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a b s t r a c t

The relationship between fisheries and marine spatial planning (MSP) is still widely unsettled. While
several scientific studies highlight the strong relation between fisheries and MSP, as well as ways in
which fisheries could be included in MSP, the actual integration of fisheries into MSP often fails. In this
article, we review the state of the art and latest progress in research on various challenges in the inte-
gration of fisheries into MSP. The reviewed studies address a wide range of integration challenges,
starting with techniques to analyse where fishermen actually fish, assessing the drivers for fishermen's
behaviour, seasonal dynamics and long-term spatial changes of commercial fish species under various
anthropogenic pressures along their successive life stages, the effects of spatial competition on fisheries
and projections on those spaces that might become important fishing areas in the future, and finally,
examining how fisheries could benefit from MSP. This paper gives an overview of the latest de-
velopments on concepts, tools, and methods. It becomes apparent that the spatial and temporal dy-
namics of fish and fisheries, as well as the definition of spatial preferences, remain major challenges, but
that an integration of fisheries is already possible today.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Fisheries in MSP has only been evaluated to a limited extent,
even while the concept of MSP has been promoted in various ma-
rine regions around the world over the last two decades (e.g.
revision of Australia's Great Barrier Reef Marine Park, Ocean Acts in
the U.S. states of Oregon and California, Canada's Ocean Act, Eu-
ropean Integrated Maritime Policy, EU Natura 2000 areas, ocean
zoning in China and Taiwan, UNESCO-IOC initiative on MSP).
Several scientific studies highlighted the extensive relevance and
significance of fisheries in MSP (e.g. Gray et al., 2005; Crowder and
de (H. Janßen).

Ltd. This is an open access article u
Norse, 2008; Berkenhagen et al., 2010; van Deurs et al., 2012;
Bastardie et al., 2015). However, fisheries are usually not or not
fully integrated into today's marine spatial plans (if regulations on
marine protected areas are understood as conservation law, not as
spatial planning regulations). The English East Inshore and East
Offshore Marine Plans (HM Government, 2014), for example, seek
to integrate fisheries, but ultimately they do not come up with
spatial designations, but instead pass the issue on to subsequent
licensing procedures. The Norwegian Integrated Management Plan
for the Barents Sea-Lofoten area (NME, 2011) mentions fisheries,
but the plan actually focuses mainly on sectorial fisheries man-
agement. Canada is currently developing integrated management
plans for its marine regions that shall also address fish and fisheries.
As seen in the example of the Gulf of St. Lawrence Integrated
Management Plan, this also included, during the preparation phase,
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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the identification of spawning grounds, but in the end the man-
agement plan resulted only in a strategic plan (DFO, 2013). For the
preparation of the U.S. Rhode Island Ocean Management Plan,
spatial demands of fisheries and of fish species during different life
stages were mapped, but this management plan also did not come
up with spatially explicit solutions for the integration of fisheries
(CRMC, 2010). A bit different is the example of the Great Barrier
Reef Marine Park zoning, which gives spatial designation for fish-
eries and other human uses (GBRMPA, 2004).

Modern MSP plans do not seem to achieve their theoretical
integration potential when it comes to fisheries. While several
studies proposed ways in which fisheries could principally be
included in MSP (e.g. Douvere et al., 2007; Fock, 2008;
Stelzenmüller et al., 2008), an often-cited argument for the non-
or partial integration is that data on spatial demands of fish and
fisheries cannot yet be provided in a spatial and temporal quality
adequate for MSP purposes (Petra Schmidt-Kaden, personal
communication, January 15, 2014). This raises the question of the
current state of knowledge on spatial demands of commercially
important fish species and fisheries.

In this article, we present brief overviews of the state of the art
of approaches which seek to overcome fisheries integration chal-
lenges by providing spatially explicit knowledge for the inventory,
draft development, and negotiation phases of MSP processes. The
aim is to give an overview of the progress in providing data and
knowledge for MSP processes. We define six sub-challenges on the
integration of fisheries and MSP, and for each of them, progress is
checked against the applicability in MSP practice.

