
to each data set. Particular attention was given to the vector 0, is itself a random variable. 
adaptability of dynamic models, whlch allow changes The estimated values fi and 6, are the respective 
in the set of significant covariates. Static regressions means of the estimated distributions of the random 
were performed to draw comparisons with DLRM re- variables Y, and 0,. The parameters of these distribu- 
sults. Lastly, advantages of Bayesian dynamic models tions are estimated sequentially. The following simple 
and their extensions are discussed in a monitoring artificial example presents the sequential estimation 
context. procedure (Fig. 1). Observations were generated with 

a single covariate, X,, and without a, dynamic intercept 
as Y, = 0,X, + E,,  where E, is an error term (Table 1) .  The 

METHODS values of X, and 0, were chosen and E, was simulated 
in the normal distribution with mean 0 and variance 1. 

Only the general principles of DLRMs are described The observation equation of the model was Y, = 0,X, + E,, 

hereafter. Readers interested in the mathematical i.e. the same as that used to generate the data. The 
elaboration may refer to the appendix and to more evolution equation was 0, = 0,_, + U,, where U, is an 
specialized papers (West et al. 1985, Pole et al. 1994, error term with mean 0 and variance W,. The proce- 
West & Harrison 1997). 

Let Y,, t = 1,2, ..., denote the dependent variable at 
time t, and X, = (X,,,, Xz, , ,  ..., X ,,,, 1, t = 1,2,  ..., a set of n \: - 1111*11 .....- .. I',hl*.rlor 

independent variables, or covariates, measured con- 
comitantly. In the 'static' linear regression model, the 
dependent variable is related to covariates by assuming / 

n 

K = 60 +C o~x;,, + El 1'~*10rior I.,, t - l 
... . \ 

where O0 is the intercept, 0, is the parameter of the ith 
covariate and E,, the so-called noise or error term, is a 
random component, with E,, t = 1,2,  . . . ,  independently 
identically distributed in the normal distribution with 
mean 0 and variance V. A DLRM assumes a tlme- 
varying relationship, by allowing covariate parameters 
to vary with time. Let denote the parameter of the 
ith covariate at time t. In a DLRM, the regression equa- 
tion has the form 

where 00,, is the dynamic level, i.e. a time-varying 
intercept. Eq. (1) is the observation equation. Let 0; = 
(00,, 01,, ... On,,) be the parameter vector. The evolution 
in time of parameters is modelled as 

where m, is an error term with mean 0 and variance W. 
Eq. (2) is called the evolution equation. As m, is a 
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Fig. 1. Sample DLRM: (A) prior and posterior estimated values 
of covariate parameter and (B) observation, DLRM forecast, 

and on-llne fitted values 
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dure estimates a succession of distributions prior to, 
and posterior to, the current observation. It begins at  
t - 1, with the distribution of 8,_, posterior to the obser- 
vation of K-,. The parameters of this distribution are  
computed after K _ ,  has been actually observed. The 
evolution equation, adding the random variables 
and m,, gives the distribution of 8, prior to the observa- 
tion of Y,. The mean and the variance of this distribu- 
tion are  equal to the mean and the variance of the dis- 
tribution of Q,-,  posterior to k;-,, with W, added to the 
variance, as w, is centered on 0 and has variance W,. 
Thus, the evolution equation implies that 8, prior to 
time t is  equal tab,-, posterior to time t - 1 (Fig. lA) ,  but 
with increased uncertainty. The observation equation 
gives the observation distribution prior to time t, that is 
before Y, is actually observed. This is the forecast dis- 
tribution giving the forecast estimate (Fig. 1B). Then, 
the actual value of Y,  is observed. With this new infor- 
mation, the distribution of 8, prior to Y,  is updated giv- 
ing the distribution of 8, posterior to Y,. In our example, 
this update induced a decrease from 0.98 to 0.68 of the 
estimated value of the covariate parameter (Fig. l A ) ,  
as the actual value was decreased from 1 to 0.5 
(Table 1). The estimation of the distribution of B, poste- 
rior to the observation of Y,  allows a new iteration of the 
sequential procedure. Beside the procedure, parame- 
ters of the posterior forecast distribution are computed 
using Eq. (1). This distribution gives the on-line fitted 
value, i.e. the value fitted immediately after Y, has 
been observed (Fig. 1B). 

