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Abstract : 
 
Microplastics collected at sea harbour a high diversity of microorganisms including some Vibrio genus 
members, raising questions about the role of microplastics as a novel ecological niche for potentially 
pathogenic microorganisms. In the present study we investigated the adhesion dynamics of Vibrio 
crassostreae on polystyrene microparticles (micro-PS) using electronic and fluorescence microscopy 
techniques. Micro-PS were incubated with bacteria in different media (Zobell culture medium and 
artificial seawater) with or without natural marine aggregates. The highest percentage of colonised 
particles (38-100%) was observed in Zobell culture medium, which may be related to nutrient availability 
for production of pili and exopolysaccharide adhesion structures. A longer bacterial attachment (6 days) 
was observed on irregular micro-PS compared to smooth particles (<10h) but complete decolonisation 
of all particles eventually occurred. The presence of natural marine agreggates around micro-PS led to 
substantial and perennial colonisation featuring monospecific biofilms at the surface of the aggregates. 
These exploratory results suggest that V. crassostreae may be a secondary coloniser of micro-PS, 
requiring a multi-species community to form a durable adhesion phenotype. Temporal assessment of 
microbial colonisation on microplastics at sea using imaging and omics approaches are further indicated 
to better understand the microplastics colonisation dynamics and species assemblages. 
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Introduction 43 

While global plastic production was less than 2 million tons in the 1950s, worldwide 44 

production reached 311 million tons in 2014 
1
. Plastic is a persistent material that accumulates 45 

in land and water 
2, 3

 and the latest estimates are up to 51 trillion floating plastic particles on 46 

the ocean surface 
4
. Plastics can be divided into three classes: macroplastics (> 20 cm), 47 

mesoplastics (0.5-20 cm) and microplastics (< 0.5 cm) 
5
. Primary microplastics are 48 

synthesized as microbeads which are used in many cosmetics, synthetic fibers used in 49 

clothing manufacture, and industrial preproduction pellets 
6
. Fragmentation of macro- and 50 

mesoplastic waste by physico-chemical and biological processes results in secondary 51 

microplastics 
2, 7

.  52 

Microplastics can be transported over time over long distances by ocean currents and thus are 53 

subjected to intense biofouling by prokaryotic and eukaryotic organisms 
8-13

. As a 54 

consequence, microplastics are suspected to disperse potentially invasive and harmful species 55 

14
, and may also represent a new ecological niche for microorganisms, also known as the 56 

“Plastisphere” 
10

. Genomic studies on plastic samples collected in the Atlantic and Pacific 57 

oceans show a bacterial diversity that is different from the surrounding water 
13, 15

. Zettler et 58 

al. (2013) reported that a significant proportion of the bacteria on a polypropylene 59 

microplastic were vibrios (24% of the total Operational Taxonomic Units of the plastic 60 

sample) 
10

. The detection of Vibrionaceae members on marine microplastics was also 61 

demonstrated in other field studies conducted in the North Atlantic, the North Pacific Gyre, 62 

the Baltic Sea and the North Sea 
16-18

. 63 

Vibrios are ubiquitous marine bacteria that are ecologically and metabolically diverse 64 

members of both planktonic- and animal-associated microbial communities 
19, 20

 and they 65 

represent one of the best studied models for the ecology and evolution of bacterial populations 66 

in the wild 
21

. The study of the distribution of vibrios on fine phylogenetic and spatial scales 67 
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has demonstrated that vibrios coexisting in the water column can be divided into groups 68 

which pursue different lifestyles (free living, particle and animal-associated), defined as 69 

ecological populations 
22

. Some populations are found in short lived blooms in the water 70 

column 
21

. Rapid growth of vibrios has been correlated with a diatom bloom 
23

 or an 71 

association with algae 
24

. This highlights, at microscale level, the importance of habitat 72 

occurrence and dynamic of vibrios population diversity in environment 
25, 26

. Vibrios 73 

encompass the well-studied human pathogen, V. cholerae, as well as some very important, 74 

albeit less thoroughly characterized, animal pathogens 
27

. For example, vibrios may 75 

participate actively in repeated mortality outbreaks in oyster beds (Crassostrea gigas) in 76 

