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Abstract – The move toward an ecosystem-based fisheries management (EBFM) requires new operational tools in or-
der to support management decisions. Among them, ecosystem- and fisheries-based models are critical to quantitatively
predict the consequences of future scenarios by integrating available knowledge about the ecosystem across different
scales. Despite increasing development of these complex system models in the last decades, their operational use is still
currently limited in Europe. Many guidelines are already available to help the development of complex system models
for advice yet they are often ignored. We identified three main impediments to the use of complex system models for
decision support: (1) their very complexity which is a source of uncertainty; (2) their lack of credibility, (3) and the
challenge of communicating/transferring complex results to decision makers not accustomed to deal with multivariate
uncertain results. In this paper, we illustrate these somehow theoretical “best practices” with tangible successful ex-
amples, which can help the transfer of complex system models from academic science to operational advice. We first
focus on handling uncertainty by optimizing model complexity with regards to management objectives and technical
issues. We then list up methods, such as transparent documentation and performance evaluation, to increase confidence
in complex system models. Finally, we review how and where complex system models could fit within existing institu-
tional and legal settings of the current European fisheries decision framework. We highlight where changes are required
to allow for the operational use of complex system models. All methods and approaches proposed are illustrated with
successful examples from fisheries science or other disciplines. This paper demonstrates that all relevant ingredients
are readily available to make complex system models operational for advice.
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1 Introduction

In 2012, the European Commission (EC) asked the Inter-
national Council for the Exploration of the Sea (ICES) for an
implementation plan for provision of ecosystem-based advice.
ICES proposed a roadmap, defined by eco-regions, with suc-
cessive milestones for the provision of support regarding Max-
imum Sustainable Yield (MSY) limits, data-limited stocks,
mixed fisheries advice, multi-species, and wider ecosystem
(ICES 2013a). It also plans that the influence on advice of
other European initiatives such as the Marine Strategy Frame-
work Directive (MSFD) and Marine Spatial Planning (MSP)
be accounted for as they develop. Four years later, while the
roadmap predicts that ICES should start providing “wider
ecosystem” advice for most eco-regions, it is still uncertain
how this kind of advice can be delivered.
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Ecosystem-based fisheries management (EBFM) im-
plies accounting for the interactions between ecosystem
components, so direct and indirect impacts of management ac-
tions may be foreseen and planned. Integrated process-based
models, which explicitly describe these interactions and ev-
idence trade-offs between diverse societal objectives (FAO
2003), appear good candidates to support decision making in
the scope of EBFM. A diversity of modeling approaches has
arisen to support EBFM, from qualitative models to computer
intensive quantitative models.

Qualitative models incorporating Bayesian belief networks
(Melbourne-Thomas et al. 2013; Reum et al. 2015; Stafford
et al. 2015) or time automata (Largouet et al. 2012) have
been recently promoted for decision support (Zitek et al.
2009). They are based on a general understanding of the rela-
tionships that connect ecosystem variables (Dambacher et al.
2015) and can qualitatively predict system responses to exter-
nal perturbations (Melbourne-Thomas et al. 2013). They also
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are well-suited to data-limited systems (Largouet et al. 2012;
Reum et al. 2015) and constitute an attractive approach for
rapid model formulation and hypothesis testing regarding
ecosystem structure and function (Melbourne-Thomas et al.
2013). If they can be useful to support long-term manage-
ment strategies as tools to prioritize monitoring and interven-
tions on critical ecosystems components (Dambacher et al.
2015), their utility for tactical advice in fisheries manage-
ment (e.g. setting TAC, defining technical regulations, design-
ing marine protected area (MPA) networks) is however lim-
ited. Indeed, they cannot produce numerical predictions and
ambiguities frequently arise in the direction of the response,
which resolution would require a nearly complete quantifi-
cation of the model’s interaction strengths (Dambacher et al.
2015). This is why, many authors advocate for the use of quan-
titative modeling approaches as management decision tools
(Hyder et al. 2015; Link et al. 2012; Plagányi et al. 2014; Rose
2012; Rose et al. 2010; Schmolke et al. 2010; STECF-SGMOS
2010; Steele et al. 2013; Thébaud et al. 2014). These models,
hereafter referred to as complex system models (CSM), are
multi-specific, trophic-based, spatially explicit, and end-to-end
models as well as models describing fleet dynamics and eco-
nomic processes.

CSM, addressed in this paper are mechanistic and dy-
namic, with no analytical formulation, and therefore they rely
on numerical simulation. Parameter number is often high, and
parameterization is often a complex issue because integrated
estimation is rarely possible. Therefore, parameterization is a
pragmatic and iterative exercise, where parameter estimates
are borrowed from literature, other models or regions, are
newly estimated, or assigned a theoretical value. Finally de-
veloping and running these models is time-consuming. The de-
velopment of CSM increased in the last 20 years from the first
appearance of Ecopath models (Christensen and Pauly 1992)
to end-to-end models such as Atlantis (Fulton 2010; Fulton
et al. 2004) (ICES 2015a; Plagányi 2007; Prellezo et al. 2012).
They have long been used primarily to improve scientific un-
derstanding of ecosystem functioning and in contrast with sim-
pler approaches, there are few examples of their practical use
for decision support, particularly in European fisheries (Hyder
et al. 2015).

A reason is that complex system models needed for sci-
ence are different from models needed for management. As
Schmolke et al. (2010) accurately observed an important dif-
ference comes from the requirement for publication of in-
tegrated modeling framework being originality, while the
requirement for their use as decision support tools is predic-
tive capacity and suitability. Understandably, the level of de-
mand for realism and accuracy is higher when ecological, eco-
nomic and societal consequences are at stake (Dickey-Collas
et al. 2014; Oreskes et al. 1994). More realism often leads
to more complexity, which undeniably means more parame-
ters that need to be estimated or measured. If uncontrolled,
increased complexity can thus lead to increased prediction
uncertainty. The relationship between model complexity and
effectiveness, i.e. – model’s ability to provide understandable,
testable and useful predictions regarding the question of inter-
est, has thus been shown to be bell-shaped (Costanza and Sklar
1985; Grimm et al. 2005). In order to reach this theoretical

optimum, model complexity should be carefully rationalized
with regards to model objectives and available knowledge.

The absence of justification for increased complexity and
appropriate supporting knowledge is often highlighted and ad-
vocated against the operational use of CSM (Dickey-Collas
et al. 2014; Kraak et al. 2010; Link et al. 2010; Planque
2015; Rochet and Rice 2009; Schmolke et al. 2010). What
these authors actually blame is rather the absence of a criti-
cal evaluation of model performance and the lack of rigor in
the treatment of uncertainties. The difficult communication of
the many assumptions and the lack of transparency of the de-
velopment process often lead to a general feeling of mistrust
and suspiciousness toward CSM, even when development is
rigorously conducted. Even vivid supporters of complex mod-
els are reluctant to using them for tactical management, and
advise to restrain from forecasting (Fulton et al. 2013; Rose
et al. 2010). As Link et al. (2010) stated, “ecosystem models
credibility will need to be established and the rigor of qual-
ity control/assurance and peer review will need to be compa-
rable to what is currently conducted for data rich single and
protected species stock assessments, to provide management
advice in the U.S”. This is probably the major obstacle to their
operational use, even above considerations of cost, develop-
ment and running time.

Nevertheless, complex models are increasingly used out-
side Europe to support management decisions: in Australia,
Atlantis is used for management evaluation (Fulton et al. 2007)
and has started to be used in the Californian current along the
US West Coast in the context of an Integrated Ecosystem As-
sessment (IEA) and in a strategic environmental impact as-
sessment (Kaplan et al. 2012; Kaplan and Marshall 2016). In
Alaska, the results of food web models were used to revise
the total allowable catch (TAC) for Pollock in 2006 (NPFMC
2006). In Europe, some initiatives of the use of complex mod-
els have to be mentioned: for instance, multi-species assess-
ment models are used to provide single species assessment
models with predation mortalities for a few stocks in the North
Sea (ICES 2015b).