APPLICATION TO THE ANTIFER TIME SERIES 

Data collection 

Dinophysis cf. acuminata (hereafter referred to as 
Dinophysis) is a microalga producing diarrhetic shell- 
fish poisoning. Despite many studies, some features 
of its biology and ecology remain largely unknown 
(Delmas et al. 1993, Sampayo 1993, Berland e t  al. 
1995a, b, Maestrini et al. 1996). As high Dinophysis 
concentrations were observed previously in Antifer 
harbour (France), sea water was sampled to study the 
ecological conditions of occurrence. Daily samples 
were taken at high tide at 1 m depth at the end of the 
petroleun~ wharf (Fig. 2 )  from 1 July to 13 September 
1989 and from 1 June to 11 September 1990. The 
measurements carried out by the municipal laboratory 
of Le Havre were Dinophysis concentration (cells per 
10 ml) (Utermohl 19581, salinity (Beckman induction 
salinometer), temperature ("C) (Ponselle sonde), nitrate 
and phosphate concentration (pm01 1-l) (Technicon 
autoanalyser). Insolation (h d-l), rainfall (mm d-l), wind 
direction and speed (m S-') and Seine flow (m3 S-') 

Fig. 2. Sampling station, Antifer, France 

were obtained from the Le Havre weather station (Cap 
d e  la Heve, cf. Fig. 2). Tide coefficients at Le Havre 
harbour were drawn from tide tables puplished each 
year by the French hydrographic and oceanographic 
navy service (SHOM). 

A 'South-West wind' covariate was  computed a s  the 
daily mean of 8 determinations per day of the variable 
[-a,,,  COS(^^^,^ - n/4)], where a,,, and P,,, are,  respectively, 
the speed and direction of the wind on the i th deter- 
mination of Day t. This gives a continuous decrease 
from South-West to North-East, with a zero value for 
North-West and South-East winds. Finally, the vari- 
ables were standardized to zero mean, to separate 
clearly the covariate effects from the dynamic inter- 
cept, and unit variance, to allow comparisons between 
years and between covariate effects. It followed from 
this standardization that the dynamic intercept of the 
model a t  time t was the local mean of the dependent 
variable. Furthermore, the estimated regression para- 
meters were adimensional. 

Dynamic linear regression model 

The dependent variable was Y,  = log(Z, + l) ,  where Z, 
was Dinophysis concentration on Day t .  For each year, 
a model was fitted. The model included a dynamic 
intercept, and covar~ates were selected one by one 
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from the set of available variables (see previous sec- 
tion). At each step, the variable which induced the 
largest model likelihood with a significant gain in 
likelihood, as assessed uslng the likelihood ratio test 
(Kendall & Stuart 1977), was entered in the model. 
For 1989, only the 'South-West wind' covariate was 
selected, while 'Salinity' and 'Tide coefficient' were 
selected for the 1990 series. Fig. 3 shows these vari- 
ables. We used these 3 variables to explain the process 
underlying the evolution of Dinophysis concentration 
during the 2 years. Thus, the final model, common to 
1989 and 1990, had the following observation equation 
at  time t, t = 1.2. .... 

where 00,, represents the dynamic intercept, SW, 
'South-West wind', S, 'Salinity', T, 'Tide coefficient' 
and E, is an error term. We decided to present results 
using covariate effects, that is the variable va1u.e (i.e. 
X,) multiplied by the estimated regression parameter 
(i.e. dx,,). Confidence intervals at the a. = 0.05 level 
were used to test the nullity of the effects: when 0 
was between the 2 limits, the effects were consid- 
ered non-significantly different from 0. Finally, static 
versions of this model were fitted to data from 
both years in order to draw comparisons with DLRM 
results. 

RESULTS 

There was a succession of peaks of increasing mag- 
nitude In Dinophysis concentration in 1989 and 1990 
(Fig. 4 ) .  On-line fitted values were similar to observed 
values for the 2 years. Figs. 5 & 6 show dynamic inter- 
cepts and effects of covariates. For both years, effects 
were not always significant. At the beginning of the 
series, and especially in 1990, 95% confidence inter- 
vals of effects were initially large and then decreased 
rapidly. This decrease in uncertainty with the accumu- 
lation of observations and the alternation of time peri- 
ods when the effects were significant and non-signifi- 
cant illustrated the adaptability of dynamic models. 