France with losses of up to 80-100% of production 
28, 29

. Vibrio species known for their 77 

pathogenic potential (V. coralliilyticus, V. harveyi, V. splendidus, V. parahaemolyticus, V. 78 

alginolyticus and V. fluvialis) were detected on microplastics 
16, 18

, suggesting that 79 

microplastics may constitute a niche for vibrios, influencing their population dynamics and 80 

ultimately pathogen emergence. 81 

Previous studies demonstrating the interactions between MP and vibrio have been based on 82 

one shot 16S metabarcoding targeting hypervariable regions of the small subunit of the 83 

ribosomal RNA (rRNA) gene 
10, 16

. However, this genomic approach at a single sampling time 84 

does not inform above the substrate specificity and the dynamics of the bacterial-plastic 85 

interaction. For instance, Datta et al. (2016) demonstrated that colonization of chitin 86 

microparticles result from a rapid succession of bacterial communities in which vibrios appear 87 

as secondary coloniser 
30

. Vibrionaceae members are often stated to demonstrate habitat 88 

preference for plastics 
10, 16, 17

 whereas the colonization dynamics are still unclear. Whether 89 

vibrios are first colonisers exhibiting specific affinity for plastic polymer substrates or 90 

secondary opportunistic colonisers dependant of other bacteria that present on plastics 91 

remains unknown. As little is known about the distribution and dispersal mechanisms of most 92 
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pathogenic marine microbes, answering this question is of importance to understand the 93 

environmental conditions precluding Vibrio attachment on marine particles and the relative 94 

role of microplastics on their dispersal in regards with natural processes. 95 

Vibrio crassostreae J2-9 has been associated to oyster disease (Pacific oyster Crassostrea 96 

gigas 
28

) but the environmental reservoir of this pathogen remain to be elucidate 
31

. The aim 97 

of this study was to investigate the ability of this Vibrio strain to colonise polystyrene 98 

microplastics in different conditions using fluorescent and scanning electron microscopy over 99 

4 days. The results suggested that Vibrio crassostreae J2-9 was a secondary coloniser whose 100 

association with microplastics was favoured by prior formation of natural multi-species 101 

marine aggregates around microplastic particles. 102 

Material and methods 103 

1. Bacterial strain 104 

Vibrio crassostreae, strain J2-9, was isolated during an mortality event in C. gigas in the Bay 105 

of Brest, France in 2011 
28

. A fluorescent-labelled bacterial strain constitutively expressing 106 

gfp (Green Fluorescent Protein) from a stable plasmid was established 
32

. To reduce 107 

experimental variation among assays, the same bacterial culture was divided into aliquots in 108 

20% glycerol for cryopreservation at -80°C. Eighteen hours before each experiment, a pre-109 

culture of J2-9 GFP was prepared in Zobell liquid medium (4g peptone, 1g yeast extract, 0.1g 110 

Iron Phosphate and 30g sea salt added per litter of milliQ water) 
33

 supplemented with 111 

chloramphenicol 5 µg.mL
-1

 at 18°C under mild stirring (130 rpm). The pre-cultures were then 112 

analysed with a flow cytometer (FACSVerse, Becton Dickinson, San Jose, CA, USA) to 113 

assess bacterial growth and concentration. Bacteria were detected on the green fluorescence 114 

channel (FITC channel, 527 / 32nm) after excitation by the blue laser at 488 nm, and the cell 115 

concentration was calculated based on the number of events (cells) recorded and the volume 116 

of samples analysed by the coupled Flow-sensor
Tm

 (Supporting Information - Figure S1). 117 
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2. Microplastics  118 

Three types of polystyrene microparticles (micro-PS) were used as a colonization substrate: 119 

(i) non-fluorescent smooth spherical microbeads (Phosphorex, Inc.) with a diameter of 6µm 120 

(PS-s); (ii) fluorescent smooth spherical microbeads (Phosphorex, Inc.; excitation/emission 121 

530/582nm) with a diameter of 5µm (PS-f); and (iii) non-fluorescent rough irregular particles 122 

(Axalta) with a diameter of 45-60µm (PS-i). 123 

3. Interactions between J2-9 GFP and PS microbeads 124 

Bacteria and micro-PS were incubated in 15 mL Pyrex glass culture tubes in order to 125 

minimise plastic particles sticking to the flask walls. Similarly, samples were systematically 126 

collected using glass Pasteur pipettes to avoid a significant decrease in micro-PS 127 

concentration as demonstrated in preliminary tests using plastic pipettes (up to 80% reduction; 128 

data not shown). Two experiments were performed to test: (i) the effects of micro-PS shape 129 

(spherical and smooth vs. rough and irregular) in two different media (artificial seawater – sea 130 

salt (Sigma-Aldrich, Missouri, US), and Zobell culture medium) on J2-9 GFP colonization 131 

processes in axenic conditions (Experiment 1); and (ii) the presence of natural microbial 132 

communities on J2-9 GFP colonization processes (multi-species condition) (Experiment 2). 133 