Outside fisheries management, CSM are also used to sup-
port decision making in important economic and environmen-
tal fields such as climate (e.g., Intergovernmental Pannel on
Climate Change), petroleum reserves (Mohaghegh 2014), ra-
dioactive waste disposal (Oreskes et al. 1994), weather fore-
casting (Hill et al. 2007), forest management (Pretzsch 2007)
and chemical risk assessment (Grimm et al. 2009). So, why
should the management of marine ecosystems in Europe be an
exception?

Skern-Mauritzen et al. (2016) showed that ICES is well
advanced compared to other international management bodies
with regard to inclusion of environmental drivers into assess-
ment models. However, it mainly consists of improvements of
traditional models, and the format of outcomes and scientific
advice remain unchanged. Products of CSM greatly differ from
current ICES provided advice, so we need to think how mul-
tivariate outputs, scenarios and associated uncertainties could
be efficiently delivered to managers. Moreover these new tools
will need to find their place in the existing legal and institu-
tional decision framework in place in Europe (e.g. MSFD, EC
2008a; EU 2013).



S. Lehuta et al.: Aquat. Living Resour. 29, 208 (2016) 3

The understanding gained through CSM will only be used
to support management if we can effectively address the im-
pediments to their operational use. A variety of guidelines to
ecosystem model development and use are available in the lit-
erature (Aumann 2007; Collie et al. 2016; FAO 2008; Fulton
2010; Link et al. 2012; Plagányi et al. 2014; Rose et al. 2010;
Schmolke et al. 2010; STECF-SGMOS 2010; Steele et al.
2013; Thébaud et al. 2014; Townsend et al. 2008) and yet they
are often ignored (Schmolke et al. 2010). It is not our inten-
tion to add a new one to the list. Rather, we intend to exem-
plify these “best practices” with readily available and appli-
cable methods which can be routinely implemented towards
operational use of CSMs.

In this paper, we present methodological tools and ap-
proaches to help (i) rationalize complexity with regards to
management objectives and knowledge limitations, (ii) im-
prove confidence in CSM through improved transparency re-
garding uncertainties and performance and (iii) transfer model
results to advice in the current European legal and institutional
framework. Given the large scope of our paper, the illustra-
tions proposed here are not exhaustive at all and only rely on
widely used, generic modeling platforms, leaving out models
developed for more specific sites and questions, although po-
tentially relevant.

2 Building “effective models” by rationalizing
complexity

Although, all components of marine ecosystems are to
some extent connected, it is foolish to model the totality of
interactions in play at all scales, given our incomplete and im-
perfect knowledge and understanding of the functioning of ma-
rine ecosystems. In an advisory context, it would be oblivious.
Priorities have to be set about which interactions and scales
need to be modeled. Two aspects need to be considered to
set these priorities: (1) the choice of the appropriate model
(platform/model structure/processes to include/scales) regard-
ing management objectives and (2) the need to account for in-
creased uncertainty propagation and technical difficulties with
increased complexity. The combination of both is referred to
as “model effectiveness” by Costanza and Sklar (1985). In the
following we first illustrate which complexity level needs to
be used, and has actually been used, depending on the man-
agement context. Then we present technics to contain and even
reduce complexity regarding available knowledge once the rel-
evant model has been selected.

2.1 Management objectives drive complex system
model structure

Several approaches are proposed to reach the “optimal”
or “intermediate” level of complexity (Allen and Fulton
2010; Aumann 2007; Collie et al. 2016; Hannah et al. 2010;
Hollowed et al. 2000; Hyder et al. 2015; Plagányi et al. 2014;
Townsend et al. 2008; Weijerman et al. 2015). For instance,
Townsend et al. (2008) provide best practices and guidance
for the choice of features that need to be explicit in a model
according to ecosystem characteristics. They list model fea-
tures (species included, population stages, spatial and temporal

scale, fleet description) and processes (recruitment, movement,
fleet dynamics, trophic relationships, etc.) in a very systematic
and efficient way. In addition to ecosystem characteristics, all
authors report, that the question at stake, the management ob-
jective, should drive the choices of processes considered in the
model. In its roadmap to integrated advice, ICES hierarchizes
the type of advice that will progressively need to be delivered
(single species and data poor, mixed fishery, multi-species,
wider ecosystem, multi-species management plans, MSFD and
MSP) (ICES 2013a). Using ICES chronology as a backbone,
we detail the components/interactions that need to be consid-
ered depending on management questions and illustrate the
guidance provided with examples of some complex system
models presenting appropriate features (see Hollowed et al.
(2000), Plagányi (2007), Thébaud et al. (2014) and Travers
et al. (2007) for more exhaustive reviews and categorization
of ecosystem and bio-economic models). Emphasis is put on
model flexibility which allows a modular approach of model
building and fine adjustment of complexity (Fig. 1).

2.1.1 Complex system models to improve single
and datapoor stocks management

Currently ICES advice is based on well established pro-
cedures for single species management involving either stock
assessment models or “data-poor” approaches (ICES 2015c).
The increasing awareness of the risk of disregarding uncer-
tainties in these simple management approaches has encour-
aged the development of Management Strategy Evaluation
(MSE) loops (Kell et al. 2007; Smith 1999). It consists of
dynamic coupling between a classical management model (a
single species assessment model or a data-poor approach and
a decision model such as Harvest Control Rules (HCR)) and
an “operating model” of higher complexity, typically a CSM
(Fig. 2). The operating model accounts explicitly for processes
susceptible to bias single-species assessments (fishermen’s re-
actions, spatial heterogeneities, trophic relationship, and bias
in data collection). The principle is to use the outputs of the
operating model as inputs for the management procedures in
order to (i) evidence where shortcuts in the system represen-
tation in traditional management tools (ignorance of spatial or
seasonal process, trophic cascades etc) can jeopardize man-
agement success. It also serves (ii) quantifying the risk repre-
sented by uncertainties at every step of the decision process:
from observation (collected data), advisory tools (assessment
models, indicators, data-poor approaches) and implementation
(fishermen’s behavior) (Butterworth 2007; Kell et al. 2007).
In this context, CSM serve highlighting the need for a more
complex management approach and possibly counter-balance
known bias. Currently operating models used in Europe in
MSE loops do not present a level of complexity much higher
than the assessment models they aim to evaluate. For MSE
purpose, CSM should include the processes that are thought
to put simple approaches at risk. For instance, Marchal and
Vermard (2013) plugged a simple assessment model (XSA,
FLR package) to an ISIS-Fish model of the deep water fish-
eries in West-Scotland, because hyperstability (i.e. persistence
of high catch per unit of effort (CPUE) at low stock level, due
to density dependence in the spatial distribution of the stock
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Fig. 1. Assessment of model complexity and skills against a range of management objectives. Grey boxes represent the minimum components
and/or interactions required for a model to be competent to inform a given management objective. Bars represent example models that meet
this requirement. This non-exhaustive list includes non-spatial models in red and spatially-explicit ones in blue. As some of these models are
modular (i.e. can include or not a particular process or component depending on the application study), only their minimum level of complexity
is represented here.

and fishermen’s behavior) was suspected to bias HCR based on
CPUE. They evidenced the risks of using CPUE trends in this
context as opposite to assessment model results. Similarly, Fay
et al. (2011) used MSE loops to explore and optimize HCRs
regarding uncertainties about spatial variability for a data-poor
species (blue eye trevalla) in southeast Australia. MSE loops
have long been considered in Australia (Punt et al. 2001) and
are embedded in the modeling platforms Atlantis and InVitro
(Fulton and Smith 2004; Gray et al. 2006). However the full
loop is still rarely used or at least, we could not find pub-
lished examples of specific insights gained from the dynamic
loop (partly because of a lack of quantitative stock assessment
methods (Punt et al. 2001)).

