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Abstract : 
 
This paper presents a numerical investigation for the computation of wind or marine current turbines in a 
farm. A 3D unsteady Lagrangian vortex method is used together with a panel method in order to take 
into account for the turbines. In order to enforce the boundary condition onto the panel elements, a 
linear matrix system is defined. Solving general linear matrix systems is a topic with important scientific 
literature. But the main concern here is the application to a dedicated matrix which is non-sparse, non-
symmetric, neither diagonally dominant nor positive-definite. Several iterative approaches were tested 
and compared. But after some numerical tests, a Bi-CGSTAB method was finally chosen. The main 
advantage of the presented method is the use of a specific preconditioner well suited for the desired 
application. The chosen implementation proved to be very efficient with only 3 iterations of our 
preconditioned Bi-CGSTAB algorithm whatever the turbine geometrical configuration. Although 
developed for wind or marine turbines, the proposed algorithm is absolutely not restricted to these 
cases, and can be applied to many others. At the end of the paper, some applications (specifically, 
wake computations) in a farm are presented, along with a quantitative assessment of the computational 
time savings brought by the iterative approach 
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Highlights 

► Numerical computation of wind or marine current turbines in a farm is investigated. ► A Vortex 
method together with a panel method is considered. ► Iterative approaches are compared for the 
solving of the so-called influence system. ► A specific preconditioner, well suited for the desired 
application, is proposed. ► CPU times of computations involving up to 10 turbines are compared. 
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1. Introduction

Turbines, whether they are wind or water marine current turbines, represent a growing interest
in the scientific community for energy and environmental engineering. From an historical point of
view, the first studies were performed on wind turbines and recently, a similar research procedure
is being developed regarding marine hydro-kinetic or marine current turbines. Furthermore, com-
putational fluid dynamics (CFD) has been, since the beginning of these studies, a major concern
for first aerodynamics and secondly hydrodynamics. More and more physical phenomena are being
taken into account leading to an increase in the complexity of the developed numerical methods.
An extremely detailed review of numerical methods dedicated to wind turbine aerodynamics and
aeroelasticity was carried out by Hansen et al. [1], and a more recent one by Miller et al. [2]. A
similar review for marine turbine applications was also published recently [3].

Several computational techniques exist with increasing complexity, from a classical blade element
momentum (BEM) theory to a fully 3D unsteady Navier-Stokes formulation, including boundary
layer treatment around the blades. Unfortunately, for the interaction of several turbines within
a farm, this last approach is not really affordable at the present time; although some researchers
took up the challenge [4] with impressive results. The present paper aims at describing a numerical
implementation for the computation of marine current turbine hydrodynamics [5, 6]. To some
extent, the developed software is similar to those developed by Baltazar et al. [7] or McCombes
et al. [8], also for marine current turbine applications. However, there is no real restriction to
marine current turbine hydrodynamics and it may largely be used in wind energy applications [9–
13]. Here, both the performances (power and thrust coefficients) and the wake are considered
in an unsteady Lagrangian vortex method [14]. The blades are taken into account with a panel
method using a Kutta condition for the emission of vortex particles [15]. The major advantage
of such methods (that is to say panel method with free vortex blobs) is that it does not require
any 3D meshing of the fluid domain, the only mesh being the one used for the discretisation of
the blades. Therefore, there is no special treatment if one wants to compute several turbines in
interaction, whereas classical Eulerian methods would require sophisticated meshes, probably with
several rotating parts if several turbines are considered [16]. However, integral panel methods
impose the resolution of a linear matrix system at each unsteady time step. The present paper
aims at describing an enhanced formulation for rapid solving of such matrix systems in the case of
several turbines in a farm.

Generally speaking, in Lagrangian vortex methods, should one want to treat boundary con-
ditions, a system of linear equations appears. The present implementation [5, 6] does not take
dynamic stall into account, but improvements like those suggested by Voutsinas & Riziotis [10, 11]
make it possible to do so. In this formulation, the resolution of a matrix linear system is also
required. For instance, no-slip boundary conditions can be considered with Lagrangian vortex
method. This approach, developed in 2D by Ploumhans et al. [17], followed by its 3D version [18],
also uses a matrix system issuing from the surface discretisation. Boundary conditions may also
be enforced through Immersed Boundary (IB) and a version dedicated to velocity-vorticity formu-
lation was proposed by Poncet [19]. To the authors’ knowledge, such an implementation has never
been applied to (marine or wind) turbine computations, mainly owing to their computational cost
at such Reynolds numbers. However, Poncet’s Immersed Boundary method [19] was applied to
model the flow around a plane, which tends to give confidence in such possibilities. In some sense,
the proposed numerical treatment for the resolution of the matrix system for several turbines in
interaction may be extended to all these approaches [5, 6, 10, 11, 17–19]. Moreover, the presented
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method is not limited to turbine interactions but may be applied to the computation of several
non-deformable moving objects.

In the above mentioned studies, the matrix system basically represents geometrical compounds
of the equations to solve. In most cases, when treating one single rigid structure, the matrix is
constant over time. In a former study [5], when computing a single rigid turbine, the matrix
was a time-constant and matrix inversion was cost effective. A parallel Gauss-Jordan method
was then implemented; the matrix inverse was computed once and for all at the beginning of the
simulation and stored prior to the unsteady iterations. At each time step, a simple matrix-vector
multiplication was used. When computing turbine interactions (starting by two turbines only [6]),
as the matrix is no longer a time-constant owing to the relative motion of the two turbines (see
Fig. 5), matrix inversion at each time step becomes too expensive in terms of CPU time. Following
the literature, we consider iterative methods such as Jacobi, Gauss-Seidel, Conjugate-Gradient
(CG) and its variants. In order to choose the best implementation, a matrix characterisation
study is performed in section 3. Important literature exists on CG-class methods with essentially
applications to large matrices (up to billions of elements [20]). To have a better understanding of
CG methods, the reader may refer to the intuitive and comprehensive lecture note by Shewchuk [21].
The implemented Bi-CGSTAB comes from van der Vorst [22] and the convergence is compared with
two other methods, namely an iterative Jacobi method and a classical Conjugate-Gradient. The
Bi-CGSTAB appears to be much more efficient with appropriate preconditioning. A suitable and
efficient preconditioner, which takes advantage of the block structure of the involved matrix, is
derived and appears to considerably accelerate the convergence of the system solve.

The paper is organised as follows. First, the numerical method for flow simulation is presented
in section 2 as in references [5, 6]. Then, several matrices are well characterised in section 3 in order
to explain the choice of the Bi-CGSTAB. A specific preconditioner is presented and convergence
is analysed in section 3.2 with and without the proposed preconditioner. Last, in section 4, the
proposed approach is applied to the simulation, in terms of wake characterisation, of elementary
interactions between marine current turbines in a farm. Computational times are presented and
compared with those obtained using a direct solver (i.e. direct matrix inversion).