3.1. Experiment 1 – Influence of micro-PS type in axenic conditions 134 

Bacteria and micro-PS (PS-s, PS-f and PS-i) were incubated in either artificial seawater at 135 

35g.L
-1

 sea salt or in artificial seawater: Zobell media 50:50, all filtered at 0.22µm to remove 136 

contaminating particles. Chloramphenicol was added to each medium at concentration of 137 

5µg.L
-1

 to maintain the selection pressure and discourage contaminants (e.g. other bacteria) to 138 

interfere with the experiment. The initial J2-9 GFP bacterial concentration was adjusted to 139 

1.10
6
 bacteria per mL in a final volume of 7mL of medium. The start of experiment 140 

corresponds to the first contact between bacteria and microparticles, then all culture tubes 141 

were immediately agitated at 300 rpm at 22°C. Experiment 1 was conducted in duplicate 142 
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tubes, and was replicated 3 times. The percentage of particles colonized by one or more J2-9 143 

GFP bacteria was evaluated by epifluorescence confocal microscopy every 15-30 minutes 144 

during the first 10h of contact, at 24h post-incubation (PS-s and PS-f) and then every 24h for 145 

up to 4 days (PS-i only). For each sampling interval, 100 particles of PS-s and PS-f and 25 146 

particles of PS-i were counted to estimate the percentage of colonized particles. Finally, 147 

detailed observations on the interaction between J2-9 GFP and PS microbeads were recorded 148 

using laser confocal microscopy and scanning electron microscopy (see details below § 4).  149 

3.2. Experiment 2 - Colonization of micro-PS carrying a well-developed natural 150 

marine aggregate by V. crassostreae J2-9 GFP  151 

To better simulate environmental conditions encountered in situ, PS-s, PS-f and PS-i (100 152 

particles per mL) were incubated under gentle agitation for 7 days at 22
o
C in experimental 153 

tanks containing freshly collected natural seawater from the Bay of Brest. Well-developed 154 

aggregates were present around micro-PS within one week, as demonstrated in Wright et al. 155 

(2013)
34

. Then, 7mL of seawater containing micro-PS trapped in natural aggregates was 156 

incubated with J2-9 GFP bacteria (initial concentration: 1.10
6
 bacteria per mL) in glass tubes. 157 

Tubes were placed at 22°C and gently stirred (300rpm) for up to 4 days. Qualitative 158 

observation using epifluorescence confocal microscopy was performed every 30 minutes for 159 

the first 10h and then every 24h until the end of the experiment (96h).  160 

4. Microscopy 161 

4.1. Confocal microscopy 162 

Confocal microscopy allowed three dimensional visualization of micro-PS colonization by J2-163 

9 GFP. This was monitored and measured using a Zeiss Axio Observer Z1 microscope (Carl 164 

Zeiss SAS, Jena, Germany) equipped with a mercury vapor lamp, coupled to the confocal 165 

module (spinning disc) VivaTome 3D. Observation of J2-9 GFP was performed by excitation 166 

through a blue filter 494/20 nm, and visualization of the green emission at 536/40 nm on the 167 
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GFP channel. Fluorescent micro-PS (PS-f) were shown through a red emission at 628/40 nm 168 

after excitation at 575/25 nm. All other microparticles were visible in white light. Images of 169 

particle colonization were obtained by a confocal laser scanning microscope (CLSM) Zeiss 170 

LSM 780 using 488nm and 561nm lasers. Colonized micro-PS were fixed with 6% 171 

glutaraldehyde for 24h at 4°C after 1h30 and 3h interaction. CLSM observations were only 172 

made in experiments performed in seawater, because there was green auto-fluorescence from 173 

Zobell diluted medium. 174 

4.2. Scanning electron microscopy 175 

Suspensions of colonized PS particles were fixed in 6% glutaraldehyde in 0.1M sodium 176 

cacodylate buffer (1.75% w/v of NaCl, pH 7.2). Suspensions were incubated for 10 minutes at 177 

4°C before being filtered through polycarbonate filters with a 3µm pore size. Filters were 178 

rinsed with a solution of sodium cacodylate 0.1M (2% w/v of NaCl) in ultra-pure water 179 

MilliQ. After rinsing, samples were dehydrated by successive immersions in alcoholic 180 

hexamethyldisilazan (HMDS) (v:v): absolute ethanol:HMDS (3:1), absolute ethanol:HMDS 181 

(1:1), absolute ethanol:HMDS (1:3), and pure HMDS. Finally, samples were coated with gold 182 

palladium before being observed by scanning electron microscopy (SEM) (Hitachi S-3200N). 183 

Images of the particle colonization were obtained after fixation after 1h30 and 4h30 of 184 

interaction. Picture colorization was performed with the GNU Image Manipulation Program 185 