2.1.2 Models for managing mixed fisheries

It has been recognized for long that one pitfall of fisheries
management advice is that technical interactions and fisher-
men’s behavior are not traditionally accounted for when giv-
ing stock-by-stock management advice (Fulton et al. 2011;
Marchal and Vermard 2013). Technical interactions character-
ize the interactions occurring between stocks through fisheries.
It happens when stocks are caught together either as part of the
targeted set or as by-catch (mixed-fishery). This phenomenon
is of less importance in pelagic fisheries that can easily tar-
get a given schooling species, but it is frequent in demersal
fisheries, where species live alongside each other. These tech-
nical interactions become a problem when all species are not
sharing the same biological status and one can sustain a high

fishing pressure whereas the other should be exploited cau-
tiously. Ignoring the mixed-species aspect of a fishery leads to
ignoring well-known fishing practices, which reduce manage-
ment impact.

Particularly, in mixed fisheries, fishermen usually continue
catching and discarding species for which the TAC is ex-
hausted, as long as quota for other species caught simulta-
neously is available. The consideration of quotas as possibly
ineffective constraint on fishing mortality started to be taken
onboard by ICES in 2004 with the MTAC approach (Mixed
Fisheries TAC, Vinther et al. 2004). It uses the single species
assessment and estimates of catchabilities and effort per fleet
to derive catches of each species corresponding to scenarios
of fleet behavior (“stop fishing when first quota is reached”,
“stop when cod quota is reached”, etc.). This approach was
improved from 2006 on, using a simpler and more robust
approach referred to as Fcube (Fleet and Fishery Forecast)
(Ulrich et al. 2011). In 2012, mixed fisheries forecast based
on Fcube were integrated for the first time into ICES stock
advice for the main demersal stocks of the North Sea. This
progress was made possible by the fact that (i) Fcube is specif-
ically designed for advisory data collection and stock assess-
ment methods in Europe (operational definition of métiers and
fleets in the European Community’s Data Collection Frame-
work (EC 2008b)); (ii) an ICES working group (WGMIX-
FISH) dedicated to update the model yearly (ICES 2015d)
and (iii) demonstrated the interest of the approach to man-
agers. Since then, mixed fisheries forecasts have been provided
to managers every year to inform on single stock advice in-
consistencies and potential “choke” species by fleet (a species
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Fig. 2. Position of complex system models within the advisory and decision framework in the European context. Black arrows represent
manager’s actions, starting from the formulation of questions and management objectives jointly with stakeholders. This drives the advisory
process (white arrow) where blue elements represent authors’ recommendations for the inclusion of complex system models. Green arrows
highlight where interactions in both ways with current approaches used to provide advice (grey boxes) would be required to better evaluate
parameters or scenarios. Purple arrows emphasize the importance of promoting inclusion of stakeholders and managers, not only at the end but
throughout the whole advisory process.

with a low quota that can cause vessels to stop fishing even if
they still have quota for other species).

The model simplicity however shows its limits because it
does not account for catchability at age (Ulrich et al. 2011),
nor for fleet dynamics and reactions to management. In a con-
text of increased constraints on fishing, and particularly tenta-
tive discard reduction due to the Landing Obligation (Council
Regulation (EU) No. 1380/2013), it is very likely that fish-
ermen will change their fishing practices, with consequences
on catch profiles and catchabilities. More sophisticated mod-
els were therefore built using fisheries approach (i.e. effort
distribution across fleets and métiers) among others ISIS-Fish
(Lehuta et al. 2015; Mahévas et al. 2012; Marchal and Vermard
2013; Pelletier et al. 2009), DISPLACE (Bastardie et al. 2013),
FLBEIA (Garcia et al. 2013) (see (Prellezo et al. 2012). They
include explicit selectivity patterns and mesh size, popula-
tion dynamics, spatial heterogeneities, and possibly fleet dy-
namics driven by economic factors. Such models only re-
cently started to be used to assess multi-species management
plans in Europe. For instance, in 2005, a multi-fleet, multi-
stock simulation model (Poos et al. 2006) was used to an-
swer a request from the Dutch ministry of Agriculture, Na-
ture, Conservation and Food Quality on the likely effects of
the recovery plan proposed by North Sea Regional Advisory
Committee on sole and plaice stocks in the North Sea. While
we may ignore more of these national initiatives to address
public policy questions using fisheries approaches, the first

call at the European scale for these models was launched by
Scientific, Technical and Economic Committee for Fisheries
(STECF, EC scientific committee) in 2014 for the evalua-
tion of pluri-annual management plans, in application of the
new Common Fishery Policy (CFP). The call explicitly re-
quested models that include technical interactions, allow the
split into fleet segments or gears, implement changes in se-
lectivity (as a proxy to simulate area/time closures) and split
catches into two categories, below and above Minimum Con-
servation Reference Size (STECF 2015). To answer this call, a
large diversity of models were used (ISIS-Fish, Ecopath with
Ecosim (EwE), FLBEIA, Fcube, IAM (Macher et al. 2008),
Simfish (Bartelings et al. 2015) and Fishrent (Simons et al.
2014)).

Other efforts are conducted to account for fishermen be-
havior in traditional management tools. Within the European
project MYFISH (EU FP7 289257), MSY targets have been re-
estimated using yield as a function of increasing effort instead
of yield as a function of F and accounting for fleet dynamics. It
demonstrated that reference points are highly sensitive to hy-
potheses of fishermen behavior.

The shift to a fleet-based and effort-based approach also al-
lows the consideration of fleet economic sustainability, which
is an objective of the new CFP. Models that address fleet dy-
namics often describe explicitly the consequences of fisher-
men’s behavior on costs and revenues, and allow to derive
profitability (Bastardie et al. 2010). Economic objectives such
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as Maximum Economic Yield can therefore be considered and
evaluated accounting for exploitation patterns and economic
structures (Guillen et al. 2013).

Although the focus of fleet based models is limited to com-
mercial species, modeling fishing effort gives access to indirect
effect of fishing. Particularly, the evaluation of effort distribu-
tion in space, allows assessment of fishing impact on habitats,
on non-targeted species or/and on species for which fishing
mortality is not assessed (ICES 2015e). Interactions between
uses of the maritime domain can also be explored (Girardin
et al. 2015).

2.1.3 Models for managing marine communities
(multi-species advice)

In these fleet-based models as well as in traditional as-
sessment models, natural mortality parameter (M) is consid-
ered constant despite some early warning of the potential bias
it could imply on model estimates (Daan 1987; Sims 1984).
While such assumption might have limited effects on stock as-
sessment when fishing mortality (F) was much higher than M,
this is no longer the case. Indeed F has been greatly reduced
in the recent years in order to preserve and even rebuilt stocks
that were overfished or depleted. Thus, recent studies have re-
addressed the implication of taking into account the variabil-
ity of M – and more precisely its major component, the pre-
dation mortality (Hollowed et al. 2000; Johnson et al. 2015;
Longo et al. 2015). In parallel, operational working groups
have started to acknowledge the importance of species interac-
tions, firstly by updating the mortality term in single-stock as-
sessment models using time series of predation mortality (M2)
derived from multi-species assessment (Gaichas et al. 2010;
ICES 2015b), and secondly by directly using multi-species as-
sessment models (e.g. Stochastic Multi-Species model (SMS),
ICES 2014; Lewy and Vinther 2004) with the objective of
deriving biological reference points (BRP) in a multi-species
context (ICES 2013b).

A more qualitative use of trophic models can also be en-
visaged, such as the revision of the TAC for Walleye Pollack
in Eastern Berring Sea in 2006. Faced with strong evidence
for a threat on juvenile Pollack supported by a combination
of ecosystem indicators and trophic models the Scientific and
Statistical Committee agreed on a precautionary 10% decrease
on the TAC provided by the single-species advice (North Pa-
cific Fisheries Management Council’s Scientific and Statistical
Committee minutes, December 2006).