2. Description of the numerical method

The following paragraphs give the mathematical background regarding the governing equations
for the modeling of turbine farms by means of the proposed approach. One can also refer to [5] for
further details. The set-up consists of an exterior fluid domain V with moving boundaries S. Here,
the boundaries S correspond to the surfaces of the turbine blades and hub. The flow is governed
by the incompressible Navier-Stokes equations written in velocity-vorticity formulation pu,ωq:

Dω

Dt
“ pω ¨∇qu` ν∆ω, ω “∇^ u, (1)

together with the continuity equation, which reduces, in an incompressible fluid, to a divergence-free
velocity field:

div u “∇ ¨ u “ 0. (2)

The operator D{Dt stands for the material derivative and ν represents the fluid viscosity. The
velocity u is decomposed according to the Helmholtz decomposition:

u “ uψ ` uφ ` u8, (3)
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where the vector field uψ is the rotational part of the velocity field, the vector field uφ is the
potential velocity field and u8 is the velocity field representing the marine current inflow, assumed
here to be constant and uniform. The first two velocity fields are defined from the vector potential
ψ and the scalar potential φ as follows:

uψ “∇^ψ, uφ “∇φ. (4)

These potentials, owing to equation (2), satisfy the following equations:

∆ψ “ ´ω, (5)

∆φ “ 0. (6)

From equation (5), the rotational part of the velocity field is given by the Biot-Savart law:

uψpMq “
1

4π

ż

V
KpMM1q ^ ωpM 1qdvpM 1q, (7)

where M and M 1 are two points in V and Kpxq “ x{|x|3 denotes the Biot-Savart kernel. From
equation (6), the potential velocity uφ can be expressed as:

uφpMq “
1

4π
∇M

ĳ

S
µpP q

MP ¨ npP q

|MP|3
dspP q, (8)

where ds is the surface measure on S and npP q stands for the vector normal to the surface S at a
point P .

The function µ represents a distribution of normal dipoles on the turbines blades surfaces S,
which is a priori unknown. It is determined by the boundary condition on S. For any point P on
S, a slip velocity condition is enforced as follows:

uφpP q ¨ npP q “
“

urotpP q ´ uψpP q ´ u8pP q
‰

¨ npP q, (9)

where the vector field urot represents the velocity imposed by the rotation of the blade surfaces S.
Finally, the diffusion term of equation (1), ν∆ω, can be modeled by means of the broadly-used
particle strength exchange (PSE) method [23–26]. Alternatively, the diffusion velocity method
(DVM) [27–31] may be used instead. Both of these methods may be modified in order to incorporate
a LES turbulence model [5, 32].

The discretisation process consists of two parts: first the blades surfaces S are discretised using
an integral panel method; and second, the fluid domain V is discretised into free vortex particles,
also called free vortex blobs. Vortex particles are emitted at trailing edge of the blades according
to a Kutta condition around these lifting surfaces. A sketch of the method is depicted in Figure 1
and one can also refer to [5, 9, 33].

2.1. The meshing of the blades and the potential velocity
Let N denote the total number of surface mesh elements, the surface S is then decomposed into

N polygonal elements tSpuNp“1. The distribution of normal dipoles µ is assumed to be constant on
each element. Let µp denote the value of µ on Sp, and let np denote the unit normal vector. In the
present study, only quadrangular elements are considered but there is no restriction on the mesh
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Blade - thin profile

Panel method Vortex method

Trailing edge - particle emission

Free vortex particles

Figure 1: Schematic cross-sectional view of a blade profile showing the respective locations of the panel method and
of the particle method, respectively.
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Figure 2: Description of the meshing parameters on a single turbine model reproduced from [5]. The different
meshing characteristics are given in Table 1 of section 3.

element type and one may choose triangles, pentagons, etc., provided that the following equations
are modified accordingly. A typical turbine mesh, reproduced from [5], is illustrated on Fig. 2.

From these assumptions, it follows that equation (8) can be recast, for M P V, as

UφpMq “
N
ÿ

p“1

µp
4π

∇M

ĳ

Sp

MP ¨ npP q

|MP|3
dspP q. (10)

It then follows from Stokes’ formula [34–37] that

UφpMq “
1

4π

N
ÿ

p“1

µp

3
ÿ

k“0

ż

`kp

MP

|MP|3
^ dP, (11)

where `0p, `1p, `2p, `3p are the four edges of the element Sp, whose corresponding vectors may be oriented
according to the direction of the normal np.
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2.2. The vortex particles and the rotational velocity
The vortical fluid domain (see right hand side of Figure 1) is discretised using particles (or blobs).

The fluid properties, and particularly its vorticity field ω, are represented by a finite family of vortex
particles tPiuNP

i“1. The use of particles amounts to a Lagrangian aspect of the flow computation,
where the particles are seen as material parts of the fluid that evolve according to the fluid motions.
In addition, the number of particles, denoted by NP, may vary with time.

For each particle Pi, the following quantities are defined:

• Vi “
ş

Pi
dv is the volume of particle Pi;

• Xi “
ş

Pi
x dv{Vi is its position; and

• Ωi “
ş

Pi
ω dv is its vortical weight.

Each particle Pi also has its own velocity Ui “ U pXiq, which is decomposed as in equation (3)
into the potential component Uφ

i “ Uφ pXiq (eq. (11)), the far-field velocity U8, and the rotational
part Uψ

i “ UψpXiq, as mentioned previously. This last component of the velocity field can be
discretised from equation (7) by:

UψpMq “
NP
ÿ

j“1

KεpMXjq ^Ωj , (12)

where the kernel Kε is a smoothed version of the Biot-Savart kernel K in equation (7), assumed to
converge to K when the smoothing parameter ε tends to 0 [38, 39]. The Helmholtz decomposition
of equation (3) can now be expressed in a discretised form as follow:

Ui “ Uψ
i `Uφ

i `U8. (13)

Because the fluid is incompressible, the volume Vi of each particle is constant. On the contrary,
the position, the vortical weight, as well as the velocity of the particles depend on the time t. For
clarity, the dependence of these quantity on t is omitted hereafter. Owing to the Lagrangian frame,
the positions of the particles evolve according to the velocity as follows:

dXi

dt
“ Ui. (14)

The equation satisfied by the vortical weight Ωi can be derived from the vorticity transport equa-
tion (1):

dΩi

dt
“ pΩi ¨∇qUi ` Vi pν∆ωqx“Xi

. (15)

This requires the evaluation of derivatives of the discretised velocity and vorticity fields. The
discretised tensor field ∇Uφ can be evaluated by differentiating eq. (11), while the gradient of Uψ

can be obtained by differentiating the kernel Kε. The diffusion term pν∆ωqx“Xi
is discretised using

the Particle Strength Exchange method [23–26]. Finally, a second order Runge-Kutta scheme is
used for the time integration of the system of ordinary differential equations governing the evolution
of the position (eq. (14)) and vortical weight (eq. (15)).
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2.3. The influence matrix
The boundary condition (9) leads to a system of linear equations. Because the normal dipole

distribution on S is assumed to be uniform on each panel (piecewise constant), it can be represented
by a vector of N scalar values µ “ pµjqNj“1. Then the boundary condition takes the form of a system
of N linear equations, Aµ “ b, whose solution µ enforces the boundary condition at the centres of
the panels. The right hand side vector b “ pbiq

N
i“1 is given by:

bi “
“

UrotpQiq ´UψpQiq ´U8
‰

¨ ni, (16)

where Qi denotes the centre of panel Si (see Figure 3) and the velocity UψpQiq is evaluated through
equation (12). From equation (11), it follows that the so-called influence matrix, A “ paijqNi,j“1, is
given by:

aij “
ni
4π
¨

3
ÿ

k“0

ż

`kj

QiP

|QiP|3
^ dP. (17)

Qj

Qi

P 0
j P 1

j

P 2
jP 3

j

r1ij
r0ij

Figure 3: Representation of the rkij (with k “ 0) for the evaluation of of the curvilinear integral in equation (17).
The edges of panel Sj are defined as `kj “ rP

k
j , P

k`1
j s, where k ` 1 is taken modulo 4.

