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Abstract : 
 
A quantitative understanding of the integrated ocean heat content depends on our ability to determine 
how heat is distributed in the ocean and what are the associated coherent patterns. This study 
demonstrates how this can be achieved using unsupervised classification of Argo temperature profiles. 
The classification method used is a Gaussian Mixture Model (GMM) that decomposes the Probability 
Density Function of a dataset into a weighted sum of Gaussian modes.  
 
It is determined that the North Atlantic Argo dataset of temperature profiles con- tains 8 groups of 
vertically coherent heat patterns, or classes. Each of the temperature profile classes reveals unique and 
physically coherent heat distributions along the vertical axis. A key result of this study is that when 
mapped in space, each of the 8 classes is found to define an oceanic region, even if no spatial 
information was used in the model determination. The classification result is independent of the location 
and time of the ARGO profiles.  
 
Two classes show cold anomalies throughout the water column with amplitude decreasing with depth. 
They are found to be localized in the subpolar gyre and along the poleward flank of the Gulf Stream and 
North Atlantic Current (NAC). One class has nearly zero anomalies and a large spread throughout the 
water column. It is found mostly along the NAC. One class has warm anomalies near the surface (50m) 
and cold ones below 200m. It is found in the tropical/equatorial region. The remaining four classes have 
warm anomalies throughout the water column, one without depth dependance (in the southeastern part 
of the subtropical gyre), the other three with clear maximums at different depths (100m, 400m and 
1000m). These are found along the southern flank of the North Equatorial Current, the western part of 
the subtropical gyre and over the West European Basin. These results are robust to both the seasonal 
variability and to method parameters such as the size of the analyzed domain. 
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1. Introduction 

 
As revealed by in-situ and satellite observations, the ocean has undergone significant changes in the 
past decades. In particular, since the early 1970s, the ocean stored 93% of the excess of heat added to 
the Earth climatic system by the anthropogenically modified radiative balance at the top of the 
atmosphere (Stocker et al., 2013). The ocean has also been found to be more stratified (Levitus et al., 
2012) and Western Boundary Currents have probably shifted poleward and intensified (Wu et al., 2012; 
Yang et al., 2016). To understand the drivers of these changes requires a quantitative understanding of 
the integrated ocean heat content. 
 

 

 



The ocean temperature structure is very complex but a simple first-order description is possible. Near the
surface, ocean temperature is primarily driven by air-sea heat fluxes and modulated by horizontal heat mean
and eddy transports, especially in Western Boundary Current systems (Kwon et al., 2010). This results in
the ocean surface temperature to decrease poleward. However, ocean currents are three-dimensional and
redistribute heat at di↵erent depths. At mid-latitudes, a negative wind-stress curl forces a downward doming
of isopycnal and isothermal surfaces (Vallis, 2006), which results in the temperature at depth, e.g. 500m, to
be higher in subtropical gyres than at the equator (Talley et al., 2011). This 3-dimensional redistribution
of heat in the ocean makes our ability to identify remarkable heat patterns in the horizontal and vertical
plans crucial to the understanding of the integrated ocean heat content.

Along the vertical axis, remarkable patterns may be defined a priori using known water masses such as
shallow, intermediate and deep waters or layers such as the mixed and Ekman layers and the permanent
thermocline. These patterns can be used to partition horizontal or vertical heat transports (Talley, 2003;
McCarthy et al., 2012; Buckley et al., 2014). However, they are not used to partition heat content variability
despite e↵orts to formalize the use of reference surfaces in vertically integrating heat content (Palmer and
Haines, 2009). The problematic is that the general lack of clear objective definition for vertical patterns,
despite a recent e↵ort with regard to the permanent pycnocline (Feucher et al., 2016), impedes their de-
scription, especially over long timescales during which their defining properties can change (e.g. Yang and
Wang, 2009; Fiedler, 2010).

In the horizontal plan, remarkable large scale patterns are not defined per se. Simple geographical boxes
of fixed size and shape are preferred. One is left with the di�cult task to look for relevant boxes to explain
the large scale structure and variability of the heat content. Many studies define the subtropical and/or
subpolar gyres as rectangular boxes from which box-averaged statistics are computed (e.g. Lozier et al.,
2010; Bryden et al., 2014; Häkkinen et al., 2015; Grist et al., 2015). Due to limited availability of historical
measurements, one can even find entire region signals to be approximated by a single location dataset (e.g.
Curry and McCartney, 2001). Obviously, a serial issue with a rectangular box is that it does not take
into account the complex structure of the ocean which is not aligned along latitudes and longitudes. The
problematic is that, although it is always possible to use more complex polygons than a rectangle to describe
a region (e.g. Barrier et al., 2015), this will be di�cult, if even possible to do, if a region has to be bounded
by a dynamical structure such as a Western Boundary Current.

To identify remarkable heat patterns in the horizontal and vertical plans, their variability and their
climatology thus remains a challenge. In this study, we propose to tackle this problem with a method
that belongs to the class of unsupervised classification methods. Classification, or clustering, is a statistical
method that groups data into classes, or clusters, according to a given similarity metric.

Profile classification has already been used in oceanographic application but to other means. Hjelmervik
and Hjelmervik (2013) used a classification method on in situ profiles to predict the local vertical structure
of temperature and salinity at a given location, without surface information. Indeed, it is rather common
to predict the interior structure of the ocean based on surface data, such as sea surface height, and a model
either based on physical principals (Ponte and Klein, 2013) or on historical local regressions (Guinehut
et al., 2012). To do so without a surface information is much more complicated though. Hjelmervik and
Hjelmervik (2013) grouped profiles according to their Euclidean distance in a reduced dimensional space for
latitude/longitude/ temperature/salinity and derived a prediction model of climatological profiles at a given
latitude/longitude location. For the methodology to perform better than a classic box averaging method,
they determined that 26 groups of profiles were necessary for the North Atlantic Ocean. They later adapted
the method to real-time profile prediction using partial observations, and the number of groups decreased
to 18 for the method to perform well (Hjelmervik and Hjelmervik, 2014). A classification based prediction
method to fill in gaps in two-dimensional data have also been used for satellite measurements with clear
success (Aretxabaleta and Smith, 2013). The work from Hjelmervik and Hjelmervik (2013, 2014) extents
this idea to vertical profiles with strong promises.

Classification based prediction methods strive in dealing with non-Gaussian statistics, such as observed
in frontal regions (Sura, 2010). However, for our goal, which is to characterize remarkable heat patterns,
they su↵er from two limitations: (i) they take data latitude and longitude as parameters and (ii) they require
a rather large number of classes to perform well. We understand that these requirements are imposed to
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ensure a satisfactory prediction performance. But, here, we are interested in identifying remarkable patterns
in vertical temperature profiles, their corresponding regional distributions (if any) and their climatology.
Therefore, on the one hand there is no reason to impose data coordinates in the classification. Indeed,
we should let the classification reveals the spatial coherence, or lack thereof, of temperature profiles and
not impose it. Tandeo et al. (2014) demonstrated how unsupervised mixture modeling can be used to
classify sea surface temperature and height anomalies into small scale dynamical modes without using the
latitude and longitude of the data. We shall demonstrate in this study that indeed, profile based classes are
coherent in space in the North Atlantic. On the other hand, we aim to understand, and therefore reduce, the
information contained into a large collection of temperature profiles. Thus, it is crucial for the information
to be contained into a limited number of classes. This however will depend on how many remarkable patterns

are relevant for a given usage.
The paper is organized as follows: in section 2, the dataset is presented; in section 3, the classification

method is introduced as well as the methodology we employed to apply it to the Argo temperature dataset;
in section 4, we apply classification to analyze the vertical integral of the heat content and in section 5,
the classification of temperature profiles is performed to reveal the ocean internal heat content structure in
the North Atlantic. Last, discussion/ conclusion are drawn in section 6 while appendices provide technical
details about optimization (Appendix A) and sensitivity experiments (Appendix B) .

2. Data

In this study, we used data from the Argo array. Argo is a real-time global ocean observation network.
It consists of about 3000 autonomous profilers randomly distributed in all oceans to observe the large scale
open ocean out of the high latitudes and marginal seas. Most of the profilers drift freely at a parking depth
around 1000m and every 10 days descend down to 2000m to then rise up to the surface measuring pressure,
temperature and salinity. Once at the surface, profile data are transmitted to data assembly centers by
satellite after what profilers descent back to their parking depth and start another 10 day cycle. Argo data
are now used routinely in physical oceanography and are key to the observation of the ocean climate (Riser
et al., 2016).