Although the concept of MSY has been recently main-
tained as an operational target to be attained by 2020 (EU
2013), a caution exists regarding its applicability in a multi-
species context (Larkin 1977). Multi-species models can thus
be used to explore the potential yield of several species un-
der various F. In their review, Tyrrell et al. (2011) pointed out
the underestimation of M in traditional approaches especially
for forage species and the shift for more conservative BRPs
when predation is considered using multi-species models. For
predator species, some simulations using SMS in the North
Sea showed that the fishing mortality values leading to MSY
(FMSY) derived from single-species model are smaller than
FMSY computed in a multi-species context (ICES 2013b).

Finally, using a size-based multi-species model, Pinnegar et al.
(2014) found that it was not possible to reach concomitantly
the MSY values assessed independently for two competitor
gadoids, cod and whiting, given the current exploitation pat-
terns and technical interactions.

Beyond the usefulness of multi-species models for adapt-
ing traditional targets such as MSY to multi-species context,
trophic models could also be used to explore the ecosystem
effects of management actions, in order to avoid undesirable
situations such as fishing-induced trophic cascades (Salomon
et al. 2010). Such tools would thus allow defining a safe oper-
ating space (Scheffer et al. 2015) for the long-term exploitation
of marine resources, associated with tipping points and time
window of management effectiveness (Hughes et al. 2013;
Marzloff et al. 2016).

2.1.4 Models for managing under climate change

The impact of climate change on marine ecosystems and
fisheries adds additional challenges to fisheries management,
and forces fisheries managers to consider the resilience of both
ecological and human system (Fluharty 2011). The subject has
been widely explored during the last few decades (Brander
2007; Lehodey et al. 2006; Perry 2005). Complex ecosystem
models allowed for instance investigating the combined ef-
fect of climate change and fishing on the ecosystem (Travers
et al. 2007; Morgane Travers-Trolet et al. 2014b). Atlantis en-
abled the evaluation of multiple management scenarios under
climate change and highlighted the diversity of ecosystem re-
sponse depending on the scenario and management objectives
(Fulton et al. 2012; Kaplan et al. 2010).

On more operational aspects, these models can offer in-
sights about the impact of accounting for climate change on
operational indicators, such as MSY (Kaplan et al. 2010) and
multi-species MSY (MMSY; Fulton 2011; Worm et al. 2009).

However few studies have focused on the impact on har-
vest strategy and management process (Haynie and Pfeiffer
2012). The development of complex models that encom-
pass biophysical and human component of the ecosystem,
such as Atlantis and InVitro, or the coupling of bio-physical
model with ecosystem model such as Ecospace (Bulman et al.
2006; Gribble 2003) or size-spectrum models (Barange et al.
2014) allow simulating the propagation of climate change ef-
fects across the components of the ecosystem (Fulton 2011;
Plagányi et al. 2011). The use of those models revealed for
instance, the difference of fishermen’s responses to climate
change depending on their flexibility, with for example an in-
crease of incomes for large commercial fisheries while income
decreased in smaller scale, less flexible fisheries (Fulton 2011).

2.1.5 Models for spatial management

Spatial management through the design and implementa-
tion of MPAs has been considered as effective tools for EBFM
(Gewin 2004; Hall 1998; Roberts 2002). The implementation
of coherent MPAs network by members’ state in Europe is a
requirement of the MSFD (EC 2008a; Qiu and Jones 2013).
The evaluation of the coherence of MPAs network and their
efficiency remains challenging. Indeed, efficacy of protection



S. Lehuta et al.: Aquat. Living Resour. 29, 208 (2016) 7

within the protected areas has generally been demonstrated
(Colleter et al. 2012; Lester et al. 2009; Valls et al. 2012), how-
ever the benefit for adjacent fisheries is more complex to eval-
uate (Bastardie et al. 2014; Fock et al. 2011; Greenstreet et al.
2009).

Modeling approaches have been widely applied to as-
sess the impact of spatial management using from single
species model to end-to-end holistic model (Apostolaki et al.
2002; Brochier et al. 2013; Fulton et al. 2015; Holland 2000;
Kaplan et al. 2012; Maury and Gascuel 1999; Pelletier and
Mahevas 2005; Savina et al. 2013; Walters 2000). By consid-
ering explicitly the heterogeneities in the distribution of ves-
sels, species and/or habitat, as well as competition for space
and resources, spatial complex models avoid the bias of clas-
sical proxies such as reduction in fishing mortality or effort
proportional to the closed surface. They also account for ef-
fort reallocation outside the MPA, a behavior which proved to
diminish the expected benefits of MPAs.

Spatial modeling is also crucial to capture biological and
life history trait such as migration, density dependence, con-
nectivity between regions, both in terms of adult movement
or pelagic larval dispersal between spatially-discrete regions
or communities (D’Agostini et al. 2015; England et al. 2009;
Savina et al. in press). Nevertheless, movement dynamics are
rarely known and the implications of choices made regarding
spatial resolution, are still active research themes.

Full ecosystem model such as Ecospace (Walters et al.
1999) and Atlantis (Fulton et al. 2007, 2004), as well as CSM
focusing more particularly on fishermen’s behavior such as
ISIS-Fish, and also lately DISPLACE have been applied to in-
vestigate the effects of MPAs around the world. These models
have investigated essentially the impacts on biomass (Kraus
et al. 2008; Valls et al. 2012), trophic networks functioning
(Albouy et al. 2010; Colleter et al. 2012; Libralato et al. 2010),
the impact outside the MPAs (Ainsworth et al. 2012; Guénette
et al. 2014; Kaplan et al. 2012; Savina et al. 2013; Walters
et al. 1999) and also their regional impact on fishermen’s eco-
nomic performance and behavior, beyond the MPAs bound-
aries (Ainsworth et al. 2012; Bastardie et al. 2014; Kaplan
et al. 2012; Kraus et al. 2008; Morzaria-Luna et al. 2012).
In these studies, the ecosystem modeling approach suggested
that spatial management alone was not sufficient to reach
EBFM objectives. They demonstrated that making space ex-
plicit in the model is necessary to design efficient management
scenario.

2.1.6 Models for stakeholders and managers

Collie et al. (2016) suggested that expert panels are nec-
essary for identifying the level of model complexity appro-
priate for specific management questions. The implementation
of consultative processes involving stakeholders for the devel-
opment of multi-species management plans (Regionalization,
CFP) offers the opportunity to test the approach. Fulton et al.
(2013) undertook such a participatory exercise for the imple-
mentation of an MSE in Australia’s North-West. They report
the difficulties, which led to substitute the initially intended In-
Vitro model (Gray et al. 2006) with a simplified model, devel-
oped in collaboration with stakeholders. Several other attempts

are ongoing to try and use complex models within participa-
tory approaches (EU project GAP2 and DiscardLess, ICES
WKIrish and WGEAWESS, Coselmar French regional project,
ocean modeling forum) and the growing collaborations with
social scientists should help overcome the difficulties to ex-
plain and interact around CSMs.

While the overall complexity of these models can be an im-
pediment to stakeholders’ engagement, we believe that struc-
tured participatory approaches can facilitate model under-
standing and acceptance by non-modellers. We believe that
the explicit description of processes in CSM is possibly closer
to stakeholders representation of ecosystems than are abstract
statistical models. For instance, the description of gear charac-
teristics and fishing locations is probably more accessible and
more susceptible to trigger feedback from fishermen, than par-
tial fishing mortalities.

