

# Sensitivity to wind stress formulation in a coupled wave-atmosphere model

For this study, we focus on North East

Atlantic mid-latitudes storms. The case study

has been selected from analyses of ERA-

Interim winds and mean sea-level pressures

during the last 10 years. Selected events are

Kaat and Lilli storms, which crossed North Atlantic from 23<sup>rd</sup> to 27<sup>th</sup> January 2014, with

Lucia Pineau-Guillou<sup>1,2</sup>, Fabrice Ardhuin<sup>3,2</sup>, Marie-Noëlle Bouin<sup>4,2</sup>, Jean-Luc Redelsperger<sup>3,2</sup>, Bertrand Chapron<sup>1,2</sup>, Jean Bidlot<sup>5</sup>

WHERE?

wind speed above 35 m/s.

- <sup>1</sup> Ifremer, Brest, France
- <sup>2</sup> Laboratoire d'Océanographie Physique et Spatiale (LOPS), Brest, France
- CNRS, Brest, France <sup>4</sup> Meteo-France, Brest, France
- <sup>5</sup> European Center for Medium-range Weather Forecasts (ECMWF), Reading, UK

## WHY?

Wind stress significantly influences modelling of oceanic processes such as waves, breakers, surges, surface/coastal circulation, upwellings and modelling of atmospheric processes. Large wave heights tend to be underestimated in wave models (Rascle & Ardhuin 2013, Hanafin et al. 2012), as well as storm surges in ocean models (Muller et al. 2014). This could be partly due to underestimated high wind speeds in atmospheric models, and inappropriate representation of wind stress in numerical models.

The objective is to define a more appropriate wind stress parameterization (i.e. generating values closer to observations), taking into account the wave influence by moderate to strong winds.

HOW ?

## Coupled wave-atmosphere model

The study is based on ECMWF global atmosphere model IFS (Integrated Forecasting System), which is coupled to ECWAM (ECMWF WAve Model), with spatial resolution of 16 km for the atmosphere and 28 km for the waves.

### **Tested parameterizations**

Sensitivity study focused on 5 parameterizations (see table). Empiricallyderived Charnock parameterization has been developed in order to reach more physical drag coefficient values for high wind speeds (i.e. more consistent with measurements, Powell et al. 2003).

## Observations

Wind data from satellites (ASCAT scatterometer, AMSR2, WindSat, SMOS radiometers), 22 buoys and 59 platforms have been exploited in this study.











| Parameterization                                                        | Reference           |
|-------------------------------------------------------------------------|---------------------|
| [1] Uncoupling WAM/IFS                                                  |                     |
| [2] Coupling WAM/IFS with ECMWF default parameterization                | Janssen 1991        |
| [3] Coupling WAM/IFS with MFWAM parameterization                        | Ardhuin et al. 2010 |
| [4] Coupling WAM/IFS with wave-age dependant parameterization           | Oost et al. 2002    |
| [5] Coupling WAM/IFS with empirically-derived Charnock parameterization |                     |

parameterizations

#### Impact on different parameterizations on atmosphere

# Comparisons with observations

RESULTS

Sensitivity study shows that strong winds in the models are underestimated compared with satellites and platforms. MFWAM [3] and wave-age dependant [4] parameterizations tend to give larger drag coefficients and lower wind speed than the operational setting [2], with negative biases compared with observations. Empirically derived Charnock parameterization results in a reduced bias. However, further validation is needed.





Wind biases between AMSR2 (left), platforms (right) and model (five parameterizations), computed from 23<sup>rd</sup> to 27<sup>th</sup> of Jan. 2014 on North East Atlantic

#### **Biases between observations**

For strong winds, ASCAT and buoys observations agree well with each other, giving the lowest wind speed values. AMSR2, SMOS and platforms are also coherent with each other, giving higher wind speed values. **ASCAT** strong winds seem to be underestimated compared to other data.



**UBO** 



Jan. 2014 on North East Atlantic

Ifremer

uem

A larger Charnock parameter leads to larger roughness length, higher drag coefficient, higher wind stress, and then lower wind speed and higher surface pressure in the storm center. Uncoupling



Acknowledgement is made for the use of ECMWF's computing and archive facilities in this research, and the use of satellite data from KNMI, SOLab, Remote Sensing Systems.

Ardhuin et al. (2010). Semi empirical dissipation source functions for ocean waves. Part I: definition, calibration, and

Addition of the (2010) Setting empirical dissipation source functions for occar marker, including an empirical and system of the setting of t

Muller et al. (2014). Atmospheric storm surge modeling methodology along the French (Atlantic and English Channel) coast. Ocean Dynamics. Powell et al. (2003). Reduced drag coefficient for high wind speeds in tropical cyclones. Nature. Oost et al. (2002). New evidence for a relation between wind stress and wave age from measurements during ASGAMAGE. Boundary-Layer Meteorology.

eorology. cle & Ardhuin (2013). A global wave parameter database for geophysical applications. Part 2: Model validation with improved source term ameterization. Ocean Modelling.



