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Is speed through water a better proxy for fishing activities
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Abstract – Understanding fishing vessel dynamics at a fine spatial scale is of great interest for defining appropriate
spatial management plans. Different models have been developed to detect fishing activity from Vessel Monitoring
System (VMS) data. While mathematical and statistical methods differ, all rely on the idea that vessel speed over
ground provides information on fishing vessel activity. However, trawling with constant speed relative to the water
mass may as well prove a winning strategy for both technical (to ensure sufficient trawl opening) and biological (to limit
escapement of fish) reasons. Therefore, considering speed through water instead of speed over ground might provide
insights into fishing activities. We developed a method combining surface currents derived from ocean circulation
models with VMS data to estimate vessel speed through water. We then used vessel speed through water as input to
two previously published segmentation methods to infer fishing activity during a fishing trip. We illustrate the approach
by analysing trajectories of trawlers operating in the Eastern English Channel. All vessels were equipped with VMS
and part of the Obsmer national discard sampling programme. Overall, results showed that surface currents influenced
fishing behaviour, and trawling preferentially occured parallel to surface currents. Speed over ground associated with
trawling behaviour was much more variable than speed through water, suggesting that trawling occured at constant
engine regimes. However, for both segmentation methods using speed through water instead of speed over ground did
not improve our capacity to identify trawling sequences. In both cases the amount of time spent trawling during a trip
was overestimated.
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1 Introduction

Understanding fishing vessel dynamics at a fine spatial
scale is of great interest for defining appropriate management
measures. Fishing trips typically consist of a sequence of activ-
ities, such as steaming and trawling. For trawlers, identifying
and characterising trawling sequences during a fishing trip is a
key step for understanding spatio-temporal dynamics of fish-
ing effort allocation (Vermard et al. 2010) and for characteris-
ing trawling costs when evaluating the economic performance
of fisheries (Pelletier et al. 2009).

The analysis of GPS positions from Satellite-based Vessel
Monitoring System (VMS) has received growing attention in
the last decade (Deng et al. 2005; Hintzen et al. 2010; Lee
et al. 2010; Mills et al. 2007; Rijnsdorp et al. 2011; Russo
et al. 2011a,b). Various models have been developed to de-
tect fishing activity from VMS data. While mathematical and
statistical methods differ, all rely on the idea that vessel speed
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over ground, derived from successive GPS positions, provides
critical information to infer fishing activity. This idea is mainly
based on the fact that at least two distinct activities are carried
out during a fishing trip. The first one consists of steaming to
the fishing zone (or going back to the harbor), which occurs
at high speed. The second one is the actual fishing activity, it
occurs at lower speed due to the use of fishing gear that slows
down the vessel (see Peel and Good 2011, for instance).

To segment a fishing trip into fishing and non-fishing activ-
ities, the simplest method considers that fishing occurs when
vessel speed is below a certain threshold value (Berthou et al.
2013). A more mechanistic approach is possible using Hidden
Markov Models. In this approach, the sequence of activities is
modelled as a Markov process (Charles et al. 2014; Gloaguen
et al. 2015; Peel and Good 2011; Vermard et al. 2010; Walker
and Bez 2010). These models have been shown to perform well
to capture realistic sequences of fishing/non-fishing activities
(Joo et al. 2013).

However, trawl efficiency might more depend on the move-
ment of the fishing gear through water rather than relative
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(a) (b)

Fig. 1. (a) Structure of the VMS dataset for vessels >12 m operating in the Eastern English Channel including trawlers, netters and other
vessels. A subset of vessels was sampled at sea as part of the Obsmer national sampling programme symbolized by the dotted box. In 2012,
among the 212 vessels in the VMS dataset, nine trawlers and nine netters were also sampled by Obsmer. (b) VMS data points for Obsmer
sampled trips for trawlers (grey points) and trammel netters (black points).

to the ground. In particular, speed through water is a key
feature to ensure good opening of the trawl (Fridman et al.
1986). Moreover, for some important commercial demersal
fish species swimming near the sea floor, a sufficient speed
through water can be needed to limit fish escapement (Rosen
et al. 2012; Trenkel et al. 2004), and trawling with the current
(instead of against the current) will maximise the area trawled
for the same fuel consumption.