2.2 Methods to rationalize complexity according
to knowledge and technical limitations

Rationalizing model complexity is also driven by the will
to limit uncertainty and by costs and computational considera-
tions. Managing uncertainty requires supporting model param-
eterization with validated knowledge and data. When knowl-
edge is missing on key processes, hypotheses should be made
with parsimony. However, data collection can be expensive.
For instance, stomach content information could not be up-
dated from 1991 to 2013 for the SMS model of the North
sea (ICES 2014). Data availability is also especially problem-
atic for spatial models, where implementation is data inten-
sive and often implies refining temporal scale simultaneously
to account for seasonal and even daily changes in spatial pat-
terns. Data availability is often insufficient to support such
fine-tuning. Indeed, while vessel monitoring system (VMS)
give access to fine spatial and temporal resolution of effort
distribution, fish population distribution are still often only
known from surveys at a given time of year. Data availabil-
ity to support model parameterization should thus be consid-
ered in order to limit foreseeable sources of large uncertainties.
Running times also often increase with increased complexity
which may impact the number of simulations that could later
be done. In the following sections, we present two methods to
try and adjust model complexity regarding these aspects.

2.2.1 Model coupling

An efficient way of ensuring adequate level of details
for each layer (component) of the model is model coupling
(Melbourne-Thomas et al. 2011; Shin et al. 2010). In partic-
ular, coupling allows adapting the scale to the level of avail-
able information and relevant processes: fine spatial and tem-
poral scales for physical, physiological, individual processes
(larval drift, prey encounter, plankton productivity) and larger
scales for management (annual TAC, seasonal closures, MPA)
or fleet dynamics. For instance (Travers-Trolet et al. 2014a)
coupled a 3D hourly bio-physical model (ROMS-N2P2Z2D2)
to a 2D bi-weekly multi-species fish model (Osmose) to ex-
plore trophic functioning under both environmental and fishing
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pressure. Girardin (2015) coupled the Atlantis model of the
Eastern English Channel, resolved at daily scale and based
on irregular spatial polygons to represent the heterogeneity of
habitats, with a fleet dynamics model at a monthly time step
and whose areas are ICES statistical rectangles in order to ac-
count for fishermen’s behavior in the evaluation of spatial man-
agement strategies. With increasing questions raised regarding
ocean evolution under global change (Cury et al. 2008), model
coupling is more often used (e.g. Barange et al. 2014; Lefort
et al. 2015; Pinsky and Fogarty 2012; Travers-Trolet et al.
2014b). This is also the approach adopted by two ICES work-
ing groups, WGSAM and WGMIXFISH, involved in advice
for multi-species and mixed fisheries respectively, as they cou-
ple a module based on Fcube describing fleets with the SMS
model of the North Sea (ICES 2015d, 2015e). Such couplings
between already developed models could efficiently lead to
end-to-end models encompassing models of marine socio-
ecosystems from bio-physics to socio-economics as demon-
strated by Melbourne-Thomas et al. (2011) for the Mexican
state of Quintana Roo or by the currently under-development
Symbioses framework for the Lofoten and Barents Sea (Caroll
and Smit 2011). The increasing needs for model coupling also
led to the development of coupling tools (e.g. Beecham et al.
2015). Coupling is also a way to bridge disciplines, make the
best use of previous work and increase confidence since differ-
ent model components have been developed by different and
specialized teams (Thébaud et al. 2014; Travers et al. 2007).

2.2.2 Sensitivity analysis

Aside from common sense and expert groups, quantita-
tive methods are also available to help guide model devel-
opments at a later stage. In particular, sensitivity analysis
is a powerful tool to explore model behavior and response
to parameter uncertainty. It consists of quantifying the rela-
tive influence of each input parameter on the outputs of the
model through computing sensitivity indices (Saltelli et al.
2008). Sensitivity indices help (i) orient model development
and choose an appropriate level of complexity by focusing on
the most influent processes; (ii) gain insights in model func-
tioning by highlighting strong interactions; (iii) orient data
collection and estimation effort toward the most impacting
sources of uncertainty; and (iv) focus uncertainty analysis on
the most sensitive uncertain parameters. Numerous methods
exist to carry out sensitivity analysis, from simple screening
methods (e.g. Morris designs), factorial fractional or optimized
designs and analyses of variance, or more simulation-intensive
methods such Fourier Amplitude Sensitivity Test (FAST) and
Sobol’s indices (Saltelli et al. 2008). All methods involve the
combination of a statistical method to compute sensitivity in-
dices and a parsimonious simulation design. These designs are
optimized in terms of the number of simulations and values
taken by parameters. The choice of a particular method de-
pends, on the one hand, on the nature (continuous, discrete)
and number of the inputs and on the second hand, on the num-
ber of simulations allowed. They offer trade-off between cost
(number of simulations) and quality of the exploration of the
parameter space. Many of these methods are model-free con-
sidering the model as a black box and therefore allow applica-

tion to virtually every model (Faivre et al. 2013). We recom-
mend to start using inexpensive and rough methods, such as
the Morris method or group screening (Saltelli et al. 2008), and
progressively refine the analysis as the number of parameters
decreases (using for instance FAST or Sobol methods (Saltelli
et al. 2008)). Indeed it has been empirically shown that regard-
less of the number of model parameters, there are often only a
few (∼10) parameters to which the outputs are highly sensitive
(Faivre et al. 2013). Sensitivity analysis can be used to assess
the robustness of conclusions to uncertainty in model structure.
Alternative structures could be formulated in different ways:
various formulations of a process, alternative discrete values of
a parameter (e.g. alternative functional responses (Mackinson
et al. 2003), alternative fishing behavior (Marchal et al. 2011).
Simple sensitivity analysis approaches were used to optimize
the number of functional groups in an Ecopath model of Port
Cros National Park (Mediterranee, Prato et al. 2014). Rochette
et al. (2009) used sensitivity analyses to build an optimized
semi-quantitative model of the Gironde Estuary trophic net-
work. The identification of larval survival as the most sensi-
tive process in the ISIS-Fish model of the Bay of Biscay an-
chovy fishery, led Lehuta et al. (2013b) to use outputs of a
bio-physical larval drift model to refine the parameterization
of larval survival.

3 Improving confidence in complex system
models through increased transparency
regarding uncertainties and performance

Modeling choices will always be somewhat subjective and
different expert groups would probably end up with differ-
ent models for the same management question and the same
ecosystem. Being transparent about modeling uncertainties
and confronting models to data are ways to learn about model
performance and improve confidence in its predictions.

3.1 Improving communication and transparency
around models

The co-existence of alternative complex system models
to answer a given management question can be a strength
(see Sect. 3.3). But, it can also create confusion among sci-
entists and stakeholders, and raise the question of why con-
sider several models to provide management recommendations
and make decision? Answering these questions requires rig-
orous knowledge on each model regarding their utility and
their quality, both in general and at the case study level. Re-
views by Plagányi (2007) and Prellezo et al. (2012), and the
guidance and rigorous approaches presented in this paper, pro-
vide material to start answering. Initiatives have been taken
within research projects and expert groups where different
models were used simultaneously. For instance, the need for
comparing hypotheses and outputs led to the development of
different forms of documentation. Standardized “model ma-
trices” or “summary sheets” with various levels of details,
have been developed within ICES working groups (Work-
ing Group on Integrating Ecological and Economic Mod-
els (SGIMM), Working Group on Multi-species Assessment
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Methods (WGSAM), within European networks (Eur-Oceans
model shopping tool), within European projects (EU project
SOCIOEC and DEVOTES) and by the Joint Research Centre
in the context of the evaluation of pluri-annual management
plans. The same need was identified within the EwE com-
munity and led to the creation of EcoBase, a repository of
Ecopath applications worldwide with detailed information on
each model goal and parameters (Colleter et al. 2015). Califor-
nian current Atlantis review panel similarly expressed concern
about using a model for management applications unless full
and formal documentation was freely available (NMFS 2014).

