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Abstract : 
 
Twist may be introduced accidentally into braided ropes during operations at sea, and it is important to 
know how this will affect both rope integrity and safety coefficients. This paper describes the use of 
simulation tools to evaluate how twisting can change the tensile properties of braided ropes. The case 
of a 300 kN break load 12 strand braided HMPE rope is examined. An original numerical modelling 
approach is presented, and results are compared with results from tensile tests performed on ropes with 
different levels of twist. A drop in strength of around 4% per turn per meter, and an increase in 
elongation, were observed as the number of turns per meter increased, corresponding to progressive 
removal of the load-bearing capacity of half the braided strands. The model shows how load is 
progressively redistributed within the braid. However, very high twist levels (>10 T/m) are required to 
reduce strength below 50% of the initial value. 
 

Highlights 

► New experimental data are presented from tests on 12 strand braided HMPE ropes. ► A new finite 
element model has been developed to simulate the effect of twist on both braid geometry and 
mechanical behavior under tensile loading. ► This model provides a reasonable prediction of load-
strain plots for a range of twist levels up to 5 turns/m. ► Analysis of these results and published data 
has provided values from over 40 tests on 8- and 12- strand braided ropes, which indicate a mean loss 
in residual strength of around 5% per turn per meter. 
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1. Introduction  

 
Braided fiber ropes are being used for deep sea handling applications, where their low weight results in 
more efficient lifting compared to steel wires [1,2]. Other safety-critical applications where braided ropes 
have replaced steel include mining ropes, cranes and towing lines [3]. There have been various studies 
of torsion in steel wire ropes, e.g. [4-6], but very few for synthetic fibre ropes. However, the low torsional 
stiffness of fibre ropes offers little resistance to rotation about the rope axis, or twist, compared to steel, 
and this may modify the rope performance and limit applications. Braided ropes are often selected as 
they are torque balanced, so pure tension should not induce rotation (unlike some other less 
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balanced twisted constructions), but asymmetry in the payload and irregular loads due to 

currents for example, may still induce rotation.  Also, adding a synthetic rope section to 

extend the depth capabilities of steel mooring lines may result in serious coupling problems 

[7]. For marine operations involving costly vessels and expensive payloads it is therefore 

important to understand how this twist will affect the rope and to quantify its effect on 

safety coefficients. 

 There has been some previous work to study this loading mechanism. For example, Davies 

& O’Hear studied 8-strand braided ropes of 365 to 650 kN break loads and measured a mean 

drop in break strength of 6.8% per turn/meter of twist [8]. A total of 20 tests was performed 

in that study. In another investigation, aiming to understand the origins of strength losses in 

HMPE tug-lines after service [9], a number of 12 strand and 8x3 strand braids up to 32mm 

diameter (835 kN break load) were tested. A drop of 4-6% per turn/meter was measured. 

In one of those previous studies [8] both a linear geometrical approach and a commercial 

software code known as FRM (Fibre Rope Modeller™), developed by TTI [10-12], have been 

used to model twist effects on tensile load-strain behaviour. The latter is a hierarchical 

analysis which calculates rope behaviour using the virtual work principle, taking the non-

linear yarn characteristics and the geometry at each level to predict the response of ropes of 

any size. These two models both provided predictions which tend to overestimate the 

influence of twist on break strength. 

In the present work a new set of tests has been performed on ten 12-strand braided HMPE 

ropes, and experimental results will be presented first. A finite element model has then been 

applied,  Multifil. This model uses an implicit solver within a quasi-static framework. The 

initial configuration of a braided rope is determined first as a mechanical equilibrium, 

starting from an arbitrary configuration showing large inter-penetrations between yarns, and 

letting contact-friction interactions gradually move yarns away from each other, until 

fulfilling the selected weaving pattern. A similar approach was developed previously for 

woven fabrics [13-15]. It was adapted to the case of braided structures by Vu et al.[16]. The 

finite element approach employed, whose theoretical background is described in [17], solves 

the mechanical equilibrium of general beam assemblies subjected to large deformations, 

and developing contact-friction interactions. Yarns are modeled by means of finite strain 
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beam elements, contact-friction interactions between yarns are detected and modelled. This 

software has been described in detail in a previous paper [16], so only the specific model, 

input data and conditions used to describe the influence of torsion will be presented here. 