It is possible to explicitly compute the value of the integrals
ş

`kj
QiP{|QiP|

3 ^ dP. Indeed, if

we define rkij “ QiP
k
j , as depicted on Figure 3, then we have [34, 40, 41]:

aij “
ni
4π
¨

3
ÿ

k“0

`

|rkij | ` |r
k`1
ij |

˘

˜

1´
rkij ¨ r

k`1
ij

|rkij | |r
k`1
ij |

¸

rkij ^ rk`1
ij

|rkij ^ rk`1
ij |2

, (18)

where k ` 1 is taken modulo 4. The discrete potential velocity given by equation (11) is evaluated
using the same geometric representation of the curvilinear integral, Qi being replaced by any point
M in V.

The coefficient aij of the matrix A represents the influence of element Sj onto element Si,
which is generally different from the influence aji of element Si onto element Sj , owing to the
meshing process (section 3.1). As a consequence, A is generally non-symmetric. When a single
turbine is considered, the matrix A basically represents the influence of a single turbine on itself.
Figure 4 gives a schematic view of such a problem involving one single turbine. As illustrated,
because the turbine is assumed to be undeformable, the rotation 9θ does not change the coefficients
of A defined in equation (18). This is generally true for any isometric transformation, as long as
the solid body is undeformable. As a matter of fact, the dot and cross products are invariant by
isometric transformation, and A is thus constant with respect to time. For example, the influence of
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(1)

(2)

(2)
(2)

(1) (1)

Figure 4: Schematic view of the single turbine case.

a given panel Si on its own centre point, like the interaction referred to as (1) on Figure 4, remains
unchanged by the rotation. Likewise, the influence of a panel Sj on the centre point Qk of another
panel Sk pertaining to the same body (subject to the same rotation) does not change, as illustrated
by interaction (2). This is the reason why direct inversion was preferred in previous works where a
single turbine was considered [5].

(1) (1)

(2)

(2)

(3) (3)

(4) (4)(5)

(5)

(1)

(2)

(3)

(4)

(5)

Figure 5: Schematic view of the twin-turbines case (n “ 2).

On the contrary, when n ą 1 turbines are concerned, the global matrix A is no longer constant
over time. Each individual turbine Ti (for i “ 1, . . . , n) is discretised by a contiguous subfamily of
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the family of panels tSpiqp uNi
p“1 Ă tSpu

N
p“1. The matrix A then has a natural block structure:

A “

»

—

—

—

–

rA11s rA12s ¨ ¨ ¨ rA1ns

rA21s rA22s ¨ ¨ ¨ rA2ns

...
...

. . .
...

rAn1s rAn2s ¨ ¨ ¨ rAnns

fi

ffi

ffi

ffi

fl

. (19)

To each pair of turbines pTi, Tjq corresponds a block rAijs of the influence matrix containing the
influence of the turbine Ti on the turbine Tj . In particular, each diagonal block rAiis is a square
block and corresponds to the well-posed problem of the influence of a single turbine on itself. As
a consequence, diagonal blocks rAiis do not change with time, owing to the arguments mentioned
above. Figure 5 depicts the simplest case of n “ 2 turbines. As an illustration, the schematic
intra-turbine interactions (1) and (3), as well as (2) and (4) depicted on Fig. 5 remain unmodified
with the rotation of the turbines and therefore rA11s and rA22s are constant blocks. Conversely, one
can see that inter-turbines interactions are modified at each time step, for instance the schematic
interaction number (5) on Figure 5. Consequently, any extra-diagonal block rAijs, that is with
i ‰ j, corresponds to the interactions between distinct turbines. Even if the rotation speeds 9θ1 and
9θ2 were the same, the elements in the extra-diagonal blocks would change with time1.

2.4. Turbine definition, meshes and multi-turbines layout
In the present study, the numerical configuration described in ref. [5] is considered, with the

“IFREMER-LOMC” blades. The reader may refer to [5, 42] for a detailed description of the turbine
we are modelling in the present paper. Because the computations are run dimensionless, the
turbine radius is basically R “ 1 and the characteristic mesh size for the trailing edge is defined
by dh (see Fig. 2 for details). The overlapping parameter κ “ ε{dh, defined as the ratio between
the smoothing parameter ε (see eq. (12)) and the characteristic mesh size dh (see Fig. 2), is kept
approximately constant. The mesh parameters use subsequently in this paper are described in
Table 1. NTE (resp. Nhub

TE ) represents the discretisation of a blade’s trailing edge (resp. of the
hub’s trailing edge). Nc (resp. Nhub

c ) represents the discretisation along the chord of the blade
(resp. along the hub’s length). N represents the total number of mesh elements and is greater than
Nc ˆNTE `N

hub
c ˆNhub

TE owing to the discretisation of the hub’s front cross-sectional area. Each
mesh is referenced using a label of the form NcˆNTE. The last five meshes, however, correspond to
a slightly different geometry, with a longer hub, while the blade geometry and meshing remain the
same. The meshes corresponding to those geometries will thus be labeled Nc ˆNTE

˚ to distinguish
them from their short hub counterpart. For instance, the very first mesh in Table 1 is labeled
5 ˆ 5, while the very last one is labeled 5 ˆ 23˚. Considering a single turbine configuration, with
the meshes presented in Table 1, the size of the influence matrix A ranges approximately from
200ˆ 200 to 2,000ˆ 2,000. For a 10-turbines configuration with the finer turbine discretisation, a
20,000ˆ20,000 (non sparse) matrix can eventually be considered. And in a close future, even more
turbines with finer discretisations are expected.

Figure 6 depicts a generic turbine layout. In that matter, a generic notation needs to be defined
in order to synthetically describe the layout. Let us denominate by Anxˆny

xD,yD a configuration with

1One particular scenario is when the rotation speeds are the same and the turbines are perfectly aligned with
the rotation axis, in which case they can be considered as a single body subject to the same rotation, and then the
matrix remains constant.
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ε Nc NTE Nhub
c Nhub

TE N β γ

0.200 5 5 6 6 182 0.0629 0
0.150 5 7 6 8 233 0.0903 0
0.100 5 11 6 12 339 0.1335 0
0.075 5 15 6 16 446 0.1594 1
0.050 5 23 6 24 666 0.1765 1

0.200 10 5 12 6 338 0.0284 0
0.150 10 7 12 8 431 0.0397 0
0.100 10 11 12 12 621 0.0626 0
0.075 10 15 12 16 812 0.1110 0
0.050 10 23 12 24 1200 0.1765 1

0.200 15 5 18 6 494 0.0281 0
0.150 15 7 18 8 629 0.0300 0
0.100 15 11 18 12 903 0.0398 0
0.075 15 15 18 16 1178 0.0704 1
0.050 15 23 18 24 1734 0.1544 1

0.200 5 5 58 6 488 0.0624 0
0.150 5 7 58 8 641 0.1000 2
0.100 5 11 58 12 964 0.1451 1
0.075 5 15 58 16 1278 0.1594 1
0.050 5 23 58 24 1914 0.1766 2

Table 1: Mesh description for different values of ε “ κ dh, where ε denotes the smoothing parameter (see eq. (12)),
dh represents the characteristic mesh size (see Fig. 2), and κ is the overlapping ratio. N represents the total number
of mesh elements. For each turbine, the asymmetry of the corresponding matrix A is characterised by β (eq. (20)).
The number γ of negative eigenvalues of p1{2qpA`AT q is also indicated.

