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KEYWORDS Summary Numerous ecological problems of continental shelf ecosystems require a refined
Sediment transport; knowledge of the evolution of suspended sediment concentrations (SSC). The present investiga-
Numerical modeling; tion focuses on the spatial and temporal variabilities of near-surface SSC in coastal waters of the
Satellite; English Channel (western Europe) by exploiting numerical predictions from the Regional Ocean
ROMS; Modeling System ROMS. Extending previous investigations of ROMS performances in the Channel,
MERIS; this analysis refines, with increased spatial and temporal resolutions, the characterization of
MODIS near-surface SSC patterns revealing areas where concentrations are highly correlated with

evolutions of tides and waves. Significant tidal modulations of near-surface concentrations
are thus found in the eastern English Channel and the French Dover Strait while a pronounced
influence of waves is exhibited in the Channel Islands Gulf. Coastal waters present furthermore
strong SSC temporal variations, particularly noticeable during storm events of autumn and winter,
with maximum near-surface concentrations exceeding 40 mg =" and increase by a factor from
10 to 18 in comparison with time-averaged concentrations. This temporal variability strongly
depends on the granulometric distribution of suspended sediments characterized by local bi-
modal contributions of silts and sands off coastal irregularities of the Isle of Wight, the Cotentin
Peninsula and the southern Dover Strait.
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1. Introduction

An accurate knowledge of suspended sediment concentra-
tions (SSC) is required for numerous ecological issues of
continental shelf ecosystems. SSC influence thus water
clarity, limiting the amount of light available to phytoplank-
ton for photosynthesis and the biological primary production
(Hoppe, 1984). Suspended particulates may also absorb and
transport polluting substances such as heavy metals or radio-
active materials with harmful consequences in terms of
water quality (Haarich et al., 1993). A refined estimation
of suspended sediment transport rates constitutes finally a
prerequisite of coastal engineering applications dealing with
maintenance dredging projects of estuaries or harbors.

Recognized as an important coastal ecosystem of north-
western European shelf seas, the English Channel (Fig. 1)
has been the subject of numerous studies dedicated to
suspended sediment transport. Initially based on in situ
observations along transects in the Wight-Cotentin area
and the Dover Strait (Dupont et al., 1993; Eisma and Kalf,
1979; Van Alphen, 1990; Velegrakis et al., 1997), first inves-
tigations exhibited a spatial ‘“zonation” between (1)
high turbid coastal waters with mean near-surface SSC of
10—35 mg I~ " and (2) central waters with low concentrations
of 2—3 mg I~". Numerical modeling tools were then imple-
mented to extend these local analyses focusing on effects of
major hydrodynamic forcings of tides and waves (Gerritsen
et al., 2000; Grochowski et al., 1993; Guillou and Chapalain,
2011; Guillou et al., 2009; Velegrakis et al., 1999). Three-
dimensional (3D) predictions exhibited, in particular, remote
advective and diffusive transport of silts (d < 30 wm) during
spring tide with noticeable effects on grain-size variability of
suspended sediments. Impacts of waves were furthermore
quantified with SSC increase by a factor between 10 and 20 in
exposed coastal areas during storm events.
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Nevertheless, whereas these simulations provided inter-
esting insights about temporal and spatial SSC variabilities
in the English Channel complemented further local evalua-
tions (Rahbani, 2015), numerical studies remained primary
restricted to the vicinity of measurement sites. Broad-scale
assessments of near-surface SSC have however been
conducted relying on satellite monitoring of ocean color
(Fettweis et al., 2007, 2012; Gohin et al., 2005; Gohin,
2011). Despite the reduced number of high-quality images
fully covering the whole area over long time periods and the
low accuracy of satellite observations (Wozniak, 2014), the
refined analysis of remote-sensing images exhibited
close correlations between observed SSC and hydrodynamic
forcings of tides and waves (Rivier et al., 2012). Satellite-
retrieved observations have thus been considered in numer-
ous assessments of numerical simulations investigating
regional variabilities of near-surface SSC at increased spa-
tial and temporal resolutions in the English Channel (Guillou
et al., 2015; Menesguen and Gohin, 2006; Souza et al.,
2007; Sykes and Barcelia, 2012). Nevertheless, the atten-
tion was primary dedicated to approach of major SSC
patterns and improvements of numerical predictions
neglecting accurate evaluations about the roles of tides
and waves on SSC variabilities.