 

2. Materials and Methods 

The rope samples were 12 strand AmSteelBlue™  braids supplied by Samson Ropes; these 

are composed of SK75 Dyneema™  fibres. Nominal rope diameter was 18mm and minimum 

break load was 236 kN. The braid repeat length was 120mm. 

Tensile testing was performed initially on the assembled yarns which make up the rope, in 

order to establish input values (force-strain data) for modeling. This has been described 

previously [16], so only the rope tests will be described here. The rope samples were 8 

meters long, spliced at each end over a 1.5 meter length with loops, and tested on a 1000 kN 

capacity, 10 meter long test frame, Figure 1.  

 

Figure 1. Braided rope on tensile test frame before test. 

The procedure was to attach the ends of the rope to the machine by placing the eye spliced 

loops over 100mm diameter steel pin. Each rope sample was then subjected to 5 load-

unload bedding-in cycles between 5 and 100 kN and was then unloaded. The required twist 

was introduced by rotating removing one pin and twisting manually. The free end was then 

replaced over the steel pin. The number of turns per meter was defined by dividing the 



4 
 

number of turns by the measured free length (the distance between the ends of the splices, 

typically about 5.5 meters). It was noted that the spliced sections did not rotate due to their 

higher stiffness. before ramping to failure at a constant load rate of 100 kN/minute. Load 

and piston displacement were measured continuously, together with the movements of two 

markers in the central section of the rope close to the ends of the splices. These movements 

were recorded by digital cameras fixed to a gantry above the test frame. The initial distance 

between the markers at a reference load of 5 kN defined the gauge length Lo; the central 

rope section strain was defined as the difference between the axial displacements  of the 

two markers throughout the test, recorded at a frequency of 1  Hz, divided by the gauge 

length Lo. In-house software using image analysis tools enabled the force-strain plots to be 

calculated. Ten rope samples were tested. 

 

3. Test results 

Figure 2 shows examples of the rope under different levels of twist. It should be emphasized 

that the highest twist levels are quite extreme, and very unlikely to be encountered in 

practice. 

 

 

Reference, no twist 
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5.6 T/m 

 

9.4 T/m 

Figure 2. Examples of twisted rope samples before testing to failure 

Figure 3 shows examples of the load-strain plots for the bedding-in tests before twisting. 

Plots are shown for four samples. These samples were all taken from the same reel of rope 

and should be identical, so the small differences in response are due to variability between 

the samples and the nominally identical test conditions.   
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Figure 3. Examples of bedding-in cycles before twisting. 

Overall the response to bedding-in was very similar for all samples, with a final strain after 

unloading between 2.0 and 2.7%. Table 1 summarizes the residual strains after bedding-in 

for all samples, before the ramp to failure. 

Twist,  

t/m 

Strain at end of 

bed-in cycles, % 

Strain to failure, 

% 

Break load, 

kN 

Stiffness, 

kN/%  

Reference 2.4 2.8 298 111.6 

1.9 2.3 3.4 271 71.3 

3.1 2.4 3.8 261 58.1 

4.2 2.3 4.1 244 50.5 

5 2.5 4.8 218 43.1 

5.6 2.5 5.1 212 40.1 

6.5 2.5 5.6 204 36.8 

7.4 2.5 6.6 206 32.4 

9.4 2.0 7.3 173 26.5 

11.2 2.7 10.0 159 21 

 

Table 1. Residual strains after bed-in cycles, break loads, break strains and stiffness.  
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When the twisted samples are tested to failure large differences in behavior are noted, 

Figure 4. Break loads and failure strains are also shown in Table 1. It should be emphasized 

that for all the tests to failure the initial gauge length was taken to be that measured at the 

end of bedding-in, so the bedding-in strain is not included in the results plotted in Figure 4. 

As twist is introduced the response becomes progressively more non-linear. From a practical 

point of view, an indication of the change in stiffness is also of interest. A load range from 30 

to 90 kN, i.e. 10 to 30% of the untwisted break load, was selected, which is a typical working 

load range offshore. A linear regression was taken using all the data points in that range. This 

value underlines the drop in apparent stiffness with twist. 