U8

xD

yD

1st row 2nd row

Figure 6: Schematic top view of an aligned A2ˆ2
xD,yD layout.

nx rows consisting of ny turbines each. Rows are separated with a distance of xD (x diameters)
from each other, and turbines in each row are separated with a distance of yD (y diameters) from
each other. This given notation will be used as much as possible in the following.
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3. Iterative solver approach

Owing to the unsteady frame of the computations, the influence system Aµ “ b described in
section 2.3 is solved at each time step. When a single turbine is considered, the influence matrix
A is inverted and stored prior to the iterations, as mentioned earlier. And a single matrix-vector
multiplication is then required at each time step. In the case of multiple turbine interactions [6], A is
no longer constant with respect to time (see Figure 5). Moreover, because there are several turbines,
the size of the matrix A increases and matrix inversion at each time step becomes prohibitive in
terms of CPU time consumption. For other numerical methods where the linear system is the
core of the method, a very efficient solver needs to be used, using for example dedicated libraries.
However, in the framework of particle methods with boundary integral methods (using Kutta-
Joukowski emission, etc.), simple linear system resolutions are commonly used, although it can
become very costly is some cases. In the following, an attempt to propose a fast and rigorous
method is presented for unsteady problems with multi-bodies in the Lagrangian vortex particles
framework.

3.1. Matrix characterisation
When attempting to choose the best numerical implementation, several questions arise such

as: is the influence matrix sparse? symmetric? diagonally dominant? positive-definite? From the
definition of aij (equations (17) and (18)) one can see that aij ‰ 0 for all pi, jq, except in some very
hypothetical geometrical turbine design. As a consequence, the matrix A is generally not sparse.

(a) Single turbine, mesh 15 ˆ 23. (b) A2ˆ2
4D,1D, meshes 15 ˆ 15.

Figure 7: Representation of |aij | for (left) a single turbine 15ˆ 23, corresponding to a matrix of size N “ 1,734; and
(right) n “ 4 identical turbines with meshes 15ˆ15 and layout A2ˆ2

4D,1D, corresponding to a matrix of size N “ 4,712.
The meshes are detailed in Table 1.

Despite the formal symmetry of the original continuous problem, the matrix A is not symmetric
either. As a matter of proof, aij depends on two geometrical items that are, the mesh element
surface Sj (see eq. (17) in a continuous form, and eq. (18) in a discrete form) and the mesh element
normal ni (see eq. (18)). Depending on the mesh element shape (during the mesh generation) and
the regularity of these surface elements (if the quadrangle meshes are similar to squares of size
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dh2), A might not be far from symmetry, as can be observed on Figure 7. In order to quantify this
asymmetry, let β represent the ratio of the norm of the anti-symmetric part of A (i.e. 1{2pA´AT q)
to the norm of A:

β “

›

›p1{2q
`

A´AT
˘
›

›

}A}
. (20)

One can see on Table 1 that β is rather small. This tends to corroborate that A is nearly symmetric.
But when choosing the numerical implementation, the use of proper symmetric matrices cannot be
argued.

Regarding the diagonal-dominance of A, owing to the gravitational-like interaction of equa-
tion (17), a diagonal dominance could have been expected. Nevertheless this mainly depends on
the mesh element ordering during the mesh generation together with the relative distance between
these elements. Even with a special care during the meshing phase, a real diagonal dominance
cannot be achieved. As a matter of proof, two plots of |aii| ´

ř

j‰i |aij | for different meshes and
turbines configurations are depicted on Figure 8. On Figure 8a, the spiky parts correspond to the
auto-influence of the blades on themselves, while the rest (on the right hand side) mainly corre-
sponds to the influence with the hub surface. However, from Figure 8a, one can clearly observe that
the matrix is not diagonally dominant. This property of non-diagonal dominance is not improved
by adding more turbines in the configuration, as it actually tends to increase the weight of extra-
diagonal terms. This statement is further corroborated by the results of Fig. 8b for a two-turbines
configuration. Similar results (not presented here) were also obtained for larger numbers of turbines
and different meshes.
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Figure 8: Plot of |aii| ´
ř

j‰i |aij | with colouring of the sign for (left) a single turbine 15 ˆ 15, corresponding to
a matrix of size N “ 1,178; and (right) n “ 2 turbines with meshes 15 ˆ 23, corresponding to a matrix of size
N “ 3,468. Blue means positive and red means negative. See Table 1 for mesh characteristics.

The relative weakness of the influence terms between distinct turbines is visible by the fact
that Figure 8b looks like (but is indeed different from) periodic repetitions of a single pattern.
Adding more turbines to the layout even emphasises this impression. Very short distances between
turbines were chosen here in order to emphasise the influence of these extra-diagonal terms. Shorter
distances between turbines could further increase the influence between turbines but may lead to
non-physical turbine configurations. Indeed, for marine current turbine array configurations, the
minimum lateral spacing is always of the order of one diameter (see [4, 16, 43]). The longitudinal
spacing is generally of the order of magnitude of several diameters (between 4D to 6D for [4],
minimum 10 diameters for [44], etc.) However, a qualitative observation of Figure 7b tends to

12



indicate that the matrices have a block-diagonal dominance. This observation will have a significant
importance in the following of the paper (section 3.3).

Finally, let us determine whether the matrix A is positive definite. A general non-symmetric
matrix A is positive definite if its symmetric part (i.e. p1{2qpA`AT q) is symmetric positive definite
(SPD). In addition, a symmetric matrix is SPD if all its eigenvalues are positive. The number γ
of negative eigenvalues of p1{2qpA ` AT q is reported in Table 1 for single turbine configurations.
It shows that the influence matrices are not always positive definite. In particular, the matrices
p1{2qpA ` AT q corresponding to the finer discretisations (Nc ˆ 23 and 5 ˆ 23˚) have at least one
negative eigenvalue (and at most two for 5 ˆ 23˚). When several turbines configurations are con-
sidered, the number γ of negative eigenvalues, reported in Table 2, seems to be the sum of the
number of negative eigenvalues of the separate single turbine case. One possible explanation could
be the dominance of the diagonal blocks as compared to the other blocks of the matrix. Indeed
it would follow that the matrix p1{2qpA ` AT q has essentially the same spectrum as the matrix
p1{2qpK `KT q, where K is the block diagonal matrix whose blocks are the diagonal blocks of A,
introduced later in section 3.3 (see eq. (22)).