2. Methodology/approach

In formulating a suitable methodology for the review, an initial
conceptualization of the challenges in the integration of fisheries
into MSP was undertaken. Based on guiding MSP principles (e.g.
Ehler and Douvere, 2009; Ramieri et al., 2014), scientific support for
the inventory, draft development, and negotiation phases of MSP
processes, in particular, was thought to be necessary. As highlighted
by Jentoft and Knol (2014) and de Groot et al. (2014), being able to
table good spatial data is crucial in many MSP processes. According
to Hopkins et al. (2011) and HELCOM-VASAB (2015), the above-
mentioned MSP steps are of great importance for the integration
of ecosystem-based activities, such as fisheries. In order to identify
relevant literature on the integration of fisheries into MSP, a
structure of MSP-relevant knowledge challenges was developed as
follows:

� MSP inventory phase:
� Where do fishers actually fish (effort allocation)?
� Which areas are more, which are less valuable for fishers?
� What locations do commercially important fish species need

access to during their different life stages?
▪ MSP draft plan development and negotiation phase
� Long-term changes in species and life stage distributions, e.g.

due to climate change, eutrophication, etc.
� Effects of fisheries management (CFP, national) on MSP goals.
� Effects of MSP and human maritime uses on fisheries.

This structure laid the basis for a literature review with the aim
to draw together information on the progress in research on the
above-mentioned integration challenges and the applicability of
today's scientific approaches in MSP practice.

Articles published from 2000 to 2015 were selected by means of
a structured literature search in SciVerse (ScienceDirect & Scopus),
Web of Science, Google Scholar, and OCLC WorldCat. Supplemen-
tary papers were found by following the references of articles found
in the above-mentioned databases and search engines. Search
words were combinations of “MSP”, “marine/maritime spatial
planning”, “fisheries”, “spatial”, “effort”, “closure”, “spawning”,
“EBM”, “VMS”, “anchovy”, “cod”, “flatfish”, “herring”, “plaice”,
“saithe”, and “sole” in differing dictions and including Latin names
of fish species. Studies were included in this review if they dealt
with one of the above-mentioned challenges, had a marine focus,
led to spatially explicit results with an extent comparable to the
average MSP planning regions, and if they were written in the
English language. In the case of identical or conceptually similar
studies, those studies were included in this review that best sum-
marize longer development trends or had the stronger focus on
MSP requirements.

To get an overview about the different types of contributions to
the integration of fisheries into MSP we structured the publications
by using the Grounded Theory methodology (Strauss and Corbin,
1994). Each publication was assigned within four dimensions via
open and axial coding on the basis of the paper titles, abstracts, and
keywords. The categorisation was based on contrasting pairs
(model-based - sample-based; fleet e fish; inventory e projection)
and the axial coding elements as defined by Strauss and Corbin
(1998).

3. Results

The literature search led to more than 3000 results with general
relevance to the topic. Of these, 121 studies had higher significance
for the integration of fisheries into MSP. Most of these were studies
which focus on conceptual issues, aspects of stakeholder integra-
tion and participation, and details of interdependencies of
ecosystem components or of human activities and fish stocks.
Thirty-four of those 121 studies fulfilled the above-mentioned
criteria, whereof 25 studies were published since the year 2010
(see Table 1 below and Table 2 in chapter 3.2).