The Argo database is a collection of more than 1.5 million temperature and salinity profiles going from
the surface to 2000m, evenly distributed throughout the seasonal cycle and with approximately 1 profile
per month per 3o ⇥ 3o cell between 2000 and 2014. We extracted the database in December 2014 from
the Coriolis GDAC (Argo, 2014). We selected profiles located in the North Atlantic between the equator
and 70N and between 90W and 0E. The collection was reduced to profiles and measurements with correct
quality control flags (1, 2, 5 or 8, following the Argo reference table 2 of the user manual, Carval et al., 2015)
between the surface and 1400m. The depth level of 1400m was chosen as a compromise between the total
number of profiles (the shallower the larger) in the analyzed dataset and the vertical extent of the analysis.
We finally interpolated the data on a regular vertical grid with a 5m resolution (the original resolution
ranges from less than 10m at the surface to 200m at the bottom of the profile).

Figure 1-A shows the spatial density of the final collection of 100, 684 profiles. The North Atlantic is a
well observed basin and the spatial density is such that there are around 30 profiles per 1o ⇥ 1o cell over
most of the area. For the period covered by the dataset (180 months), this is about 160% the initial target
of the Argo sampling strategy. We note that the data density is not homogeneous though. The subpolar
gyre and the North-East, o↵ the Bay of Biscay are more densely sampled than the Western tropical region.
This will be taken into account in the analysis. Figure 1-B shows the temporal sampling of the collection
of profiles: there are on average 8,400 profiles per month with no significant seasonal bias. Finally, Fig.1-C
shows the entire time series of number of profiles per month in the collection. It steadily increased from
2000 to the end of 2013, with a remarkable doubling in 2002, a 200 profile/month increase in 2006 and a
peak at the end of 2012. The 2014 decrease is due to the fraction of profiles still awaiting for delayed mode
quality control and not incorporated in the dataset used here.

[Figure 1 about here.]
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3. Methodology

Hereafter we motivate and then present our methodology based on Gaussian Mixture Models (GMM).
Readers already familiar with classification and GMM may want to move directly to section 3.4. This
presentation targets the physical oceanographic community and therefore will favor a pragmatic description
to introduce the key elements required to manipulate this statistical tool. The reader is referred to Bilmes
(1998) and Bishop (2006) for a detailed GMM description and determination method, and to Hannachi
(2007) for an example of its usage in atmospheric dynamics.

Here we are interested in modeling the oceanic heat content structure, i.e. in understanding how, along
the water column, heat reservoirs are organized. To do so, we propose to analyze the diversity of vertical
temperature profiles by way of automatic identification of recurrent profile patterns throughout the collection
of profiles. One can think about this as an extension of the water mass approach (whereby specific levels
of the temperature profile are considered and possibly associated with a water mass) toward the analysis of
stack of water masses.

[Figure 2 about here.]

Figure 2-A shows 50 superimposed profiles randomly drawn out of the Argo collection in order to illustrate
the diversity of possible vertical structures: some profiles are almost linear from the surface to the bottom,
others exhibit one or more layers with gradients (thermoclines) or homogeneities (mode waters).

The diversity of profiles within the complete collection can statistically be represented by a probability
density function (PDF). The PDF captures the relative likelihood of a profile to take on a given pattern at
a given depth. If a pattern is recurrent in the collection, its instances will accumulate and create a peak in
the PDF. Similarly, if more than one pattern are recurrent, one will observe a PDF with several peaks.

It is important to note that such a PDF of the collection of profiles is not trivial to visualize nor to compute
because it requires to enumerate the number of profiles falling in small bins of profile types, something which
cannot be determined at this point. We therefore adopted a simplified representation, noted PDFz, by
enumerating the number of temperature data at a given depth falling in small bins of temperatures and by
scaling the resulting histogram so that the integral at each depth level goes to 1. This is shown in Fig.2-B
(at 4 sample depths) and C (at all depths). The observed PDFz has several peaks and we note that they
are not necessarily connected through the vertical dimension, meaning that patterns at a given depth can
be found in profiles with di↵erent patterns at other depths. Such complexity makes the collection of profiles
strongly heteroscedastic, i.e. to have sub-collections with di↵erent statistical properties, in particular their
variance. To face this we need: (i) to objectively identify recurrent patterns in the collection of profiles, i.e.
PDF peaks and (ii) to describe such patterns with a minimum of information, i.e. to create a simple model
of PDF peaks. It happens that GMM strives to do exactly that.

Thus we used an unsupervised classification method called GMM to decompose the PDF of profiles
(for which one simplified representation, PDFz, was shown in Fig.2-B,C) into a weighted sum of multi-
dimensional Gaussian PDF. This will allows us to identify and model the typical vertical structures rep-
resented in the collection of profiles. The method is referred to as: (i) classification because it seeks to
classify profiles into sub-collections, or classes, according to their similarity, (ii) fuzzy because it provides
the probability for a profile to belong to each of the classes, (iii) unsupervised because no information about
each class properties is known a priori, only their PDF family is imposed and (iv) mixture modeling because
it provides a model for the PDF of the collection as a weighted sum (hence mixture) of Gaussian PDF.

One key point of our methodology that makes it fundamentally di↵erent from previous works (Hjelmervik
and Hjelmervik, 2013, 2014) is that we don’t use the geographical locations of profiles to help identify groups
of similar profiles. This choice was motivated by the idea that there is no reason for the vertical structure
of a profile to be unique to a given region. We thus want to determine if profiles with similar vertical
structures are also co-localized in space, hence defining physically coherent regions in the ocean by the sole
virtue of their similarities. If this is the case, as we shall see, such a model could be used to determine the
distribution in space and time of particular stack of water masses, pretty much like water mass properties
(e.g. temperature, salinity and possibly biogeochemical tracers and stratification) can be used to localize
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water parcels of that water mass in space and time in order to study its distribution and variability (Garćıa-
Ibáñez et al., 2015).

3.1. Probability Density Function of profiles

Let’s start by introducing the key ingredient to GMM: a multi-dimensional Normal PDF with mean µ

and covariance ⌃:

N (x;µ,⌃) =
1p

(2⇡)D|⌃|
exp

✓
�1

2
(x� µ)>⌃�1(x� µ)

◆
(1)

where | · | is the determinant and ·> the transpose operators, x 2 RD⇥1 is a profile of the x 2 RD⇥N

collection, µ 2 RD⇥1 and⌃ 2 RD⇥D. The array x is the dataset we want to analyze: it is made of N
profiles (as columns) of D vertical levels (as rows). Note that Eq.(1) is a scalar (higher or equal to 0, but
not bounded by 1) defined for x whatever its number of dimensions. We shall refer to N (x;µ,⌃) as the
R1⇥N ensemble of PDF values obtained by computing Eq.(1) for all profiles of the dataset x 2 RD⇥N .

Although in section 4 we start by investigating a simpler uni-dimensional case, it is crucial to note here
that we explicitly keep the vertical dimension (through the dimensions of x, µ and ⌃) in the formulation of
the PDF Eq.(1) because it is along this dimension that we aim to identify coherent patterns.

Let’s take an example using the collection of Argo profile statistics plotted in Fig.2. The collection mean
profile (black plain line in Fig.2) is a column vector µ 2 RD⇥1 and the collection standard deviation profile
(black dashed lines in Fig.2 that are one standard deviation around the mean at a given depth) is the square
root of the diagonal of a covariance matrix⌃ 2 RD⇥D. We will keep in mind that the covariance matrix
has no reason to be diagonal though, because of the vertically coherent patterns. The point here, is that a
Gaussian PDF from D-dimensional data takes into account the structure and the scale of patterns exhibited
by a population of profiles with D vertical levels.

In practice, and it is the motivation for this study, the collection of Argo profiles cannot be represented
appropriately by a single Normal PDF.

3.2. Gaussian Mixture Modeling

The core foundation of a GMM is that any PDF can be described as closely as desired with a model of
weighted sum of Gaussian PDF (Anderson and Moore, 1979):

p(x) =
KX

k=1

�

k

N (x;µ
k

,⌃
k

) (2)

where the PDF model has K components, each referred to as c = k, from the same parametric Gaussian
family given by N (x;µ

k

,⌃
k

) and being associated with weighting coe�cients �

k

. One can show that the
component weights must satisfy: 0  �

k

 1 and
P

k

�

k

= 1 (see Bishop, 2006, p. 430). These weights
are the prior probability densities p(c = k) of each component (Bishop, 2006, p 110).

We aim to fit a PDF model of the form Eq.(2) to the observed PDF of the vertical profiles:

p̂(x) ' p(x) =
KX

k=1

e
�

k

N (x; eµ
k

,

e⌃
k

) (3)

where p̂(x) stands for the observed PDF and tildes on parameters (�
k

, µ

k

,⌃
k

) stand for their best estimates.
Gaussian mixture modeling nails down to an optimization problem that can be tackled by maximizing the
likelihood of observed profiles. This optimization is referred to as model training. It is solved with the
Expectation-Maximization method (McLachlan and Krishnan, 2007) and was computed using the open
source Netlab software (Nabney, 2002). For clarity in this methodology introduction, we provide the details
of the model training in Appendix A.