Meshes γ

p5ˆ 23, 5ˆ 23q 2
p10ˆ 5, 10ˆ 5q 0
p15ˆ 23, 15ˆ 23q 2
p5ˆ 23, 5ˆ 15q 2

Table 2: Number γ of negative eigenvalues of the matrix p1{2qpA`AT q for a configuration of n “ 2 turbines modelled
with different meshes for layout A2ˆ1

2D . The first three cases use the same mesh for both turbines, while the fourth
case uses two different meshes.

3.2. Chosen implementation
From the previous section, it appears that iterative methods (in particular Krylov methods)

would be the best suited to solve the influence system described in section 2.3. A classical LU
decomposition would require OpN3q operations, which is unaffordable in terms of CPU time for
large matrices. An iterative method is used as a way to reduce computational cost. Typically,
an iterative method only involves a few matrix-vector multiplications per iteration, thus requiring
OpmN2q operations for a total of m iterations. An iterative method is thus more interesting than
a direct solver provided that it converges (to a desired level of accuracy) in less than N iterations.
This is generally the case of Krylov methods.

The chosen method is the Bi-Conjugate Gradient Stabilised (abbreviated Bi-CGSTAB) de-
scribed in [22]. The Bi-CGSTAB algorithm is a Krylov method adapted to general linear systems.
This algorithm can be seen as an improvement of other general methods such as the Conjugate
Gradients-Squared method [22]. Because the Conjugate Gradient (CG) is designed for symmetric
matrices, this method might not be the best choice here. However, as the considered matrices are
only slightly non-symmetric, a CG implementation is also tested in the sequel. Finally, a classical
Jacobi implementation is also considered for general comparison. The Jacobi method is a classical
iterative method for solving linear systems. It is simple to implement and to parallelize. However,
its convergence is not guaranteed for matrices that are not diagonally dominant, and may be very
slow.
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It should be noted at this point that for Krylov methods (such as the Bi-CGSTAB or the
CG algorithms mentioned above), one usually needs to compute matrix-vector products having a
computational complexity of OpN2q. For Laplace equations in integral form like the one considered
here (see eq. (8)), such matrix-vector products can be efficiently computed using the Fast Multipole
Method (FMM) [45–48], leading to a theoretical complexity of OpNq for the products, and thus
a total complexity of OpmNq for the iterative resolution in m iterations. Although the constant
in the OpNq complexity is quite large, FMM can still provide substantial acceleration for large
systems [47]. Because the details, in terms of error criterion and parallelization strategy, are rather
involved, and because the computations presented hereafter are still relatively small in terms of
matrix size (a few thousand degrees of freedom), this acceleration technique is not considered in
this paper. Nevertheless, the discussion and results presented in this paper would still remain valid
using FMM acceleration techniques, which would indeed make the solving even more efficient. The
reader may refer to [48] for a description and implementation details of FMM in the context of
panel methods.
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(a) Coarse mesh with short hub (5 ˆ 5)
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(b) Fine mesh with short hub (15 ˆ 23)
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(c) Coarse mesh with long hub (5 ˆ 5˚)
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(d) Fine mesh with long hub (5 ˆ 23˚)

Figure 9: Comparison of the convergence of the normalised residual r̃piq “ }Aµpiq ´ b}{}b} as a function of the
iterations for the Jacobi, the Conjugate Gradient (CG) and the Bi-CGSTAB methods with four different turbine
meshes (see Table 1).

Figure 9 shows a comparison of the convergence of the three implemented algorithms, in the case
of a single turbine. Convergence is characterised by the normalised residual r̃piq “ }Aµpiq ´ b}{}b},
where A represents the influence matrix of the considered configuration, b the right hand side of
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the influence system, and µpiq the approximation of the solution µ given by the ith iteration of the
algorithm. The Jacobi method seems to converge quite slowly and after 100 iterations, a normalised
residual of 10´3 is hardly achieved. The CG method converges a little faster. The Bi-CGSTAB is
the only method to reach machine precision in less than 100 iterations in the single turbine case.
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(a) A2ˆ2
2D,1D with meshes 5 ˆ 5.
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(b) A2ˆ2
2D,1D with meshes 15 ˆ 23.
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(c) A2ˆ2
4D,1D with meshes 5 ˆ 5˚.
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(d) A2ˆ2
4D,1D with meshes 5 ˆ 23˚.

Figure 10: Comparison of the convergence of the normalised residual for the Jacobi, the Conjugate Gradient (CG)
and the Bi-CGSTAB methods for two different layouts of 4 turbines (see Table 1).

Figure 10 shows convergence plots for 4-turbine configurations. Similarly to the single turbine
case, the Bi-CGSTAB behaves better than the CG and Jacobi methods. For instance, in the
configuration depicted on Figure 10a, the Bi-CGSTAB reaches the same precision (r̃piq « 10´4) in
less than 20 iterations as the CG does in 80 iterations. Furthermore, the CG does not converge for
the last two configurations (Fig. 10c–10d). As mentioned previously, this is most likely due to the
fact that the CG is not suited to non-symmetric matrices. Its use is thus unsafe as the directions are
not properly conjugate (specifically, the metric used for conjugation is not a proper inner product),
which means that the resulting Krylov subspace is erroneous. For nearly symmetric matrices, the
erroneous directions might still be good enough to keep the solution improving iteratively. On the
other hand, some matrices may drive the solution outside the theoretical Krylov space, potentially
leading to situations from which the CG iterations cannot recover. At any rate, even considering the
fact that the Bi-CGSTAB requires twice as much computation (in terms of matrix-vector products)
as the CG, the Bi-CGSTAB still appears to be the most efficient method in solving this problem.
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3.3. Preconditioning
It is well-known that an adequate preconditioner may dramatically improve the convergence of

such iterative methods. The purpose of preconditioning is basically to improve the condition number
of the matrix of the linear system. In the sequel, we will focus on left preconditioning, which consists,
for a linear system of the form Ax “ b, in solving the equivalent system M´1Ax “ M´1b where
M´1A, the preconditioned matrix, has a smaller condition number than A. The matrix M (or
sometimes M´1 itself) is then called the preconditioner. One first simple choice of preconditioner
would be the Jacobi preconditioner, which consists in taking the diagonal of A as the preconditioner
M . Let us denote it by D. It has the following definition:

D “ pdijq “ diagpAq, dij “ aiiδij , @i, j “ 1, . . . , N, (21)

where δij denotes the Kronecker delta. The advantage of such a preconditioner is that its inverse
is easy to compute. As a matter of fact, D´1 is simply the diagonal matrix whose elements are the
inverses of those of D.

Taking advantage of the structure and evolution of the matrix (with respect to the time-steps
of the unsteady simulation), let us now define a more appropriate preconditioner. First, recall
that the matrix of the influence equation has a natural block structure (see eq. (19)) and that
its diagonal blocks have essentially larger coefficients than the others (see Fig. 7). Moreover, the
diagonal blocks of the matrix are constant over time. This fact allows the diagonal blocks to be used
for preconditioning. Let K be the block diagonal matrix whose blocks correspond to the diagonal
blocks of the matrix A. The matrix K is then used as the preconditioning matrix. Its advantage is
that its inverse is also a block diagonal matrix consisting of the inverses of the blocks of A. More
precisely, K and its inverse K´1 have the following form:

K “

»

—

—

—

—

–

rA11s 0 ¨ ¨ ¨ 0

0 rA22s
...