(GIMP 2). 186 

5. Statistical analysis 187 

Non-parametric (Wilcoxon-Mann Whitney) and parametric tests (2 way Student’s t test with 188 

or without Welch correction) were carried out with R 3.2.3 data processing software (R Core 189 

Team, 2015). Mean comparisons were carried out on the maximum of colonization and on the 190 
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time needed to reach it between microparticles (PS-s, PS-f) and media (Zobell diluted media 191 

and artificial seawater). A significant difference was observed for p < 0.05. 192 

Results and discussion 193 

1. Fine scale micro-PS /Vibrio crassostreae interactions: pili formation and 194 

exopolysaccharide production  195 

Rapid movements of J2-9 GFP from one particle to another prior to bacterial adhesion were 196 

observed by confocal laser scanning microscopy (CLSM), suggesting active motility and 197 

rapid dispersal ability, which are essential for the attachment of bacteria to microparticles 
24, 

198 

30, 35
. After 1h30 of interaction, adherent J2-9 GFP cells were observed on 5µm fluorescent 199 

smooth spherical polystyrene microbeads (PS-f) (figure 1A). Scanning electron microscopy 200 

(SEM) observations confirmed the attachment of J2-9 bacteria to 6 µm smooth spherical 201 

polystyrene microbeads (PS-s) via specific structures such as pili (arrow figure 1B). Pili are 202 

tiny filaments (5-7 nm in diameter for 1-2 µm in length) linking bacteria to substrate by 203 

specific proteins (pilin polymers and adhesins) 
36-38

. It is well known that pathogenic Vibrio 204 

species such as V. cholerae, V. parahaemolyticus, V. fulnificus and V. mimicus possess type 205 

IV pili that are essential for adherence, colonization and pathogenicity 
35, 39, 40

. In these 206 

species, pili have predominantly a polar location, as it is observed here for V. crassostreae, 207 

even though lateral pili can be also observed. When cells appeared attached sideways on 208 

micro-PS, no specific structures were visible by SEM (figure 1C) suggesting that finer 209 

structures were probably implicated in adhesion. After 3h of contact, CLSM observations 210 

showed a higher proportion of bead aggregates, with J2-9 GFP bacteria being located around 211 

PS-f particle aggregates (figure 1D). This was also confirmed by SEM observations made 212 

after 4h30 of interaction, which demonstrated a high proportion of PS-s beads aggregated 213 

alongside J2-9, and the presence of fibrous exopolysaccharide-like structures (EPS) (figure 214 
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1E). It was not possible to determine whether the presence of EPS was a cause or a 215 

consequence of micro-PS aggregation. EPS such as glycocalyx secreted around the bacterial 216 

wall are known to supplement reversible adhesion forces (electrostatic forces, Van der Waals, 217 

hydrophobic or ionic interaction) and may play a crucial role in the first stage of adhesion 
41

. 218 

Datta et al. (2016) demonstrated the importance of particle attachment ability in the first hours 219 

of contact (attachment step) at the expense of bacterial growth on substrate 
30

. Even though 220 

EPS may permit biofilm development leading to perennial settlement 
19, 42, 43

, the smooth 221 

micro-PS colonization observed in the present study was followed by a rather rapid 222 

decolonization as described below (§ 2).
 223 

2. Vibrio crassostreae exhibited rapid decolonization from smooth micro-PS  224 

Colonization dynamics for PS-s and PS-f in each medium are shown in Figure 2. In all 225 

conditions (particle type and media) a dynamic in two phases was observed: first, the 226 

percentage of colonized smooth micro-PS increased to a maximum between 29 minutes and 7 227 

hours of contact; then a decolonization phase occurred with a decrease in the number of 228 

colonized particles to zero after 24h of contact. 229 

In seawater, the mean percentage of colonized particles was below 14% (except for one 230 

analytical PS-f replicate). The maximum percentages of colonized PS-s were 4.0 ± 1.4%, 14.5 231 

± 3.5% and 6.0 ± 1.4% (mean, n= 2, ± standard deviation, SD) for experimental replicates 1, 2 232 

and 3, respectively (Figure 2A, Table S1). For PS-f, the maximum percentages of 233 

colonization were between 1.0 ± 1.4% and 1.5 ± 0.7% (mean ± SD), except for replicate 3 234 

that exhibited a higher colonization of 58.0 ± 26.9% (Figure 2B, Table S1) despite identical 235 

experimental conditions (temperature, agitation, media, culture age and state). We cannot 236 

completely exclude experimental error to explain such high variability, but knowing that 237 

all cautions have been taken to avoid them, these results suggest instead that other 238 

parameters, such as fine level bacterial concentration dynamics, which were not controlled 239 
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and not addressed here, may influence the regulation of bacterial adhesion. The maximum 240 

percentage of colonized particles was significantly higher in Zobell culture medium than in 241 

seawater both for PS-s (p-value=0.0003) and PS-f (p-value=0.0049) (Figure 3A, Table S1). 242 

