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Abstract : 
 
It is well known that rain leaves footprints on the sea surface that sometimes become visible on 
synthetic aperture radar (SAR) images. Rain cells can easily be detected on SAR images at all radar 
frequencies when they are associated with a downdraft pattern. But rain cells are not always associated 
with downdraft and rain can also occur in other forms, as stratified rain, rain bands, and squall lines. It 
turns out that radar signatures of rain at C-band are much more complex than at L- or X-band radar and 
that it is particularly difficult to identify unambiguously rain events on C-band SAR images acquired over 
the ocean. This is because C-band lies in the transition region where raindrops impinging onto the sea 
surface can increase (usually) or decrease the backscattered radar power and where volume scattering 
and attenuation by rain drops in the atmosphere are not always negligible (at very high rain rates). In 
order to get an insight into the physical mechanisms causing the C-band radar signatures of rain, we 
first revisit results obtained from historic laboratory and field experiments and multi-frequency/multi-
polarization SAR data acquired during the SIR-C/X-SAR spaceshuttle mission in 1994. Then we 
analyze several C-band SAR images acquired by the European satellites Envisat and Sentinel-1A, and 
the Canadian satellite Radarsat-2 and compare them, whenever possible, with quasi-coincident and 
collocated weather radar images. The observational data show that, at low to medium rain rates, the 
main physical mechanism causing C-band radar signatures of rain is Bragg scattering at ring waves 
generated by the rain drops impinging onto the sea surface, which increase the radar backscatter. 
However, areas of increased radar backscatter are often accompanied by adjacent areas of decreased 
radar backscatter, which is due to attenuation of the Bragg waves by turbulence also generated by the 
impinging rain drops. Furthermore, we present a full-polarimetric Radarsat-2 SAR image of a rain cell 
together with a polarimetric decomposition analysis, which shows that the C-band radar signature of a 
rain cell is caused by surface scattering. The observation show that radar signatures of rain cells often 
contain segments, where the co-polarized as well the cross-polarized radar backscatter are strongly 
enhanced, which indicates non-Bragg scattering contributions to the scattering process. Furthermore, 
the polarimetric decomposition analysis shows that the C-band radar signature of a rain cell is 
dominated by surface scattering. Possible mechanisms, like scattering at splash products, are 
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discussed. Whether the normalized radar cross section (NRCS) due to rain is increased or decreased 
depends on rain rate, wind speed, incidence angle, and history of the rain event. At low to moderate 
wind speeds (< 10 ms− 1) and low to medium high rain rates (< 50 mm h− 1), the NRCS is usually 
increased by up to 8 dB, and at high wind speeds (> 10 m s− 1) and low to high rain rates (but < 50 mm 
h− 1), the NRCS is usually decreased by up to 3 dB. 
 

Highlights 

► C-band radar signatures of a rain over the ocean are caused by surface scattering. ► At C-band, 
rain over the ocean can increase or decrease the radar backscatter. ► Scattering at ring waves is the 
dominant scattering mechanism at C-band. ► Rain can cause strong increase in co-polarized and 
cross-polarized backscatter. ► Non-Bragg scattering often contributes to the radar backscatter at C-
band. 

 

Keywords : Rain over the ocean, Synthetic aperture radar, Sea surface winds, C-band radar 
backscattering, Ring waves 
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speed, incidence angle, and history of the rain event. At low to moderate wind speeds ( 10 ms-1) and low to 

medium high rain rates ( 50 mm h-1), the NRCS is usually increased by up to 8 dB, and at high wind speeds 

( 10 m s-1) and low to high rain rates (but  50 mm h-1), the NRCS is usually decreased by up to 3 dB. 

 

1. Introduction 

 

    Since synthetic aperture radar (SAR) images from the American Seasat satellite became available in 1978 

it is known that SAR images acquired over the ocean often capture radar signatures of rain (Fu & Holt, 

1982). The early studies have concentrated on radar signatures of tropical rain cells, where the downdraft (or 

downburst) of cold air is the principal contributor to the radar signature (Atlas, 1994). However, downdraft 

occurs only in a certain stage of the life cycle of a rain cell (in the dissipating stage where it is associated 

with light rain), while in the mature stage, associated with heavy rain, updraft and downdraft are co-existing. 

Verification that some features visible on SAR images are caused by convective rain, like rain cells, squall 

lines, and supercells, has been provided by quasi-simultaneously acquired weather radar data (Lin et al., 

2001; Melsheimer et al., 2001). While convective rain is the dominant type of rain in the tropics and 

subtropics (50 to 80 %), stratiform rain dominates in the high latitudes, but remains poorly studied. Both 

kinds of rain affect the radar backscatter from the sea surface.  

    Rain over the sea is a main source of error in the retrieval of near-sea surface winds from scatterometer 

data. The effect of rain on radar backscatter has been studied extensively for Ku-band (14 GHz) 

scatterometers, like the ones flown on the American Quikscat satellite and the Indian Oceansat 2 satellite 

(Contreras et al., 2003; Weissman et al., 2005; Weissman & Bourassa 2008, 2011), and recently also for C-

band (5.3 GHz) scatterometers, like the Advanced Scatterometer (ASCAT) onboard the European MetOp 

satellites (Portabella et al., 2012; Lin et al., 2013, 2014, 2015). In particular, the effect of rain on C-band 

radar backscattering over the ocean using satellite data has been investigated so far only by applying 

statistical methods. Lin et al. (2013) correlated wind data retrieved from ASCAT data with wind data 

calculated from an atmospheric model and with rain data retrieved from the Tropical Rainfall Measuring 
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Mission (TRMM). Xu et al. (2015) also used a statistical method to demonstrate the influence of rain on C-

band radar backscatter by using Envisat SAR data, wind data from a weather forecast model, and rain rate 

data from a weather radar. In contrast to these studies, in this paper we investigate signatures of individual 

rain events with the aim to identify the physical mechanisms causing the observed C-band radar signatures 

of rain over the ocean.  

     However, the foremost motivation for this study is to improve the identification of radar signatures of 

rain events on C-band SAR images acquired over the ocean. It is often difficult to determine unambiguously 

whether a radar signature visible on a SAR image of the sea surface results from rain or another 

phenomenon. C-band radar signatures of rain are particular complex because they can consist of areas of 

increased or decreased radar backscatter relative to the background depending on rain rate, wind speed, 

incidence angle, and the time evolution of the rain event. The study of radar signatures of rain cells is a 

difficult task since concurrent data for validation are seldom available. However, we found in the archives of 

the European Space Agency (ESA) and the Canadian Space Agency (CSA) several C- band SAR images 

acquired over the ocean showing radar signatures of rain cells for which concurrent weather radar are 

available. Studies using high-resolution SAR data are also complementary to scatterometer studies for 

discriminating between the different physical mechanisms causing the variations of the radar backscatter at 

scatterometer-scale resolution (typically tens of kilometers).  

 

In order to get an insight into the physical mechanisms causing C-band radar signatures of rain, it is quite 

helpful to analyze SAR images of rain cells acquired simultaneously at different radar frequencies and 

polarizations. To this end, we have revisited data that were acquired  by 1) by a multi-frequency (S-, C-, X- 

band) and multi-polarization (HH, VV, HV) coherent scatterometer mounted on a tower located at the shore 

of the North Sea (Braun, 2002; Braun & Gade, 2006) and 2) a multi-frequency (L-, C-, and X-band) multi-

polarization (VV, HH, VH, HV) SAR flown on the spaceshuttle Endeavour in 1994 during the Spaceborne 

Imaging Radar-C/X-band SAR (SIR-C/X-SAR) mission (Jordan et al., 1995; Jameson et al. 1997; 

Melsheimer et al., 1998; Alpers & Melsheimer, 2004). Here  X, C, S, and L denote radar bands in the 
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frequency (wavelength) ranges 7.5-12 GHz (2.5- 4 cm), 3.75-7.5 GHz (4-8 cm), 2-3.75 GHz (5-8 cm), and 

1-2 GHz (15-30 cm), respectively, and  VV, HH, VH, HV denote the polarization combination at which the 

radar signals are emitted and received, e.g., VH denotes that the signal is emitted at vertical polarization and 

received at horizontal polarization. 

    The paper is organized as follows: In Section 2 we review the physical mechanisms causing the radar 

signatures of rain. In Section 3 we present several SAR images of rain events acquired by (1) the L-band 

SAR on the American satellite Seasat, (2) the multi-frequency/multi - polarization SAR from the SIR-C/X-

SAR spaceshuttle mission, (3) the C-band SAR on the European Sentinel-1A satellite, (4) the fully 

polarimetric C-band SAR on the Canadian Radarsat-2 satellite, and (4) the C-band SAR on the European 

Envisat, termed Advanced SAR (ASAR). For the Radarsat-2 SAR image and for all five Envisat SAR 

images presented in this paper we have concurrent weather radar images available for validation. In Section 

4 we discuss how these results relate to studies on the rain effects on the retrieval of ocean surface winds 

from C-band scatterometer data. In Section 5 we discuss the results presented in the previous sections, and 

in Section 6 we summarize them. In the Appendix we recall some basics of polarimetric decompostion that 

is needed for interpreting the quad-polarization  Radarsat-2 image presented in Section 3.4. 