In 1989 (Fig. 5), the dynamic intercept was signifi- 
cantly different from zero from Day 8 to 21 and from Day 
57 to 64, and 'South-West wind' from Day 29 to 34 and 
from Day 37 to the end of the time series. As 'Salinity' 
was only significant the last day of the time series and 
'Tide coefficient' was never significant, dynamic inter- 
cept and 'South-West wind' effects mainly contributed to 
the on-line fitted values of the concentration of Dinoph- 
ysis. The dynamic intercept showed a local low concen- 
tration of Dinophysis in the first interval (Days 8 to 21) 
and a high concentration in the second interval (Days 57 
to 64). aSwr was always positive. Positive effects corre- 
sponded to South-West winds and negative effects to 
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Fig. 4 .  Standardized observations of Dinophysis concentra- 
t ~ o n s  at  Antifer and their on-line fitted values. Day 0 is 1 July 

for 1989 and 1 June for 1990 

In 1990 (Fig. 6), the dynamic intercept was signifi- 
cantly different from zero and negative from Day 6 to 
63 and significant and positive from Day 80 to the end 
of the time series. 'South-West wind' effects were sig- 
nificant from Day 58 to 60 and at Day 86. When the 
effects of this covariate were significant, its estimated 
parameter was positive. For 'Salinity', effects were sig- 
nificant from Day 58 to 60 with a positive estimated 
parameter and from Day 65 to the end of the time 
serles 1~1th a negative estimated parameter. Lastly, 
'Tide coefficient' effects were significant at Day 46 and 
during 4 intervals: Days 23 to 31, 41 to 44, 61 to 80 and 
Day 88 to the end of the time series. iT., was positive 
from the beginning of the time series to Day 56, and 
then negative to the end of the time series. Dynamic 
level, 'Salinity' and 'Tide coefficient' explained most of 
the evolution of Dinophysis concentrations. When hs,, 
and hT., were negative, negative values (respectively 
positive) of 'Salinity' and 'Tide coefficient' corresponded 
to positive (respectively negative) effects. The per- 
centage of variation explained by the DLRM was R2 = 

79.57 %. The R 2  of the static regression was 23.79%. In 
the static regression, the intercept and the estimated 
parameter of 'Tide coefficient' were non-significantly 
different from zero. 'South-West wind' and 'Salinity' 
parameter estimations were significant and negative. 

North-East winds. The percentage R' (Draper & Smith DISCUSSION 
1966) of variation of Dinophysjs concentration explained 
by the DLRM was 73.54 % and that of static regression Covariate effects suggested different scenarios to 
was 55.29 % (Table 2). In the static regression, the inter- explain Dinophysis concentration dynamics. In 1989, 
cept and the estimated values of the parameters of 'Tide the geographical situation of the sampling site (Fig. 2), 
coefficient' and 'Salinity' were not significantly different the location of phytoplankton maximum concentra- 
from zero. Oscv., was highly significant and positive. tions in the Seine plume (Menesguen et al. 1995) and 
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Fig 5. DLRM results for 1989. 
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hydrodynamical studies of the Seine bay (e.g. Salomon 
& Breton 1993) suggested that South-West wind in- 
duced Dinophysis cell accumulation along the coast, 
particularly in Antifer harbour. Conversely, North-East 
wind could provoke cell dispersion. Such transporta- 
tion phenomena induced by wind has already been 
observed in the Seine bay (Lagadeuc 1992, Thiebaut et 
al. 1994). By definition, the 'South-West wind' effect 
depended on the 'South-West wind' covariate value. 
'South-West wind' effect varied also with Dinophysis 
concentration in the water mass subject to the accumu- 
lation/dispersion phenomena. As this concentration 
varied with time, the relationship between 'South-West 
wind' and the microalgal concentration in Antifer was 
time-varying. Only the covariates 'Salinity' and 'Tide 
coefficient' were significant in 1990. Significant nega- 
tive values of the 'Salinity' estimated parameter sug- 
gested that lower surface salinity was accompanied by 

Table 2. Results of the static regression model for 1989 and 
1990. N is sample size, R' tQe percentage of variation ex- 
plained byA the regression, @,, the estimated value of the 
intercept, esw that of :he 'South-West wind' covariate, OS 
that of 'Salinity', and eT that of 'Tide coefficient' ns: non- 
significantly different from zero at the u = 0.05 level (bilateral 

test); p: significance level 

N 73 103 
R 2 55.29% 23.79% 
eo  -0.004 (ns) -0.026 (ns) 
0s W 0.621 (p < IO-~) -0.214 (p = 0.039) 
6s 0 . 2 1 3  (ns) -0.514 (p < 10-') 
6, 0.125 (ns) -0.159 (ns) 