 

Figure 4. Force-central strain plots from tests to failure. 

The failure strain increases significantly with twist, and the break loads fall in an almost 

linear way, Figure 5. 
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Figure 5. Residual strength (RS), as a percentage of untwisted value, versus twist. 

4. Model results. 

The numerical results were obtained from an in-house finite element code, dedicated to the 

modelling of the mechanical behaviour of entangled materials. This code, based on an 

implicit solver, determines the mechanical equilibrium of assemblies of beams of fibres, 

undergoing finite displacements and strains, and subjected to frictional contact interactions. 

The description of the basic models used in this approach to represent the behaviour of 

elementary beams and to detect and model frictional contact interactions can be found in 

[17]. 

This general simulation approach to the modelling of entangled fibrous materials is applied 

here to the case of synthetic braided ropes. Such structures result from the assembly of 

elementary fibres on three successive levels. At a first level, yarns are constituted from few 

thousand fibres. Strands are then formed by winding together few yarns (typically 5 to 8 

yarns). Those yarns are eventually interlaced together by a braiding machine to form a rope. 

Considered ropes in this study are made of 12 strands, distributed in two crossing layers, and 

each yarn is made of 7 yarns. The rope is made of an assembly of 84 elementary yarns. 

RS = -4.3(t/m) + 97.85
R² = 0.9638
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Due to the limits regarding the number of components that can be handled in the FE code, 

the model is restricted to the scale of yarns and considers the rope as an assembly of 84 

elementary yarns arranged into 12 strands. Each yarn is represented by a homogeneous 

beam, whose torsional stiffness and bending stiffness are adjusted so as to account for their 

high flexibility due to the relative motions allowed between filaments within the yarns. 

The geometry of the initial configuration of the rope results from the braiding process and 

cannot be determined a priori. To face this difficulty, the proposed approach provides a way 

to determine this initial configuration: starting from an arbitrary configuration in which yarn 

trajectories are defined by double helices and interpenetrate each other, contact 

interactions are used to gradually separate penetrating yarns from each other, until getting a 

balanced configuration which satisfies contact conditions and fulfils the selected braiding 

pattern. This way of determining the initial configuration of the braided rope is explained in 

details in [16]. The obtained model was validated with a good agreement against 

experimental measures on a traction test, as reported in [16]. Only few parameters are 

required to define the model, namely: the axial stiffness of elementary yarns (determined 

experimentally), the radius of elementary yarns, the geometrical parameters for the 

arbitrary staring configurations (helix radii and helix pitches) and the braiding pattern. 

The initial configuration was determined starting from a 680 mm long arbitrary configuration 

(Figure 6). 25 200 beam elements and 50 484 nodes where used to discretize the model. The 

main characteristics of the model are summarized in Table 2. 

 

Assembled yarn Construction Lay length Friction coefficient 

E = 69291 MPa 

Radius = 0.86 mm 

12x7 assembled 

yarns 

136 mm Fr = 0.06 

Table 2. Model input data 
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Figure 6. Arbitrary starting configuration (top) and initial configuration of the braided rope 

determined by simulation (bottom) 

Once the initial configuration has been determined, opposite incremental rotations about its 

axis were applied to the sample at both ends, until reaching different twists ranging from 1 

t/m to 8 t/m. Afterwards an initial tensile load of 5 kN was applied for each twist. 

Incremental axial displacements were then applied until failure. The considered failure 

criterion corresponds to a maximal axial stress of 2500 MPa. When the axial stress in a finite 

element exceeds this limit, the axial stiffness of this element is set to a value close to 0. 

Simulations usually stopped due to divergence in the nonlinear algorithm after one or few 

yarns have broken. 

Figure 7 shows the results from modeling of these tests, up to a twist of 5 turns/meter. For 

higher twist levels, simulations were less stable, and it was not possible to run them up to 

the breaking load. The model captures the change in shape of the load-strain plots as twist 

increases, with a falling break load and an increase in failure strain. 

 

Figure 7. Model results for tensile tests on twisted ropes. 
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5. Test-Model Comparison and Discussion. 

Figure 8 shows the test-model comparisons for two cases, the reference sample, Figure 8a, 

and the 5 turns/meter case, Figure 8b.  