 

2. Scattering mechanisms  

 

    In many papers dealing with radar signatures of rain over the ocean it is assumed that four physical 

processes contribute to the radar signature (for a review, see, e.g., Alpers & Melsheimer, 2004; Xu et al., 

2015): 1) scattering of the radar pulse at the sea surface whose roughness is modified by ring wave 

generation and wave damping due to turbulence caused by rain drops impinging onto the sea surface, 2) 

increase of the sea surface roughness due to downdraft winds often associated with rain cells, 3) scattering at 

splash products, i.e., at craters, stalks, crowns, and rain drops bouncing upwards, which are also generated 

by the impinging rain drops, and 4) scattering and attenuation of the radar pulse by raindrops (hydrometeors) 

in the atmosphere (volume scattering and attenuation). 
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2.1. Surface scattering  

 

    Usually radar backscattering from the sea surface at incidence angles between 25o    70o and at low to 

moderate wind speeds (< 8 m s-1) is described by Bragg scattering theory (Valenzuela, 1978; Robinson, 

2004). However, it has been realized that, in addition to Bragg scattering, also incoherent scattering from 

surface disturbances associated with by breaking waves contributes to the backscattering (Zavorotny & 

Voronovich, 2001; Kudryavtsev et al., 2003; Mouche et al., 2007). This contribution is considered to be 

important for explaining HH and cross-polarized observations. 

According to Bragg scattering theory the normalized radar cross section (NRCS) is proportional to the 

spectral energy density at the Bragg wavelength (λB), which is related to the radar wavelength (λ0) and the 

incidence angle (θ) by 

                                                      λB = λ0 / 2 sin θ                                                                  (1)       

Rain drops impinging onto the water surface generate ring waves which scatter the incident radar pulse. For 

C-band SARs with a wavelength of λ0=5.3 cm (like the ones on ERS-1, ERS-2, Envisat, Radarsat-2, and 

Sentinel-1A), the water waves responsible for the radar backscattering (the Bragg waves) have wavelengths 

in the range 3.0 cm  λB  6.7 cm (assuming 25o    70o). This wavelength range can be converted into a 

frequency range by using the dispersion relation for gravity-capillary waves 

                                                           f=1/2 gk+k3/)1/2                                                     (2) 

where f is the frequency, g  the gravitational constant (9.81 m s-1), k=2/λ,  the surface tension for water 

(0.074 N m-1), and  the density of water (1000 kg m-3). Inserting in Eq. (1) the values λ=3.0 cm and λ=6.7 

cm, we obtain f=5.0 Hz and f=8.3 Hz, respectively. Thus only those gravity-capillary waves having 

frequencies in the range 5.0 Hz  f  8.3 Hz can serve as Bragg waves in C-band radar backscattering. As 

will be discussed later, scattering mechanisms other than Bragg scattering may also contribute to surface 

scattering.  
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2.1.1. Laboratory measurements  

                        

    Ring wave generation by artificial rain has been studied extensively in the laboratory in the 1990’s and 

early 2000’s at NASA’s Wallops Flight Facility (Bliven et al., 1993, 1997) and the University of Hamburg 

(Braun, 2002; Braun et al., 2002; Braun & Gade, 2006). Bliven et al. (1997) carried out experiments at the 

Rain-Sea Interaction Facility at Wallops, where they released droplets of 2.8 mm diameter from a height of 

17 m such that the speed of the droplets when impacting onto the water surface was close to the theoretical 

terminal velocity of 7.8 m s-1. In Fig. 1 the spectral energy density of the ring waves as measured by Bliven 

et al. (1997) is depicted. It shows that the water surface gets rougher, i.e., the spectral energy density 

increases, when the rain rate increases, while the spectral shape remains very stable. The peak of the ring 

wave spectrum is located at 5.68 +/- 0.12 Hz. The frequency spectra can be converted into wavenumber 

spectra by using the dispersion relation for gravity-capillary waves (see Eq. (1)). It turns out that the spectral 

peak in the wavenumber domain is located at 1.18 rad cm-1 corresponding to 5.3 cm. (Bliven et al., 1997), 

which lies well in the wavelength range of the C-band Bragg waves (3.0 cm  λB   6.7 cm). The frequency 

range of the C-band Bragg waves (5.0 Hz  f  8.3 Hz) is marked by a thick horizontal line in Fig. 2. 

However, ring wave spectra generated by rain over the ocean depend also on the drop size distribution 

(Marshall & Palmer, 1948), which varies with rain type (Lemaire et al., 2002).  
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Fig. 1. Ring wave frequency spectrum as measured in the laboratory for rain rates of 5 (dotted line), 50 (dashed line), 

and 200 mm h-1 (solid line). The peak of all three spectra is located around 5.7 Hz. corresponding a wavelength of 5.3 

cm. The inserted thick horizontal line at the bottom marks the frequency range of those ring waves which serve as 

Bragg waves in C-band radar backscattering. Reproduced from Bliven et al. (1997). 

   

    Laboratory measurements with artificial rain employing a Ku-band (13.5 GHz) and a Ka-band (36 GHz) 

scatterometer (VV polarization, 30o incidence angle) and an ultra-high speed digital camera synchronized 

with the radar data acquisition were carried out also at the Rain-Sea Interaction Facility at Wallops 

(Sobiesky & Bliven, 1995). These measurements show that ring waves are the dominant contributors to the 

radar backscattering and that scattering at stalks is much smaller, but not negligible. Their Ku-band data 

show further that the crowns contribute 3.7%, the craters and stalks 19.1%, and the ring waves 75.2 % to the 

radar backscattering. Although all these laboratory measurements were carried out with scatterometers 

operating at higher radar frequencies than C-band, we expect that radar backscattering at splash products 

should also contribute to the radar backscattering at C-band.  

 

2.1.2. Field measurements  

 

    Radar backscattering measurements with a multi-frequency/multi-polarization scatterometer operating at 

S-band (2.4 GHz), C-band (5.3 GHz), and X-band (10 GHz) and at VV, HV, and HH polarizations were 

carried out by the University of Hamburg from a shore-based tower located at the mouth of the river Elbe in 

the German Bight of the North Sea (Braun & Gade, 2006). The Doppler spectra (not reproduced here) show 

that Bragg scattering at ring waves is the dominant scattering mechanism causing the enhancement of the C-

band co-polarized radar backscatter in the presence of rain. However, these measurements also show that at 
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cross-polarization the C-band Doppler spectrum has a strong maximum at zero Doppler frequency, i.e., at a 

frequency that is not related to the phase velocity of ring waves (Fig. 6(b) in their paper). This suggests that 

another scattering mechanism other than Bragg scattering must contribute to the C-band radar backscattering 

backscatter in the presence of rain. This could be scattering at splash products consisting of craters, crowns, 

stalks, and rain drops bouncing upwards, which are generated by rain drops splashing onto the sea surface. 

    The results of these measurements are depicted in Fig. 2. It shows the is the  ratio of the NRCS at VV 

polarization in the presence of rain and the NRCS at VV polarization in the absence of rain (o 
vv, rain/ 0

vv) 

as a function of Bragg wave number. Note that measurements at different Bragg wave numbers can be 

achieved at a fixed radar band by varying the incidence angle, see Eq. (1). Fig. 2 shows that at S-band (2.4 

GHz) rain reduces the NRCS, at C-band (5.3 GHz) it sometimes reduces and sometimes enhances it, and at 

X-band (10.0 GHz) it always enhances it. In this plot all measurements have been lumped together for 

different rain rates (up to 12 mm h-1) and wind speeds (between 4.5 and 17 m s-1). However, the data show a 

clear trend: the higher the wave number, i.e., the higher the incidence angle (see Eq. (1)), the higher is the 

ratio 0
vv, rain/0

vv, i.e., the higher is the increase in Bragg wave amplitude. Furthermore, they show that C-

band lies in the transition region between reduction and enhancement of the NRCS due to rain. However, the 

data set was too sparse for obtaining reliable quantitative information on the dependence of the ratio on rain 

rate and wind speed. The wavenumber at which the fitted curve changes sign is located near 100 rad m-1, 

corresponding to a Bragg wavelength of 6.3 cm, which lies in the lower end of the C-band Bragg 

wavenumber range (or the upper end  of the C-band Bragg wavelength range: 3.0 cm  λB   6.7 cm).  
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Fig. 2. Variation of the NRCS of ocean areas struck by rain as a function of Bragg wavenumber as inferred from data 

acquired by S-, C-, and X-band, multi-polarization scatterometers mounted on a shore-based tower. Plotted is the ratio 

of the NRCS at VV polarization in the presence of rain and in the absence of rain as a function of the Bragg 

wavenumber. The solid line denotes a linear regression to the data, and the dotted lines denote the limits of the 95% 

confidence interval of this regression. Reproduced from Braun & Gade (2006). 

 

2.2. Volume scattering and attenuation 

 

    At C-band, the attenuation and scattering of microwaves by raindrops in the atmosphere is very small for 

low to moderate rain rates at all polarizations and can be neglected. Only when the rain rate is larger than 

about 50 mm h-1 is the attenuation larger than 1 dB (Lin et al., 2001; Melsheimer et al., 2001). Lin et al. 

(2001) have analyzed a C-band SAR image acquired by the ERS-2 satellite over the coastal waters south of 

Singapore which shows radar signatures of a strong tropical squall line. They concluded from the analysis of 
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this SAR image together with weather radar images that attenuation of the radar pulse by rain drops in the 

atmosphere is the dominant mechanism in heavy rain areas (rain cores) with rain rates above 125 mm h-1. 