As a result of the coding the majority of reviewed papers were
identified as having a focus on model-based assessments of the
behaviour of fishing fleets (16 papers). Nine of those studies
included information on the wider context or on the effects of in-
terventions on fishermen's decision-making (see Fig. 1). A total of
eight papers described mainly phenomena, another eight articles
included causal conditions, while only five studies were so applied
to give concrete advice on MSP action strategies or similar. The
smallest group of papers used sampling to deduce the effects of
managements measures on stock development or species behav-
iour (3 papers). Model-based approaches clearly predominate the
reviewed studies (26 articles), while the relation between stock-
taking studies and those that make use of projections is balanced.
Studies coded as containing information on context, intervention,
action strategies, or consequences were later on more frequently
considered as offering advice not only for the MSP inventory phase
(Table 1), but also for the plan development and negotiation phase
(Table 2).

3.1. MSP inventory phase

3.1.1. Mapping fishing effort in space and time
The spatial resolutions of ICES statistical rectangles (300 latitude

x 600 longitude) or other grid-based landings and fishing effort
statistics are usually too coarse to fulfil the information re-
quirements of MSP on fisheries' demand for space. Suitable reso-
lutions have been defined, for instance, by Jin et al. (2013), who
suggest a grid system of maximum 100 x 100 to be able to assess
economic values of marine space. Marchal et al. (2014a) recom-
mend a more delicate system of 30 x 30 to be able to analyse the
interactions between fishing activities and other human offshore
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activities. Actually, catch and effort data for fleets is often available
at finer scales than the ICES rectangle in most national fisheries
institutes. Recent technological progress has led to massive acqui-
sition of fishing vessels' movement data (e.g., Vessel Monitoring
System, VMS), which offer new means of studying the spatio-
temporal dynamic of fishermen (e.g. Bertrand et al., 2008;
Patterson et al., 2009; Bastardie et al., 2010; Vermard et al., 2010;
Walker and Bez, 2010; Hintzen et al., 2012; Gloaguen et al., 2015).
But because VMS transmits the vessel positions at best every hour
(without any further information such as the current activity of the
vessel, the catches, etc.) these data alone, especially if displayed
within ICES rectangles, are usually insufficient for MSP processes,
and information onwhere fishermen actually fish has to be inferred
from the data, and additional information (gear type used, catches)
obtained from coupling to the fishermen's logbooks. Various
methods have been applied to model non-observed fisher behav-
iour (cf. Hutton et al., 2004). The studies show quite well the value
of model simulations for getting insights into detailed fishing vessel
behaviour, as required for a holistic MSP. However, the authors also
mentioned various constraints which currently limit the validity
and reliability of the simulation results, such as general un-
certainties in model simulations and the liability of covariates
describing the environment (e.g. the time of the day, the season, or
the habitat and knowledge of the gear actually used by the fishing
vessel). This causes limitations in the general advantage of nu-
merical models in comparison to limited observational studies
(limited in space, time, and in the number of individuals observed).
As shown by Pascual et al. (2013) and Turner et al. (2015), it may
Table 1
Approaches to overcome integration challenges during the inventory phase.

Challenge/MSP step Approach Regions Scale Spe

Inventory e effort
allocation

Vessel sighting, log-
book data,
questionnaires,
VMS data analysis
(model based),

English Channel;
North Sea; Celtic
Sea; North East
Atlantic, East Pacific

0 - 100 nm Var

Inventory e biotope
identification (e.g.
spawning grounds,
essential fish

habitats)

Statistical analyses,
habitat suitability
indices, drift
modelling

Caribbean Sea;
North West
Atlantic, Western
Baltic Sea

Small scale;
model: 1
e500 nm

Cod
salm
othe

Inventory e long-term
changes in fish
distributions and
fishing fleets

Modelling Global, Northern
Atlantic, North Sea

0.5e500 nm Var
plai

Inventory e

designation of
fishery management
areas

Genetic analyses
and stock
assessment,
retrospective
analysis

Baltic Sea, North
Sea

0.5e300 nm Cod
plai
shri

Inventory e economic
values of ocean space

Empirical data
analysis

Gulf of Maine 0.17e100 nm abo
spec
therefore also be necessary to conduct analyses of fisher behaviour
based on sightings and interviews for MSP purposes. A recent
example integrating data on fishing effort in Israeli draft MSP plans
was published by Mazor et al. (2014), who developed surrogate
opportunity cost layers of commercial fishing with a resolution of
1 � 1 km.