The only input parameter to the model training procedure is the number of mixture components K. It
is a rather di�cult problem to determine automatically the most appropriate number of components. There
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exists di↵erent methods that are mostly based on estimating the most probable K, or minimizing a given
metric such as the mixture entropy or misfit with the observed PDF (Fraley and Raftery, 1998). A popular
method is the Bayesian Information Criteria (BIC, Schwarz, 1978). The BIC is an empirical approach of
the model probability computed as:

BIC(K) = �2L(K) +N

f

(K) log(n) (4)

where L(K) is the log likelihood of the trained model with K classes (see Eq.A.1), N
f

(K) = K� 1+KD+
KD (D�1)/2 is the number of independent parameters to be estimated (the sum of the component weights,
Gaussian means and covariance matrix elements in the D-dimensional data space) and n is the number of
profiles used to train the model. The BIC is empirical because the first r.h.s. term in Eq.(4) decreases as
the number of classes K increases while the second r.h.s. term is a penalty term that increases with K and
thus prevents model overfitting the data. The sum of the two terms is expected to exhibit a minimum for
the most appropriate K. For our dataset, we found the BIC method to provide insightful guidance only
if computed using the minimal number of profiles expected to describe the collection. More details are
provided in the section 5. Here, the user will keep in mind that the number K sets a compromise between
compression (small K) and accuracy (large K) of the GMM and that it is meant to provide a number of
classes physically meaningful.

At this point, we thus optimally decomposed the observed PDF into K Gaussian densities representing
the K components of the mixture model. Each component is defined by a Gaussian density with parameters
(eµ

k

,

e⌃
k

) and by a e
�

k

= p(c = k). A component will gather a group, or class or cluster of profiles similar
to each others while being at the same time as much as possible di↵erent from profiles of other components
(the similarity metric being the Mahalanobis distance from the Gaussian density).

How finally do we determine to which component a profile x resemble most, i.e. how do we classify it
? We compute the posterior probability density of a component p(c = k|x) which, given a prior density
p(c = k), is obtained using Bayes’ rule p(c = k|x)p(x) = p(x|c = k)p(c = k) as:

p(c = k|x) =
e
�

k

N (x; eµ
k

,

e⌃
k

)
P

K

k=1
e
�

k

N (x; eµ
k

,
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)
(5)

where we recognize that: (i) the mixture PDF p(x) is given by Eq.(3) for a profile x in the collection x,
(ii) the profile PDF conditioned to one component p(x|c = k) is given by Eq.(1) using the optimized set of
parameters (eµ

k

,

e⌃
k

), a probability sometimes referred to as the activation, and (iii) as already noted, the

component prior density p(c = k) is the weighting coe�cient e�
k

.
The probability density p(c = k|x) defined Eq.(5) is the result to be used to classify a profile. It is

interesting to note that there are K posterior values for each profile and that they add to 1. This is why
GMM is referred to as a probabilistic or fuzzy classification method, in opposition to hard ones like KMeans
which provide a binary classification (probability is reduced to either 0 or 1, Lloyd, 1982).

To ease visualization or discussion of the classification results, a profile is said attributed to or labeled

with the class k for which its posterior is maximum:

C(x) = argmax
k

(p(c = k|x), k = 1 : K) (6)

One can interpret maximum posterior values as follows. As the posteriors p(c = k|x) range from 0 to 1,
one can imagine the two extreme cases where: (1) the profile perfectly matches one of the class center
and p(c|x) ! [1, 0, ..., 0] with K � 1 null values or (2) the profile does not match any of the classes and
p(c|x) = [1/K, 1/K, ..., 1/K], i.e. classes are equi-probable. In that latter case one should note that
all posteriors cannot converge toward zero, which could have been expected if none of the model classes
corresponded to the profile, because they must sum to one. Equi-probability is thus the indication of un-
conclusive labeling. This simple line of arguments puts some bounds on the maximum posterior value: from
1/K for the worst case scenario of equi-probable classes up to 1 for the best case scenario if one of the class
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is a perfect fit for the profile (never reached though in practice). In this study, we introduce the following
labeling metric as:

R(x) =

✓
p

m

� 1

K

◆
K

K � 1
(7)

where p

m

= max(p(c|x)) is the maximum posterior value used to attribute a class to a profile. This metric
is a simple scaling of the likelihood of the class attributed to a profile. It ranges from 0 for an unlikely
labeling (equi-probable label) up to 1 for a virtually certain labeling.

3.3. Dimensionality reduction

The main di�culty in training a GMM with oceanic profiles is that the dimension along which we want
to extract hidden structures within the dataset, the vertical axis, is large. We have to deal in Argo data with
at least 30 to 40 levels at which a parameter is defined. If, like in our case, vertical profiles are interpolated
on a regular 5m grid, we have no less that 280 levels. This large number of dimensions in the problem
fundamentally translates into a large number of parameters to be determined in the Gaussian covariance
matrices. How to tackle such a problem is still subject to intense research (e.g. Krishnamurthy, 2011;
Azizyan et al., 2014). Although this namely ”curse-of-dimensionality” problem typically occurs in datasets
where the number of training data (profiles in our case) is small compared to the number of dimensions
(vertical levels), here we consider a dimension reduction scheme to improve the computational e�ciency and
robustness of the GMM training.

To reduce the number of dimensions several methods are available. We use the most popular one:
Principal Component Analysis (e.g. Thomson and Emery, 2014, p 335) on which spatio/temporal EOFs
are based (Bjornsson and Venegas, 1997). With PCA, we can decompose a dataset x(z) as:

x(z) =
dX

j=1

P(z, j)y(j) (8)

where P 2 RD⇥d and y 2 Rd⇥N with d  D. The first rows of P contain profiles maximizing the structural
variance throughout the collection of profiles. Thus if we choose d << D, we can reduce the number of
dimensions of the dataset x while preserving most of its structure. This decomposition creates a new space
where the N profiles are not defined with D vertical level values (the x array) but with only d ones (the
y array). The transition between one space and the other is done through the matrix P containing the
definition of the new dimensions in the original ones (d vertical profiles of D levels, the eigenvectors of the
covariance matrix x>x).

[Figure 3 about here.]

Dimensionality reduction comes at the expense of the amount of details represented in the dataset. To
investigate that loss of details, one can reverse Eq.(8) with di↵erent values of d and compare the root mean
squared di↵erence (RMSD) between the reconstructed and original datasets. This is shown in Fig.3 for d

ranging from 0 to 30. Not surprisingly, for all d values, the RMSD is larger near the surface. This is a
typical behavior of the PCA decomposition of vertical profiles (see for instance Fig. 20 in Fukumori and
Wunsch, 1991). One can also note small scale features appearing ether at depths or with large d = 20 or
d = 30. This noisy behavior arises from the interpolation of Argo profiles with an original 20 to 50m vertical
resolution onto standard depth levels with a 5m resolution. This is not problematic here because PCA acts
as a small scale filter. We choose d = 11 (black curve in Fig.3) to obtain a RMSD smaller than 0.5oC at
all depths and smaller than 0.1oC below 600m (thus preserving 99.88% of the dataset variance). This level
of RMSD is satisfactory to analyze the climatological structure of heat we are interested in. It would take
twice that number of dimensions to decrease the RMSD below 0.25oC at all depths. Using PCA, we thus
reduced the number of dimensions from 280 to 11, i.e. by one order of magnitude. This is a very significant
data reduction that considerably improves the computational cost of the classification.

7



Note that to compute the decomposition Eq.(8), we centered and standardized the dataset x along each
dimension, i.e. along each vertical level, so that the variance of the upper or surface layers did not dominate
over the deeper ones in the definition of the new space. One can ultimately note that in this study, PCA
is used to compress the dataset (reduce its number of dimensions), not to investigate the structure of its
covariance matrix (that, is left to GMM). So we purposely do not show and analyze profiles and maps of
the P(z, j) and y matrices for which a physical interpretation would be hard to derive.

3.4. Processing the irregular Argo dataset

Overall, we choose to train a GMM on a subset of the full collection of profiles and then to classify the
all profiles using the trained model. Motivations for this choice are two fold: (i) computational e�ciency
and (ii) un-biased structural sampling. The later point is crucial. Indeed, we have shown in section 2 and in
Fig.1 that the collection of Argo profiles is not evenly distributed in space, some regions having almost 100
more profiles than others. This is not an issue per se to train a GMM but we want to ensure that the GMM
components will possibly reveal spatial information about the dataset, not its sampling spatial density, i.e.
to answer the question of whether class, or group of profiles that resemble each others, have a geographical
coherent signature or not.

We thus created a training subset by randomly selecting profiles within the full 100, 684 collection so
that the training subset had a spatial density of 10 profiles per 2o ⇥ 2o grid cell over at least 75% of the
domain (the training subset has finally 7590 profiles). This value was determined by trials and errors as a
compromise between the size of the training set and its domain coverage. If we imposed a too high density
of profiles, we were excluding less populated regions (such as the western low-latitudes). If we imposed a
too low density of profiles, we were dramatically reducing the size of the training set.

Last, note that this sub-setting is not related to a classic cross-validation analysis, which distinguishes
training and test datasets. The sensitivity of the classification to sub-setting is discussed in Appendix B.