Differences between speed through water and speed over
ground may not be negligible. Indeed, surface currents can
be very strong in some coastal fishing areas (e.g. in the East-
ern English Channel) and could decorrelate speed over ground
from speed through water. Also, because surface currents are
often related to tides, the correlation may fluctuate on a tem-
poral scale that is of the same order of magnitude than the
duration of fishing operations. For instance, in a recent paper,
analysing trips of otter trawlers operating in the Eastern En-
glish Channel, Gloaguen et al. (2015) found speed over ground
oscillated with an approximately twelve-hour period. This sug-
gests that speed over ground could inform more on surface
currents rather than the fishing activity itself.

Thus, when surface currents are strong, one might expect
that trawling preferentially occurs with the current and hence
speed through water might be more informative for identifying
fishing activities compared to speed over ground. Indeed, this
behavior might be due to fishing strategy (limiting fish escape-
ment) or technical constraints (opening of the trawl).

Despite the potential importance of vessel speed relative to
water speed for structuring trawling activities, little attention
has been paid in the literature to speed through water as a key
variable to infer fishing activity from GPS position records.
In this paper, we develop a method combining surface cur-
rents derived from ocean circulation models with VMS data
to estimate speed through water for fishing vessel trajecto-
ries. Then, using two previously published models, a simple
speed threshold and a mechanistic Hidden Markov Model, we
investigate whether considering speed through water instead
of speed over ground improves the segmentation of trajecto-
ries into fishing and non-fishing activities. We illustrate the
approach with data from fishing trips of trawlers operating in
the Eastern English Channel where surface currents are known

to be particularly strong, and are suspected to structure part of
the fishing activity.

2 Material and methods

2.1 VMS data for the French fleet in the Eastern
English Channel

VMS data from 211 French vessels (>12 m) operating in
the Eastern English Channel (ICES area VIId) in 2012 were
used for this study.The data contained GPS positions recorded
on average every hour. The vessels perform with different
gears (grouped into trawls, nets, and others, Fig. 1) and be-
long to mixed fisheries, which is the majority in the Eastern
Channel (Andre et al. 2009; Leblond et al. 2014). Due to con-
fidentiality reasons the gear used was not available. However,
for a subset of vessels and trips information on gear and time
of fishing operations could be extracted from the data collected
by the Obsmer onboard discard sampling programme (Dubé
et al. 2012). In 2012, nine trawlers (12 fishing trips) and nine
(trammel) netters (38 fishing trips), all equipped with VMS,
were covered by the sampling programme during at least one
trip. As all hauling times are known for these trips, the corre-
sponding GPS positions in the VMS data set could be labelled
as fishing or non-fishing.

2.2 Computing speed through water

For each trip, speed over ground was derived from the se-
quence of recorded GPS positions. These speeds were then
combined with surface current fields derived from a hydrody-
namical model to estimate speed through water. An overview
of the method is given below; technical details can be found in
Appendix A.

For each trip, recorded GPS positions (latitude and longi-
tude) are denoted (Xi)i=0...n for times t0 . . . tn. From this vec-
torial speed over ground, denoted (Vraw

i )i=0...n−1, was derived
assuming a linear travelling path between subsequent posi-
tions. Speed over ground results from the addition of forces
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Fig. 2. Structure of state space model (SSM) used to infer fishing vessel activity. White circles are observed, grey circles are computed, and
black circles are hidden and need to be estimated.

due to vessel steaming power on one hand, and surface cur-
rents on the other hand. Therefore the surface current com-
ponent was removed to obtain an estimate of speed through
water, hereafter denoted by (Vwtc

i )i=0...n−1.
Surface currents were derived from outputs of the hydro-

dynamical simulation model MARS 3D (Lazure and Dumas
2008) which was developed to obtain operational predictions
for coastal oceanography applications (Lecornu and De Roeck
2009). Because the model provided hourly surface currents on
a 2.5 km × 2.5 km grid, spatio-temporal interpolation was used
to associate model outputs of surface currents to each recorded
GPS position. The speed through water mass was then ob-
tained by subtracting the current component from estimated
speed over ground.