Beyond static documentation of a model, WGSAM devel-
oped “keyruns”, which are standard reference runs of a given
model, accepted within the working group, and which are car-
ried out every three years or after each substantial change to
the model or data (ICES 2014). It was established because
the group provides single-species assessment working groups
with updated and documented predation mortality estimates
from multi-species models. The requirement for a standard-
ized documentation format when models are used for advice is
further emphasized by Schmolke et al. (2010). They propose
a format encompassing the entire modeling process (from pa-
rameterization to uncertainty analysis) and acknowledging its
iterative nature (cyclic revisits of model formulation and pa-
rameterization). It thus allows easy access and understanding
of model characteristics and performances. The “parameteri-
zation” section of a TRACE documentation could also benefit
from Dankel et al. (2012) proposal to use pedigree matrices for
quantitative scientific information. The “pedigree” completes
the, usually provided, value, unit, and standard deviation of a
parameter, with expert judgment of the reliability and a char-
acterization of the origin and status of the information. We
found only one publication reporting the use of pedigree matri-
ces in the context of EBFM (Issaris et al. 2012). These could
easily fit the current structure of international datasets under
development within ICES (InterCatch, FishFrame Regional-
DataBase http://www.ices.dk/marine-data/data-portals/Pages/
RDB-FishFrame.aspx) and supported by working groups in-
volved with data collection (e.g. WGBIOP, PGDATA). It
would probably also help progress on the characterization of
uncertainty domains, a major difficulty in uncertainty analyses
(Kraak et al. 2010; Rochet and Rice 2009).

These forms of documentation may however not be appro-
priate for stakeholders. The participatory approach conducted
during the recent evaluation of the ecosystem impacts of Pa-
cific sardine harvest showed that open dialogue could actually
be sufficient. The impact assessment was conducted in the con-
text of the ocean modeling forum (oceanmodelingforum.org)
using five different complex system models. Although models
were not exposed in details to stakeholders, model acceptance
by managers and stakeholders was described as not being an
issue, because of the frequent and transparent exposure of sci-
entific advances to non-modelers (Tessa Francis Ocean Mod-
eling Forum managing director, pers. comm.).

3.2 Confronting models to data

Pastoors et al. (2007) report that fishermen more eas-
ily related to model fit to past time series than to technical

complexities of the modeling process to decide whether a
model was trustable. Confronting models to data, quantita-
tively informs modelers, stakeholders and managers on the de-
gree of confidence that can be placed on the model.

Beyond the philosophical considerations on “establish-
ment of truth” and the appropriate terminology to use (“ver-
ification”, “validation”, “confirmation” (Oreskes et al. 1994;
Sargent 2007; Sterman 1984), the exercise of confronting
model outputs to independent observations is not popular
within ecosystem modeler community. However, following
Sterman (1984) and Link et al. (2012), we believe that the
reluctance to confront models to observations participates to
the lack of credibility of these models and holds up their op-
erational use. Moreover, this is modeller’s responsibility to be
transparent about their model performance when public policy
is at stake (Dickey-Collas et al. 2014; Oreskes et al. 1994).

Here we distinguish calibration from validation. Calibra-
tion is the adjustment of model parameter values to fit certain
patterns or data (using optimization algorithms for instance).
It is often used as a way to estimate parameters internally for
relatively simple and quick models and is seldom applied to
CSM. When used, it is often restricted to the estimation of few
parameters (Ecopath: respiration; OSMOSE: larval mortali-
ties; ISIS-Fish: accessibility parameters). Calibration results,
although informative, do not constitute a strict validation. This
is because these models are often over-parameterized with re-
spect to available data (also called non identifiability) and there
are possibly a large number of alternative parameterizations
that lead to equally good reproduction of data (Aumann 2007;
Cury et al. 2008; Oreskes et al. 1994; Wiegand et al. 2003).
Mackinson (2014) also evidenced the sensitivity of model pa-
rameterization to the data used for calibration.

Validation assesses model ability to capture observed pat-
terns of the studied system and implies confrontation of model
results to observations, which were not used for parameteriza-
tion. This is a major problem for validation of CSM, because
the parameterization phase often requires all available data.
When possible, the issue should be anticipated and a subset
of available observations kept aside for validation purposes.
An alternative approach is to confront emergent properties of
the model to observations, because parameterization is done at
lower-level (e.g. individual level) and thus does not use these
observations at system-level (e.g. population level).

In addition, because of the over-parameterization issues
mentioned above, authors highlight that in order to be “struc-
turally valid” a model should probably reproduce multiple
time series of data at multiple scales. Pattern oriented mod-
eling (POM) applies this principle (Aumann 2007; Cury et al.
2008; Grimm et al. 2005; Wiegand et al. 2003). It has been
successfully applied to an end-to-end coupled model of the
southern Benguela foodweb to valid individual observed diets,
the seasonality of population size-structure and the structure
of the foodweb (Travers-Trolet et al. 2014b). Marzloff et al.
(2013) also used POM to valid the capacity of the model of
seaweed-based rocky reef communities in Eastern Tasmania to
demonstrate shifts in community composition. Model skill as-
sessment is a powerful method to assess model performance
thoroughly and is commonly carried out for bio-physical
models (Allen and Somerfield 2009; Friedrichs et al. 2007;

http://www.ices.dk/marine-data/data-portals/Pages/RDB-FishFrame.aspx
http://www.ices.dk/marine-data/data-portals/Pages/RDB-FishFrame.aspx
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Jolliff et al. 2009). It forces asking the relevant questions re-
garding model objectives such as the type of properties the
model should verified (unbiased, in phase, following central
limit tendencies, accurate, see Sterman (1984) for correspond-
ing evaluation metrics), and regarding the outputs (including
the timeframe) that should in priority match data (Lehuta et al.
2013b). Moreover multivariate graphical solutions were devel-
oped to allow easy display of trade-offs (Jolliff et al. 2009).

Nonetheless, validation should not be overvalued because,
as stated by Lynch et al. (2009), and particularly true in marine
systems, observations are possibly erroneous, and accuracy of
data must be considered. It is also admitted that it exists no
objective test of validity, so the step should rather be seen as a
mean to evaluate model strengths and weaknesses and assess
model appropriateness for a purpose. A model should not be
thrown out as soon as a criterion of model performance is bad.
As Link et al. (2012) stated, there is a lot to learn from failures
of models to reproduce past events as illustrated by several
studies (e.g. Aumann 2007; Lehuta et al. 2013b; Mackinson
2014; Romagnoni et al. 2015). More generally, confronting
model to data (in calibration or validation), is an objective
way to select among several alternative parameterizations of
the same model (Lehuta et al. 2013b) or to weight alternative
parameterizations or models in an ensemble approach (Stoltz
2010; Thorpe et al. 2015) (see Sect. 3.2).

Finally, Sterman (1984), reports considerations that vali-
dation is an entirely social process and a model is realistic
to the extent that it is understood and accepted. Calibration
and validation can be jointly performed in a more qualitative
approach to lead to a common model acceptance by all stake-
holders. Rosa et al. (2014) report how a participatory approach
around an Ecopath model helped sort out conflicting hypothe-
ses about the decrease in health of a tropical coastal lagoon.
The impact of (i) bridge building proposed by fishermen and
(ii) invasive species proposed by scientists were independently
parameterized in Ecopath. Results showed that including im-
pacts of bridge building represented better accordance with the
underlying data.

3.3 Transparently reporting on uncertainty

3.3.1 Dealing with parameter uncertainty

The ways in which uncertainty is propagated in simula-
tion models are often criticized (Kraak et al. 2010; Planque
2015; Rochet and Rice 2009). Although, there is an abundant
literature about the treatment of uncertainty in fisheries mod-
els (Harwood and Stokes 2003; Hill et al. 2007; Link et al.
2012), little applies to CSM. Indeed, carrying out uncertainty
analyses is a challenge with CSM, because of the number of
parameters and long running times. We do not pretend to have
solutions to these methodological and technical issues. Nev-
ertheless, we propose to decrease the complexity of this anal-
ysis by performing a global sensitivity analysis as a first step
of uncertainty analysis. We advise that sensitivity analysis be
used as an objective means to select the most sensitive factors
that effectively need to be considered in uncertainty analysis
(Lehuta et al. 2010). Furthermore, experimental design theory

that support many sensitivity analysis methods also offers al-
ternatives to Monte-Carlo approaches, with optimized simula-
tion designs (Kleijnen et al. 2005) and the use of metamodels
(see for instance Collie (2003), for an application in fisheries).