The present study investigates the spatial and temporal
variabilities of near-surface SSC under combined influences
of tides and waves relying on numerical simulations estab-
lished by Guillou et al. (2015) in the English Channel (Section
2). Predictions are first exploited to assess the global effects
at the scale of the Channel identifying areas where concen-
trations are highly correlated with the evolutions of
tides and waves (Section 3.1). Further investigation is then
conducted about the temporal variabilities of nearshore SSC
patterns quantifying effects of waves on near-surface con-
centrations in shallow waters (Section 3.2). The influence of
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Figure 1

Bathymetry of the English Channel with locations of points A and B.
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the granulometric distribution of suspended sediments is
finally analyzed with a particular focus off coastal irregula-
rities characterized by a local heterogeneity of grain sizes of
suspended particles (Section 3.3).

2. Numerical modeling

Numerical modeling is based on the 3D multicomponent
sediment transport model ROMS (Regional Ocean Modeling
System) (Haidvogel et al., 2000; Warner et al., 2008) assessed
against satellite-retrieved observations from raw remote-
sensing images for the year 2008 (Guillou et al., 2015). Major
characteristics of numerical model and performances
evaluation are briefly described hereafter. Further details
are available in Guillou et al. (2015).

The modeling system, implemented with a horizontal
resolution of 3 km, takes into account the spatial distribution
of seabed sediments by applying the interpolation method
proposed by Leprétre et al. (2006) to a series of available
bottom sediment samples in the English Channel. Tidal free-
surface elevations at open boundaries derive from harmonic
components of TPOEX/Poseidon 6 database (Egbert and
Erofeeva, 2002) while wind speeds above free surface are
provided by meteorological ALADIN (Bénard, 2004; Météo-
France). Waves effects are included following the parame-
terization adopted by Soulsby et al. (1993) on interactions
between wave and current bottom boundary layers, with
wave input parameters taken from the IOWAGA (Integrated
Ocean WAves for Geophysical and other Applications) data-
base (Ifremer, Ardhuin et al., 2011). Sediment transport
is finally computed for the four finest grain size classes of
silts (dq =25 pm), very fine sands (d, = 75 pwm), fine sands
(ds = 150 wm) and medium sands (d4 = 350 wm). SSC inputs of
fine suspended particles (d; = 25 wm) are considered at open
boundaries according to the statistical model developed by
Rivier et al. (2012). ROMS is finally run during two years,
2007 and 2008, considering the first year as an initialization
period.

Predictions are assessed against local and synoptic obser-
vations of near-surface SSC derived from raw MODIS/AQUA
(MODerate resolution Imaging Spectroradiometer, NASA)
and MERIS (MEdium Resolution Imaging Spectrometer, ESA)
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satellite images (Gohin, 2011). Whereas points predictions
show a general tendency to underestimate highest observed
concentrations in winter following results from Sykes and
Barcelia (2012), the local evaluation confirms model's cap-
ability to approach observed spring-neap tidal modulations
of near-surface concentrations (Fig. 2). Synoptic evaluations
exhibit furthermore model's performances in approaching
the large-scale variability of near-surface SSC characterized
by (1) strong horizontal gradients in nearshore regions and
(2) a prominent turbid area around the Isle of Wight (Fig. 3).
These predictions approach also secondary features identi-
fied in the vicinity of protruding headlands and isles along
the English and French coastlines.