    Volume scattering and attenuation by rain drops (or, more precisely, by hydrometeors which denote rain 

drops in the liquid as well as in the melting phase) have also been observed on C-band SAR images acquired 

over the South American rain forest, see Fig. 3.  The Envisat ASAR image depicted in Fig. 3(a) shows a C-

band SAR image which resembles very much X-band SAR images of rain cells acquired over the tropical 

rain forests (see Fig. 1 in Melsheimer et al. (1998)  and Fig. 4 in Danklmayer et al. (2009)). The radar 

signature consists of a bright area and an adjacent dark area in the direction pointing away from the SAR 

antenna. The black arrows inserted in Fig. 3 denote the antenna look direction. We interpret the bright area 

as being caused by reflections from raindrops in the atmosphere (volume scattering), whereas the adjacent 

dark area (shadow) as being caused by rain-attenuated (blocked) radar signals from the ground. A sketch of 

the scattering geometry explaining this form of the radar signature can be found in Danklmayer et al. (2009), 

Fig. 9. Such forms of radar signatures of rain cells are less frequently observed at C-band than at X-band. 

But when they are observed, they are much weaker as evidenced by multi-frequency SAR images acquired 

over tropical rain forests during the SIR-C/X-SAR mission (Melsheimer, 1998). We suppose that such radar 

signatures are associated with very strong rain rates encountered frequently over tropical rain forest. 

    However, on C-band SAR images acquired over tropical rain forests, the radar signatures of rain cells are 

often not accompanied by adjacent dark areas (shadows). An example is shown in Fig. 3(b). Although we 

have no evidence from weather radars or other sensors, we interpret these bright features also as radar 

signatures of rain, but in this case associated with a melting layer. Melting layers, which cause very strong 

reflections, are often encountered in tropical and subtropical regions at heights of typical 4-6 km. When a 

radar pulse from a spaceborne SAR hits this layer, it is almost completely reflected and cannot penetrate into 

the lower layers where it would be attenuated by the rain drops. Thus, in this case, the bright patches caused 

by reflection are not followed by dark areas in look direction of the antenna. For more information on 

melting layers the reader is referred to the website 
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 http://www.radar.mcgill.ca/science/ex-phenomenon/ex-melting-layers.html. 

 

 

 

 

 

 

 

 

Fig. 3. (a) C-band SAR image acquired by the Advanced SAR (ASAR) onboard the Envisat satellite at VV 

polarization in the Image Mode (IM) (100 km swath width) during a descending satellite passes over the South 

American rain forest (a) on 24 April 2010 at 13:51 UTC and (b) on 10 February 2010 at 13:43 UTC. The inset black 

arrows denote the look direction of the SAR antenna. Note that in image (a) the bright patch is followed to the left by 

an adjacent dark patch caused by shadowing, while in image (b) no adjacent dark patches (shadows) are visible. 

However, since we have no concurrent measurements from other sensors, our explanation of the origin of 

the C-band radar signature presented in Fig. 3(b) remains speculative. Although we favor the melting layer 

hypothesis, we cannot exclude that the radar signature in Fig. 3(b) may result from rain drops splashing onto 

the leaves of the trees in the dense rain forest. 

 

 3. Spaceborne SAR images 

3.1. Seasat SAR image 

 

     As mentioned before, convective rain in the form of rain cells is often associated with a downdraft which 

increases the sea surface roughness (Fig. 4(a)). Rain cells have diameters of typically 5 to 20 km and appear 

(a) (b) 
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often in clusters. When there is no ambient wind, the downdraft becomes visible on a SAR image of the sea 

surface as a quasi-circular pattern, but when there is an ambient wind, the pattern is distorted and becomes 

elliptical. Fig. 4(b) shows such a downdraft pattern on a Seasat SAR image acquired over the Gulf of 

Mexico (Fu & Holt, 1982). The SAR onboard the American Seasat satellite (launched 1978) operated at a 

radar wavelength of 23.5 cm (L-band).  In contrast to radar signatures of rain caused by the mechanisms 

discussed in Section 2, the radar signature of a downdraft pattern depends very little on radar frequency. 

Although this paper deals with C-band radar signatures of rain cells, we present this L-band Seasat SAR 

image here because it shows an important feature that is also seen frequently on C-band SAR images of rain 

cells: the bright patch in the dark area in the center of the downdraft pattern. We interpret the bright patch as 

being caused by scattering at splash products generated by impinging rain drops onto the sea surface (Atlas, 

1994). It can be excluded that the bright patch in the L-band Seasat radar image results from scattering at 

rain drops in the atmosphere, because volume scattering is very small at a radar wavelength of 23.5 cm and 

can be neglected, even at very high rain rates.  

 

 

Fig. 4. (a) Schematic sketch of the downdraft of a rain cell spreading over the sea surface where it causes roughening 

of the sea surface (adapted from Atlas, 1994); (b) Seasat SAR image acquired over the Gulf of Mexico on 11 

September 1978 at 17:14 UTC showing at the upper left an elliptically-shaped bright downdraft pattern with a black 

area in the center, which contains a small bright patch. Adapted from Fu & Holt (1982).  
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3.2. SIR-C/X-SAR images 

 

    Multi-frequency, multi-polarization SIR-C/X-SAR images are of great value for getting further insight 

into the physical mechanisms causing the C-band radar signatures of rain. An example of a strong rain cell 

imaged by SIRC/X-SAR is depicted in Fig. 5. It shows that the radar signature depends strongly on radar 

frequency. At L-band, the radar signature consists at all polarizations of a dark patch (often surrounded by a 

bright area caused by downdraft), while at C-band, it consists of a bright patch, which is located in the same 

area as the dark patch in the L-band images. Since in the C-band image no dark patch is visible on the rightft 

hand side of  the bright patch, i.e., on the side furthest away from the SAR antenna (like in Fig. 3(a)), and 

since the dark and bright areas are located at the same position in the L-band image and the C-band image, 

respectively, we conclude that the bright patch in the C-band image must be caused by surface  

 

 

Fig. 5. Multi-frequency, multi-polarization SIR-C/X-SAR images acquired simultaneously at L-, C-, and X-band over 

the Gulf of Mexico on 18 April 1994 at 08:11 UTC showing the strong dependence of the radar signature on radar 

frequency and polarization. Reproduced from Melsheimer (1998). 
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scattering. The dark patches in the L-band image are caused by damping of L-band Bragg waves, which 

have wavelengths around 25 cm, by turbulence generated by the rain drops impinging onto the sea surface, 

while the bright patches in the C-band image are caused by those ring waves generated the impinging rain 

drops that match the Bragg resonance condition (see Eq. (1)) and which have wavelengths around 5 cm. A 

quantitative analysis of the variation of the NRCS along a transects through the rain cells has yielded the 

following results (Melsheimer, 1998): At L-band, VV polarization, the decrease of the NRCS relative to the 

background is around 5 dB in the rain cell area, and at C-band, VV polarization, the increase is around 2 dB. 

This is in agreement with the field measurements described in Subsection 2.1.2 and complies with the theory 

on the generation of radar signatures of rain cells presented there. 

    As discussed already in Subsection 2.1.2 and evidenced by Fig. 2, C-band radar signatures of rain cells lie 

in the transition region, where the impinging rain drops can cause a decrease or an increase of the NRCS 

depending on rain parameters, like rain rate and drop size distribution, as well as on wind speed. Since these 

parameters can be quite variable within a rain event, rain areas often manifest themselves in C-band SAR 

images of the sea surface as a mixture of bright and dark areas. This fact can be used to identify areas of 

stratified rain on C-band SAR images of the sea surface, see Figs. 13(a), 14(a), and 16(a). Large mean 

standard deviations of the NRCS are indicative for rain areas. Note that in the C-band HH- and VV-

polarization images depicted in Fig. 5 also a small area with decreased NRCS value is visible in the center of 

the downdraft pattern. This dark area is not located behind the bright area in look direction of the antenna, 

which would be an indication of attenuation of the radar beam by rain drops in the atmosphere (shadowing). 

But dark areas adjacent to bright areas located on the side furthest away from the SAR antenna caused by 

attenuation of the radar beam by rain drops in the atmosphere are not expected to occur in C-band SAR 

images, except for very high rain rates (see Subsection 2.2). However, in X-band SAR images, such pattern 

are commonly observed. At this radar band, the radar signature of rain cells is primarily caused scattering 

and attenuation at rain drops in the atmosphere.  

     The most startling feature in this set of SAR images is the large increase of the NRCS in the C-band 

cross-polarization (HV) image in the rain-struck area. NRCS scans along transects through this rain cell 
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have yielded the following results (Braun, 2002): In the rain cell, the C-band NRCS at HH and VV 

polarizations increases by 2 dB and at cross-polarization it increases by 10 dB. Clearly, this strong increase 

at cross-polarization cannot be explained by Bragg scattering within a composite surface model (Romeiser et 

al., 1997). Thus another scattering mechanism must be responsible for such an increase. One possible 

mechanism is scattering by rain drops in the atmosphere, another one is scattering at splash product 

generated by the impinging rain drops onto the sea surface. As we shall see in Subsections 3.3 and 3.4, also 

Sentinel-1A and Radarsat-2 images show a similar large increase of the NRCS at cross-polarization (up to 8 

dB) in the rain cell areas. It is very likely that this increase is caused by scattering at splash products and not 

by a poor performance of the SIR-C/X-band C-band SAR. In principle, it could be caused by a poor 

isolation between the co-polarized and the cross-polarized channels, termed “cross-talk”, which is very 

unlikely. The C-band SARs on Radarsat-2 and Sentinel-1A are known to have a very good inter-channel 

calibration. E.g., for Radarsat-2, the inter-channel isolation is better than -45 dB (Vachon & Wolfe, 2011), 

which is much lower than the NRCS values reported in this paper. 