Colonization increased up to 38.0±2.8%, 72.0±11.3% and 95.5±3.5% for PS-s and 243 

89.5±13.4%, 81±18.4 and 78.5±9.2% for PS-f in Zobell culture medium (Figure 2A-B, Table 244 

S1). No significant difference was observed between PS-s and PS-f for the maximum 245 

percentage of colonized particles and the time needed to reach the maximum percentage of 246 

colonization (Tm). Tm was between 4h20 and 6h09 in Zobell culture medium and this was 247 

significantly higher than the Tm measured in seawater (28min to 2h45) for both PS-s (p = 248 

0.0022) and PS-f (p = 0.0003) (Figure 3B, Table S2). Higher nutrient availability is known to 249 

modulate the expression and maintenance of adhesion structures such as pili 
44

 and thus could 250 

enhance the final colonization success in Zobell culture medium with a higher percentage of 251 

colonized particles. Environmental reservoir of Vibrio crassostreae J2-9 remain unknown 
31

, 252 

as well as its carbon source preference in natural environment. An earlier colonization was 253 

observed in artificial seawater. The absence of nutrients may induce switch toward an active 254 

substrate/nutrient research phenotype, meaning increase dispersal ability, adhesion tentative 255 

or short adhesion on particulate matter present in the media (for instance microparticles). 256 

Indeed, adhesion was reported as a survival strategy for vibrios in nutrient-limited natural 257 

environment 
45

, and better biofilm formation was reported in nutrient limiting condition than 258 

in nutrient rich media 
46

. Nutrient availability and/or quality might also explain the rapid 259 

decolonization observed for all smooth micro-PS. Decolonization and dispersion is well 260 

described in the literature for biofilms 
44, 47

 but is very poorly documented for the early stages 261 

of adhesion, notably for vibrios. In artificial seawater, the only source of organic matter is 262 

obtained from the bacterial inoculum by diluting the pre-culture, which was probably not 263 

sufficient for the deposition of a primary/conditioning film on the bead surface as observed by 264 
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CLSM and SEM for PS-s in Zobell culture medium (data not shown). The primary film 265 

changes surface properties (hydrophobicity, polarity, surface tension) and could provide 266 

sufficient nutrients at the substratum surface to be used by bacteria 
36

. The absence of an 267 

artificial seawater primary film could explain the lower overall colonization. In Zobell culture 268 

medium, decolonization could be related to a limitation of some nutrients. Nutrient limitation 269 

is reflected by stationary phase emergence in bacterial growth. However, no relationship was 270 

demonstrated between the time of decolonization and the stationary phase of the culture. In 271 

order to further address this question, nutrient controlled experimental systems like fermenters 272 

equipped with a flow cell to measure bacterial concentration allowing maintenance of a stable 273 

bacterial population and nutrient supply could be used. In addition, the measurement of the 274 

numbers of bacteria per particle could not be quantitatively assessed in the present study by 275 

using microscopy techniques, and the development of cytometry methods is encouraged to 276 

assess this parameter as well as particle aggregation states, as demonstrated by Beloin et al. 277 

(2008) and Geng et al. (2014) 
48, 49

. 278 

Additionally to other factors, adhesion structures are known to be regulated by multifactorial 279 

signals including quorum sensing 
41, 43

. Quorum sensing involves inter- and intraspecific 280 

communication between bacterial cells by exchange of molecular signals involved in the 281 

expression of target genes 
50, 51

. Therefore, an increase in cell density over time may regulate 282 

quorum sensing signals and lead to the production of adhesion modulator compounds like 283 

homoserine lactone causing cell detachment 
19, 43, 47

. Physical parameters may also be 284 

involved in the decolonization dynamics. Indeed, recent studies in bacterial adhesion forces 285 

suggested that hydrodynamic movements associated with increased bacterial concentration 286 

might lead to detachment from substrates 
52-54

. This is in agreement with real time CLSM 287 

observations that showed turbulences from rapid movement of bacteria. Collisions that 288 

occurred between them may have then generated offsets of adherent bacteria. This hypothesis 289 
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is also supported by the longer colonization observed for rough and irregular particles 290 