Fig. 6. DLRM results for 1990. 
(A) Standardized observa- 
tions of Dinophysis concen- 
trations at Antifer and their 
dynamic local means and (B, 
C, and D) effects and 95% 
confidence limits of covari- 
ates. Bold lines denote effects 
significantly different from 0. 
Day 0 is 1 June 1990. Note 
that effects are adimensional 
because of covariates stan- 

dardization 

higher Dinophysis concentrations. This result was con- 
sistent with the association of Dinophysis occurrence 
with persistent salinity stratification (e.g. Delmas et al. 
1992). The establishment of stratification is favoured 
by small tide coefficients. Greater tide coefficients may 
provoke water mixing and consequently a decrease 
of Dinophysis concentrations by dilution. A hydro- 
dynamical study has shown that the configuration of 
Antifer harbour modifies the circulation of water 
masses (Monbet 1975), so that greater tide coefficients 
induced a departure of water masses to the North and 
small coefficients a 'capture' of water masses in the 
harbour. As for 'South-West wind', relationships be- 
tween Dinophysis concentration and 'Salinity' and be- 
tween Dlnophysis concentration and 'Tide coefficient' 
varied over time. 

Although 'Salinity', 'Tide coefficient' and 'South- 
West wind' seemed to be important for understanding 
the evolution of Dinophysis concentration at Antifer, 
some discrepancies appeared between scenarios and 
results. The 3 covariates were never significant con- 
comitantly. A natural explanation for this observation 
was related to interdependence among these vari- 
ables. For example, correlation between 'South-West 
wind' and 'Salinity' covariates was negative and highly 
significant (p < 1 0 - ~ )  both in 1989 and 1990. One of 
these 2 covariates may thus mask the influence of the 
other one. Such correlations seemed to be responsible 
for the non-significance of the 'Tide coefficient' esti- 
mated parameter in 1989 and, in the static regression 
results, for the visible inversion of the absolute values 
of estimated parameters of 'South-West wind' and 
'Salinity' for 1989 and 1990 and for the change in the 
sign of from 1989 to 1990. In 1990, results of the 
DLRM showed changes in the signs of the estimated 
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parameters of 'Salinity' and 'Tide coefficient'. From our 
scenarios, these parameters were expected to be nega- 
tive. The positive parameter values resulted from local 
positive correlations between the values of Dinophysis 
concentration and 'Salinity' and between those for 
Dinophysis concentration and 'Tide coefficient'. There 
were only 3 days (58, 59, 60) when the estimated para- 
meter of 'Salinity' was positive, thus we considered this 
event a s  fortuitous. South-West wind blew strongly in a 
chaotic way and 'Salinity' decreased during the first 2 
significant intervals of 'Tide coefficient' effects 
(Fig. 3B, D). Then, wind probably induced the first 2 
peaks of Dinophysis concentration, but these were 
more correlated with the sinusoid evolution of the tide 
coefficient. In the static regression, iT was not signifi- 
cant, like an average of the dynamic parameter g,-, 
could have been not significant. 

From these results, a general explanation for the 
evolution of Dinophysis concentration was derived as  
follows: South-West winds draw water masses, possi- 
bly stratified and rich in Dinophysis, inshore, particu- 
larly to Antifer harbour due  to the configuration of 
the site. North-East winds may provoke dispersion of 
Dinophysis cells. Large tide coefficients may induce a 
decrease of Dinophysis concentrations as a conse- 
quence of water mass movements and/or dilution. It 
should be noted that the set of significant covariates is 
a subset of available variables. A significant serial 
correlation for the residuals, as the runs test (Siege1 
1956) showed us a t  the cr = 0.05 significance level for 
both years, might reflect the absence of at  least one 
key descriptor in the model. As our analysis identified 
physical factors, this (these) might be biological fac- 
t o r ( ~ ) .  Our explanation illustrated the usefulness of 
DLRMs as explanatory tools. Dynamic models can also 
be used as an on-line analysis method for time series 