  

Figure 8. Test-model comparisons for a) reference sample (no twist), and b) sample with 5 

turns/meter twist. 

It should be emphasized that the model only uses measured assembled yarn data and rope 

geometry to predict the load-strain behavior of the rope, there is no adjustment, and the 

correlation with test data is quite good. In addition to providing the global response the 

model also allows individual elements to be inspected, the strands and their constituent 

yarns, in order to quantify changes in loads as the rope structure changes with twist. In 

addition to the mechanical response the model also provides unique information on the 

braid geometry and how it changes during testing. Figure 9 shows examples, which illustrate 

for each twist level the stresses in the braid at an applied tensile strain of 2.5%.  
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Figure 9. Braid geometry and stress levels in assembled yarns during tensile tests, for an 

applied tensile strain of 2.5%. 

Physically, the following changes are introduced when a braid is twisted: First, the braid 

tends to shorten and the equilibrium between left hand and right hand strands is disturbed. 

When tensile loading is applied the overall rope length increases; depending on the twist 

level some or all of the imbalance between the strands may be restored, as the more highly 

loaded shorter lengths are extended and some redistribution of load will occur due to creep, 

resulting in longer strands progressively being loaded. Finally, when the rope is loaded to 

failure this process continues to high strain, with the amount of twist determining the 

proportion of strands which will be load-bearing when one of them reaches a critical load. 

When the twist level is sufficiently high to remove the contribution of all the strands in one 
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direction (left hand or right hand depending on the twist direction) the load will drop to 

approximately 50% of the full untwisted break load. This distribution of the global axial load 

between left hand and right hand strands is illustrated in Figure 10, where axial stresses 

along all yarns are plotted for the 5 t/m case, almost at the end of the failure test; the 

average axial stress is almost three times higher in one layer than in the other one. 

 

Figure 10. Distribution of axial stresses among all yarns from left hand strands (Layer 1) and 

right hand strands (Layer 2) for the sample twisted to 5 t/m just before failure (some of the 

yarns of Layer 2 are broken, which explains their local loss of axial stress) 

The numerical model takes into account both the assembled yarn tensile behavior and the 

geometry. These are both measured. The only other input parameter is an internal friction 

value, taken to be 0.06 here. In order to examine the influence of this value, which is difficult 

to measure independently, a parametric study was performed in which the friction 

coefficient using two different coefficients of 0.06 and 0.10. For the 5 t/m case Figure 11 

shows that a significant increase of the friction coefficient only slightly increases the tensile 

load, but doesn’t change its slope. 
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Figure 11. Influence of the friction coefficient: comparison of loading curves for the 5 t/m 

twist case, for friction coefficients of 0.06 and 0.10 

Finally, it is interesting to compare the results from this data set to values measured 

previously for other rope sizes and geometries. Figure 12 shows a compilation of available 

HMPE rope data from a total of 43 tests, all normalized with respect to the nominal 

untwisted break loads. This plot should be used with caution, as some ropes were subjected 

to bedding-in cycles and different test machines were employed. While the rate of change of 

strength varies for different constructions and sizes there is a clear progressive drop in 

strength with increasing twist. A linear regression fit to all the data indicates a drop in 

residual strength of around 5% per turn per meter. The range of loss varies from 2% to 14% 

per turn per meter for these braided ropes, which cover a wide range of break loads, from 

30 to 84 tons. This set of data should help to define an upper allowable twist limit for a 

required safety factor. 
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Figure 12. Compilation of current (red symbols) and published test data [8,9] for 8-strand 

and 12-strand braided HMPE ropes, with a linear fit to all data. 

 

6. Conclusions 

Braided ropes can be subjected to twisting in service. A new finite element model has been 

developed to simulate the effect of twist on both braid geometry and mechanical behavior 

under tensile loading of 12-strand braided ropes. This provides a reasonable prediction of 

load-strain plots for a range of twist levels. Analysis of data from over 40 tests on 8- and 12- 

strand braided ropes indicates a mean loss in residual strength of around 5% per turn per 

meter. The development of the numerical constitutive model should now enable the 

parameters affecting twist sensitivity to be evaluated, in order to optimize fibre, finish and 

construction for applications where strength is critical. 
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