(exposed in § 3) whose interstices may have provided a shelter supporting bacterial 291 

settlement. 292 

3. Long term colonization was observed on irregular micro-PS (PS-i)  293 

PS-i colonization started within the first hours of contact, and the maximum percentage of 294 

colonized particles was reached after 3h11 of contact in Zobell diluted medium (100% of 295 

particles colonized) and 2h54 of contact in seawater (84%±17 of particles colonized) (Figure 296 

2C) for one replicate. Particle colonization in the two other replicates was still increasing after 297 

10h of contact in both media (Figure 2C). However, the percentage of colonized particles had 298 

decreased by the next sampling observation (24h), therefore the time for which the maximum 299 

percentage of colonized particles was reached was between 10h and 24h and cannot be 300 

assessed more precisely. PS-i colonization remained higher than 30% after 24h of interaction 301 

in seawater for all replicates while a complete decolonization was observed in Zobell culture 302 

medium (data not shown). In seawater, even though a slight decrease of bacteria number per 303 

particle, PS-i particles remained colonized for up to six days, after which complete 304 

decolonization was observed. Substrate topography is a factor influencing bacterial adhesion 305 

36, 55
. The presence of interstices on the irregular PS microparticles may have provided shelter 306 

for bacteria, as suggested by qualitative microscopical observations showing that bacteria 307 

were located in deep cavities on the PS-i. Bacteria were thus less exposed to hydrodynamic 308 

shearing forces 
55

. The difference in size between PS-s (6µm) and PS-i (45-60µm) particles 309 

may also explain the difference in colonization intensity and duration. Even though the 310 

commercial polystyrene particles used in the present study are supposed to be free of 311 

additives or any other chemicals, their full composition is unknown and other chemicals could 312 

also influence the patterns of colonization reported in this study. 313 

Page 13 of 28

ACS Paragon Plus Environment

Environmental Science & Technology



Overall, an efficient and lasting colonization with biofilm formation on micro-PS by V. 314 

crassostreae J2-9 GFP was not observed, regardless of particle type and media. This may 315 

suggest that this strain does not demonstrate any specific affinity for PS particles and is not 316 

able to use particle resources, which is crucial for primary colonisers 
30

. Consequently J2-9 317 

may be more of a secondary coloniser, requiring other microbial communities (first 318 

colonisers) that provide alternative carbon sources to durably colonise the polystyrene 319 

surface. As the substrate specificity of Vibrio on synthetic polymers is still not investigated 
18

, 320 

further experiments using other vibrio strains and other plastic polymers (e.g. polyethylene 321 

and polypropylene) should be conducted.  322 

4. Natural aggregates enhanced perennial colonization of Vibrio crassostreae J2-9  323 

PS-s, PS-f and PS-i incubated in natural seawater were rapidly subject to biofouling in the 324 

first 24h (figure 4A). After 7 days of incubation, no free micro-PS were detected in the natural 325 

seawater. All micro-PS were entrapped in aggregates of significant size (± 200µm) formed by 326 

debris and various microorganisms (figure 4B). Similar aggregates were also present with 327 

identical characteristics (size, shape, appearance) in the control tank containing seawater only. 328 

The rapid and efficient incorporation of the micro-PS within natural - probably multi-species - 329 

aggregates observed here after 7 days of incubation in natural seawater is in accordance with 330 

the rapid incorporation of micro-PS in monospecies marine phytoplankton aggregates (also 331 

called marine snow) previously demonstrated under controlled laboratory conditions 
34, 56, 57

. 332 

Similarly, in the marine environment, plastic microparticles host a complex association of 333 

prokaryotic and eukaryotic microbial communities 
8-10, 12, 13, 16

. Organism collaboration and 334 

competition result in aggregate formation and trapping of plastic microparticles 
34, 56, 58

.  335 

When aggregates containing micro-PS were incubated with J2-9 GFP, a rapid and strong 336 

colonization of the surfaces of the aggregates by J2-9 GFP was observed with some patches 337 

of intense colonization (figure 4C). The vibrio J2-9 was located vertically in groups of 3 to 5 338 
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cells forming corolla structures (figure 4D - head arrow), or was organized into monospecific 339 

biofilms at the surface of the aggregates (figure 4C - head arrow). This possibly resulted from 340 