3.3.2 Dealing with structural uncertainty

Dealing with structural uncertainty has received more re-
cent attention (Fulton 2010; Hill et al. 2007; Hyder et al. 2015;
Link et al. 2012). The relatively subjective choices in the pro-
cesses to include, together with the multiplication of models,
and the possible multiple model formulations that can achieve
the same level of fit to data (especially when trade-offs be-
tween scales and outputs have to be made) increased awareness
of the necessity to account for model structural uncertainty
(Hyder et al. 2015; Weijerman et al. 2015). The most popu-
lar approach to handle this type of uncertainty is called multi-
model approach. Multi-model approaches have been used for
a long time in climate research and whether forecast (Hill
et al. 2007; Solomon et al. 2007) and have started developing
for marine ecosystems (http://www.oceanmodelingforum.org,
http://www.marine-ecosystems.org.uk, Fish-MIP initiative,
Forrest et al. 2015; Gårdmark et al. 2012; Hobday 2010; Meier
et al. 2014; Smith et al. 2015; Thorpe et al. 2015).

Multi-model approaches are considered to be more robust
especially in changing conditions, because they protect against
punctual single model failures and offers complementary vi-
sions (cross-disciplinary) of the same system. Moreover, while
an agreement between models increases the confidence in the
robustness of models outputs, a disagreement between mod-
els is still informative because it highlights sensitivity to key
features of the system. Two paths emerge within multi-model
approaches. The first one consists in showing the variabil-
ity between models (model envelope), while the second one
aims at selecting the best model or averaging available mod-
els (model averaging). Model envelope approach requires a
common modelling protocol with an experimental setup using
standardized data and scenarios as basis of multi-model inter-
comparison and assessment (Rosenzweig et al. 2013; Rötter
et al. 2011). Even if model envelope based approach looks
for common features of the response shown by most or all
models, it offers the opportunity to analyse the origin of the
discrepancies between models as a basis for model improve-
ments (Haddeland et al. 2011; Schellnhuber et al. 2014). How-
ever, taking into account structural uncertainty in the forecasts
may lead to several (sometimes highly contrasted) scenarios
of the future of the system. The strength of model averaging
or model selection is to deliver a single scenario. The method
either selects the “best” model or creates an average model,
by weighting each model of the collection with a performance
criterion such as Akaike Information Criterion (AIC; Burnham
and Anderson 2004). This approach (also called ensemble ap-
proach) has been largely applied in all fields using statistical
models. When statistical performance of goodness of fit or ac-
curacy are lacking, like in most complex modelling exercises,
each model is weighted equally or expert judgment is required
(Link et al. 2012). We recommend not opposing these two
multi-model approaches against each other: model envelope
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is a relevant strategy to quantifying risk, while model averag-
ing is useful to provide a single value and therefore is more
suitable to decision-makers.

In combination with validation, uncertainty analysis pro-
vides the material for stakeholders to decide if the model is
appropriate to address tactical questions (TAC setting, achieve-
ment of target values) or if it should restrict to strategic more
qualitative questions (related to ecosystem trends, or relative
comparisons between strategies).

4 Transferring model results to advice
in the current European legal
and institutional framework

Even the most appropriate and rigorous model is of no
use, if its results cannot be transferred efficiently in the cur-
rent management setting. Leslie et al. (2015) observed that ma-
jor difficulties in implementing EBFM come from pre-existing
management entities that may not be well-suited for an ecosys-
tem approach. The decision framework in Europe so far re-
lies on advice delivered by ICES and STECF, based on the
Common Fishery Policy, and mainly restricted to quotas corre-
sponding to precautionary approach and latter MSY approach.
However, with the new CFP, it is currently transitioning to
EBFM through the implementation of MSFD and the devel-
opment of multi-species management plans at regional level.
ICES also makes clear its will to broaden the type of advice it
is delivering. If we want CSM to be used, we need to match
them with the existing decision framework. In the following
we examine how CSM development and results can find their
place within the current institutional and legal settings and
where arrangements will be needed to ensure an optimal use
of their potential.

4.1 Delivering complex product

Communication of complex outputs is a challenge given
that managers in Europe are used, and usually prefer, to deal
with a unique number (advised TAC) or two (fishing mortal-
ity and spawning stock biomass). However, the beginning of
an acceptation of more complex advice is demonstrated, for
instance by the success of the inclusion of mixed fisheries ad-
vice in the advice sheets under the impulsion of the MIXFISH
working group or by the intrinsically multivariate nature of
MSFD indicators. The recent review of the Atlantis model of
the Californian current also argues in the sense of a more im-
portant engagement of modelers with advisory bodies, first to
improve model understanding by managers and second to im-
prove the relevance of the tested scenarios and products, which
were often considered too stylized (NMFS 2014).

It is also the responsibility of managers to more clearly
specify objectives so appropriate evaluation criteria can be
identified and produced. A key advantage of CSM is their abil-
ity to evidence trade-offs in management objectives, a crucial
need for EBFM (Kaplan et al. 2012). Literature is developing
to propose visualization methods that ease the communication
of multivariate results from classic radar plots and traffic lights

developed for indicator-based assessment, to stylized images
(Collie et al. 2016; Levin et al. 2015; Link et al. 2010; Trenkel
et al. 2007). Graphical solutions such as Taylor diagrams have
also been proposed to display model skill assessment results
for coupled bio-physical models (Jolliff et al. 2009).

Communicating uncertainties is challenging but becomes
critical when it comes to complex system model outputs
(Hyder et al. 2015). Methods start to be proposed to visual-
ize and make model results and uncertainty more easily ac-
cessible to managers (Booshehrian et al. 2012; Spiegelhalter
et al. 2011). Moreover we need to teach managers to accept the
use of uncertain predictions towards decision making (Kraak
et al. 2010). Conversely, we need them (possibly with our help)
to specify the kind of uncertainty framework they are willing
to accept (precautionary, robust management, risk assessment)
(Charles 1998; Dankel et al. 2012; Francis and Shotton 1997;
Harwood and Stokes 2003; Hill et al. 2007).

4.2 Informing European initiatives: Indicator
approaches and Marine Spatial Planning

At the European scale, Marine Strategy Framework Direc-
tive (MSFD, 2008/56/EC), is the legal framework developed to
implement EBFM. Indicators and their target reference points
are the tools to monitor ecosystem status and progress toward
“Good Environmental State” (GES, that is nevertheless still
not well defined) within this framework. Now that MSFD is
about to enter its effective implementation phase, new tools are
sought to evaluate the management measures and scenarios to
restore GES, particularly modeling platforms (Joint Research
Centre 2014). Moreover, MSE has long been proposed to eval-
uate the performance of indicator-based HCRs (Butterworth
et al. 2010).

More recently CSM have been proposed to evaluate the
properties of MSFD indicators (Piroddi et al. 2015). Indeed, in
order to be informative indicators need to be sensitive and ex-
clusive to the pressure of interest (often fishing), which means
that they should be robust to other sources of variation (envi-
ronment, uncertainties) (Rochet and Trenkel 2003). However,
it is generally impossible to disentangle causes of variations in
empirically collected metrics and authors proposed to rely on
simulation (Fulton et al. 2005; Lehuta et al. 2013a; Livingston
et al. 2005; Pelletier et al. 2008; Travers et al. 2006). Fulton
et al. (2005) used Atlantis to assess the ability of indicators to
detect trends in variables of interest in the ecosystem. Travers
et al. (2006) investigated the relative impact of fishing and
environmental forcing demonstrating antagonistic and syner-
gic effects and highlighting the importance of the scale at
which indicators are defined. Lehuta et al. (2013a) used sen-
sitivity analyses to evaluate the relative impact of management
measures, environmental scenarios and model uncertainties on
indicators proposed to monitor the achievement management
objectives, evidencing the low proportion of them actually pri-
marily sensitive to management changes. Based on Ecopath,
Ecosim and Ecotroph simulations across three ecosystems,
Bourdaud et al. (2016) compared the ability of five classic
trophic indicators to reflect trends in ecosystem health. The
question is further explored within the IndiSeas project (Coll
et al. 2016), where several ecosystem models covering nine
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ecosystems worldwide simulated the same fishing and envi-
ronmental scenarios in order to derive generic conclusions of
the abilities of ecosystem indicators to detect fishing impact.