In addition to estimating speed through water, the surface
current field was used to compute the relative direction of fish-
ing vessels with respect to surface currents. This information
then alllowed us to test whether the direction of surface cur-
rents had any impact on the direction of fishing activity.

2.3 Identifying fishing sequences from speed over
ground and speed through water

For each fishing trip also sampled by the Obsmer pro-
gramme, estimated speed over ground (Vraw)i≥0 and speed
through water (Vwtc)i≥0 were used to infer fishing activity. Two
previously published models were used for this purpose. Be-
cause no new model development was done in this work, we
briefly summarise the principles of the two models.

• Speed threshold (Hintzen et al. 2012). The speed threshold
method considers two possible activities (or behavioural

states): fishing and steaming. At each time step i in the
sequence i = 0, . . . , n − 1, the vessel’s activity is assumed
to be fishing if ||Vi|| < 4.5 knots, and not-fishing otherwise.
• Hidden Markov Model (HMM). The method is a simplified

version of the HMM developed by Vermard et al. (2010),
and is also very close to models presented in Walker and
Bez (2010) and Peel and Good (2011). The general struc-
ture of the state space model applied to fishing vessel ac-
tivities is summarised in Figure 2. We only present the key
principles of the approach; model details can be found in
the references cited above.
The model considers two possible activities (or be-
havioural states): fishing and non-fishing. The sequence of
hidden (unkown) activities (S )i=0...n−1 is modeled as a ho-
mogeneous Markov chain. Vessel movement is assumed to
be linear between two time steps. Movement is described
by scalar speed ||Vi|| and turning angle θi. The two pro-
cesses are assumed to be independent at each time step.
Speed and turning angle are drawn from a Normal distribu-
tion and a wrapped Cauchy distribution respectively, with
parameters depending on the hidden behaviour. The model
is fitted within a Bayesian framework using MCMC simu-
lations (OpenBUGS software).

The capacity to identify the true sequence of behaviours (fish-
ing or non-fishing) was used to measure the performance of the
two methods. At each observed position, the inferred activity
was compared to the true activity as reported by the onboard
observer. The misclassification rate was computed as the per-
centage of time steps where the activity was misidentified. This
error was decomposed into its two components, false positives
(inferred fishing whereas the vessel was not fishing) and false
negatives (inferred non fishing while the vessel was fishing).
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Fig. 3. Time series for speed over ground and speed through water for
a fishing trip of a bottom trawler. Top line: Plots of speed processes,
a focus is made on an oscillating pattern (on ||Vraw||) that is flattened
when surface currents are removed. Bottom line: Overall distribution
of speeds for this trip.

3 Results

3.1 Comparing speed through water
with speed over ground

Figure 3 shows an example of estimated speeds over
ground and corresponding speeds through water. This trip was
carried out by an offshore bottom trawler. For speeds be-
low 4.5 knots, speed over ground exhibited sinusoidal varia-
tions between 2 and 4 knots, with an approximate time period
of 12 h (Fig. 3), while those fluctuations were dampened to
around 2.5 knots when considering speed through water. As a
result the histogram of speeds below 4.5 knots showed a clear
unique mode for speed through water, while it was more spread
between 2 and 4 knots for speed over ground.

Figure 4 shows the frequency distributions of speed over
ground and speed through water for all vessels in the VMS data
set, i.e. all fishing gears combined. The two distributions dif-
fered significantly (Kolmogorov Smirnoff test P-value = 2 ×
10−16), though, the difference was small. However, clear differ-
ences between the two frequency distributions became visible
when considering fishing gears separately using the Obsmer

data set (Figs. 4b and 4c). While speed distributions did not
differ for netters, the speed process of bottom trawlers seemed
to have been strongly impacted by surface currents.