 

3.3. Sentinel-1A image 

 

    Figs. 6(a) and 7(a) show two sub-scenes of a C-band SAR image that was acquired by the Sentinel-1A 

satellite during a descending satellite pass in the Interferometric Wide (IW) swath mode (swath width: 250 

km, resolution: 5 m x 20 m) at VV and VH polarizations on 9 June 2015 at 21:53:41 UTC over the South 

China Sea east of the Philippine island of Luzon. They show radar signatures of several rain cells. The sub-

scenes analyzed here were imaged at an incidence angle aound 40o. While the VV images show the 

downdraft pattern of the rain cells, the VH images do not show them. This is due to the fact that the NRCS 

at crosspolarization is lower than the floor of the Sentinel-1A SAR. As will be shown in Section 3.4, this is 

different from Radarsat-2 images, where downdraft patterns are also visible in VH images, because 

Radarsat-2 SAR has a much lower noise floor (-32.dB) than of the Sentinel-1A SAR (-27.5 dB). Figs. 6(c) 

and 6(d) show the variations of the NRCS along the two transects inserted in Figs. 6(a) and 6(b), and Fig. 
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7(c) and Fig. 7(d) show the variations of the NRCS along the two transects inserted in Figs. 7(a) and 7(b). 

The speed of the ambient wind was around 2.5 m s-1, i.e., around the threshold for short wave (ripple wave) 

generation. Note that the two downdraft patterns have quasi-circular shape caused by the very low ambient 

wind.  

 

 

 

Fig. 6. (a), (b) Section of a Sentinel-1A SAR image acquired on 9 June 2015 at 21:53:41 UTC over the South China 

Sea, west of the Philippine island of Luzon, showing the radar signatures of a rain cell at VH (a) and VV (b) 

polarizations; (c), (d) NRCS scans along the two transects inserted in the images.    
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Fig. 7. (a), (b) Another section of the  Sentinel-1A SAR acquired on 9 June 2015 at 21:53:41 UTC showing the radar 

signatures of two rain cells at VH (a) and VV (b) polarizations; (c), (d) NRCS scans along two transects inserted in the 

images. 

 

     Figs. 6(c) and 6(d) show along the lower (blue) transect an increase of the NRCS at VH polarization in 

the rain cell of 4 dB and at VV polarization an increase of 7 dB relative to the surrounding downdraft area.  

Figs. 7(c) and 7(d) show along the transect through the small rain cell in the upper right of the image an 

increase of the NRCS at VH polarization in the rain cell of 3.5 dB and at VV polarization an increase of 7 

dB relative to the surrounding downdraft area. However, the increase of the NRCS at VH polarization by 4 

and 3.5 dB must be considered as an underestimation because the lowest NRCS values are clearly lower 

than the NESZ of the Sentinel-1A SAR. 
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 The NRCS plots along the lower (red) transect in Fig. 7(b) shows quite impressively the variation of the 

NRCS at VV polarization caused by downdraft. The NRCS variation is almost symmetric with respect to the 

dark area visible in Fig. 7(b), which is in the center of the downdraft, where the horizontal wind should 

(theoretically) be zero. The red curve in Fig. 7(d) exhibits two maxima with values of -18 dB. At VV 

polarization and at an incidence angle of 40o, this NRCS value corresponds to a wind speed of 4.5 m s-1. 

Note that the bright area in this rain cell is located outside the dark area, which is different from the Seasat 

image (Fig. 4(b)). We interpret the dark patch in the center of the downdraft pattern in the Sentinel-1A 

image depicted in Fig. 7(b) as being caused by low wind speed. In the Seasat image, it just happened that the 

bright radar signature resulting from scattering at splash products is located in the center of the downdraft 

pattern (otherwise it would not have been detectable). However, in general, the sea surface areas hit by rain 

do not coincide with the low wind speed area in rain cells (see, e.g., also Fig. 4 of Melsheimer et al., 2001).  

 

3.4. Radarsat-2 image 

    

    A quad-polarization (fully polarimetric) SAR image of Radarsat-2 showing the radar signature of a rain 

cell for which also a concurrent weather radar image is available for validation is shown in Fig. 8. This 

image was acquired during an ascending satellite pass on 15 July 2010 at 23:27 UTC over the Atlantic 

Ocean off the coast of Florida (near Fort Lauderdale). Since this image was acquired in the quad-

polarization mode, we also could carry out a polarimetric decompostion analysis. It has been claimed, see 

e.g., Cloud & Pottier (1996) and Lee & Pottier (2009), that it is possible to identify scattering mechanisms 

causing observed radar signatures by polarimetric analysis, see Appendix. In Sub-section 3.4.1, we first 

present a multi-polarization radiometric analysis and then in Sub-section 3.4.2 a polarimetric decomposition 

analysis. 
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Fig. 8. C-band Radarsat-2 SAR image acquired in the quad-polarization mode on 15 July 2010 at 23:27 UTC off the 

coast of Florida (near Fort Lauderdale) showing the radar signature of a rain cell. (a) VV polarization image. (b) Next 

Generation Weather Radar (NEXRAD) Level III Precipitation Product (One-Hour Precipitation) on 15 July 2010 at 

23:27 UTC. The rain rates varied in the rain cell between 1 and 7 mm h-1. (c) VH polarization image.  (d) Variation of 

the NRCS at HH (blue), VV (black), HV (red), and VH (green) polarizations along the transect inserted in the images. 

 

3.4.1.  Radiometric analysis  
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    Figs. 8(a) and 8(c) show the C-band Radarsat-2 VV- and VH-polarized SAR images and Fig. 8(b) the 

Level III Preciptation Product (One-Hour Precipitation) acquired by the Next-Generation Radar (NEXRAD) 

on the same day at 23:27 UTC. NEXRAD  is a network of  high-resolution S-band Doppler weather radars 

operated by the National Weather Service (NWS) in the United States. The NEXRAD data show that rain 

rates varied in the rain cell between 1 and 7 mm h-1. The variation of the NRCS at HH, VV, HV, and VH 

polarizations along the transect inserted in the images is depicted in Fig. 8(d). Radarsat-2 acquired this 

image at an incidence angle around 40o. The NRCS plots in Fig. 8(d) show four pronouned peaks in the HH 

and VV curves, but only three pronounced peaks and one very small peak in the VH and HV curves. We 

attribute the very small peak in the HV and VH curves to the low signal-to-noise ratio in the cross-

polarization channel. As shown by Vachon & Wolfe (2011), the instrument noise floor, i. e., NESZ, lies in 

the fine quad-polarization mode of Radarsat-2 for an incidence angle of 40o between -33 and -34 dB (their 

Fig. 2), which is very close to the low value of  cross-polarization NRCS in the rain-free area. However, in 

the co-polarized channels, the NRCS values are well above the noise floor, where the NRCS at VV 

polarization in the rain-free area is around -19 dB and at HH around -22 dB. At VV polarization, this value 

is consistent with composite surface Bragg scattering theory for a wind speed of 4 m s-1. However, in the 

areas where the VV and HH NRCS curves have peaks due to the presence of rain, the VV and HH NRCSs 

are approximately equal (with the exception of the third peak) indicating non-ambiguous deviation from 

Bragg scattering. The NRCS at VV polarization varies in the rain area between 7 and 8.5 dB, at HH 

polarization between 2 and 7 dB, and at VH and HV polarizations between 6 and 8 dB.  

The increase of the crosspolarization NRCS due to rain seems to be much higher (6-8 dB) in this Radarsat-2 

image than in the two Sentinel-1A images depicted in Figs. 6 and 7 (3.5-4 dB). But this is an instrumental 

effect due to the large difference in the NESZ of both SARs, which is -32dB for Radarsat-2 SAR and -27.5 

dB for Sentinel-1A SAR. Thus the Radarsat-2  data  refelect best the strong increase of the crosspolarization 

NRCS due to scattering at splash products. The increase of the crosspolarization NRCS by 6-8 dB inferred 

from Radarsat-2 data is consistent with the increase by 10 dB inferred from C-band SIR-C/X data (see 
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Section 3.2). Differences in these NRCS values are probably due to differences in the rain rate and the 

background wind. 

3. 4.2.  Polarimetric decomposition analysis 

SAR polarimetry has been applied quite successfully to classification of land targets (Cloud & Pottier, 

1997; Lee & Pottier, 2009). It has also been applied to detection of oil floating on the sea surface 

(Migliaccio et al., 2007, 2009; Zhang et al., 2011; Skrunes et al., 2014), but its usefulness for this kind of 

application is still discussed controversially (Minchew et al., 2012). The reason is that sea areas covered 

with mineral oil or biogenic surface films have very low NRCS values, especially at cross-polarization. 

Therefore it is likely that some of the results obtained for this application are strongly affected by instrument 

noise as pointed out by Minchew et al. (2012). However, in the case of SAR imaging of rain cells, the 

situation is quite different. As shown in Subsections 3.2, 3.3 and 3.4.1, the co- and cross-polarization NRCS 

values in the rain cell areas are usually much higher than in the surrounding rain-free areas. Thus the 

analysis of fully polarimetric SAR data showing radar signatures of rain cells is quite challenging and should 

not be hampered by signal-to-noise problems as in the case of oil spill detection. 