3.5. Procedure

Now that we have introduced all elements of the analysis, it is time to recap the procedure used to
perform the unsupervised classification of Argo temperature profiles with GMM:

• create a training subset from the dataset x where profiles are homogeneously distributed in space,
spare the remaining profiles,

• select the training subset and then:

– center and standardize data at each vertical levels,

– reduce the number of dimensions, i.e. compute the P(z, j) and y(j) vectors,

– set a number of classes K (using guidance from BIC Eq.4),

– train a GMM using the reduced-dimension training set, i.e. compute the best set of parameters
{e�

k

, eµ
k

,

e⌃
k

, k = 1...K} with the EM algorithm and Eqs.(A.3-A.4-A.5)

• for all profiles of the dataset:

– center and standardize data at each vertical levels using training subset mean and standard
deviation profiles,

– reduce the number of dimensions, i.e. compute the y(j) vectors, given P(z, j),

– classify the reduced-dimension profiles, i.e. compute the posteriors, class labels and robustness
metric with Eqs.(5-6-7) given the {e�

k

, eµ
k

,

e⌃
k

, k = 1...K}.

• synthesize class patterns by computing weighted class quantile statistics (e.g. compute the median
profile of class k as the median of all profiles weighted by their activation values for class k given by
N (x; eµ

k

,

e⌃
k

)).

Table 1 summarizes all GMM important variables that we introduced in this section.

[Table 1 about here.]
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4. Structure of the vertical mean temperature

[Figure 4 about here.]

Here we analyze the PDF of the vertical mean temperature - a proxy for the heat content - with GMM.
In the next section we will investigate the internal structure giving rise to that uni-dimensional synthetic
representation of the temperature distribution. We used the 0-1400m vertical mean temperature from the
Argo dataset. This depth range is limited by the available dataset.

Figure 4 illustrates one of the most important feature of the oceanic temperature structure, namely that
heat is not concentrated at low latitudes near the equator but in the mid-latitudes. More precisely, heat
concentrates in the subtropical gyre where Fig.4 shows temperature to be larger than 3oC compared to
the equatorial band. Note that the dataset is centered around the domain average, about 9oC, thus in the
following, anomalies refer to that center.

[Figure 5 about here.]

The PDF of the vertical mean temperature dataset is shown in Fig.5-A as a gray bar plot. A striking
feature that was not clearly visible in Fig.4, is the modality of the water column mean temperature dataset.
Indeed, values accumulate in 3 distinct regions to create PDF peaks: warm, cold and near-zero. Although
we can distinguish other peaks, these three largest ones clearly capture the main structure of the dataset.
One can also note that a significant fraction of the dataset values is located between the main peaks.

From a more methodological point of view, one can note that the warm and cold flanks of the PDF
have di↵erent slopes: the cold flank is much steeper than the warm flank. This is due to the fact that
ocean temperature cannot be negative (more precisely colder than the freezing point) and thus the dataset
distribution on the negative range of possible values resemble a Rayleigh distribution. This lower bound
e↵ect is usually seen in PDF of wind speed time series (e.g. Pavia and O’Brien, 1986). For sake of simplicity,
we do not analyze further this limitation of GMM applied to this dataset.

To train a GMM, i.e. to compute the optimized model parameters, on this dataset we need to choose
a number of components K. Results for the straightforward choice of K = 3 are given Fig.5-B. The plot
represents the most likely 3 Gaussian distributions, Eq.(1) for k = 1 : 3, weighted by their mixture probability
(the �

k

) so that their sum is the model PDF (cf Eq.(3)), also superimposed on the observed PDF panel A.
Class 1 and 3 are distinct and capture the cold and warm peaks. However, the choice of K = 3 is clearly
unsatisfactory to describe the near-zero peak. Class 2 is appropriately centered around the near-zero peak
but has a large variance. It thus appears that GMM fills this class with all the data points that are neither in
the warm nor in the cold peak regions and consequently loses the ability to properly describe the near-zero
peak. This is fundamentally due to the fact that in GMM, data conditional component probabilities cannot
be null, or in other words that a data point must be attributed to a class.

We consequently trained a GMM with K = 5 components. The model PDF is superimposed on the
observed PDF in Fig.5-C while details of the decomposition are shown in Fig.5-D. GMM has in this case
enough degrees of liberty to characterize all peaks of the observed PDF. Class 1, 3 and 5 have small variance
and capture the cold, near-zero and warm peaks. The two intermediate classes 2 and 4, have larger variances.
These classes can be seen as transition classes ensuring that the significant amount of dataset values which
are not within the peak regions are also classified. This decomposition is rather satisfactory but has yet
some limitations. For instance the PDF structure near the 1oC anomaly range is not captured. One would
need to further increase K to reproduce that structure (not shown). This illustrates that the choice for the
number of components to impose in training a GMM is left to the operator burden, based on the observed
PDF and critic analysis of the GMM results, and on the analysis goal. For instance, to capture the warm
and cold peak regions, K = 3 is a good choice and K = 5 does not clearly add new information about these
peaks.

[Figure 6 about here.]
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Now that we converged on a description of the dataset structure with GMM, we can visualize classes
using other information in the database, like data latitude and longitude. Here we simply map data labels
from Eq.(6). A map of the labels is shown in Fig.6 for the K = 5 GMM. We see that the warm class (label
5) coincides with a large zonal band throughout the North-Atlantic subtropical gyre from 15N to the Gulf
Stream and 45N to the East. The cold class (label 1) is confined to a much smaller region in the Labrador
Sea and o↵ the coast of the Newfoundland. Interestingly, the near-zero class (label 3) is found in two distinct
geographical regions: along the North Atlantic Current and at low latitudes, south of 15N.

We characterized with GMM components a structure of the dataset that was far from obvious in Fig.4.
This analysis shows that the ocean vertical mean temperature distribution - or integral heat content - is
much more complex than a simple equator-to-pole meridional gradient. It clearly reveals how ocean dynamics
organizes heat in reservoirs embedded between transition regions that may be associated with fronts. If heat
would have been uniformly distributed, then the PDF would not have exhibited modality and would have
map with similar probability from the equator to the pole. This would have resulted in a series of classes
with large overlapping range of temperature anomalies.

5. Ocean internal heat content structure

The uni-dimensional analysis conducted in the previous section revealed key features in the distribution
of the vertical mean temperature and its associated regional patterns. In this section we aim to determine
the internal structure of temperature anomalies giving rise to that integrated point of view and to investigate
the corresponding regional distribution.

5.1. Vertical distribution of heat

[Figure 7 about here.]

Figure 7-A presents the observed PDFz, i.e. the PDF at each level, of the temperature dataset where
data have been centered and standardized at each depth level (which was not the case Fig.2-C). Figure 7-C
additionally shows the PDFz at 5, 300, 600 and 1200m depth levels. Like the top 50m of the water column,
the surface PDFz does not show clear modes and mostly reflects a meridional gradient of temperature. This
is no longer true as we look deeper. From 100m to 400m depth, three peaks appear centered over cold,
near-zero and warm temperature anomalies progressively shifting toward warmer classes. These peaks are
very similar to those found for the PDF of the vertical mean temperature (see Fig.5). From 400m to 800m
depth, three other peaks can be seen with centres progressively shifting from one anomalous temperature
range to another. Below 800m, a three peaks distribution also emerges with di↵erent centres converging
toward a narrow range of negative temperature anomalies.

[Figure 8 about here.]

The purpose of this study is to identify coherent patterns within the collection of profiles that together
lead to such a complex PDFz. To do so, we need to train a GMM and first, to determine the number of
classes to be used. We used the BIC method presented in the methodological section. For the method to
perform appropriately, we found that it is a subset of independent profiles that has to be used to evaluate
Eq.(4), not the full or only the training set. Using Argo data, Ninove et al. (2016) provided the most recent
estimate of the horizontal correlation scale for temperature as a function of depth. These estimates are
appropriate for our study focusing on the climatological temperature structure in the North Atlantic, for
which the temporal correlation scale does not have to be taken into account. For the North Atlantic, they
found that below 30m depth, the horizontal temperature scale is smaller than 200km and larger than 100km,
both zonally and meridionally. Thus using a representative value of 150km (see their Fig.9), one can expect
an approximate number of 900 independent profiles for a 4500⇥4500km2 region such as the North Atlantic.
As our collection of profiles is far more larger than that, we computed an ensemble of 50 realizations of
Eq.(4) using members of 900 random profiles and K ranging from 1 to 30. The ensemble mean and spread
is shown in Fig.8. The BIC clearly exhibits a minimum between K = 5 and 10, near 7, 8 and 9. All values
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were tested and evaluated and we settled on K = 8 as it provided the more physically meaningful results.
The sensitivity of the GMM classification to the number of classes is discussed in Appendix B.

[Figure 9 about here.]