As for the example shown in Figure 3, speeds over ground
between 2 and 4 knots corresponded to speeds through water
of around 2.5 knots. Thus, speed through water was much less
variable (at low speed) than speed over ground.

The relative direction of vessels with respect to the direc-
tion of surface currents was analysed for low vessel speeds
(<4.5 knots) only. Rao’s test for uniformity (Rao 1976) re-
jected the null hypothesis of uniformity, that is of all rela-
tive directions occurring with the same frequency (P-value =
2 × 10−16, the test was performed by retaining only every
fourth speed estimate to ensure independence). This indicates
the existence of preferential relative vessel directions at low
speed.

To investigate this further, we focused on four broad cate-
gories: relative vessel direction between 0 and 45◦ (with sur-
face current), between 45 and 90◦, between 90 and 135◦ (in the
two cases the surface current is transversal) and between 135
and 180◦ (against surface current).

For the VMS data set the proportion of vessel directions
estimated to have been with or against the surface current was
around 68% (see Fig. 5), indicating a preferential direction for
fishing, that is parallel to surface currents (the null hypothe-
sis of equal proportions of parallel and transversal directions
was rejected based on a binomial test; P-value < 0.001). In the
Eastern English Channel, the main currents are parallel to the
coast. Therefore, hauling in this region would be more likely
in this direction.

3.2 Evaluating the influence on fishing
activity identification

The performance of the two methods to split a vessel trip
between fishing and non-fishing activities was compared for
speed over ground and speed through water. The comparison
was made for 12 fishing trips carried out using bottom trawls,
whose speeds were affected by surface currents (see Fig. 4).
The misclassification rate was estimated by comparing ob-
served behaviour (recorded by the onboard observer) with es-
timated behaviour (Table 1). Surprisingly, using speed through
water instead of speed over ground did not improve the clas-
sification performance, neither for the threshold method nor
for the HMM approach. Both methods performed similarly for
this small data set. It is worth noting that the misclassification
error mainly came from false positives. The overall time fish-
ing (trawling) would therefore be overestimated in both cases.

4 Discussion

In this paper, we investigated the importance of consider-
ing movements of fishing vessels relative to the water mass
(instead of relative to the ground) to analyse fishing activ-
ity. Because VMS data provide GPS positions, fishing vessel
movements have traditionally been analysed using speed over
ground which is easily computed from GPS position records.
However, because of both technical (opening of the trawl)
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Fig. 4. Frequency distributions of speed over ground and speed through water. (a) Speed profiles for all fishing trips, all gears combined
(VMS dataset). (b) Speed profiles for fishing trips performed using bottom trawls (Obsmer dataset). (c) Speed profiles for fishing trips performed
using trammel nets (Obsmer dataset).

Table 1. Classification errors (%) for identifying fishing activity for two methods and two vessel speed types. For method descriptions see text.

Threshold approach HMM approach
Speed over ground Speed throuh water Speed over ground Speed through water

Error type 13.46 13.87 13.54 13.70
False Positive 10.13 11.54 11.54 11.21
False Negative 3.32 2.33 1.99 2.49
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Fig. 5. Proportion of estimated relative fishing vessel directions in re-
lation to surface currents at low vessel speed (<4.5 knots). Classes
from left to right: vessel moving with the surface current, vessel per-
pendicular to surface current (two central classes), vessel moving
against surface current.

and biological (fish escapement behaviour) reasons, trawling
efficiency may depend upon the relative movements of the fish-
ing gear in relation to the water mass. Moreover, differences

between speed through water and speed over ground might not
be negligible in areas with strong currents (e.g. tidal currents).