(i) communication between J2-9 GFP and organisms in the aggregate and (ii) alternative 341 

source of nutrients produced as by-products by the organisms in the aggregate. This 342 

colonization on aggregates was durable and still observed after 96 hours of contact at higher 343 

intensity compared to that observed in all particle types used in experiment 1. However, 344 

beyond time of contact (96h), it could not be established if J2-9 GFP disappearance was due 345 

to loss of bacterial fluorescence or another factor. Predation of J2-9 GFP by ciliates feeding 346 

on biofilms at the particle surface was observed as suggested by the appearance of 347 

fluorescence in ciliates within a few hours (figure 4E). As J2-9 GFP was not visible 348 

swimming in media, there was indirect evidence of lack of decolonization, contrary to all 349 

other conditions (experiment 1 – particle colonization without pre-incubation in natural 350 

seawater). Resulting of agitation, shear stress could also lead to an “erosion” of the aggregate 351 

surface and the loss of J2-9 GFP bacteria. In natural environment, rafting communities on 352 

plastic particles are exposed to currents and wave action, potentially resulting in their 353 

dispersion. But shear stress was also reported as a factor which could increase cells’ adhesion 354 

capacity 
59

, suggesting complex processes acting in colonization and decolonization. 355 

The presence of natural aggregates around the particles seemed to have favoured the perennial 356 

colonization of J2-9 GFP on micro-PS suggesting that V. crassostreae J2-9 might be 357 

classified as a second coloniser of micro-PS, as it was demonstrated for Vibrionaceae on 358 

chitin microparticles 
30

. These authors suggested that most particle attached bacteria may be 359 

secondary consumers that recycle waste products from primary consumers. 360 

These exploratory results obtained under controlled laboratory conditions open new fields for 361 

research addressing the dynamics of microplastic colonization by populations of vibrios. 362 
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Indeed, our study concerning one strain of Vibrio and one polymer invite to investigate other 363 

strains with other type of plastic. The presence of vibrios detected via genomic approaches on 364 

microplastics collected at sea at one time point 
10, 13, 16, 18

 may result from secondary 365 

colonization enabled by primary bacterial colonisers or more specific chemotactic attraction 366 

to plastic polymer compounds. The identification of direct interaction as primary coloniser 367 

using different synthetic polymers should be carefully assessed for both pathogenic, non-368 

pathogenic Vibrio species 
18

. To test the hypothesis of secondary coloniser suggested by the 369 

present in vitro study, further studies mimicking more closely the natural environment and 370 

including omic approaches together with microscope observations, as it was done by Datta et 371 

al. (2016) 
30

, are clearly required. Sequential sampling over time on different plastic polymers 372 

and natural particles is necessary to characterize the temporal dynamics of first microbial – 373 

eukaryote – and Vibrio – colonization in natural marine environments. If Vibrio are truly 374 

second coloniser, the populations of microorganisms present on plastic and allowing for 375 

Vibrio colonization must be characterized for various plastic polymers in different 376 

environmental compartment and condition 
13-15

. In addition, laboratory experiments using 377 

diverse ecological populations of vibrios would be useful to investigate species relationships 378 

(cooperation, competition, mutualism) involved in plastic colonization and their potential 379 

effects upon ingestion by marine organisms 
22

. Given the relatively low proportion of 380 

microplastics in regards with other particulate matter (organic and inorganic) in marine 381 

ecosystems 
60

, the apparent complexity in the habitat preference of Vibrio species for plastic, 382 

and the relative lack of knowledge regarding their natural dispersal mechanisms, its makes 383 

difficult to postulate on the clear role of microplastics as vector for pathogenic vibrios in 384 

marine environment 
13

. Studies aiming to better understand the colonization dynamics of 385 

microplastics by marine bacteria are required to investigate the role of microplastics as 386 

vectors of harmful bacteria for marine organisms. 387 
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Figure S1 shows cytogram of fluorescent bacteria counting by flow cytometry. Tables S1 and 394 

S2 provide detailed statistical test results. This information is available free of charge via the 395 

Internet at http://pubs.acs.org. 396 

Figure captions 397 

Figure 1. Electronic and photonic microscopical observations of Vibrio crassostreae J2-9 GFP 398 

adhesion in PS microparticles. A, D: confocal laser scanning microscopy (CLSM) of the 399 

colonization of Vibrio crassostreae J2-9 GFP (green) on fluorescent polystyrene 400 

microparticles (PS-f) (red) in artificial seawater. B, C, E: scanning electron microscopy 401 

(SEM) observations of colonization of V. crassostreae J2-9 GFP (green) on polystyrene 402 

microparticles (PS-s) (red) in Zobell diluted media. SEM pictures were artificially colorized 403 

using the GIMP software. Sample fixation times were 1h30 (A, B), 3h (D) and 4h30 (C, E). 404 