The trained GMM defines classes as Gaussian distributions in the reduced dimensional space. To analyze
the analytical class structures in that space would be quite complicated and we found much easier to present
and discuss classes in the real space along the vertical depth axis. Therefore, we used temperature profiles
and their corresponding activation values to compute weighted quantile statistics at each depth level for
each class.

Figure 9 shows activation weighted median profiles for each of the classes obtained with K = 8 in the
GMM. This decomposition is the key result of the study and can be described as follows. The largest
temperature di↵erence between median class profiles is 22oC at the surface, 12oC near -500m, 6oC near
-1000m and 3oC near -1400m (consistently with Fig.2-C). Class 1 is the coldest while four classes (2, 6,
8 and 5) are successively the warmest. Class 1 gathers profiles much colder throughout the water column
than the dataset average. The median profile for this class has anomalies colder than �5oC above -600m.
Class 2 has a much more complex structure. It gathers profiles with cold anomalies below -100m (with the
largest amplitude of �3oC around -500m), no anomalies between -100 and -200m and the largest surface
warm anomalies of all classes above -50m (about 7oC). Class 3 on the other hand, resembles class 1 pattern,
simply shifted toward the centre of the PDF at all levels. It is a class with decreasing cold anomalies
from �9oC near the surface down to less than �3oC below -400m. Class 4 is also colder throughout the
water column than the dataset average. This class falls within the range of class 1 and 3 median profiles.
Class 5 is the warmest class below -800m depth. It is characterized by near neutral conditions above -400m
and warm anomalies below -600m with a maximum centered at -1000m of about 3oC. Class 6 has near
neutral conditions below -400m and a warm anomaly maximum of 7oC centered at -100m, which makes it
the warmest class at this depth. Class 7 gathers profiles warmer throughout the water column than the
dataset average with anomalies higher than 1oC but is never the warmest. Last, class 8 exhibits warm
anomalies, higher than 3oC above -800m, with a clear maximum at -400m of about 5.5oC where this class
is the warmest of all.

In Figure 9-C, class median profiles are superimposed on the observed PDFz reproduced from Fig.7-A.
Figure 7-C and D show the observed and modeled PDFz at 4 selected depth levels and the details of each
of the GMM components (this can be seen as equivalent to the details of the uni-dimensional case analyzed
section 4 and shown in Fig.5). These plots illustrate how well the modeled PDFz reproduces the observed
PDFz and how each of the K = 8 classes contribute to the peaks of the PDFz. For instance, one will note:
how class 5 reproduces the peak of warm anomalies near -600m, how class 6 and 8 contribute to the neutral
peak at -1200m, how class 8 controls the warm peak of the PDFz near -300m and how class 1 shapes the
colder flank of the PDFz with contribution from class 4 below -600m.

[Figure 10 about here.]

More precisely, Fig.10 represents the PDF at each depth of normalized profiles attributed to each of the
K = 8 classes and in each class subtitle is indicated the prior value of classes (the �

k

, also reported Table
2). The prior weighted sum of class PDFz is shown in Fig.7-B to reproduce appropriately the observed one,
shown in Fig.7-A. Priors are the densities of the class in the model. They can be seen as the fraction of the
dataset that can be attributed to each class. This is confirmed by the explicit computation of that fraction.
It is reported on the second line of Table 2. Priors and class fraction in the dataset are very close to each
others and indicate for instance, that class 3 gathers 15% of the profiles collection while class 4 only 8%.
This, in fact, is not surprising because priors are computed as the average probabilities of classes within
the dataset (Eq.(A.3)). Each of the classes has its own vertical structure, and its relative weight in the
complete PDF is not related to its physical relevance as a vertical structure to interpret the integrated heat
content. This, in fact, demonstrates one of the key strength of the unsupervised classification method: it
can distinguish di↵erent recurrent patterns without being biased by those having large amplitudes.
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On the class PDFz shown in Fig.10 are superimposed the 5, 50 and 95% percentile profiles. These allow
us to investigate the vertical structure of the spread (the width of the class PDF at each levels) for each
class. Class 1 – which gathers profiles with cold anomalies throughout the water column – has a small
spread and the 5-95% percentile envelope always corresponds to cold anomalies, which basically means that
profiles attributed to class 1 are always colder than the dataset average at any level. Class 2 exhibits a
moderate temperature spread below -200m where it has negative anomalies for the 5-95% percentile. Near
-100m depth, the spread reaches a maximum and the PDF is positively skewed. Class 3 PDF shows a large
spread throughout the water column. This is the class with the largest spread among the GMM. Class 4
has a large spread in the upper layers which decreases downward. Class 5 PDF is narrow around -600m
depth with an increasing and large spread downward. Class 6 spread is the largest at its maximum warm
anomaly near -100m and is relatively small otherwise. Class 7 spread makes it significantly warmer than
the rest of the basin throughout the water column. Last, class 8 is extremely homogeneous near -300m and
has a maximum spread around -700m.

Figures 9 and 10 focus on statistics for a given class. We now examine statistics for a given profile, i.e.
the posteriors (Eq.5). For a given profile, K posterior values are used to label it, i.e. to attribute it to its
most probable class (Eq.6). In the methodology section we introduced a 0 to 1 label metric (Eq.7) from the
maximum posterior value in order to determine if, given a model, a profile label can be trusted (maximum
posterior close to 1) or should be taken with caution (equi-probable classes with maximum posterior close
to 1/K). Table 2 shows the class fractions of profiles having their label metric values in 5 pre-defined ranges
(simply following the IPCC likelihood standards). Results are striking: only a very small fraction (no more
than 5%) of the profiles are unlikely or about as likely as not to be correctly labeled. In other words, the
vast majority of the profiles (88%) are very likely or virtually certain to be labeled correctly. This truly
means that classes are appropriately defined and do not overlap significantly. We note that class 2 profiles
have the maximum label likelihood (92%) while the minimum is found for the class 4 profiles.

[Table 2 about here.]

5.2. Relating vertical to horizontal heat distribution

[Figure 11 about here.]

To generate Fig.9 and Fig.10, we didn’t use any geographical information about profiles, nor did we used
latitude or longitude in training the GMM. So the question remains: are profiles attributed to each class
collocated in space ? The answer is provided by Fig.11 where we color-coded profiles with the class they
have been attributed to (C(x), see Eq.6). It is clear that all classes identified with the GMM method with
Argo temperature profiles correspond to physically coherent regions. Class 1 covers the subpolar gyre from
the Labrador and Irminger Sea to Eastern flank of the Reykjanes Ridge. Class 2 profiles are localized in
the equatorial and tropical bands up to 20oN to the East and 10oN to the West. Class 3 spreads from
45oW to the Iceland Basin in the North Atlantic Current (NAC) region. Class 4 profiles are localized on the
poleward flank of the Gulf Stream and NAC. Class 5 is centered over the West European Basin down to the
Azores Islands. Class 6 covers the tropical band between 10 and 20oN on the Southern flank of the North
Equatorial Current (NEC). Class 7 is in the South Eastern part of the subtropical gyre between 20 and
35oN , mostly to the East of 40oW . Last, class 8 profiles are localized in the Western part of the subtropical
gyre, South of the Gulf Stream.

This coherent horizontal distribution of GMM classes provides key indications to interpret the class
vertical patterns. The subpolar gyre gathers profiles with relatively uniform cold temperature anomalies
throughout the water column (class 1). Low latitudes are regions where heat, positive anomalies in temper-
ature class 2 and 6, is concentrated in the upper layers while negative anomalies are found at intermediate
depth (class 2). These contrasted layers are separated by the equatorial thermocline which explains the
spread in the class 2 PDF near -100m depth (Fig.10-B). The fact that class 3 and 4 profiles are observed
in frontal regions explains the large spread of possible temperature anomalies because front meanders and
meso-scale eddies generated by their instability imply a diversity of possible profiles at the same location.
Moreover, class 3 profiles have nearly zero heat content anomalies because they are located between the warm
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and cold reservoirs of the subtropical vs subpolar regions (as illustrated by the vertical heat content integral
in Fig.5). Class 5 profiles are clearly located within the sphere of influence of the Mediterranean Outflow.
This warm water mass spreads in the North Atlantic near -1000m, which explains the deep structure of class
5 profiles. Small spread near 600m depth for this class corresponds to the lower Central 11 � 12oC Water
(Paillet and Arhan, 1996).

The last two regions are located on the eastern and western parts of the southern subtropical gyre,
where the integral heat content is the largest. The horizontal distribution of classes allows us to attribute
the class 8 large heat reservoir between 200 and 800m depth to the subtropical thermocline and Eighteen
Degree Mode Water (EDW, Maze et al., 2009). The EDW thermostad signature can easily be seen Fig.9-A
in class 8 between -200 and -400m while the thick permanent thermocline ranges from -400 to -800m below
(Feucher et al., 2016). Class 7 localizes a region where heat is near to uniformly distributed through the
water column, pretty much like class 1 for cold anomalies.