     Several polarimetric quantities have been derived from full-polarimetric (quad-polarization) SAR data, 

among them entropy (H) and mean scattering angle (α) and anisotropy (A), see Appendix. Most often only 

the entropy and mean scattering angle are used for determining the scattering mechanisms. Figs. 9(a) and 

9(b) show maps of entropy and mean scattering angle for a section of the Radarsat-2 image depicted in Fig. 

8 around the rain cell. Fig. 9 shows that outside the rain-free areas the values of H and α are quite small 

indicating Bragg scattering. However, in the areas where the VV and HH NRCS curves (Fig. 8(d)) show 

peaks due to the presence of rain, H and α are elevated. At the peaks, the maximum values of H and α are 

0.5 and 28o, respectively. These values still lie in the section of the H/α diagram indicating surface 

scattering, see Fig. 1A of the Appendix. According to Lee & Pottier (2009), H values above 0.4 indicate 

contributions from second order and higher order surface scattering. Thus we conclude from the polarimetric 

decomposition shown in Fig. 9 that surface scattering is the dominant scattering mechanism causing the 
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radar signature of this rain cell, but there are also non-Bragg scattering (higher order scattering) 

contributions.   

 

           .  

 

Fig. 9.  Maps of (a) entropy and (b) mean scattering angle of the area around the rain cell visible on the Radarsat-2 

image depicted in Fig. 8. 

 

3.5. Envisat ASAR images 

 

    In the previous subsections we have focused on studying the radar signatures of individual rain cells with 

the aim of identifying the physical mechanism causing the observed radar signatures. In this subsection we 

present examples showing that C-band radar signatures of rain are quite variable. They can consists of areas 
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of enhanced, reduced, or enhanced/reduced NRCS values relative to the background depending on rain rate, 

drop size distribution, wind speed, and time evolution of the rain event. In all cases shown, we have checked 

the radar signatures of rain observed on the Envisat ASAR images by concurrent weather radar images. First 

we present two ASAR images showing rain events in low wind areas where the NRCS is enhanced and then 

two ASAR images showing rain events in high wind areas where the NRCS is reduced. Finally, we present 

an ASAR image of a rain band (convective rain) where the NRCS is partly increased and partly decreased.  

 

3.5.1. Case of rain with moderate rain rate in a low wind speed environment 

     Fig. 10(a) shows an Envisat ASAR image which was acquired in the Alternating Polarization (AP) Mode 

at VV and VH polarizations (incidence angle: 33.55o - 36.05o) on 20 April 2003 at 01:55 UTC over the 

Taiwan Strait west of Taiwan showing a rain event. A weather radar image acquired on the same day at 

02:00 UTC provided by the Central Weather Bureau of Taiwan is shown in Fig. 10(b). One would not 

immediately recognize that the patchy bright areas on the SAR image are radar signatures of rain. Indeed, 

we first also misinterpreted these bright features (as radar signatures of a macro-algae bloom), but the 

weather radar image then revealed that it resulted from stratiform rain. Fig. 11 shows the variation of the 

NRCS at HH and HV polarizations along the transect inserted into the HH polarization SAR image (Fig. 

10(a)). The rain rate was 12-24 mm h-1 (moderate rain) and the ambient wind was blowing with a speed of 5 

m s-1  from southeast as given by the atmospheric model of the National Centers for Environmental 

Prediction (NCEP). The NRCS at HH polarization increases in the rain area by 4 to 8 dB, while at HV 

polarization the NRCS increases only by up to 2 dB. However, these measured NRCS values at cross-

polarization are not very reliable because they lie near the noise level of the instrument. According to the 

Scheuchl & Cumming (2005), the NESZ at HV polarization lies at an incidence angle of 35o incidence for 

Envisat ASAR around -22.5 dB. 
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Fig. 10. (a) Envisat ASAR image acquired in the Alternating Polarization Mode at HH polarizations during a 

descending satellite path over the Taiwan Strait west of Taiwan on 20 April 2009 at 01:55 UTC showing radar 

signatures of rain. Inserted is the look direction of the SAR antenna (thick white arrow) and the transect along which 

the variations of the NRCS at HH and HV polarizations has been determined, see Fig. 11. (b) Weather radar image 

acquired on 20 April 2009 at 02:00 UTC (10:00 LT). The rain rate was 12-24 mm h-1 as and the ambient wind was 5 

m s-1 from southeast.  
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Fig. 11. Variation of the NRCS at HH and HV polarizations along the transect inserted into the Envisat dual 

polarization ASAR image depicted in Fig. 10(a). 

 

3.5.2. Case of rain with high rain rate in a low wind speed environment  

      Fig. 12  shows an Envisat ASAR image acquired in the Image Mode (100 km swath width) at VV 

polarization on 16 June 2008 at 14:22 UTC over the Pearl River delta (west of Hong Kong) together with 

the weather radar image acquired on the same day at 14:18 UTC (22:18 LT) by the Hong Kong Observatory. 

They show an extended rain area with rain rates between 10 and 50 mm h-1. A weak ambient wind with a 

speed of 2-4 m s-1 was blowing from southeast as given by the NCEP model. A close inspection of the SAR 

image reveals that the rain area has a quite inhomogeneous texture (variation of the NRCS by +/- 1 dB) and 

that there are small, slightly bright patches at the rim of the rain area. Also in this case, the NRCS is 

increased in the rain area. In the adjacent area south of the rain area is visible also an area of increased 

NRCS, but there is no rain. In this case it is due to downdraft winds from rain cells located further south, see 

Fig. 12(b).  
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Fig. 12. (a) Envisat ASAR image acquired in the Image Mode (100 km swath width) at VV polarization over the Pearl 

River delta on 16 June 2008 at 14:22 UTC showing the radar signature of a large rain area located in the Pearl River 

delta (inside the white ellipse) as a bright area. The white arrow denotes the look direction of the SAR antenna. (b) 

Weather radar image of the Hong Kong Observatory acquired on 16 June 2008 at 14:18 UTC (22:18 LT). The rain 

rate in the circled region varied between 10 and 50 mm h-1 and the ambient wind was 2-4 m s-1 from southeast. 

 

3.5.3.Case of a squall line with high rain rate in a high wind speed environment 

 

Fig. 13 shows an Envisat VV polarization ASAR image acquired on 6 August 2008 over the South China 

Sea off the coast of Hong Kong on 6 August 2008 at 14:18 UTC together with the weather radar image 

acquired on the same day at 14:18 UTC (22:18 LT) by the Hong Kong Observatory. They show the radar 

signature of a squall line in which the rain rate varied between 30 and 75 mm h-1. A strong ambient wind 

with a speed of 12-14 m s-1 was blowing from southeast as given by the NCEP model. Here the radar 

signature consists mainly of areas of reduced NRCS values caused by wave damping due to turbulence. A 
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scan along a transect crossing the dark band (not reproduced here) shows a reduction of the NRCS by 1.8 

dB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13.  (a) Envisat ASAR VV polarization image acquired in the Image Mode over the South China Sea off the coast 

of Hong Kong on 6 August 2008 at 14:18 UTC showing radar signatures of a squall line. (b) Weather radar image of 

the Hong Kong Observatory acquired on 6 August 2008 at 14:18 UTC (22:18 LT). Here the squall line appears in the 

SAR image as an area of predominantly reduced NRCS (dark grey tone in the image). The rain rate in the squall line 

varied between 30 and 75 mm h-1 (heavy rain) and the ambient wind was 12-14 m s-1 from southeast. 

 

3.5.4. Case of rain with  low rain rate in a high wind speed environment  

     Fig. 14(a) shows an Envisat HH polarization ASAR image acquired on 9 December 2011 at 21:18 UTC 

in the Wide Swath Mode the southern North Sea and Fig. 14(b) the weather radar image acquired on the 

same day at 21:15 UTC (22:15 LT) by the German Weather Service (DWD). They show a large area of 

stratified rain with light to moderate rain rates (1 to 5 mm h-1). Fig. 15(a) shows a strong ambient wind with 
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a speed of 12-14 m s-1 was blowing from northwest as given by the NCEP model. This SAR image has in 

the rain area a quite inhomogeneous texture with variations of the NRCS by up to 4 dB. The radar signature 

consists mainly of areas of reduced NRCS values caused by wave damping due to turbulence, but also of 

some areas of increased NRCS values relative to the background, which we attribute to downdraft winds. 

Fig. 15(a) shows the surface wind field as given by the NCEP model and Fig.15(b) the sea surface wind 

field derived from the ASAR image using the C-band Wind Scatterometer Model Function version 4 

(CMOD4; Stoffelen & Anderson, 1997) and the wind direction given by the NCEP model valid for 21:00 

UTC. The ASAR image (Fig. 14(a)) shows in the rain area mainly areas of reduced NRCS intermixed with 

areas of enhanced NRCS. Comparing the NCEP winds (Fig. 15(a)) and the SAR-derived winds (Fig. 15(b)), 

one can see that the reduction dominates leading to an apparent reduction in wind speed in the rain area. 