3. Results and discussion

3.1. Global effects of tides and waves

ROMS' implementation by Guillou et al. (2015) in the English
Channel primary focused on improvements of predictions
neglecting further investigations about the effects of tides
and waves on near-surface SSC variability. Numerical results
are exploited here to assess spatial and temporal variabilities
of near-surface concentrations in relation to major hydro-
dynamic forcings of tides and waves. Fig. 4 shows the
maximum predicted near-surface SSC during the year
2008 and its relative increase with respect to yearly-
averaged concentrations. Temporal variations of surface
concentrations are particularly pronounced in the most
turbid areas of the English Channel. Whereas offshore waters
show weak SSC variations in relation to reduced concentra-
tions and near-bed resuspensions, coastal waters exhibit
significant evolutions at a distance up to 10 km from French
and English coastlines. This spatial “zonation” between high
turbid coastal waters and low turbid central waters confirms
previous investigations conducted by Fettweis et al. (2012) or
Lafite et al. (2000) in the English Channel.

These variations of near-surface coastal SSC appear pri-
mary associated with waves effects on seabed sediments. As
exhibited by Grochowski and Collins (1994), sand-sized
particles may be disturbed by wave activity during more than
20 % of a year over most of nearshore waters of the English
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Figure 2 Time series of suspended sediment concentrations (SSC) (light blue) observed and (dark blue) predicted off the Cotentin
Peninsula (point A). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)
Adapted from Guillou et al. (2015).
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Figure 3 Near-surface suspended sediment concentrations (SSC) observed (right) and computed (left) for stormy for stormy wave
conditions and spring (11 February 2008) and mean (11 November 2008) tides.

Adapted from Guillou et al. (2015).

Channel. This period corresponds globally to storm waves
conditions of autumn and winter. In the present investigation,
the associated near-surface concentrations present thus
strong temporal variations with mean values over 8 mg ™"
against less than 4mg ™" in summer and spring (Fig. 5).
Maximum near-surface SSC are furthermore reaching values
over 40 mg =" with increase by a factor from 10 to 18 in
comparison with time-averaged concentrations (Fig. 4b).
Whereas seldom in situ SSC measurements are available in
the English Channel to confirm these values, comparable
increase have been reported from field studies near the Isle
of Wight by Velegrakis et al. (1997). These predictions are also
consistent with broader observations conducted in the south-
ern North Sea off Maplin Sand (UK) by Owen and Thorn
(1978). Predicted increase factors fall finally in the range
of numerical values obtained by Gerritsen et al. (2000) in the
eastern English Channel.

Influences of tides and waves on near-surface SSC are
finally investigated displaying Pearson's correlation coeffi-
cients between (1) predicted concentrations and (2) inte-
grated parameters characterizing the local evolution of
hydrodynamic forcings. These site-specific explanatory para-
meters are (1) the tidal free-surface elevation and (2) the
significant wave height at point B in the eastern English

Channel (Fig. 1). Point B corresponds to the offshore lightship
62305 of the UK Meteorological Office. Resulting spatial
distributions of correlation coefficients (Fig. 6) refine the
cartography previously established by Rivier et al. (2012)
on the basis of remote-sensing images over the period
2003—2009. Indeed, applying statistical treatments on satel-
lite images, aninitial cartography was obtained identifying, at
a coarse spatial resolution of 36 km, areas of the English
Channel where near-surface SSC are highly correlated with
spring-neap tidal variations. Strong tidal modulations of near-
surface concentrations were exhibited in the eastern English
Channel with null to low influence in the western Channel in
relation to dominant waves conditions. Whereas the present
investigation is restricted to the year 2008, the resulting
spatial distributions of correlation coefficients (Fig. 6) confirm
the large-scale influence of tides on near-surface SSC mod-
ulations. Spring-neap tidal correlations appear however
moderated in the Channel Islands Gulf where waves are
predominantly influencing the evolution of near-surface
SSC. The refined spatial resolution obtained by the exploita-
tion of numerical predictions reveals finally a strong influence
of tidal cycles along the French southern Dover Strait corro-
borating previous estimations performed by Guillou et al.
(2009) and Guillou and Chapalain (2011) in these areas.
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Figure 4 (a) Maximum predicted near-surface suspended sed-
iment concentrations (SSC) in 2008 with the areas of interest
delineated in black rectangles. (b) Relative increase of predicted
near-surface suspended sediment concentrations with respect to
averaged concentrations for the year 2008.