Last, we examine the geographical distribution of the label metric defined by Eq.(7). This is shown in
Fig.12. When compared with Fig.11, the distribution of the label metric seems to primarily indicate that
profiles located on the edge of regions delimiting classes are those close to equi-probable labels, i.e. with
maximum posterior values near 1/K (see Fig.12-A). However, similar maps produced using only profiles
attributed to each class (Fig.12-B to I) reveal a more complex information where robust labels can be found
at the edge of class regions when a frontal dynamical structure is involved. For instance, class 8 northern
edge exhibits a rather robust labeling (greenish points Fig.12-I) where the Gulf Stream is located (similarly
with class 4 south-western profiles). To the opposite, class 5 edges do not correspond clearly with a front
and have profile labels with a smaller likelihood all around.

[Figure 12 about here.]

6. Discussion and conclusion

In this study we used a Gaussian Mixture Model (GMM) that is an unsupervised classification method
(Bishop, 2006) on Argo temperature profiles. Unlike previous studies using such a method (Hjelmervik
and Hjelmervik, 2013, 2014) our goal was not to extrapolate a dataset: our goal was to investigate the
information contained into a limited number of classes of profiles identified with classification. We have
shown that this information was physically meaningful and brought some insight to the oceanic temperature
structure.

The GMM was applied to the observed PDF of normalized and compressed temperature profiles. GMM
decomposes the observed PDF into a weighted sum of K multi-dimensional Gaussians, the dimension being
the vertical axis, using the Expectation-Maximization algorithm. Each Gaussian corresponds to a group of
profiles that resembles each others while being as much as possible di↵erent from profiles in other groups.

We started the analysis with the classification of 0-1400m vertical mean temperatures, a simple uni-
dimensional dataset, which scales as the vertical integral of heat content. In this case, we found that K = 5
classes was an appropriate choice to capture the structure and modality of the PDF (Fig.5-C). Three of
the classes correspond to clear peaks of the PDF for cold, near-zero and warm temperature anomalies with
regard to the dataset average. We showed that the cold class is located in the subpolar gyre, the near-zero
class mostly at latitudes lower than 10oN and the warm class in the western and southern part of the
subtropical gyre (Fig.6). The remaining 2 classes identify transition regions between each of the 3 peaks.
It is interesting to note that the trivial choice of K = 3 classes to fit this 3-peak PDF was not the most
appropriate. Indeed, as a significant amount of data values were in the transition regions between the peaks,
additional Gaussian classes were necessary to fulfill the GMM requirement for each data to be classified.

The uni-dimensional description of the heat content thus reveals a classic meridional distribution. But
to non-experts it might be surprising because it is di↵erent from a trivial south-to-north gradient of tem-
perature, such as that observed near the surface. There is indeed more heat stored at mid-latitudes than
along the equator because of the internal structure of the oceanic stratification. But this internal structure
(from which the PDF at each depth is shown in Fig.7-A) cannot be revealed by the simple uni-dimensional
analysis.
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Therefore, in a second step, we classified the full temperature profiles using multi-dimensional Gaussians.
Given the high dimensionality of the problem, 280 vertical levels, we had to compress the vertical struc-
tural information contained in profiles. To do so, we used a standard Principal Component Analysis and
reduced that information from 280 temperature values to only 11 eigenvalues for each profile. This reduction
preserved 99.88% of the profile collection structural variance, so that the RMSD between the original and
compressed dataset is smaller than 0.5oC throughout the water column and smaller than 0.1oC below 600m
(Fig.3).

Within this reduced-dimensional space, we trained a series of GMM and used the BIC for model selection,
i.e. to determine the most appropriate number of classes to decompose the PDF. We should point here to
the fact that the initial application of this popular method was not satisfactory because the size of the
dataset (more than 7000 profiles in the training set) implied a log likelihood much larger than the penalty
term which was thus ine↵ective (see Eq.4). The solution to this issue was to limit the size of the dataset
used to compute the BIC to the expected number of independent profiles, 900 for the North Atlantic Ocean
climatology. It is thus key to note here that for an application to a dataset with spatio/temporal correlations,
one should use data mining methods with caution.

We then detailed results obtained with K = 8 classes. First, we computed the statistical properties
of each classes (activation-weighted profile statistics) and investigated their median and spread vertical
structures (Figs.9 and 10). We were able to attribute to each of the classes their features and known water
mass or thermocline in a simple way. This part of our study help answer the problematic of the identification
of temperature remarkable patterns along the vertical axis. One can also note that two types of classes were
found: classes with almost no zero-crossing (class 1, 3, 4 and 7) and classes with distinct heat anomaly
reservoirs (class 2, 5, 6 and 8).

Furthermore, it is striking to note that the diversity of structures is found mostly in the warm water
sphere. Indeed, cold reservoirs from class 1 and 4 have no clear peaks. On the other hand, warm reservoirs
from class 5, 6 and 8 exhibit clear maximum in the sub-surface (class 2), intermediate depths (class 8) and
at depths (class 5). Class 2 is the only group of profiles with a maximum and a minimum of heat clearly
identifiable near the surface and at intermediate depths respectively. On the other hand, class 7 is the only
warm group of profiles without a clear vertical structure. The geographic comparison of the vertical mean
K = 5 class (Fig.6) distribution with the full profile K = 8 class one (Fig.11) further illustrates this point.
It can be seen that warm classes 4-5 of the vertical mean K = 5 case, decompose into classes 3-5-6-7-8 in
the full profile analysis, while cold classes 1-2 of the vertical mean K = 5 case remain colocated with classes
1-4 without vertical structure in the full profile analysis. This lack of structure in the cold water sphere is
simply due to the fact that ocean loses heat at the surface so that loss of heat, triggering vertical mixing,
is similar to a loss of vertical structure. To the opposite, gaining heat at the surface keeps increasing the
stratification and create local maxima. The fact that these maxima are not always found at the same depth
is due to the horizontal redistribution of heat by currents.

Secondly, we answered the question: are classes of profiles co-localized in space ? The answer is yes. When
the horizontal distribution of classes was drawn (Fig.11) we found that, although no geographical information
was part of the GMM training, each class corresponded to a specific region in the North Atlantic. This key
result of our study is far from trivial: it fundamentally means that even if heat circulates and anomalies
may be found far from their formation region, the possible vertical stacks of anomalies are unique to a
region. In other words, there are no distinct regions in the North Atlantic were the vertical distribution
of heat is similar. Note that the vertical structure of the class spread allows us to be more precise: the
vertical structure of temperature profiles combine information from water masses (where the spread is small,
see for instance class 8 around -300m where the signature of the EDW is found) but also thermoclines or
transition layers (where the spread is larger, see for instance in class 2, around -100m, the signature of the
equatorial thermocline). So, as the dynamics of the ocean uniquely distributes heat in space, both vertically
and horizontally, unsupervised classification of profiles is able to identify the coherent heat patterns arising
from that distribution. An analysis of the profile label metric (Fig.12) additionally suggests that horizontal
fronts influence the classification probability of a profile. In other words, the probabilistic transition in the
horizontal plan from one class to the other is an indication of the presence of a dynamical front.

We tested the sensitivity of the results to the number of classes and to the spatio/temporal sampling
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of the training set (Appendix B). The number of classes reveals a non-linear, or in that case, an non-
hierarchical, behavior of the classification: as the number of classes increases, new classes were not simple
subsets of parent classes. Using BIC method guidance, the choice of the number of classes will ultimately
depend on the user’s scientific question and the degree of details necessary. We also found that as long as
modes are in the PDF, the classification identifies classes in a coherent way, whether it is from a small or
a large region. This is quite an advantage compare to other analysis tools such as EOFs which are domain
dependent. Last, we found that our classification of temperature profiles within the North Atlantic Ocean
does not depend on the season of the training set. This result, which may be surprising, relates to the
fact that classes were found to identify oceanographic natural domains. It means that even if summer and
wintertime profiles from the subpolar gyre are di↵erent within the thin layer above the seasonal thermocline,
they remain more similar to each others than summer or wintertime profiles from another region, like the
subtropical gyre for instance. This result also highlights the fact that the classification outcome is related
to what is used as the reference of the dataset, in our case the North Atlantic mean temperature profile. A
classification of local temperature anomalies for instance, would undoubtedly provide di↵erent classification
results.

All these results suggest a wide range of possible applications for unsupervised classification of profiles.
For instance:

1. Figures 5-6 and 9-11 are highly synthetic benchmarks to validate Ocean General Circulation Models
and to analyze climatic projections with regard to horizontal and vertical heat content changes.

2. The geographic distribution of classes reveals in a coherent and elegant way the horizontal extent
of oceanographic natural domains such as the subpolar gyre or the western subtropical gyre. This
information can be used: (i) to define such domains with interior data only, without using un-natural
rectangular boxes as it is usually done, nor surface variables such as Sea Surface Height, (ii) to
characterize the horizontal extent variability of a region and (iii) to objectively compare regions between
di↵erent datasets, in particular those from numerical models.

3. The temporal evolution of the class representative profiles (median or mean) may be used to charac-
terize the interior variability of a region, as an intermediate representation between domain average
and local Eulerian anomalies.