3.1.2. Biotope identification
To fully integrate fisheries into MSP, knowledge of spawning

areas and other essential fish habitats (EFH) is a prerequisite. To be
able to define relevant spawning areas, this includes knowledge of
the importance of variability in environmental conditions for egg
survival. In a series of studies, Hüssy et al. (2012), Hinrichsen et al.
(2012) and Petereit et al. (2014) used hydrodynamic drift modelling
to test whether the environmental conditions in different regions
are i) suitable for spawning, and ii) suitable for egg survival, and
then used this data to estimate the population connectivity of the
egg stage between different spawning grounds. The modelling
exercise showed that the dispersal of individual stocks of a species
may depend on complex patterns of different external forces, such
as topography, local winds, barotropic and baroclinic pressure
gradients. As a consequence, traditional sampling methodologies
are unable to provide high spatial and temporal resolution of egg
distributions in the western Baltic Sea without considering flow
dynamics and the impact of abiotic conditions on egg survival. In
regions like the western Baltic the identification of EFH needs to be
stock-specific and requires the use of hydrodynamic modelling.
Brown et al. (2000) highlighted the value of habitat suitability
cies Reference Specifics Stage of development

ious Bertrand et al.,
2008;
Patterson et al.,
2009;
Vermard et al.,
2010; Walker and
Bez, 2010;
Hintzen et al., 2012;
Pascual et al., 2013;
Campbell et al.,
2014;
Gloaguen et al.,
2015; Turner et al.,
2015

Limited validity,
limitations of individual
data sets, high effort,
lack of access to high-
resolution gear-specific
fisheries data

Operational, partly
usable for MSP

, flounder,
on and
rs

Brown et al., 2000;
Harborne et al.,
2008; Hüssy et al.,
2015; Hinrichsen
et al., 2012; Petereit
et al., 2014

Insufficient coverage of
MSP planning areas;
traditional sampling
unable to predict egg
distributions

Operational, partly
usable for MSP

ious, cod,
ce, sole

Cheung et al., 2009;
Drinkwater, 2005;
Teal et al., 2012;
Bartelings et al.,
2015

Large uncertainties, e.g.
in high-res projections
of stocks and key prey
items

Operational, but not yet
fully usable for MSP

, sole,
ce,
mp

Beare et al., 2013;
Eero et al., 2014

Fisheries and their
management can be
highly dynamic in
space and time; ICES
rectangles not suitable
for MSP; potential
socio-economic,
political, and
governance dimensions
to be taken into account

Operational and usable,
mainly for sectorial
management; partly
insufficient
understanding of
ecological processes

ut 200
ies

Jin et al., 2013 Recommended spatial
scale: at least the
10-min square

Operational and usable
for MSP



Table 2
Approaches to overcoming integration challenges during the draft development and negotiation phases.

Challenge/MSP step Approach Regions Scale Species Reference Specifics Stage of
development

Draft development/Impact assessment

e effects of multiple pressures on

biotopes during different life stages

Modelling English
Channel, Irish
Sea, Baltic Sea

0.25
e150 nm

Various Rochette et al., 2010;
Stelzenmüller et al.,
2010; Janben and
Schwarz et al., 2015;
Archambault et al.
(2018)

Uncertainties caused by limited
knowledge on impacts and on
connectivity; fisheries may benefit
from MSP

Operational,
party usable for
MSP

Draft development/Impact assessment

e effects of multiple pressures on

fisheries

Modelling
(various),
stress level
analysis

Gulf of Maine,
North West
Atlantic,
Eastern English
Channel, North
Sea, Baltic Sea

1 -
500 nm

Various Holland, 2000;
Hamon et al., 2013;
Marchal et al., 2014a,
b; Bastardie et al.,
2015;
Girardin et al., 2015;
Simons et al., 2014,
2015; Tidd et al.,
2015

Effects may be complex and fleet
dependent; ICES rectangles not
suitable for MSP, limited validity

Operational,
but not yet fully
usable for MSP

Fig. 1. Scatterplot of reviewed publications on challenges for the integration of fisheries into MSP published between 2000 and 2015. Based on concepts of Grounded Theory the
publications were categorized by means of contrasting pairs (model-based - sample-based; fleet e fish; inventory e projection) and additionally structured along the axial coding
elements.