 

 

Fig. 14. (a) Envisat ASAR image acquired in the Wide Swath Mode (405 km swath width) at HH polarization over the 

southern North Sea on 9 December 2011 at 21:18 UTC showing the radar signature of a broad rain area. The white 

arrow denotes the look direction of the SAR antenna. (b) Weather radar image of the German Weather Service 

acquired on 9 December 2011 at 21:15 UTC (22:15 LT). The rain rate in the area marked by a white rhombus varied 

between 1 and 5 mm h-1 and the ambient wind was 12-14 m s-1 from northwest. 
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Fig. 15. (a) Wind field given by the NCEP model, valid for 9 December 2011 at 21:00 UTC; (b) Wind field retrieved 

from the Envisat ASAR image depicted in Fig. 14(a) by using the wind direction from the NCEP model valid for 9 

December 2011at 21:00 UTC. The arrows over land denote the wind direction as given by the NCEP model. 

3.5.5. Case of a rain band with high rain rate in a low wind speed environment 

      Fig. 16 shows an Envisat ASAR image acquired on 18 August 20112011 at 02:27 UTC in the Wide 

Swath Mode (swath width: 405 km) over the South China Sea south of Hong Kong on which a rain band 

along a weak wind front (in the center) is visible and also several rain cells (in the lower left section). The 

incidence angle range is from 16o to 42o. Note that the look direction of the SAR antenna is from the left 

(thick white arrow) such that the dark areas cannot result from shadowing as discussed in Section 2.2 (Fig. 

3(a)). Instead, we interpret the dark patches as being caused by attenuation of the C-band Bragg scattering 

waves by the rain-induced turbulence. The time series of the weather radar images show that the rain band 

was moving westward with a speed of approximately 33 km h-1. Thus part of the dark patches may still 

result from damping of the Bragg waves by turbulence after it has stopped raining. A weak ambient wind 

with a speed of 2-4 m s-1 was blowing from east as given by the NCEP model. We interpret the bright 

patches as being caused by scattering at ring waves and partly also by scattering at splash products.  
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     Fig. 17(a) shows the weather radar image acquired on 18 August 2011 at 02:24 UTC (10:24 LT) by the 

Hong Kong Observatory and Fig. 17(b) the vertical profile of the reflectivity along the transect inserted in 

Fig. 17(a). The rain rate was up to 50 mm h-1. Note that there is no melting layer and that in this weather 

radar image the radar reflectivity is quite variable in the horizontal as well as in the vertical direction. 
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Fig. 16.  Envisat ASAR images acquired in the Wide Swath Mode (WSM) at VV polarizations during a descending 

satellite path over the South China Sea south of Hong Kong on 18 August 2011 at 02:27 UTC showing the radar 

signature of a rain band (inside the inserted rhombus). Inserted in the image are the look direction of the SAR antenna 

(thick white arrow) and the location of Hong Kong (HK). The rain rate in the rain band was up to 50 mm h-1 and the 

ambient wind was 2-4 ms-1 from east. 

 

 

 

Fig. 17. (a) Weather radar image acquired on 18 August 2011 at 02:24 UTC (10:24 LT), 3 minutes before the ASAR 

image depicted in Fig. 16 was acquired, It shows a rain band stretching south into the South China Sea, which is also 

visible in Fig. 16 inside the inserted white rhombus. (b) Vertical profile of the radar reflectivity along a transect 

through the rain band visible in Panel (a). 
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4. Effect of rain on C-band scatterometer data 

    The effect of rain on C-band scatterometer data has been investigated by Nie and Long (2007) using data 

of the wind scatterometer of the Active Microwave Instrument (AMI) onboard the European Remote 

Sensing (ERS) satellites, and by Lin et al. (2013) using data of the Advanced Scatterometer (ASCAT) 

onboard the European MetOp satellites. Note, that the spatial resolution of scatterometers is much larger 

than of SARs, typically 25 km x 25 km. For estimating rainfall, Nie and Long (2007) used data of the 

Tropical Rainfall Mission’s (TRMM) Precipitation Radar (PR). They found that the rain-induced C-band 

NRCS increases with rain rate and that the effect of rain has a more significant impact on the measurements 

at high incidence angles than at low incidence angles. This is in accordance with our findings that the rain-

induced enhancement of the NRCS increases with Bragg wavenumber (see Fig. 2). 

   The increase of the C-band NRCS with rain rate is also evident in ASCAT data as shown by Lin et al. 

(2013), see Fig.18. They were running the Wind Data Processor of the European  
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Fig. 18. C-band area-mean NRCS (σo) retrieved from ASCAT data (VV polarization) as a function of wind speed for 

different rain rates for different Wind Vector Cells (WVC) (a) WVC-mean NRCS for WVC number 11 measured by 

the fore-beam at an incidence angle of 52.8o; (b) Same, but measured by the mid-beam at an incidence of 41.7o.  

Reproduced from Lin et al. (2013).  

 

Organization for the Exploitation of Meteorological Satellites (EUMETSAT) for 6 months, with and without 

the rain correction model, and using for validation collocated rain data of the Microwave Imager (TMI) of 

TRMM and model winds from the European Centre for Medium Range Weather Forecasts (ECMWF). Fig. 

18 shows the mean NRCS from the Wind Vector Cell (WVC) number 11 as a function of wind speed for 

different rain rates. In order to retrieve two-dimensional wind fields, ASCAT measures the radar 

backscattering of a cell on the sea surface from three different directions by three beams: the fore-beam, the 

mid-beam, and the aft-beam, which are separated by 45o in azimuth. In Fig. 18(a) and Fig. 18(b) are depicted 

the data from the fore-beam and the mid-beam, which, for WVC 11, have incidence angles of 52.8o and 

41.7o, respectively. The plots show that the rain-induced C-band NRCS (difference between the total NRCS 

and the NRCS in the absence of rain) increases with rain rate, but decreases with wind speed. At a wind 

speed of about 12 m s-1, the impact of rain on the NRCS is close to zero. In particular Fig. 18(b) shows that 

above 14 m s-1, the impact of rain on the NRCS becomes negative, i.e., rain reduces the NRCS. Note that the 

data plotted in Fig, 18(b) are mid-beam data, i.e., the data are captured at a higher incidence angle (41.7o) 

than the data from the fore-beam (52.8 o). Since the radar backscattering from the mid-beam is caused by 

Bragg waves with longer wavelengths (see Eq. (1)), damping of the Bragg waves by rain-induced turbulence 

is stronger at lower incidence angles, which agrees with the findings presented in Section 2.1.     

    However, some care has to be taken when interpreting on C-band scatterometer data with respect to rain 

effects. Since scatterometers have a much coarser resolution than SARs, they cannot resolve individual rain 

cells. Some of the observed variations in NRCS may be due to an increase of in wind speed due to 
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downdrafts associated with rain cells and not due to an increase of the sea surface roughness caused by 

scattering at ring waves or splash products  (Portabella, private communication). 

 

 

5. Discussion 

     The radar signatures of rain are particularly complex at C-band, and it is often difficult to identify 

features visible on C-band SAR images as radar signatures of rain. Rain cells can be easily identified on C-

band SAR images of the sea surface when they are associated with downdraft, i.e., with wind roughening the 

sea surface. But rain cells are not always accompanied by downdraft. Rain becomes visible on C-band radar 

images of the ocean also because the impinging rain drops (1) generate ring waves and thereby increase the 

small-scale sea surface roughness and thus the radar backscatter, (2) generate turbulence in the upper water 

layer and thereby decrease the sea surface roughness and thus the radar backscatter, and (3) generate splash 

products consisting of stalks, craters, crowns, and rain drops bouncing upwards which also causes increase 

of radar backscattering. However, details of this last scattering mechanism await further investigations. 

Usually it is assumed that scattering and attenuation of the radar beam by rain drops in the atmosphere do 

not contribute to the C-band radar signature of rain over the ocean at all rain rates. But Envisat ASAR 

images acquired over the South American rain forest, one of which is shown in Fig. 3, and an ERS-1 SAR 

image acquired over the coastal waters south of Singapore, which was analyzed in the paper by Lin et al. 

(2001), prove that this assumption is not true. However, we expect that scattering and attenuation by rain 

drops in the atmosphere becomes a significant factor in C-band radar signatures of rain over the ocean only 

when the rain rate is very high (>50 mm h-1). Unfortunately, we have found in the archives of ESA and CSA 

no C-band SAR images acquired over the ocean, on which radar signatures of rain cells, like the one visible 

on the Envisat ASAR image acquired over the South American rain forest (Fig. 3(a)), can be delineated. 

This is probably due to the fact that rain events with very high rain rates (>50 mm h-1) are very rare events 

and the probability to capture them by spaceborne SARs is very low. On the other hand, bright patches 
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associated with rain cells have been observed occasionally on X-band SAR images, but there they are caused 

by scattering at raindrops in atmosphere. 

     Polarimetric decomposition analysis of the Radarsat-2 image shown in Fig. 8 has yielded the result that 

surface scattering is the only mechanism causing the radar signature of this rain cell imaged by Radarsat-2 

and that also higher order surface scattering mechanisms are involved. 

     In the analysis of SAR images acquired by the C-band SAR onboard the spaceshuttle Endeavor during 

the SIR-C/X-SAR mission and onboard the Envisat and Radarsat-2 satellites, we have observed strong 

increases of the NRCS at co- and cross-polarizations in rain cell areas. One possible explanation is scattering 

at splash products as proposed by Atlas (1994) and Wetzel (1990). But also other scattering mechanisms 

have been proposed. One of them is the direct-reflected scattering mechanism proposed by Jameson et al. 