Finally marine spatial planning initiatives are also devel-
oping under the EU commission impulse in order to manage
multiple and conflicting uses of the marine space (EU 2014).
Among other tools, spatial ecosystem models were put for-
ward as good complements to classical systematic conserva-
tion planning tools. Metcalfe et al. (2015) and Reecht et al.
(2015) coupled a conservation planning tool (Marxan with
Zones) with CSM (resp. Ecopath with Ecosim and ISIS-Fish)
for the design of a MPA network in the English Channel. The
objective is to overcome the drawbacks of the classical conser-
vation planning tools which ignore complex ecological pro-
cesses and dynamic responses. Christensen et al. (2009) even
replaced a conservation planning tool by using Ecospace in an
optimization mode in order to optimize protected area place-
ment according to ecological, social and economic criteria.

4.3 Fitting in institutional settings

As observed by Skern-Mauritzen et al. (2016), the progres-
sive increase in use of complex models for advice and the rig-
orous evaluation of their performance probably needs to start
as a bottom-up process, pushed by scientists. However it be-
comes evident that institutional support is necessary in order
to support, organize efforts and standardize procedures. Re-
cent changes in ICES strategic plan demonstrate the will to
assist the transition to EBFM with the creation of a benchmark
steering group (BSG) and of Integrated Ecosystem Assessment
(IEA) groups at the regional level. Changes also need to be
made in the way STECF addresses its calls and in the format of
the related assessment workings groups if CSM are required.

ICES BSG has two main objectives: i) facilitate the transfer
of science into advice and ii) advance the benchmark process
in ICES and develop the concept of regional ecosystem bench-
marks. Benchmarks are peer review process of assessment
methodologies, where the data, hypotheses and results are re-
viewed and new proposals for improvement of the methodol-
ogy are examined. BSG already oversees the benchmarking
process for stock assessment models and intends to generalize
good practices and quality assurance to any tool used to inform
management, particularly in the scope of EBFM. While the
structure is there, it is to anticipate that the benchmark process
for a complex model will be an even longer and more difficult
exercise than for an assessment model. The recent review of
the Californian current Atlantis model proves the intensity of
the task, but also its feasibility and sets the basis for a success-
ful assessment (Kaplan and Marshall In press). In particular,
they stress the need for terms of reference specific to CSM,
which could be inspired from the methods proposed in Sec-
tion 3. A few additional problems are however worth mention-
ing and solutions are still to be found (Link et al. 2012). The
availability of relevant experts for these week-long workshops,
already considered a problem for current single stock bench-
marks, is likely to be amplified. Moreover the fastidiousness of
the validation process (50% of the total time required for the
entire modeling process, Aumann 2007) as well as the absence
of an appropriate space to disseminate and leverage the results

(neither to the scientific community nor to managers) discour-
age scientists to carry them out. Incentives have probably to be
found to encourage modelers to involve in benchmarking and
advice.

ICES promotes the development of Integrated ecosystem
assessments (IEA) at regional level to coordinate international
effort and develop tools for the provision of ecosystem ad-
vice (Walther and Möllmann 2013). IEA constitutes an overar-
ching framework where the recommendations for ecosystem-
based management (interdisciplinarity, stakeholder involve-
ment, consideration of societal expectations, on top of more
classical technical or scientific challenges) are made explicit
and embedded in a process. Levin et al. (2009) proposed a
five step loop starting with a scoping of management objec-
tives, then going through development of ecosystem indica-
tors and targets, risk analysis, assessment of ecosystem status
relative to the objectives and management strategy evaluation.
In this process, CMS have a crucial role to play, in particu-
lar to support the final MSE step so managers and citizen-
stakeholders determine whether EBFM objectives have been
achieved (deReynier et al. 2010). But, as demonstrated in this
paper, they can also assist the choice of indicators (Sect. 4.2)
and targets (Sect. 2.1) and help conduct risk analysis (Sect. 3)
(Hamilton et al. 2015). Examples of successfully conducted
IEAs start to appear in the US (Levin et al. 2015, 2014). De-
spite apparent structure and stewardship at ICES level, some
raised the concern that the complex nature of IEAs and the
lack of motivation for researcher to involve in the advisory
process may make IEAs effective implementation difficult
(Dickey-Collas 2014).

Even before full IEAs can be conducted in European fish-
eries, models have already been required to answer STECF
calls for the evaluation of management plans for instance
(STECF 2015). Typically, the evaluation meetings of STECF
last about a week and it is frequent that expectations, scenarios
and objectives are reviewed in course of the week. This format
is not suited for complex simulation models that take several
hours for a run, especially if a rigorous uncertainty analysis
has to be carried out. STECF-SGMOS (2010) working group
for the development of the EBFM in European seas recom-
mended building reference ecosystem models for each refer-
ence ecosystem and to set up dedicate groups to apply and
update the models thus ensuring operational readiness. While
we support this proposal, we also stress the need to maintain
a diversity of CSM (see Sect. 3.2.2) rather than one reference
model, and this, despite obvious costs and time implications.

5 Conclusion

As Peck (2004) put it: “the world is complex and we
need all the tools that we can muster to understand it”. Given
complex EBFM objectives, CSMs have a key role to play
within the new multidisciplinary framework that is starting to
emerge in particular within IEA groups (Fig. 2). Furthermore
the insights and quantitative predictions offered by CSM are
necessary to support tactical, fisheries-specific management
decisions.
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Many complex system models have been developed in
the last decades to inform ecosystem-based management
(Hyder et al. 2015; Plagányi 2007; Prellezo et al. 2012;
Weijerman et al. 2015). While new developments might be
suitable in certain contexts, the priority for the practical im-
plementation of EBFM is rather to make a better use of avail-
able tools. Pragmatism was often the rule to select the mod-
els that were used to answer a specific management question
(“because it is there”, “because developers are available for the
meeting”, “because it is the only model for the area”). These
considerations are obviously practical reasons that cannot be
overlooked; however appropriateness in terms of complexity,
performance, robustness and operationality, are better criteria
for models selection and adaptation. The guidance provided
here should help reach a compromise between availability and
appropriateness: either because one or several models readily
present(s) the relevant features according to the question; or
because coupling or on the contrary simplifications can help
reach an optimal level of complexity. We show that a wide
range of methods required to adjust model complexity are
available.

Additionally, the review carried out in this paper shows
that successful examples of sensitivity analysis, coupling, val-
idation, uncertainty analysis and user-oriented documentation
have been emerging for complex system models. Yet these
methods are seldom combined to increase CSM credibility
outside the developer circle. Given the scale of the task, a more
formal framework might in cases be needed to ensure their sys-
tematic application and that results are available for advice.

While the new Fisheries Common Policy calls for the ef-
fective implementation of EBFM, it is urgent that CSM be-
come part of the European fisheries advice framework. Still
managers stay focused on single stock advice. World examples
show that the process of shifting managers’ focus from single-
species considerations to complex ecosystem advice is mostly
bottom-up, as it mostly results from scientists’ initiatives. In-
volvement of stakeholders in modeling exercise should help
reinforce public and managers awareness of the existence of
such tools together with acceptance. Modelers should also be
aware that the legal framework in place constrains the type of
information on which managers can base their decisions (e.g.
MSFD and MSY targets). Inserting the contribution of CSM
within these existing frameworks is probably a key for their
consideration, at least in the short term. The paper demon-
strates that very little efforts are still needed to make CSM
matter for ecosystem-based fisheries management.
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