Scale bars: 2µm (A, D, E) ; 1µm(B) ; 0.5 µm (C). 405 

Figure 2. Percentage of colonized polystyrene microparticles by Vibrio crassostreae J2-9 GFP 406 

over time in seawater (● - blue) and Zobell diluted media (○ - orange). These data were 407 

based on duplicate measurements from three independent experiments. For each sampling 408 

interval, 100 particles of PS-s and PS-f and 25 particles of PS-i were counted to estimate the 409 
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percentage of colonized particles. A: smooth non fluorescent polystyrene microparticles (PS-410 

s); B: fluorescent polystyrene microparticles (PS-f); and C: irregular polystyrene 411 

microparticles (PS-i). 412 

Figure 3. A: maximum percentage of colonization (mean ± SD; n = 6) for smooth polystyrene 413 

microparticles (PS-s) and fluorescent polystyrene microparticles (PS-f) in both media 414 

(artificial seawater and Zobell diluted media). B: time after which the maximum of 415 

colonization was reached (mean ± SD; n = 6) for PS-s and PS-f in both media. Letters a, b 416 

indicate significant difference between groups, p < 0.05. 417 

Figure 4. Smooth non fluorescent polystyrene microparticles (PS-s) colonization in natural 418 

seawater. A: PS-s were rapidly subject to biofouling in the first 24h observation – DAPI 419 

staining. B: PS-s particles (shown by black arrows) entrapped in aggregates formed by debris 420 

and microorganisms after 7 days of incubation. C: colonization of the aggregates containing 421 

PS-s by Vibrio crassostreae J2-9 GFP after 8 hours of contact; PS-s are shown by black 422 

arrows, J2-9 GFP biofilm is shown by arrowhead. D: corolla positioning of Vibrio 423 

crassostreae J2-9 GFP on aggregates; PS-s are shown by black arrows, J2-9 GFP corolla 424 

structure is shown by arrowhead. E: GFP fluorescent ciliate observed 2 hours after Vibrio 425 

crassostreae J2-9 GFP addition. Scale bars: 10µm (A, E); 20µm (D); 50µm (B, C). 426 
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Figure captions 

Figure 1. Electronic and photonic microscopical observations of Vibrio crassostreae J2-9 GFP 

adhesion in PS microparticles. A, D: confocal laser scanning microscopy (CLSM) of the 

colonization of Vibrio crassostreae J2-9 GFP (green) on fluorescent polystyrene 

microparticles (PS-f) (red) in artificial seawater. B, C, E: scanning electron microscopy 

(SEM) observations of colonization of V. crassostreae J2-9 GFP (green) on polystyrene 

microparticles (PS-s) (red) in Zobell diluted media. SEM pictures were artificially colorized 

using the GIMP software. Sample fixation times were 1h30 (A, B), 3h (D) and 4h30 (C, E). 

Scale bars: 2μm (A, D, E) ; 1μm(B) ; 0.5 μm (C). 

Figure 2. Percentage of colonized polystyrene microparticles by Vibrio crassostreae J2-9 GFP 

over time in seawater (● - blue) and Zobell diluted media (○ - orange). These data were 

based on duplicate measurements from three independent experiments. For each sampling 

interval, 100 particles of PS-s and PS-f and 25 particles of PS-i were counted to estimate the 

percentage of colonized particles. A: smooth non-fluorescent polystyrene microparticles (PS-

s); B: fluorescent polystyrene microparticles (PS-f); and C: irregular polystyrene 

microparticles (PS-i). 

Figure 3. A: maximum percentage of colonization (mean ± SD; n = 6) for smooth polystyrene 

microparticles (PS-s) and fluorescent polystyrene microparticles (PS-f) in both media 

(artificial seawater and Zobell diluted media). B: time after which the maximum of 

colonization was reached (mean ± SD; n = 6) for PS-s and PS-f in both media. Letters a, b 

indicate significant difference between groups, p < 0.05. 

Figure 4. Smooth non-fluorescent polystyrene microparticles (PS-s) colonization in natural 

seawater. A: PS-s were rapidly subject to biofouling in the first 24h observation – DAPI 

staining. B: PS-s particles (shown by black arrows) entrapped in aggregates formed by debris 

and microorganisms after 7 days of incubation. C: colonization of the aggregates containing 

PS-s by Vibrio crassostreae J2-9 GFP after 8 hours of contact; PS-s are shown by black 

arrows, J2-9 GFP biofilm is shown by arrowhead. D: corolla positioning of Vibrio 

crassostreae J2-9 GFP on aggregates; PS-s are shown by black arrows, J2-9 GFP corolla 

structure is shown by arrowhead. E: GFP fluorescent ciliate observed 2 hours after Vibrio 

crassostreae J2-9 GFP addition. Scale bars: 10μm (A, E); 20μm (D); 50μm (B, C). 
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Figure 3 
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