H. Janßen et al. / Estuarine, Coastal and Shelf Science 201 (2018) 105e113108
index models for the identification of EFH in different life stages.
Overviews of predictive species-habitat modelling approaches have
been published for various species (cf. Valavanis et al., 2008). There
is a wide array of literature on marine habitat mapping with some
relation to MSP (cf. Cogan et al., 2009). However, detailed biotope
maps are currently not available formost regionsworldwide, due to
a lack of full-coverage environmental data (Schiele et al., 2015). It
becomes apparent that advances in biotope identification and its
usefulness for MSP are dependent on evolving technological and
modelling capabilities (ibidem), but also on a rigorous approach for
model validation to force modellers to combine observations and
experiments as an integral part of the overall modelling process
(Hannah, 2007).

3.1.3. Long-term changes in fish distributions and fishing fleets
(climate change impacts)

Cheung et al. (2009) showed that climate change and related
warming sea water temperatures are expected to drive global
changes in ectothermic marine species ranges due to physiological
limitations in thermal tolerance levels. Spatial shifts of commercial
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fish species may be of importance for MSP in those cases where
fisheries follow these shifts. MSP usually has a planning horizon of
decades. It therefore has a need to understand these changes if it
wants to develop reliable spatial management regimes. Few studies
in the literature collected here give spatial information in a reso-
lution and quality sufficient for MSP. Studies like the one from
Drinkwater (2005) are informative for MSP processes, but not
explicit enough for the designation of spatial management schemes
for human offshore activities. The study of van Keeken et al. (2007)
is an example of spatial information which is too coarse for MSP
purposes, but of interest to MSP is the authors’ indication for a
potential need for spatial changes in fisheries management
schemes, i.e. adaptation needs in sectorial management with in-
terdependencies toMSP. Teal et al. (2012) used amechanistic tool to
predict size- and season-specific distributions of fish based on the
physiology of the species and the temperature and food conditions
for two flatfish species in the North Sea: plaice, Pleuronectes pla-
tessa, and sole, Solea sole. This kind of mechanistic modelling
approach enhances the predictability of fish distribution under
different environmental scenarios above what is possible with
simple correlative studies, and the results may also serve as input
for economic scenario models. The effects of such changes in fish
distributions on fisheries were simulated by Bartelings et al. (2015).
In their case study, the authors showed that long-term effects of
fish displacement due to climate change had little impact on the
spatial distribution of flatfish and shrimp fisheries. This could be
explained by the range of the shift and the expected productivity.
The range shift of sole and plaice is not expected to be very large by
2050 and the final distributions largely overlap with the current
fishing areas.

The authors mentioned that predicting the availability of key
prey items remains a challenge. Together with the fact that fish and
fleet distributions are effected not only by physiology and avail-
ability of suitable habitat but also by behavioural choices, migration
routes for spawning grounds, species interactions and fishing
pressure, this results in limitations of the validity of these ap-
proaches in their application inMSP. Additionally, the application of
bio-economic models to new fisheries may require a considerable
amount of time and data. One of the difficulties comes from the
availability of spatial data to parameterise this kind of model (e.g.
estimations on the spatial distribution of stock). This type of pro-
spective modelling exercise should only be used as “what-if” sce-
narios, with underlying assumptions clearly stated. Indeed, a
sensitivity analysis by Bartelings et al. (2015) showed that the
fishery was much more impacted by changes in fish and energy
prices than by fish displacement or area closures.