...
. . . 0

0 ¨ ¨ ¨ 0 rAnns

fi

ffi

ffi

ffi

ffi

fl

, K´1 “

»

—

—

—

—

–

rA11s
´1

0 ¨ ¨ ¨ 0

0 rA22s
´1 ...

...
. . . 0

0 ¨ ¨ ¨ 0 rAnns
´1

fi

ffi

ffi

ffi

ffi

fl

. (22)

Since the matrix K is constant over time, its inversion can be performed at the beginning of
the simulation. This can be done by using a direct method. Indeed, the diagonal blocks of the
matrix A are invertible since they correspond to the well defined problem of the influence of a single
turbine on itself. In what follows, the matrix K will be called the block Jacobi (abbreviated BJac.)
preconditioner.

Tables 3 and 4 show examples of the number of iterations for unpreconditioned and precondi-
tioned (with the Jacobi (Jac.) and the block Jacobi (BJac.) preconditioners) for both the CG and
the Bi-CGSTAB. Let us first make a few comments on the simple Jacobi preconditioner mentioned
previously. When combined with the CG method, the Jacobi preconditioner actually makes the
iterations worse (degrading as compared to the unpreconditioned version). This combination of the
Jacobi preconditioner with the CG is thus inefficient here. However, the Jacobi preconditioner com-
bined with the Bi-CGSTAB always improves the convergence (see Tables 3 and 4). As a matter of
fact, even in the worse cases of Table 4, approximately half as many iterations are required to reach
machine precision with the use of the Jacobi preconditioner (as compared to the unpreconditioned
version).
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No preconditioning Jac. precond. BJac. precond.

Mesh Jacobi CG Bi-CGSTAB CG Bi-CGSTAB CG Bi-CGSTAB

5ˆ 5 (10´12) (10´10) 47 (10´3) 33 5 3
5ˆ 7 (10´12) 329 53 (10´5) 34 5 3
5ˆ 11 (10´11) (10´12) 52 (10´7) 33 5 3
5ˆ 15 (10´10) (10´4) 67 (10´1) 39 5 3
5ˆ 23 (10´8) (10´5) 89 (101) 37 5 3

10ˆ 5 (10´9) (10´6) 76 (10´2) 41 5 3
10ˆ 7 (10´9) (10´11) 89 (10´8) 42 5 3
10ˆ 11 (10´9) 219 88 (10´8) 42 5 3
10ˆ 15 (10´8) 373 83 (10´3) 43 5 3
10ˆ 23 (10´7) (10´12) 92 (100) 43 5 3

15ˆ 5 (10´8) (10´6) 96 (10´3) 49 5 3
15ˆ 7 (10´8) (10´12) 101 (10´4) 52 5 3
15ˆ 11 (10´8) 218 101 (10´10) 49 5 3
15ˆ 15 (10´8) 224 109 (10´7) 47 5 3
15ˆ 23 (10´7) 471 103 (10´4) 50 5 3

Table 3: Number of iterations before convergence for the different algorithms using layout A2ˆ2
2D,1D and different mesh

sizes (with short hubs). The values in the entries represents the first number of iterations i for which the relative
residual r̃piq “ }Aµpiq ´ b}{}b} reaches machine precision ε « 2.2 ¨ 10´16. When the algorithm did not reach the
required precision before 500 iterations, the order of magnitude of the final normalised residual is given between
parentheses.

No preconditioning Jac. precond. BJac. precond.

Mesh Jacobi CG Bi-CGSTAB CG Bi-CGSTAB CG Bi-CGSTAB

5ˆ 5˚ (10´2) (10´2) 194 (100) 94 5 3
5ˆ 7˚ (10´2) (10´2) 193 (10´2) 123 5 3
5ˆ 11˚ (10´1) (101) 269 (101) 150 5 3
5ˆ 15˚ (10´1) (101) 301 (100) 164 5 3
5ˆ 23˚ (10´1) (100) 288 (109) 143 5 3

Table 4: Number of iterations before convergence for the considered algorithms using layout A2ˆ2
4D,1D and different

mesh sizes (with long hubs). See also Table 3.

Second, using the block Jacobi preconditioner, the improvement appears clearly as the number
of iterations decreases dramatically for the CG and Bi-CGSTAB algorithms. For all of the cases
considered, the number of iterations necessary to obtain a relative residual r̃piq using the precondi-
tioned Bi-CGSTAB below the machine precision is 3. The CG method does not reach the required
precision within a reasonable number of iterations for several unpreconditioned computations. At
the same time, it converges in 5 iterations when preconditioned in a block Jacobi manner. Fur-
thermore, with this preconditionning, the number of iterations does not change when the mesh
structure is modified.
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To further illustrate the effectiveness of this BJac. preconditioner, Figure 11 shows the con-
vergence of the BJac. preconditioned methods (CG and Bi-CGSTAB) compared to the basic un-
preconditioned Jacobi iterative method. After 200 iterations, the latter still has a residual greater
than 10´6, while the preconditioned CG and BI-CGSTAB get below 10´6 after 2 and 1 iteration(s)
respectively. It should be mentioned that the CG is slightly faster than the Bi-CGSTAB due to the
fact that the latter requires twice as many matrix-vector multiplications at each iteration. However
it has to be recalled that the use of the CG is still not safe here due to the general asymmetry of
the matrix A (see section 3.2).
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Figure 11: Comparison of the convergence of the normalised residual r̃piq for the unpreconditioned Jacobi method,
the BJac. preconditioned CG and the BJac. preconditioned Bi-CGSTAB. The configuration corresponds to an
aligned A2ˆ2

2D,1D layout with meshes 15ˆ 23.

To conclude, an example of the effect of the preconditioners on the matrix A is shown on
Figure 12. In particular, one can see that the Jacobi preconditioner leaves the matrix with many
large values outside the diagonal.

(a) Matrix A.
Unprecond.

(b) Matrix D´1A.
Jac. precond.

(c) Matrix K´1A.
BJac. precond.

Figure 12: Comparison of the structures of the non preconditioned and preconditioned influence matrix for the 4
meshes 5ˆ 5˚ in configuration A2ˆ2

4D,1D of Table 4.
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4. Application: computations of several turbines in interaction

The following paragraphs present some results as an illustrative application of the iterative solver
approach described above. Here, two configurations of elementary interactions between marine cur-
rent turbines in close proximity are presented. Marine current turbines are considered here because
it corresponds to the background research topics of our research team. However, applications to
wind turbines could be considered without any restriction. The results presented here correspond
to computations that were recently made accessible thanks to CPU time improvements brought by
the iterative solver approach. A complete numerical study is to be performed in the near future,
including the influence of the distance between turbines, as well as other numerical and physical
parameters. Although qualitative results of wake interaction in a three-turbine setting are briefly
presented, the main focus of this section will remain on the quantitative assessment of the savings
achieved in terms of computational time thanks to the iterative solver approach presented in the
previous sections.

4.1. Wake interaction between three turbines
The two configurations considered hereafter are illustrated as the green and red boxes in Fig-

ure 13. The first configuration (green in Fig. 13) consists of two rows of turbines, and has already
been studied experimentally by, among others, Kervella et al. [49]. The second configuration (red
in Fig. 13) involves 10 turbines and is basically a repetition of the triangular pattern of the first
configuration.