The results suggested that the importance of surface cur-
rents for analysing fishing activity from VMS data might de-
pend upon the fishing gear, with a much higher impact on
speed over ground for bottom trawlers than for netters.

Looking at speed distributions, the influence of currents
was only weak when considering all VMS data together, or
when considering netters. However, the impact was strong
when considering bottom trawlers. In this case, the lower
speed over ground, likely associated with trawling sequences,
varied between 2 and 4.5 knots, while the speed through wa-
ter remained more constant at around 2.5 knots. This high-
lights the influence of surface currents on the variability of
speed over ground, with speed through water remaining more
constant. We can conjecture that this conclusion holds for
all trawling gears whose use implies technical constraints
(Fridman et al. 1986).

Moreover, the orientation of fishing vessels in relation to
surface currents showed that, at low speed, vessels spent most
of their time (more than 68%) steaming with or against the
current compared to perpendicular. This suggests that surface
current orientations are an environmental constraint for vessels
dynamics in the Eastern English Channel and should be taken
into account when studying their displacements.

The results suggest that trawling activity is mainly per-
formed in a direction parallel to the currents and at more or less
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constant engine regime, leading to a rather constant speed
through water while speed over ground varies with the cur-
rents. In the case of trawling gears, the speed of the gear is
then constant relative to the water mass, which may help to
limit fish escapement (Trenkel et al. 2004).

In the particular case of the Eastern English Channel, be-
cause the intensity of currents increases with distance to the
coast, the impact of surface currents on the observed speed his-
togram might have depended on vessel fishing locations. The
nine trawlers used to perform this analysis tended to operate
in the middle of the Channel (therefore, far from the shore),
whereas netters stayed closer to the coast.

As an important result, when considering speed below
4.5 knots preferentially associated to trawling behaviour, our
study revealed that speed through water was much less variable
than speed over ground. An important hypothesis of HMM de-
veloped by Vermard et al. (2010), Walker and Bez (2010) and
Peel and Good (2011) is the normal distribution of the speed
distribution for a given behaviour. It was shown here that speed
through water better supported this assumption than the usual
speed over ground.

This study highlights that the presence of two modes at
low speed in the raw speed histogram does not necessarily
imply two different fishing behaviours (for instance, for bot-
tom trawlers). This is a meaningful result that must be taken
into account when using methods that directly rely on speed
to identify fishing behaviour. However, when two modes per-
sist after transforming to speed through water, this might imply
two different fishing behaviours. In this case, the structure of
the state space model used here, having only one fishing be-
haviour type, might be unsuitable.

Moreover, considering speed through water might be of
great importance for economic analyses that balance fish-
ing yields with exploitation costs (Beare and Machiels 2012;
Daurès et al. 2013; Poos et al. 2013). Indeed, exploitation
costs strongly depend upon fuel consumption. Because speed
through water is a good proxy of the engine regime, it would
be worth considering the use of speed through water instead of
speed over ground to infer exploitation costs.

The importance of removing the effect of surface currents
on vessel speed when splitting a fishing trip between fishing
and non-fishing behaviour was also tested, using two differ-
ent estimation methods and validation data from the Obsmer
programme. However, the results showed that using speed
through water did not improve classification performance. For
the threshold method, the performance did not improve as
both speed over ground and speed through water were be-
low 4.5 knots. The 4.5 knots threshold is therefore suitable
for the area and the strength of encountered surface cur-
rents. However, this threshold value could be set differently
for areas with stronger currents. In the case of the HMM ap-
proach, which was based on the model developed by Vermard
et al. (2010), classification performance was not improved ei-
ther, even though the normality assumption of the speed pro-
cess was less violated when considering speed through water.
The HMM approach is therefore robust to this variability,
and relies more on mean speed to identify each behaviour.
Indeed, this mean remained the same for fishing behaviour
(around 2.5 knots) for both speed measures.