(1997), in which the microwaves are reflected at the sea surface and then scattered by raindrops above the 

sea surface. A similar mechanism has been invoked by Durden et al. (1989) and Chauhan et al. (1991) to 

explain the often measured large co-polarized radar return from vegetation. In this case, the radar pulse is 

reflected by the rough soil surface and scattered at leaves and stalks. Also low-salinity "puddles" in the 

upper water layer generated by heavy rain as suggested by Wijesekera & Gregg (1996) might contribute to 

the scattering mechanism since the penetration depth of the microwaves in freshwater is larger than in salt 

water, and volume scattering by density inhomogeneity in water can cause depolarization (Valenzuela, 

1978). Another mechanism could be scattering at steep slopes at the rim of the craters generated by the 

impinging rain drops. 

    Finally, we would like to draw the attention of the reader to the similarity of the radar signature of rain 

over the South American rain forest visible in Fig. 3(b) and the bright section within the radar signature of 

the rain cell over the ocean visible in Fig. 6 and 7.  One could speculate that the underlying scattering 

mechanisms are similar: (1) scattering of the radar pulse at leaves, twigs or stalks of the trees and then 

interacting resonantly with rain drops reflected by them and (2) scattering of the impinging radar pulse at the 

rough sea surface and then interacting resonantly with rain drops bouncing upwards. However, the 

polarimetric decomposition analysis presented in Section 3.4.2 does not support this interpretation. 
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6. Summary 

     Rain over the ocean affects the radar backscatter, which is of importance for retrieving sea surface wind 

information from scatterometer data and for determining the origin of features visible on SAR images of the 

sea surface correctly. This paper has been aimed at identifying the physical mechanisms causing C-band 

radar signatures of rain over the ocean. C-band radar signatures are especially complex because they get 

contributions from several scatter and attenuation mechanisms. The main parameters determining the C-

band radar signatures of rain over the ocean are rain rate and wind speed. A puzzling observation is that rain 

cells manifest themselves on C-band SAR images often as bright patches caused by a strong increase of the 

co-polarized radar backscatter, which is accompanied by a strong increase of the cross-polarized radar 

backscatter. 

    In order to get an insight into scattering mechanisms causing the observed C-band radar signatures of rain 

over the ocean, we have resorted to laboratory and field measurements carried out more than 15 years ago in 

the US (NASA’s Wallops Flight Facility) and Germany (University of Hamburg). Furthermore, we have 

resorted to space-borne SAR data acquired by the L-band SAR on Seasat (1978) and the X-, C-, and L-band 

multi-polarization SAR flown on a spaceshuttle during the SIR-C/X-SAR mission in 1994. An example of a 

multi-frequency/ multi-polarization SIR-C/X-SAR SAR image of a rain cell in the Gulf of Mexico is 

depicted in Fig. 5. It shows that the radar signature of a rain cell depends strongly on radar frequency and 

polarization.  Then we have analyzed radar signatures of rain cells visible on a dual-polarization (VV and 

VH) Sentinel-1A SAR image and on a quad-polarization (VV, HH, VH, and HV) Radarsat-2 image. Finally, 

we presented 5 representative Envisat ASAR images of rain events over the ocean together with collocated 

weather radar images, which support our interferences on the origin of C-band radar signatures of rain over 

the ocean. 

     We conclude from a synopsis of results obtained from laboratory and field measurements and from the 

analysis of space-borne SAR images showing radar signatures of rain over the ocean the following:  
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1)  C-band radar signatures of rain can be positive or negative, i.e., the NRCS can be enhanced or 

reduced relative to the background. Enhancement is caused by scattering at ring waves and splash 

products generated by rain drops impinging onto the sea surface and by downdraft winds associated 

with rain cells. Reduction is caused by attenuation of the Bragg waves due to turbulence generated 

by the rain drops impinging onto the sea surface. Whether the NRCS is enhanced or reduced depends 

on rain rate, wind speed, incidence angle, rain drop distribution, and history of the rain event. We 

were unable to give quantitative results about these dependencies on these parameters, because of the 

limited data set and the variability of rain events. However, we were able extract the  following 

trends:  

a) At low to medium ambient winds ( 10 m s-1) and low to medium rain rates ( 50 mm h-1), Bragg 

scattering at ring waves and scattering at splash products are the dominating contributors to the 

C-band radar signature of rain causing enhancement of the NRCS. Since the maximum of the 

ring wave spectrum lies in range of the wavelengths of C-band Bragg waves, C-band radars are 

particularly responsive to ring waves (Fig. 2). The spectrum of the ring waves increases with rain 

rate (Fig. 1), which implies that, according to Bragg scattering theory, also the NRCS increases 

with rain rate. This agrees with statistical analyses carried out by Lin et al. (2013) using ASCAT, 

TRMM/TMI, and model wind data.        

b) At high ambient winds (10 m s-1) and at low to high rain rates (but  50 mm h-1), rain causes 

reduction of the C-band NRCS relative to the background. The higher the rain rate, the stronger 

is the reduction. We attribute this to the damping to turbulence generated by the impinging rain 

drops. 

Typical measured values for the variation of the C-band NRCS due to rain are: -3 dB   o 
rain    

+7 dB. At L-band, where the Bragg waves have wavelengths around 25 cm, damping of  ring 

waves by turbulence always dominates, which implies that the NRCS in  rain areas is always 

reduced relative to the background. However, at L-band, like at all other radar bands, the NRCS 

increases when downdraft winds are present. 
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2. At C-band, the sensitivity to rain increases with increasing incidence angle. This can be 

explained by the fact that the Bragg wavelength decreases with incidence angle (see Eq. (1)). The 

shorter the Bragg wavelength, the stronger is the scattering at ring waves leading to an 

enhancement of the NRCS. This agrees with the findings of Nie and Long (2007) and Lin et al. 

(2013), see Fig. 18. 

3. Since, in general, the rain rate varies spatially and temporally during a rain event, C-band radar 

signatures of rain often consists of adjacent areas of enhanced and reduced NRCS values (relative 

to the ambient rain-free and downdraft-free area).  At the initial stage of the rain event, the 

turbulence in the upper water layer is not fully developed and thus its damping effect on the 

water waves is small. On the other hand, after it has stopped raining, the turbulence does not 

decay immediately (the lifetime of the turbulence is on the order of a minute) and it keeps 

damping the Bragg waves even after it has stopped raining.  

4. At very high rain rates (probably above 50 mm h-1) scattering and attenuation of the radar pulse 

by rain drops in the atmosphere can also contribute to the C-band radar signatures of rain. This 

has been inferred from Envisat ASAR images acquired over the South American rain forest (Fig. 

3(a)). We have speculated that bright patches, which are often visible on C-band SAR images of 

tropical rain forests and not accompanied by dark shadows, result from scattering at the melting 

layer (Fig. 3(b)). 

5. The bright patches often observed in C-band co-polarized SAR images in downdraft patterns (see 

Figs. 4, 6, 7, 8), but also at wind fronts (see Fig. 3 in Alpers et al., 2012 and Fig. 6 in Alpers et 

al., 2015) are caused by surface scattering. The strongest argument in support of this hypothesis 

comes from L-band Seasat SAR images, on which occasionally also such bright patches are 

observed (Fig. 4). The long wavelength of the Seasat SAR (23.5 cm) precludes that the bright 

patches are caused by volume scattering by raindrops in the atmosphere. Also the polarimetric 

decomposition analysis of a Radarsar-2 image of a rain cell supports the surface scattering 

hypothesis. 
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6. The scattering mechanism causing the bright patches in C-band, co-polarized SAR images of rain 

cells could not be determined. It must be associated with a non-Bragg scattering mechanism 

since the co-polarized radar signatures of rain cells are approximately equal (Fig. 8(d)) and the 

large co-polarized radar signatures of rain cells are always accompanied by a large cross-

polarization radar signature (Figs. 6, 7, 8). One possible explanation is scattering at splash 

products as proposed by Atlas (1994), but also other mechanism have been proposed: 1) 

reflection of the microwave at the sea surface and then scattered by raindrops above the sea 

surface, 2) scattering at low-salinity "puddles" in the upper water layer generated by heavy rain, 

and 3) scattering at steep slopes at the rim of the craters generated by the impinging rain drops. 

7. It is very unlikely that the strong increase of the cross-polarized NRCS in rain cells areas is 

caused by an instrumental effect, i.e., by crosstalk between the co-polarized and cross-polarized 

channels. At least, this can be excluded for Radarsat-2, where the inter-channel crosstalk is better 

than -45 dB (Vachon & Wolfe, 2011). This value is much lower than the lowest measured cross-

polarized NRCS (-32 dB) in the Radarsat-2 scene depicted in Fig. 8. 

     Although we could not present a quantitative theory explaining the observed C-band radar signatures of 

rain, we hope that the synopsis of data from laboratory and field measurements and from the analysis of 

space-borne SAR data presented in this paper will be helpful for remote scientists to better identify radar 

signatures of rain on C-band SAR images of the sea surface. Furthermore, we hope that they will help in 

developing a quantitative theory of C-band radar signatures of rain over the ocean. There is a pressing 

demand for such a theory since many C-band SARs and scatterometers will be flying in space in the near 

future, the data of which will be used to retrieve near surface winds over the ocean. Rain is a main source of 

error in these data, especially when co- and cross-polarized data are used together in wind retrieval 

algorithms.  
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Appendix 

Polarimetric decompostion 

    Polarimetric SAR measures microwave reflectivity using quad-polarization HH, HV, VH, and VV to form 

the scattering matrix. In the case of distributed targets, the scattering is described by the coherency or 

covariance matrix. Measurement of the full scattering matrix allows the identification and/or separation of 

different scattering mechanisms occurring inside the same resolution cell. Polarimetric decompostion 

parameters are derived from these second order matrices and from them radar observables, like 

(polarimetric) entropy (H), mean scattering angle (), and anisotropy (A). (For an extended review the 

reader is referred to the book of Lee & Pottier, 2009 and Pottier, 2014). Most often only the entropy and 

mean scattering angle are used for determining the scattering mechanisms. A diagram showing the different 

scattering mechanisms in H/ α space, which is widely used in polarimetric studies of land surfaces (see, e.g., 

Lee & Pottier, 2009; Ouarzeddine et al., 2007), is depicted in Fig. A1. H is a measure for the randomness of 

the scattering process and takes values between 0 and 1. Small values of H indicate that surface scattering 

mechanism is dominant. The mean scattering angle α takes values between 0o and 90 o. It is used as an 

indicator of the dominating scattering mechanism. When α is small, the scattering mechanism is Bragg 

scattering, and when α is large, double bounce scattering is present (Zhang et al., 2011; Skrunes et al., 2014). 