4. Separating profiles from one side of a front from the other may reveal useful for data validation and
fronts detection.

5. Classifying a profile may help in selecting the appropriate parameters for complex profile-based di-
agnostics such as the characterization of the permanent pycnocline (Feucher et al., 2016) or simpler
ones, like the density threshold used in the determination of the mixed layer depth.

6. The vertical structure of the class spread may be used to detect water masses and thermoclines.

To encourage these applications, the classification model parameters and results are publicly available (http:
//dx.doi.org/10.17882/47106, Maze, 2017) and an open source software to handle Profile Classification
Model is also distributed (https://forge.ifremer.fr/projects/pcm).

Last, additional improvements to the method used here could be explored. There is in fact no reasons to
limit the classification of profiles to temperature data. Salinity could easily be added to investigate the ocean
density structure and the role of temperature vs salinity in controlling stratification patterns. Moreover,
rather than a classic PCA, more modern methods for dimensionality reduction, such as deep autoencoders
(Hinton and Salakhutdinov, 2006) could also be used to feed the GMM classification.

To conclude, we have shown that unsupervised classification of temperature profiles, when not performed
in order to complete or fill gaps within a dataset and thus using a limited number of classes and spatial
information, can be used to reveal in an intuitive and physically coherent way remarkable heat patterns,
their regional distributions and their climatology. It was shown that the possible stack of water masses
and thermoclines are unique to a given region in the North Atlantic Ocean. This result can be used to
objectively and coherently define the climatology of such regions, and possibly their variability. As an
intermediate between domain averaging and local Eulerian analysis, classes of temperature profiles can
provide a new framework for the analysis of the heat content climatology and variability and a synthetic
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benchmark to validate Ocean General Circulation Models and to analyze climatic projections with regard
to horizontal and vertical heat content changes. Unsupervised classification of profiles is not widely used
in physical oceanography and we hope with this study to contribute to demonstrate its potential. More
generally, we believe that the increasing amount of data from in-situ observations, typically from Argo and
its always increasing number of sensors, will be pivotal in the development of a data-driven model of the
structure and variability of the ocean interior.

Acknowledgment

Argo data used in this study were collected and made freely available by the International Argo Program
and the national programs that contribute to it. (http://www.argo.ucsd.edu). The Argo Program is
part of the Global Ocean Observing System. This study was supported by an Ifremer grant under the
Brittany regional collaboration enhancement program. We thank the editor and anonymous reviewers for
their comments, which helped to improve the manuscript.

16

http://www.argo.ucsd.edu


Appendix A. GMM training

GMM is an optimization problem that consists in determining the best estimate for the set of param-
eters ✓ = {�, µ,⌃} to minimize the misfit between the PDF of the model and the PDF of observations.
Formally, this is stated as the maximization of the log-likelihood of observed profiles conditioned to the
model parameters. The log-likelihood of the dataset, assuming independent observations, is:

L(✓) =
NX

i=1

log p(x
i

; ✓) (A.1)

where it is explicit that the log-likelihood is a function of the set of parameters ✓, not the dataset, and where
p(x

i

; ✓) is the probability given Eq.(2) for the dataset instance x

i

using parameters ✓.
To train a GMM, i.e. to maximize L(✓) with regard to ✓, we need a dataset x and a given number

of components K. Several methods exist to determine the optimum parameters but the most popular is
certainly the Expectation-Maximization (EM) algorithm (McLachlan and Krishnan, 2007). It is an iterative
procedure that consists in looping through a two-step procedure that is guaranteed to increase the likelihood
after each iteration (Dempster et al., 1977). The procedure is stopped once convergence in the parameters
or likelihood values is reached. At iteration n, the two steps of the procedure are:

• the Expectation-step where one computes the posteriors p(c = k|x; ✓n) for all the profiles of the dataset
using the n

th iteration parameter values ✓n. Note that the dependence to model parameters is made
explicit compared to Eq.(5).

• the Maximization-step which update model parameters ✓n so that they maximize the log-likelihood of
the dataset while considering the imposed constrains on the �

k

.

The Maximization-step comes to maximize with regard to each of the model parameters the following
function:

J(�, µ,⌃) =
NX

i=1

log

0

@
KX

j=1

�

j

p(x
i

;µ
j

,⌃
j

)

1

A� !
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@1�
KX

j=1

�

j

1

A (A.2)

where ! is a Lagrange multiplier introduced to consider constraints on mixing coe�cients. The detailed
derivation of the optimum solution to Eq.(A.2) is beyond the scope of this introduction to GMM. It comes
to the following updates, where one may recognize weighted versions of classical Maximum Likelihood
estimates:

�

n+1
k

=
1

N

NX

i=1

p(c = k|x
i

; ✓n) (A.3)

µ

n+1
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=
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(A.4)
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� µ
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i

� µ
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N
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(A.5)

The model probability of the k

th component �

n+1
k

is the dataset averaged probability of that component
(given by the p(c = k|x

i

; ✓n) posterior values). The center µn+1
k

and covariance⌃ n+1
k

of the k

th component
are given by the data mean and covariance weighted by the posteriors.

All computations were conducted on a desktop computer with Matlab software and the open source
Netlab library (Nabney, 2002).
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Appendix B. Sensitivity analysis

Appendix B.1. Sensitivity to the number of classes

[Figure 13 about here.]

We have shown in the previous section and Fig.8 that a classic method such as the BIC can be used to
determine the number of classes to train a GMM of profiles. However, the spread of the estimate does not
provide a distinct single value for the best K choice, only useful guidance within a small range of possible
values between 5 and 10. Therefore, it is in fact the user who will ultimately decide what is the most
appropriate K for a given application.

As an indication, Figure B.13 shows the map of labels for an increasing number of components (from 3
to 9, case 8 was shown in Fig.11). For K = 3 (and 2, not shown), the classification is mostly meridional and
somehow captures the uni-dimensional analysis information discussed section in 4. For larger K, Eastern
and Western regions appear distinctly. It may be noted that the classification is not hierarchical in a sense
that for K larger than 4, one class is not necessarily a subset of a larger parent class. For instance, class 1
for K = 6 (Fig.B.13-D) is a mixed of some of the profiles from class 2, 3 and 4 for K = 5 (Fig.B.13-C).

In the previous section, we choose K = 8 because it refined the K = 7 description of the NAC and
subpolar gyre while avoiding the K = 9 split of the equatorial region and thermocline vertical structure into
2 distinct eastern and western classes.

Last, one may note that even if the number of classes increases, some regions remain unchanged and
identified in a distinct class. This is particularly true for 4 regions: the subpolar gyre, the western subtropical
gyre south of the Gulf Stream, the Mediterranean outflow region and the lowest latitude band. This is
already apparent with K = 4 classes. This basically means that the core information of the climatological
distribution of heat in the North Atlantic is: cold anomalies throughout the vertical in the subpolar gyre,
warm anomalies near the surface and cold anomalies at depth at low latitudes and warm anomalies in
the upper-mid depth in the western and lower mid-depth is the eastern side of the subtropical gyre. This
may sound trivial in terms of descriptive oceanography, except that here the structure was elegantly and
objectively revealed by unsupervised classification of profiles. The detailed analysis for K = 8 conducted in
the previous section provided additional details to refine this big picture.

Appendix B.2. Sensitivity to the domain and seasonal sampling

One can also wonder how sensitive is the classification to the geographical extent of the training set.
To investigate this issue, we defined a series of rectangular sub-domains and, using the reference GMM
classification map (Fig.11), we determined the expected number of classes to be identified in each sub-
domain. We then used these number of classes to train di↵erent GMMs on each of the sub-domains and
compared the classification map to the reference case. Results are shown in Fig.B.14 for 6 sub-domains
covering di↵erent regions and having di↵erent spatial scales, both meridionally and zonally. We found that
for each sub-domain, the classification map reproduces the expected geographical distribution of labels when
compared to the reference case. We conclude that for an appropriate choice of the number of classes, the
GMM classification results are not particularly sensitive to the geographical extent of the training set. But
one should not forget, that this will be verified as long as the sub-domain PDF will contain the modes to
be identified by GMM.

[Figure 14 about here.]