3.2. Variability of nearshore near-surface SSC
patterns

Further investigation is conducted focusing on the temporal
variability of (1) nearshore concentrations patterns separat-
ing French and English coastal waters and (2) areas with the

highest contributions around the Isle of Wight, in the Channel
Island Gulf and in the Dover Strait (Fig. 4a). Mean near-
surface SSC of French and English waters show nearly similar
temporal evolutions in spring and summer whereas more
significant differences are exhibited in winter (Fig. 7a). In
January, maximum concentrations are thus reaching peak
values over 16 mg =" in English coastal waters while max-
imum concentrations remain below 10mg (™" in French
waters. These differences are mainly associated with the
contribution of the area of high concentrations identified
around the Isle of Wight (Fig. 7b). The evolution of near-
surface SSC of English coastal waters is directly correlated
with the temporal variability of concentrations around
the Isle of Wight. As identified in Fig. 6, this latter region
experiences significant influences of tide and wave
forcings corroborating previous investigations performed
by Velegrakis et al. (1997, 1999). Tidal currents influence
thus advection of finest suspended particles along the west-
eastern direction modulating the longshore extension of the
turbid area around the Isle of Wight at semi-diurnal frequen-
cies. This evolution is modulated by waves which impact the
northern offshore extension of this area with noticeable
effects during storm events when near-surface concentra-
tions are reaching values of 20 mg |~ at a distance of 20 km
from the Isle of Wight (Figs. 3 and 4).

In addition to this prominent area, two major nearshore
resuspensions regions are identified in (1) the Channel
Islands Gulf and (2) the Dover Strait (Fig. 4a). Confirming
previous investigations performed in Section 3.1 (Fig. 6),
averaged concentrations in these areas are strongly influ-
enced by tides with spring-neap modulations of predicted
SSC (Fig. 7b). Waves are however found to impact the
variability of concentrations in coastal waters with notice-
able effects between the months of October and February.
This influence is exhibited in the central part of the Dover
Strait where waves modify very clearly the “zonation”
between central and coastal waters. Confirming previous
estimates performed by Eisma and Kalf (1979), Lafite et al.
(2000), Mc Cave (1973) and Van Alphen (1990), three main
areas of resuspensions are thus revealed: (1) the English
coastline with weakest coastal SSC, (2) the transitional zone
of gravel and pebbles deposits where no resuspension occurs
and (3) the French coastal zone showing the highest con-
centrations.
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Figure 5 Time series of predicted averaged near-surface suspended sediment concentrations (SSC) in coastal and offshore waters of

computational domain.
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Figure 6 Correlation coefficients between predicted near-
surface suspended sediment concentrations (SSC) and (a)
predicted tidal free-surface elevation and (b) observed signif-
icant wave height at point B in 2008.