When the entropy increases, the number of identifiable scattering mechanisms decreases. The most common 

elementary scattering mechanisms are surface, dihedral and volume (or multiple) scattering. 
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Anisotropy (A) can only be employed as a source for discrimination when H ≥ 0.7 (Lee & Pottier, 

2009). Since in our case H  0.7, we need not to consider A. The H and α maps depicted in Fig. 9(a) and 

9(b) show that H is everywhere smaller than 0.5 and α is smaller than 30o, which implies that the scattering 

falls into Section 7 of Fig. A1, which indicates that the scattering mechanism is surface scattering.  

 

 

 

Fig. A1. Scattering mechanism as identified in the H/ plane. Reproduced from Pottier (2007). 
 

     

 

 

Figure captions: 

 

Fig. 1. Ring wave frequency spectrum as measured in the laboratory for rain rates of 5 (dotted line), 50 (dashed line), 

and 200 mm h-1 (solid line). The peak of all three spectra is located around 5.7 Hz. corresponding a wavelength of 5.3 
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cm. The inserted thick horizontal line at the bottom marks the frequency range of those ring waves which serve as 

Bragg waves in C-band radar backscattering. Reproduced from Bliven et al. (1997). 

 

Fig. 2. Variation of the NRCS of ocean areas struck by rain as a function of Bragg wavenumber as inferred from data 

acquired by S-, C-, and X-band, multi-polarization scatterometers mounted on a shore-based tower. Plotted is the ratio 

of the NRCS at VV polarization in the presence of rain and in the absence of rain as a function of the Bragg 

wavenumber. The solid line denotes a linear regression to the data, and the dotted lines denote the limits of the 95% 

confidence interval of this regression. Reproduced from Braun & Gade (2006). 

 

Fig. 3. (a) C-band SAR image acquired by the Advanced SAR (ASAR) onboard the Envisat satellite at VV 

polarization in the Image Mode (IM) (100 km swath width) during a descending satellite passes over the South 

American rain forest (a) on 24 April 2010 at 13:51 UTC and (b) on 10 February 2010 at 13:43 UTC. The inset black 

arrows denote the look direction of the SAR antenna. Note that in image (a) the bright patch is followed to the left by 

an adjacent dark patch caused by shadowing, while in image (b) no adjacent dark patches (shadows) are visible. 

 

Fig. 4. (a) Schematic sketch of the downdraft of a rain cell spreading over the sea surface where it causes roughening 

of the sea surface (adapted from Atlas, 1994); (b) Seasat SAR image acquired over the Gulf of Mexico on 11 

September 1978 at 17:14 UTC showing at the upper left an elliptically-shaped bright downdraft pattern with a black 

area in the center, which contains a small bright patch. Adapted from Fu & Holt (1982).  

 

Fig. 5. Multi-frequency, multi-polarization SIR-C/X-SAR images acquired simultaneously at L-, C-, and X-band over 

the Gulf of Mexico on 18 April 1994 at 08:11 UTC showing the strong dependence of the radar signature on radar 

frequency and polarization.  Reproduced from Melsheimer (1998). 

 

Fig. 6. (a), (b) Section of a Sentinel-1A SAR image acquired on 9 June 2015 at 21:53:41 UTC over the South China 

Sea, west of the Philippine island of Luzon, showing the radar signatures of a rain cell at VH (a) and VV (b) 

polarizations; (c), (d) NRCS scans along the two transects inserted in the images.    
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Fig.7. (a), (b) Another section of the  Sentinel-1A SAR acquired on 9 June 2015 at 21:53:41 UTC showing the radar 

signatures of two rain cells at VH (a) and VV (b) polarizations; (c), (d) NRCS scans along two transects inserted in the 

images. 

 

Fig. 8. C-band Radarsat-2 SAR image acquired in the quad-polarization mode on 15 July 2010 at 23:27 UTC off the 

coast of Florida (near Fort Lauderdale) showing the radar signature of a rain cell. (a) VV polarization image. (b) Next 

Generation Weather Radar (NEXRAD) Level III Precipitation Product (One-Hour Precipitation) on 15 July 2010 at 

23:27 UTC. The rain rates varied in the rain cell between 1 and 7 mm h-1. (c) VH polarization image.  (d) Variation of 

the NRCS at HH (blue), VV (black), HV (red), and VH (green) polarizations along the transect inserted in the images. 

 

Fig. 9.  Maps of (a) entropy and (b) mean scattering angle of the area around the rain cells visible on the Radarsat-2 

image depicted in Fig. 8. 

 

Fig. 10. (a) Envisat ASAR image acquired in the Alternating Polarization (AP) Mode at HH polarizations during a 

descending satellite path over the Taiwan Strait west of Taiwan on 20 April 2009 at 01:55 UTC showing radar 

signatures of rain. Inserted is the look direction of the SAR antenna (thick white arrow) and the transect along which 

the variations of the NRCS at HH and HV polarizations has been determined, see Fig. 11. (b) Weather radar image 

acquired on 20 April 2009 at 02:00 UTC (10:00 LT). The rain rate was 12-24 mm h-1 as and the ambient wind was 5 

m s-1 from SE.  

Fig. 11. Variation of the NRCS at HH and HV polarizations along the transect inserted into the Envisat dual 

polarization ASAR image depicted in Fig. 10(a). 

Fig. 12. (a) Envisat ASAR image acquired in the Image Mode (100 km swath width) at VV polarization over the Pearl 

River delta on 16 June 2008 at 14:22 UTC showing the radar signature of a large rain area located in the Pearl River 

delta (inside the white ellipse) as a bright area. The white arrow denotes the look direction of the SAR antenna. (b) 

Weather radar image of the Hong Kong Observatory acquired on 16 June 2008 at 14:18 UTC (22:18 LT). The rain 

rate in the circled region varied between 10 and 50 mm h-1 and the ambient wind was 2-4 m s-1 from SE. 
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Fig. 13.  (a) Envisat ASAR VV polarization image acquired in the Image Mode over the South China Sea off the coast 

of Hong Kong on 6 August 2008 at 14:18 UTC showing radar signatures of a squall line. (b) Weather radar image of 

the Hong Kong Observatory acquired on 6 August 2008 at 14:18 UTC (22:18 LT). Here the squall line appears in the 

SAR image as an area of predominantly reduced NRCS (dark grey tone in the image). The rain rate in the squall line 

varied between 30 and 75 mm h-1 (heavy rain) and the ambient wind was 12-14 m s-1 from SE. 

 

Fig. 14. (a) Envisat ASAR image acquired in the Wide Swath Mode (405 km swath width) at VV polarization over the 

southern North Sea on 9 December 2011 at 21:18 UTC showing the radar signature of a broad rain area. The white 

arrow denotes the look direction of the SAR antenna. (b) Weather radar image of the German Weather Service 

acquired on 9 December 2011 at 21:15 UTC (22:15 LT). The rain rate in the area marked by a white rhombus varied 

between 1 and 5 mm h-1 and the ambient wind was 12-14 m s-1 from NW. 

Fig.15. (a) Wind field given by the NCEP model, valid for 9 December 2011 at 21:00 UTC; (b) Wind field retrieved 

from the Envisat ASAR image depicted in Fig. 14(a) by using the wind direction from the NCEP model valid for 9 

December 2011at 21:00 UTC. 

Fig. 16.  Envisat SAR images acquired in the Wide Swath Mode (WSM) at VV polarizations during a descending 

satellite path over the South China Sea south of Hong Kong on 18 August 2011 at 02:27 UTC showing the radar 

signature of a rain band. Inserted is in the image the look direction of the SAR antenna (thick white arrow) and the 

location of Hong Kong (HK). The rain rate in the rain band was up to 50 mm h-1 and the ambient wind was 2-4 ms-1 

from E. 

Fig. 17. (a) Weather radar image acquired on 18 August 2011 at 02:24 UTC (10:24 LT). (b) Vertical profile of the 

radar reflectivity along the transect inserted in the weather radar image (a). 

Fig. 18. Mean NRCS (σo) retrieved from ASCAT data (VV polarization) as a function of wind speed for different rain 

rates. (a) NRCS measured by ASCAT at the Wind Vector Cell (WVC) number 11 by the fore-beam at an incidence 

angle of 52.8o; (b) Same, but measured by the mid-beam at an incidence of 41.7o.  Reproduced from Lin et al. (2013).  

Fig. A1. Scattering mechanism as identified in the H/ plane. Reproduced from Pottier (2007). 