Overall, considering speed through water instead of speed
over ground might not be necessary for splitting trajectories
into fishing and non-fishing activities, especially when it re-
quires additional (and possibly costly) interpolation of physi-
cal model outputs. Both methods gave similar results, having
a large number of false positives, and therefore overestimated
the amount of time spent fishing during a trip. Further, for bot-
tom trawlers the threshold method is simpler and was as ef-
ficient as the model based HMM approach. Moreover, in or-
der to improve the detection of fishing activities, new methods
should probably focus on decreasing false positives.

In conclusion, we suggest considering the main direction
of hauling with respect to the direction of surface currents
when analysing fishing vessel dynamics. Finally, results pre-
sented here suggest to use simple methods when processing
VMS data rather than complex mechanistic models.

Appendix A: Removing currents
from vessel speed

Here we first provide details for the method used to derive
speed over ground from a sequence of recorded GPS positions
and then for the method used to derive speed through water by
combining the former with surface currents field.

Let us denote (Zi)i=1...(n) the sequence of GPS positions (lat-
itude and longitude) recorded at times t1 . . . tn. The positions
are converted into a sequence of two dimensional coordinates
on a regular grid, denoted (Xi)i=1...(n). The sequence of speeds
over ground, denoted (Vraw

i )i=1...(n−1) is then derived from the
sequence of positions assuming a linear path between points.

Vraw
i =

Xi+1 − Xi

ti+1 − ti
(A.1)

Speed over ground results from the combination of forces
due to the engine and surface currents. To remove the sur-
face current component from the raw speed computed in equa-
tion (A.1), outputs of the hydrodynamical model MARS 3D
were used. MARS 3D was developed by IFREMER (Lazure
and Dumas 2008). Surface currents (taking wind into account)
are computed hourly on a 2.5 km × 2.5 km grid. The model
provides the vector of surface current (vector) CP

h at each
point P of the grid and every hour h of the day. The time steps
of GPS positions (Xi)i=1...(n) do not match the time step and
the grid of MARS 3D outputs. Each observed position Xi is
recorded at time ti = hi : mi (hour:minute) and is linked to its
closest point M in the model’s grid. To compute an estimate of
the current at position Xi and time ti (noted ĈXi

ti ), interpolation
is performed following the equation

ĈXi
ti =

(
1 − mi

60

)
CM

hi
+

mi

60
CM

hi+1 (A.2)

Combining surface currents ĈXi
ti in (A.2) with speed over

ground in equation (A.1), speed through water, denoted Vwtc,
is computed as:

Vwtc
i = Vraw− < Vraw

||Vraw|| ; ĈXi
ti >

Vraw

||Vraw|| (A.3)
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Fig. A1. Method to remove surface currents from velocity process to obtain vessel speed through water.

where < ·; · > is the usual scalar product. A geometric repre-
sentation of equation (A.3) is given in Figure A1.

Using equation (A.1), the 1D speed process ||Vraw
i || can be

computed.

References

Andre C., Franck C., Lucie C., Jean-Claude D., Juliette D., Jean-
Marie D., Ludovic D., Aurélie F., Clément G., Laure G., Stuart
H., Roger J., Philippe K., Valentina L., Corinne M., Geoff M.,
Jocelyne M., Yoshi O., Emilie R., Bob S., Nicolas S., Sandrine
V., Ching-Maria V., Yves V., Joanne W., Caroline W., 2009, Atlas
des Habitats des Ressources Marines de la Manche Orientale –
CHARM II.

Beare D., Machiels M., 2012, Beam trawlermen take feet off gas in
response to oil price hikes. ICES J. Mar. Sci., DOI:10.1093/
icesjms/fss057.

Berthou P., Bégot E., Laurans M., Campéas A., Leblond E., Habasque
J., 2013, Présentation de la suite logicielle AlgoPesca. Rapport
interne Ifremer.

Charles C., Gillis D., Wade E., 2014, Using hidden markov models
to infer vessel activities in the snow crab (chionoecetes opilio)
fixed gear fishery and their application to catch standardization.
Canadian J. Fish. Aquat. Sci. 71, 1817–1829.