We furthermore investigated the sensitivity of the classification results to the seasonal sampling of the
training set. Indeed, as we used the entire collection of Argo profiles without distinction on the time of
sampling, one can wonder if the classification results are not biased toward a particular season or if, for
instance, deeper mixed layers from the winter time would lead to another classification outcome. We trained
4 new GMMs using the 4 subsets of profiles sampled in the four seasons: December/January/February, etc...
Using K=8, the 4 seasonal classifications (not shown) produce classes and maps of labels very similar to
those from the complete dataset (Figs.9 and 11). It is probable that using a much significant number of
classes would provide GMM the ability to distinguish seasonal signals in the classification outcome.
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transports and transformations of the water masses in the atlantic subpolar gyre. Progress in Oceanography 135, 18–36.
http://www.sciencedirect.com/science/article/pii/S0079661115000506

Grist, J., Josey, S., Jacobs, Z., Marsh, R., Sinha, B., Van Sebille, E., 2015. Extreme air–sea interaction over the north atlantic
subpolar gyre during the winter of 2013–2014 and its sub-surface legacy, 1–19.
http://dx.doi.org/10.1007/s00382-015-2819-3

Guinehut, S., Dhomps, A.-L., Larnicol, G., Le Traon, P.-Y., 2012. High resolution 3-d temperature and salinity fields derived
from in situ and satellite observations. Ocean Science 8 (5), 845–857.
http://www.ocean-sci.net/8/845/2012/
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Figure 1: Spatio/temporal sampling of the 100, 684 temperature profiles in the Argo dataset used in this study.
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Figure 2: Plot A: 50 profiles randomly drawn out of the Argo collection. Plot B: Sample of PDFz at depth levels: 5, 300, 600
and 1200m. Plot C: All observed PDFz, i.e. the PDF of temperature at each vertical levels, here computed using the entire
collection. The colorscale is the PDF value so that the integral of one PDFz goes to 1. On plots A and C are superimposed in
black the mean (plain) and mean ± one standard deviation (dashed) at each depth. On plot C, horizontal dashed lines indicate
plot B selection of PDFz.
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Figure 3: Centered Root Mean Squared Di↵erence between the reconstructed and original datasets of temperature for an
increasing number of dimensions used during dimensionality reduction with PCA. The plot can be read as follows: it takes 11
reduced-dimensions (black curve) to compress the dataset in a way that the RMSD is lower than 0.5oC throughout the water
column. Vertical tick marks are centered at 0.0125, 0.025, 0.05, 0.1, 0.25, 0.5 and 1 o

C.
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Figure 5: Left plots: gray bars are the observed PDF of the uni-dimensional dataset represented Fig.4 and thick black lines
are the GMM PDFs for top: K = 3 components and bottom: K = 5 components. Right plots: Decomposition of GMM PDFs
into their 3 and 5 components. Colored PDFs are the prior weighted activations of each component. Three distinct modes are
clearly visible in the dataset (at the extreme and center of the complete PDF) and are nicely captured by GMM.
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Figure 6: Map of profiles color-coded with the class they have been attributed by Eq.(6) for the uni-dimensional analysis of
vertical mean temperature using a GMM with K = 5. Class color-codes are similar to those from Fig.5-D.

24



−3 −2 −1 0 1 2 3
−1400

−1200

−1000

−800

−600

−400

−200

0

Normalized Temperature Anomaly [no unit]

D
ep

th
 (m

)

A: Observed PDFz

 

 

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

−3 −2 −1 0 1 2 3
−1400

−1200

−1000

−800

−600

−400

−200

0

Normalized Temperature Anomaly [no unit]

D
ep

th
 (m

)

B: Model PDFz

 

 

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

−3 −2 −1 0 1 2 3
0.00
0.25
0.50
0.75
0.00
0.25
0.50
0.75
0.00
0.25
0.50
0.75
0.00
0.25
0.50
0.75

z=−5 m

z=−300 m

z=−600 m

z=−1200 m

Normalized Temperature Anomaly [no unit]

PD
F

C: Model vs Observed PDFz

 

 

−3 −2 −1 0 1 2 3
0.00
0.25
0.50
0.75
0.00
0.25
0.50
0.75
0.00
0.25
0.50
0.75
0.00
0.25
0.50
0.75

z=−5 m

z=−300 m

z=−600 m

z=−1200 m

Normalized Temperature Anomaly [no unit]

PD
F

D: Detailed Model PDFz

 

 

Figure 7: Plot A: Observed PDFz (PDF at each vertical levels) of profiles from the normalized (centered and standardized)
temperature dataset. Plot B: Model PDFz from the prior weighted sum of class PDFz (shown in Fig.10). Plot C: Observed
(gray bars) and model (thick black line) PDFz for selected depth levels: 5, 300, 600 and 1200m. Plot D: Decomposition of the
model PDFz for the same selected depth levels. Colored lines are the prior weighted activations of each class, following the
color convention used Fig.9.
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Figure 9: Activation-weighted median profiles for each classes. Plot A: with real temperature profiles (the sample mean
reference profile is in black), plot B: with profiles of temperature anomalies (centered dataset) and plot C with profiles of
normalized temperature anomalies (level centered/standardized dataset). Grey shading in plot C is the observed PDFz of the
dataset (reproduced from Fig. 7-A).
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Figure 10: Normalized temperature anomaly for each class as a function of depth: black dashed lines are the 5, 50 and 95%
percentiles of the class (note that the 50% percentile is the median profile plotted in Fig.9). Grey shading is the corresponding
PDFz for each class temperature anomalies. Also given in the plot title are the prior values �

k

from Eq.(A.3) of the class.
Statistics were computed using temperature data weighted by activations.
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Figure 11: Map of profiles color-coded with the class they have been attributed to with Eq.(6) by the classification of temperature
profiles using a GMM with K = 8. Only profiles with a label metric higher than 90% (Eq.7) with a limit of 10 profiles per
2⇥ 2 grid cell have been used in order to limit overlapping dot pixels.
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Figure 12: Map of profiles color-coded with their label metric from Eq.(7) for the classification of temperature profiles using a
GMM with K = 8. See how labels are less robust along the edges of classes shown in Fig.11. Map A is for all profiles while
maps B to I are for profiles attributed to class 1 to 8 respectively. No more than 10 profiles per 2⇥2 grid cell have been plotted
in order to limit overlapping dot pixels.
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Figure B.13: Map of labels obtained with di↵erent number of classes K. Map A corresponds to K = 3, map B to

K = 4, map C to K = 5, map D to K = 6, map E to K = 7 and map F to K = 9 (K = 8 is shown in Fig.11).
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Figure B.14: Sensitivity of the classification to the choice of the domain. On each maps, the black box indicates the domain
used to train a new GMM, and profiles are color-coded with the class they have been attributed to. Profiles not used in the
GMM training are simply shown as black dots. Note that class colors are arbitrary and only the relative distribution of classes
is to be compared with the reference case shown in Fig.11.
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! Definition
Variable Formulae Dimension Name

! (ith) profile of D vertical levels
x

i

, x RD⇥1 profile, instance

! Collection of N profiles of D vertical levels
x RD⇥N dataset

! PDF obtained using data from a given depth and a range of r values
PDFz RD⇥r PDF at depth levels

! Observed PDF of the dataset x

p̂(x) R1⇥N observed PDF

! Parametric PDF family used in the mixture model
N (x;µ,⌃) Eq.(1) R1⇥N class PDF

! Model PDF for the dataset x

p(x) Eq.(2) R1⇥N model PDF

! Number of classes used to decompose the observed PDF
K I number of class

! k

th class density (best estimate)
e
�

k

= p(c = k) Eq.(A.3) R mixing weights,priors

! Mean of the k

th class
eµ
k

Eq.(A.4) RD⇥1 center

! Covariance matrix of the k

th class
e⌃
k

Eq.(A.5) RD⇥D covariance

! PDF of the dataset given the k

th class

p(x|c = k) = N (x; eµ
k

,

e⌃
k

) Eq.(1) RN⇥1 activation

! PDF of the k

th class given the dataset
p(c = k|x) Eq.(5) RN⇥1 posterior

! Name of the most probable class for dataset x

C(x) Eq.(6) I1⇥N attributed class

! Labeling metric for the attributed class of dataset x

R(x) Eq.(7) R1⇥N labeling metric

! Vertical profiles defining the dimensions in the reduced space
P Eq.(8) RD⇥d eigenvectors

! The collection of N profiles projected in the reduced space
y Eq.(8) Rd⇥N eigenvalues

Table 1: Summary of the di↵erent parameters and variables used in a GMM analysis. In practice, the optimized mean and
covariance of the k

th classes are computed in the reduced d-dimensional space.
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All Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8

�
k

Priors 100 9 18 15 8 13 11 13 14

Dataset fraction 100 10 14 15 8 14 9 14 15

Unlikely 0 0 0 0 0 0 0 0 0

(0.00 < R < 0.33)
About as likely as not 5 3 1 7 10 5 4 6 4

(0.33 < R < 0.66)
Likely 8 6 2 10 13 7 7 10 8

(0.66 < R < 0.90)
Very Likely 13 13 4 13 17 10 14 16 17

(0.90 < R < 0.99)
Virtually certain 75 78 92 69 60 78 75 68 72

(0.99 < R < 1.00)

Table 2: This table provides for each of the K = 8 classes of the reference GMM analysis: the prior values and the dataset
fraction of profiles attributed to each class (first and second lines). From the third to seventh lines are given the distribution
by class of the labeling metric (Eq.7). First table column provides similar statistics for the entire dataset. The table can be
read as follow: 15% of the dataset can be attributed to class 3, 78% of the class 1 profiles are virtually certain to belong to
class 1 given this GMM.
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