as, for instance, the phytoplankton time series issued 
from monitoring programmes. In this case, data a re  ob- 
tained sequentially and,  although not recommended, 
sampling frequency might be irregular, generating 
t ~ m e  series with missing data. The sequential defini- 
tion of dynamic models makes them well suited for 
such time series analysis. The estimation procedure 
can manage missing data by forecasting the value at  
t ~ m e  t+ k, k >  l .  Moreover, in ecology, the observational 
variance is often a function of the mean (Taylor 1961, 
Kendal 1995), and thus varies in time with the mean. 
If the variance-to-mean relationship is known, it can 
be  used to specify the sequence of the observational 
variance. Alternatively, dynamic models can accom- 
modate the assumption of time-varying variance. 
Finally, the Bayesian model approach of time series 
modelling can be considered as a dynamic generaliza- 
tion of a linear model, and thus developments of the 
latter (e.g. multiple linear regression) are  adaptable for 
the former. 

DLRM results gave us a more thorough understand- 
ing of Dinophysis concentration time series in Antifer 
than did static regression analysis. In particular, time- 
varying relationships between significant covariates 
and the concentration of the toxic microalga could 
not be assessed using static regression. Furthermore, 
DLRM characteristics and extensions could make 
dynamic models one of the most efficient tools for 
analyzing time series data, and  especially those of 
monitoring programmes. 
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Appendix 

The model used is a umvariate DLRM with constant and 
unknown variance V. Let Y,. t = 1,2, .., denote a time serles 
and X; = (X,, ,  Xz,, . . X,,,), t = 1 , 2 ,  .. , a time dependent vector 
of vanables. The observation is governed by the so-called 
'observation equation'. 

where F ;  = (1 X,) is the vector of regressors, 8; = 

(Oo,,  0,,, Oz., ... B,,,) is a vector of time dependent parameters 
and E, a re  observational errors, independently identically 
distributed in the normal d~stribution N(0,V).  The un- 
known reciprocal variance or precision is denoted by @ = 
V-'. At t - l ,  is distl-ibuted In the Gamma distnbutlon 
G[n!_li2, dl - , /21 .  The parameter vector changes through 
time according to the evolut~on equation 

6, = ~ , - , + o , , o ! -  T,,.,[o, W,] (A21 

where U ,  is the evolutional error. (The notation - IS used 
here and elsewhere to denote 'distributed as ' .)  Then we 
define the initial distributions (@IDo) - G[n0/2, do/21 and 
(OolDo) - T,u(m,,, C , ) ,  where no, do, m. and CO are flxed Do 
is the initial information set, representing all the ava~lable  
relevant information used to specify the model before the 
first observation, and including all vectors of regressors F,. 
The error sequences E, and m, a re  independent, mutually 
independent, and independent of (OolDo). Lastly. U: is speci- 
fied as W, = C,-,(l - 4/6, where S E  ]0,1[. Sis the so-called 
discount factor and controls the model adaptability: if 6 is 
near 0 then the model adaptability is high and ~f 6 is near 1 
then the model can only change slowly. 

(Continued on next page) 
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Appendix (continued) 

The sequential estimation procedure starts at t - 1 Let The fitted distribution (KID,) is d~stributed as Tn,[gl ,P ,] ,  
us define the information set at time t as D, = (D, l ,  Y,) .  where g, = F;m, and P, = F;C,F, +S,. 
(8,-11Dl-1) is distributed as G, , Imr-~,  c,-11 and 11 as parameters of the initial distributions of (@IQ,) and ( @ n ~ ~ o ,  
G[n,.1/2, d1.,/21. The estimation steps are the following: and the discount factor hare included in the set D, and fixed 

by the model user For our model applied to the Dinophysis Prior. (O,ID,.,) - T,,, ,[a,, R,], where a , -  m,_, and R, - C , . ,  + W,. concentration time serles (cf 'Dynamic linear regression Prediction. (Y,ID,.,) - T,, ,[f,, Q,], where f, = Ft1a, and Q, = model'), the values were m,, = 0, equal to the identity F;R,F, + S,.1 with S,-, = d,. I/n,.l matrix, no = do = 1 and S= 0.95 in 1989 and 1990. 
Posterior. (@,ID,) - T,,[m,, C,], where m, = a,+A,e, and C, = 

(Sl/S,.I) (R, - A,A',Ql), with A, = R,F,Q,-' and e, = Y, - j,. Computer programs used to perform DLRM analysis were 
(@ID,) is d~stributed as G[n, /2,  d,/2], where n, = n,.] + 1 developed in C on a SUN station and are available from the 
and d, = d,_, +s,-~~:/Q,. first author. 
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