Daurès F., Trenkel V.M., Guyader O., 2013, Modelling the fishing
costs of french commercial vessels in the bay of biscay. Fisheries
Research 146, 74–85.

Deng R., Dichmont C., Milton D., Haywood M., Vance D., Hall N.,
Die D., 2005, Can vessel monitoring system data also be used to
study trawling intensity and population depletion? the example of
australia’s northern prawn fishery. Canadian J. Fish. Aquat. Sci.
62, 611–622.

Dubé B., Diméet J., Rochet M.J., Tétard A., Gaudou O., Messanot C.,
Biseau A., Salaün M., 2012, Observations à bord des navires de
pêche professionnelle. bilan de l’échantillonnage 2011.

Fridman A.L., Carrothers P., et al., 1986, Calculations for fishing gear
designs. Fishing news books England.

Gloaguen P., Mahévas S., Rivot E., Woillez M., Guitton J., Vermard
Y., Etienne M.P., 2015, An autoregressive model to describe fish-
ing vessel movement and activity. Environmetrics 26, 17–28.

Hintzen N.T., Bastardie F., Beare D., Piet G.J., Ulrich C., Deporte N.,
Egekvist J., Degel H., 2012, VMStools: Open-source software
for the processing, analysis and visualisation of fisheries logbook
and VMS data. Fisheries Research 115, 31–43.

Hintzen N.T., Piet G.J., Brunel T., 2010, Improved estimation of
trawling tracks using cubic Hermite spline interpolation of po-
sition registration data. Fisheries Research 101, 108–115.

Joo R., Bertrand S., Tam J., Fablet R., 2013, Hidden markov models:
The best models for forager movements? Plos One 8.

Lazure P., Dumas F., 2008, An external-internal mode coupling for
a 3D hydrodynamical model for applications at regional scale
(MARS). Adv. Water Resour. 31, 233–250.

Leblond E., Daures F., Leonardi S., Demaneche S., Merrien C.,
Berthou P., Rostiaux E., Macher C., Lespagnol P., Le Grand C.,
Le Blond S., 2014, Synthèse des flottilles de pêche 2012, Flotte
de Mer du Nord – Manche – Atlantique. Flotte de Méditerranée.
http://archimer.ifremer.fr/doc/00248/35971/.

Lecornu F., De Roeck Y.H., 2009, Previmer – observations et prévi-
sions côtières. La Houille Blanche 0, 60–63.

Lee J., South A.B., Jennings S., 2010, Developing reliable, repeat-
able, and accessible methods to provide high-resolution esti-
mates of fishing-effort distributions from vessel monitoring sys-
tem (VMS) data. ICES J. Mar. Sci. 67, 1260–1271.

Mills C.M., Townsend S.E., Jennings S., Eastwood P.D., Houghton
C.A., 2007, Estimating high resolution trawl fishing effort from
satellite-based vessel monitoring system data. ICES J. Mar. Sci.
64, 248–255.

Peel D., Good N.M., 2011, A hidden markov model approach for
determining vessel activity from vessel monitoring system data.
Canadian J. Fish. Aquat. Sci. 68, 1252–1264.

Pelletier D., Mahevas S., drouineau H., Vermard Y., Thebaud O.,
Guyader O., Poussind B., 2009, Evaluation of the bioeconomic
sustainability of multi-species multi-fleet fisheries under a wide
range of policy options using isis-fish. Ecol. Modelling 220,
1013–1033.

http://archimer.ifremer.fr/doc/00248/35971/


8 P. Gloaguen et al.: Aquat. Living Resour. 29, 210 (2016)

Poos J.J., Turenhout M.N., van Oostenbrugge H.A., Rijnsdorp A.D.,
2013, Adaptive response of beam trawl fishers to rising fuel cost.
ICES J. Mar. Sci. 70(3), 675–684.

Rao J., 1976, Some tests based on arc-lengths for the circle. Sankhyā:
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