3.1.4. Designation of fishery management areas
In the majority of cases, the designation of fishery management

areas will be an issue of sectorial management, and not of MSP
itself. However, spatio-temporal restriction and closures of smaller
areas for fishing are commonly applied, for example, to protect
spawning aggregations, habitats, etc. (Babcock et al., 2005;
Stelzenmüller et al., 2008; Lorenzen et al., 2010; Sciberras et al.,
2015) and these management measures are taken within the
context of an encircling MSP. Challenges arise from the fact that fish
and fisheries, together with their management, can be highly dy-
namic in time and space, in contrast to MSP, which is generally
associated with stable conditions (wind farms, shipping routes, etc.
stay at the same location for decades or longer). This has been
demonstrated for the western Baltic cod management area, where
mixing with the eastern Baltic population is taking place at varying
proportions (Eero et al., 2014). This may require temporal re-
allocations of fishing effort within a management area to protect
local populations, depending on natural variability in population
distributions, which would result in temporally varying overlap of
fisheries with other human uses of the sea. These examples
demonstrate that integrating wide-scale ecosystem processes
(where appropriate) and accounting for spatial and temporal
ecological changes influencing fisheries management should be
incorporated into MSP strategies. This is in line with other studies,
e.g. Beare et al. (2013), which additionally emphasise the need to
consider socio-economic and governance dimensions (MSP di-
mensions) in the designation of fishery management areas. For this
review, we only found retrospective studies that analysed imper-
fect management examples and called for more sound and holistic
strategies, linking MSP and fishery management areas.

3.1.5. Economic value of marine space
The importance of seas and oceans for human prosperity, as

expressed e.g. in the transatlantic Galway Statement, has always
been an important driver for marine exploitation, management,
and research. Numerous authors stress the importance of the
ability of spatio-economic analyses to balance multiple uses of
marine space. Surprisingly, only one study could be found that
analysed the spatial distributions of economic values in a resolution
that would be informative for MSP. Jin et al. (2013) compiled
empirical data on the economic values arising from commercial
fishing around the Gulf of Maine. The authors showed that it is, in
principle, possible to identify the specific location in a planning
area where a specific industry would be able to generate the
highest value among alternative uses.

3.2. MSP draft development and negotiation phase

3.2.1. Spatial dynamics and vulnerability of fish during different life
stages

MSP may influence economically important fish species with
life cycles that depend on different habitats (coastal vs. offshore
areas) that are subjected to different pressures (pollution, habitat
destruction, fisheries) and policies. There are numerous studies
available on impacts of the destruction or impairment of specific
habitats. Most of these studies operate on scales that are too
detailed for MSP but which are of relevance for more detailed
impact assessments within the framework of licensing procedures.
Stelzenmüller et al. (2010) assessed, on a larger spatial scale, the
vulnerability of various fish species to aggregate extraction. The
authors highlight the crucial importance of spatial scale for such
exercises and stress that the scale of the human activity has to be
balanced with the occurrence of the ecological receptor. Rochette
et al. (2010) and Archambault et al. (2018) disentangled the ef-
fects of multiple interacting stressors on population renewal (e.g.
estuarine and coastal nursery habitat degradation, fishing pressure)
of common sole abundance in the Eastern Channel. Their results
emphasise the importance of nursery habitat availability and
quality for this species, with a two-thirds increase in catch potential
for the adjacent subpopulation. Pressures on those habitats can be
managed by MSP by-laws, with a potential benefit for the fisheries.
The study showed that it is feasible to integrate coastal habitat and
fisheries management in MSP based on today's knowledge. How-
ever, some uncertainties remain, caused by fragmentary knowledge
on the effects of anthropogenic pressures and spatial connectivity.
Janben and Schwarz (2015) outlined the potential benefit of MSP
for stock development, here for western Baltic herring. But the
authors also mentioned limits of MSP in regulating some of the
most important stressors; in the given case this is valid mainly for
eutrophication and partly for pollutants.