3.3. Influence of the granulometric distribution
of suspended sediments

As exhibited by Sykes and Barcelia (2012), the granulometric
distribution of near-surface suspended sediments influences
the temporal variability of the total SSC. Strong temporal
variabilities may thus appear as a result of a bi-modal
distribution of silts and sands. Indeed, sands contribution
to mean concentrations is generally characterized by quar-
ter-diurnal variations in relation to local resuspensions
whereas silts evolution may be semi-diurnal as a conse-
quence of remote advection (Jago et al., 1993; Van der
Molen et al., 2009). In the English Channel, these processes
have been identified on the basis of a comparison between
numerical predictions and in situ measurements by (1)
Guillou et al. (2009) and Guillou and Chapalain (2011) in
the southern Dover Strait and (2) Velegrakis et al. (1997)
in the south-eastern edge of the Isle of Wight. These effects
are particularly noticeable in nearshore watersin relation to
increased influences of waves on the sea floor (Grochowski
and Collins, 1994). In the present investigation, bi-modal
distributions are thus exhibited off coastal irregularities of
the Channel Islands Gulf, the Isle of Wight, the Cotentin
Peninsula and the southern Dover Strait (Fig. 8). These
nearshore grain-size variabilities contrast with the nearly
uniform grain-size distribution of offshore near-surface SSC
characterized by an average silt contribution over 90%.
This local heterogeneity of suspended concentrations has
to be considered when processing satellite reflectance data.
In this study, the backscattering coefficient by unit mass has
been considered constant for a given area neglecting inher-
ent optical properties of suspended particles in relation to
size and composition (Gohin, 2011; Rivier et al., 2012). This
assumption may thus result in differences in the estimation of
near-surface SSC from remote-sensing data particularly
noticeable in the highly localized energetic regions of the
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Figure 7 Time series of predicted averaged near-surface suspended sediment concentrations (SSC) over different areas of

computational domain.
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Figure 8 Percentages of (a) silts and (b) sands in the mean
predicted near-surface suspended sediment concentrations
(SSC) in 2008.

English Channel (Bowers and Binding, 2006; Bowers and
Braithwaite, 2012; Lubac and Loisel, 2007). Integrating the
grain-size variability of near-surface concentrations may
improve estimations derived from remote-sensing data in
the nearshore areas.

4. Conclusions

Numerical predictions from the Regional Ocean Modeling
System ROMS assessed against satellite-retrieved images
have been exploited to investigate the spatial and temporal
variabilities of near-surface SSC in coastal waters of the
English Channel. The main outcomes of the present study
are the following:

1. Predictions exhibit significant temporal variations of
near-surface concentrations in coastal waters with in-
crease from 10 to 18 in comparison with time-averaged
values. Considering the refined spatial resolution of the
computational mesh, two cartographies are produced
exhibiting correlations of near-surface SSC with tidal
free-surface elevation and significant wave height. Waves

influence is exhibited in the Channel Islands Gulf while
strong tidal correlations are revealed in the southern
Dover Strait.

2. The granulometric distribution of near-surface sus-
pended sediments has been identified exhibiting local
bi-modal distributions of silts and sands with a strong
influence on SSC variabilities. Whereas near-surface SSC
appears predominantly composed of silts, sands may
contribute locally to suspended concentrations in the
most energetic areas of the English Channel. This may
furthermore result in local grain-size heterogeneity of
suspended sediments with possible biases in the estima-
tion of associated concentrations from remote-sensing
images.

The present study provides interesting insights about the
spatial and temporal variabilities of near-surface SSC in the
English Channel complemented previous studies based on
remote-sensing data. This research will naturally benefit
from extended comparisons of numerical predictions with in
situ observations based on acoustic and/or optical devices in
conjunction with direct sampling of surface water for eval-
uation of measurements accuracy. Taking into account
errors usually associated with remote-sensing images during
rougher sea states, these in situ measurements will confirm
model's performances in the most turbid areas during storm
events. This objective will be achieved with longer simula-
tions covering major measurements campaigns in the English
Channel. This long-term evaluation of near-surface SSC will
also assess the variability of suspended sediment transportin
relation to the inter-annual variability of wave climate in
the English Channel. The present modeling focuses further-
more on disturbances induced by tides and waves on near-
surface SSC neglecting a refined evaluation of predicted
concentrations distributions in the entire water column,
exhibiting, in particular, near-bed concentrations. Further
investigations are thus required about effects of tides and
waves on near-bed sediments. Whereas further studies can
be conducted about the role of wind on near-surface con-
centrations, another prospective of this research will also
consist in incorporating fluxes of fresh waters and sediments
through river boundaries. These developments will finally
aim at improved estimations of sediment fluxes through the
English Channel.
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