3 turbines

10 turbines

Figure 13: Marine current turbines array with examples of elementary interactions.

Figure 14 depicts the instantaneous velocity field in the wake of three turbines, with a layout
inspired from the experimental work of Kervella et al. [49] and illustrated by the green box in
Fig. 13. Using the notations from Fig. 13, the inter-device distances considered here correspond
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to a3 “ 4D and b1 “ 2b2 “ 2D. The instantaneous velocity field was obtained at t « 28.2 s
(physical time) in the unsteady computation, corresponding to 399 unsteady iterations of time step
dt “ 0.07066 s, using three meshes 5ˆ 5˚ from Table 1. The reader may refer to [5] for a discussion
on how the time step is chosen. This computation corresponds to the coarsest mesh discretisation,
and improvements in the quality of the results are expected in the near future. However, these
results are still interesting qualitatively as many physical aspects are already observable even for
these discretisations, such as the wake interaction that is clearly visible in Fig. 14 where the wake
of the first row of turbines reaches the third turbine. As already discussed, a complete survey
including several turbine layouts, several inter-device distances and other physical parameters is
scheduled in the near future. Comparison with the experimental work of Kervella et al. [49] will
also be considered.
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∗

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Figure 14: Numerical wake for the 3-turbine configuration (green in Fig. 13) at TSR “ 2. The inter-device distances
are a3 “ 4D and b1 “ 2b2 “ 1D using the notations from Fig. 13.

4.2. Assessment of CPU time savings using the present approach
In order to have an assessment of the CPU time savings obtained with the present approach,

the last five meshes of Table 1, corresponding to the longer hub with Nhub
c “ 58, were tested

on the 3-turbine and 10-turbine configurations depicted in Fig. 13. The 3-turbine configuration
corresponds exactly to the one presented in Fig. 14. These meshes were chosen for two reasons:
first because the longer hub corresponds to the real size of the turbine hub used in the experiments
(see [5, 42]), and second because the mesh 5 ˆ 23˚ also corresponds to the larger number of mesh
elements. In the case of 10 turbines in interaction, this last mesh will be considered as a critical
case with a 19,140ˆ 19,140 matrix system to be solved at each time step either by direct inversion
or by iterative solve using the preconditioned Bi-CGSTAB method.

Table 5 presents the particle emission time for both configuration (with 3 and 10 turbines) and
different meshes. This total emission time ttot includes the time t1 spent by the matrix update
(eq. (18)) and the emitted particle initialisation, the time t2 spent either by the system resolution
in the case of the use of Bi-CGSTAB or by the matrix inversion and matrix-vector multiplication for
the direct method case, and the time t3 spent by the computation of the right-hand-side (eq. (16)).
These times were obtained from the first 10 iterations where an average was performed over the
last 9 values, the first iteration being discarded. An average over the first 100 iterations was also
performed without significant changes in the resulting values. Except for the computation of the
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Mesh precond. Bi-CGSTAB Inversion

3 turb. t1 t2 t3 ttot t1 t2 t3 ttot

5ˆ 5˚ 3.2ˆ 10´3 3.1ˆ 10´3 3.0ˆ 10´3 9.4ˆ 10´3 4.4ˆ 10´3 4.6ˆ 10´2 3.2ˆ 10´3 5.3ˆ 10´2

5ˆ 7˚ 5.2ˆ 10´3 3.1ˆ 10´3 6.2ˆ 10´3 1.4ˆ 10´2 8.1ˆ 10´3 9.4ˆ 10´2 6.8ˆ 10´3 1.1ˆ 10´1

5ˆ 11˚ 1.3ˆ 10´2 3.7ˆ 10´3 1.6ˆ 10´2 3.2ˆ 10´2 1.9ˆ 10´2 2.8ˆ 10´1 1.6ˆ 10´2 3.1ˆ 10´1

5ˆ 15˚ 2.2ˆ 10´2 3.8ˆ 10´3 2.6ˆ 10´2 5.2ˆ 10´2 3.0ˆ 10´2 5.8ˆ 10´1 2.6ˆ 10´2 6.3ˆ 10´1

5ˆ 23˚ 4.8ˆ 10´2 4.8ˆ 10´3 6.0ˆ 10´2 1.1ˆ 10´1 6.3ˆ 10´2 3.5ˆ 10`0 6.0ˆ 10´2 3.6ˆ 10`0

10 turb. t1 t2 t3 ttot t1 t2 t3 ttot

5ˆ 5˚ 4.4ˆ 10´2 4.8ˆ 10´3 4.4ˆ 10´2 9.3ˆ 10´2 4.7ˆ 10´2 1.1ˆ 10`0 4.5ˆ 10´2 1.2ˆ 10`0

5ˆ 7˚ 7.2ˆ 10´2 7.0ˆ 10´3 7.4ˆ 10´2 1.5ˆ 10´1 7.8ˆ 10´2 3.0ˆ 10`0 7.5ˆ 10´2 3.2ˆ 10`0

5ˆ 11˚ 1.5ˆ 10´1 3.5ˆ 10´2 1.6ˆ 10´1 3.5ˆ 10´1 1.7ˆ 10´1 1.7ˆ 10`1 1.6ˆ 10´1 1.7ˆ 10`1

5ˆ 15˚ 2.6ˆ 10´1 5.1ˆ 10´2 2.8ˆ 10´1 5.9ˆ 10´1 3.4ˆ 10´1 4.4ˆ 10`1 2.8ˆ 10´1 4.4ˆ 10`1

5ˆ 23˚ 5.5ˆ 10´1 9.0ˆ 10´2 6.3ˆ 10´1 1.3ˆ 10`0 6.1ˆ 10´1 1.5ˆ 10`2 6.3ˆ 10´1 1.5ˆ 10`2

Table 5: Total emission time ttot (in seconds) and its decomposition for each mesh of Table 5. Both the developed pre-
conditioned Bi-CGSTAB and the Direct approaches are presented for the 3-turbine and the 10-turbine configurations.

right-hand-side, where the time t3 increases with the number of emitted particles, the other times
remain nearly identical regardless of the global iteration in the unsteady computation.
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Figure 15: Total emission time ttot as a function of the number of mesh elements N for both the preconditioned
Bi-CGSTAB and the direct approaches. The 3-turbine and 10-turbine configurations illustrated in Fig. 13 were
tested for all meshes of Table 5.

Figure 15 depicts the particle emission time ttot as a function of the total number of mesh
elements (from N “ 1,464 to N “ 19,140), leading to an influence matrix of size N ˆ N . One
can observe that the preconditioned Bi-CGSTAB implementation is much faster than the direct
case for all configurations. Using linear regression in a log-log scale, a slope of 1.94 was found for
the Bi-CGSTAB implementation with a correlation coefficient of 0.99. Similarly, a slope of 3.15
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Figure 16: Proportion of t2 as a percentage of ttot for the all meshes of Table 5 for the 3-turbine and the 10-turbine
configurations, for both the preconditioned Bi-CGSTAB and the direct solver.

(also with correlation coefficient of 0.99) was obtained for the matrix inversion, which corresponds
to the theoretical order of OpN3q for direct solvers. These results show that the matrix inversion
implementation is getting prohibitively expensive as the number of degrees of freedom increase,
while the preconditioned Bi-CGSTAB is always much faster for the cases considered and has a cost
that increases more slowly with N . In the most extreme case presented here (for 10 turbines with
the 5ˆ 23˚ mesh), a difference of more than 2 orders of magnitude is obtained.

Figure 16 depicts the proportion of time t2 of the matrix system resolution (either using the
preconditioned Bi-CGSTAB or the direct inversion) as a percentage of the total emission time ttot
for all the considered meshes. It illustrates that the reason why the total emission time ttot fits well
with the OpN3q order for the direct case is basically because the inversion time t2 represents more
that 85% of the total emission time ttot for all the configurations (i.e. matrix sizes) considered. As
expected, the total emission time is dominated by the matrix inversion, which prohibits its use such
configurations. For the finer 3 meshes in the 10-turbine configuration, t2 represents even more that
98%. On the contrary, for the preconditioned Bi-CGSTAB implementation, t2 represents less than
37% for all configurations and falls down to less than 10% for the finer discretisations with the 10-
turbine configuration. This means that the slope of 1.94, corresponding approximately to a OpN2q

trend for the particle emission is primarily due to the other parts of the emission scheme (i.e. the
matrix update, particle initialisation and right-hand-side computation), rather than the iterative
solve itself. This result is promising as additional CPU time savings may eventually be made if the
other parts of the emission procedure can be further optimised in terms of computational efficiency.

It should be recalled that the iterative solve is also supposed to have an OpN2q computational
complexity, more specifically OpmN2q, where m represents the number of Bi-CGSTAB iterations.
As illustrated in section 3, because the block Jacobi preconditioner is particularly adapted to the
multi-turbine case, the number of Bi-CGSTAB iterations m is expected to be small. We actually
checked that this number remains small throughout the computations, and observed that it usually
remained below 10 at the beginning of the computations, and then stabilizes around a value below
5 at the end of the computations.

In the Lagrangian vortex framework, it is well know that the particle advection is critical in
terms of computational time and, at the end of computations, when the number of particles becomes
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Figure 17: Emission time ttot compared with advection time for the first 130 iterations of a 10-turbine configuration
using 5ˆ 23˚ meshes.

very large as compared to the constant number of mesh elements, the emission procedure is expected
to represent only a minor fraction of total CPU time within a given unsteady iteration. This is
generally true and this was the case for a single turbine configuration. However, this is generally no
longer the case for the 10-turbine configurations presented here. To illustrate this, Figure 17 depicts
the total emission time ttot for both the pre-conditioned Bi-CGSTAB and the direct solver compared
to the advection time for the first 130 iterations of the 10-turbine configuration using 5ˆ23˚ meshes.
On this figure, it can be observed that the advection time is increasing with the number of iterations
(or equivalently the physical time), which was expected because of the increasing number of emitted
particles, and hence of total particles, as the computation progresses. Additionally, one can observe
that the total emission time for the direct approach never becomes lower than the advection time,
even after 130 iterations where 120,832 particles are involved. At this stage, it is still the beginning
of the wake interaction computation but it can be easily understood that the considered emission
time will never become negligible and, although it may, after a large number of iterations, become
smaller than the advection time, it will still represent a large amount of CPU time per iteration.
On the contrary, with the proposed preconditioned Bi-CGSTAB implementation, the total emission
time ttot always remains lower than the advection time, and rapidly becomes negligible with nearly
an order of magnitude after a 100 iterations. This last Figure 17 really confirms the need of such an
implementation in order to undertake more accurate computations of several turbines in interaction.

5. Conclusion

The paper presents the recent numerical development carried out on unsteady 3D software [5]
developed at LOMC in partnership with IFREMER. These developments were necessary in the
case of several turbines (marine or wind turbines) in order to reduce the computational cost of
such simulations. Indeed, a linear system needs to be solved at each time step in order to enforce
the boundary conditions on the turbine blades. When a single turbine is considered, the so-called
influence matrix is constant over time and can be inverted at the beginning of the computation
and the inverse is stored. Solving the linear system then only consists of a single matrix-vector
multiplication. Accurate computations can be performed in such single turbine configurations as
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presented in Pinon et al. [5]. However, when several turbines are considered, the influence matrix is
not constant. Mycek et al. [6] computed a two turbine configuration by the use of a direct matrix
inversion at each time step. This direct matrix inversion technique was computationally expensive
and prohibits either the use of finer mesh discretisations or more complex turbines layouts.

An iterative approach was then decided in order to solve the linear system. Firstly, a precise
characterisation of the influence matrix was necessary in order to chose the best implementation.
The influence matrix is, by construction, neither sparse nor symmetric, despite the symmetry of the
continuous formulation. This is due to the mesh itself (element surfaces and normals) which prevent
the discrete influences from being symmetric. However, the defined matrices can be qualified as
“close” to symmetry. Then, the matrices proved not to be diagonally dominant and some of them
not positive definite. Regarding the positive definition, some matrices finally showed to have a
symmetric part with only a couple of negative eigenvalues preventing from a general positive definite
property.

Despite these properties, three iterative methods were tested. The Jacobi, the CG and the
Bi-CGSTAB methods were implemented keeping in mind that the Jacobi method is known to have
a very slow convergence and that the CG is designed for symmetric matrices. The Jacobi and
CG were used as a matter of comparison. Several turbine configurations were tested. In order
to emphasise the importance of the matrix elements representing the interaction between turbines
(extra-diagonal blocks), configurations with small inter-distances were preferred. This does not
exactly fits with real wind or marine current turbines arrays configuration, although shorter inter-
device distances are expected for marine application. Of course, the results are applicable for longer
inter-device distances.

After some numerical tests, the Bi-CGSTAB method proved to be the more efficient one where
the simple Jacobi and the CG methods were failing for some configurations. Whatever the turbines
configuration, the Bi-CGSTAB method always obtained convergence with a normalised residual
close to machine precision after about a hundred iterations at most. However, both the Jacobi and
the CG methods hardly never reached a normalised residual lower than 10´3 after the same number
of iterations. And in most cases, they never achieved machine precision after 500 iterations.

As a matter of further improvement, a preconditioner was tested. A simple Jacobi pre-conditioner
was tested without much success. But the application of a block-Jacobi preconditioner always gave
accurate results (below machine precision) after 5 iterations for the CG and 3 iterations for the
Bi-CGSTAB methods. It should be stressed that 5 iterations of the preconditioned CG is nearly
as computationally expensive as 3 iterations of the preconditioned Bi-CGSTAB. Nevertheless, be-
cause the CG is not suited to non-symmetric matrices, the choice of the block-Jacobi preconditioned
Bi-CGSTAB algorithm was finally made.

Regarding application, the present study mainly focuses on numerical computations of interac-
tions in a marine current turbine farm. Preliminary results on staggered configurations involving 3
turbines, similarly to the configuration of Kervella et al. [49], as well as bigger cases with 10 turbines,
are presented in terms of instantaneous wake velocity maps. The CPU time measurements clearly
demonstrate the improvements brought by the use of the preconditioned iterative solver instead
of the direct Gauss-Jordan inversion method previously used. These test cases give confidence in
the numerical tool, and show that computations of arrays with several turbines are closer to being
accessible at reasonable computational cost.
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