3.2.2. Effects of MSP and other human uses on fleet behaviour
Effects of spatial management measures and competing human
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activities on fisheries have been analysed in numerous retrospec-
tive studies. Usually such studies are of little use for MSP, as their
findings depend on specific case study conditions. This challenge
can be overcome by using predictive fleet behaviour models, which
have been used in various parts of the world to simulate potential
impacts of various kinds of scenarios on fisheries fleets. Holland
(2000) used bioeconomic modelling and showed that marine
protected areas might affect catches, revenues, and spawning stock
of principal groundfish species in southern New England and the
Gulf of Maine. His simulation results also demonstrated that the
impacts of sanctuaries can vary greatly across species, sometimes
increasing yields for some while decreasing yields for others.
Bastardie et al. (2015) used bioeconomic modelling to show that
spatial restriction scenarios (offshorewind farms, marine protected
areas) may lead to a net effort displacement with a subsequent
change in the spatial origin of the landings. The impact of the
fishing activities changes for the harvested stocks, with various
fishing pressure put on them after the implementation of the
zonation. The divergence in catch composition from alternative
effort allocations was, however, sufficient to create a surplus of
abundance in the long term that helps the fisheries to compensate
for the zonation effect. Outcomes from the simulations were more
nuanced when studied at the individual vessel scale because some
vessels were not able to cope with space restrictions without a
significant loss in individual profitability. Simons et al. (2014) re-
ported that changes in fishing behaviour, in terms of effort alloca-
tion patterns (e.g. caused byMSP) or entry and exit of vessels, affect
not only the catch, but also fishing mortality of species and ulti-
mately the development of the fish stocks (here: saithe in the North
Sea). Simons et al. (2015) identified areas which could lead to the
greatest increase in spawning stock biomass. This could be of in-
terest not only for fisheries management but also for an MSP that
either seeks to stabilize fisheries as an economic sector or aims for
efficient contributions to the preservation of ecological functions.

Cumulative losses caused by the displacement of fisheries are
often evaluated on a macroeconomic level (Berkenhagen et al.,
2010; Oostenbrugge et al., 2010), whereas impacts for single en-
terprises or coastal regions are often ignored. As shown by Marchal
et al. (2014a) this can be overcome by conducting an individual
stress level analysis (ISLA), i.e. calculating the future potential los-
ses in per cent (stress level) of a fisheries enterprise (individual
vessel) by comparing the revenues (alternatively effort or catch)
gained in the past in an area which might be closed to fisheries in
the future with the total revenues of that individual vessel. By
aggregating this data per coastal area, harbour or other entity, an
individual stress level profile for a specific future spatial manage-
ment option can inform decisionmakers about the consequences of
implementing a spatial plan. The authors report that impacts on
single vessels and/or single harbours may differ significantly.

Discrete-choice models incorporating a random utility model
(RUM) are now widely used in fleet dynamics and effort allocation
studies (Holland and Sutinen, 1999; Hutton et al., 2004; Vermard
et al., 2008; Marchal et al., 2009). In these studies, the main
drivers of fishing behaviour considered are economic opportunities
and traditions, and these indeed appeared to determine spatial
effort allocation. Similar RUMs were applied to a variety of French
and English fleets operating in the Eastern English Channel
(Girardin et al., 2015; Tidd et al., 2015), but with additional
explanatory variables reflecting spatial interactions/competitions
with other fishing fleets, maritime traffic, aggregate extractions and
closed areas. To the best of our knowledge, this was the first time
discrete-choice models have been applied to evaluate the impact of
spatial interactions (effects of other human uses and closed areas)
on fleet dynamics. Alternative spatial approaches, including
spatially-explicit time series analyses, have been complementarily
conducted to investigate more specifically, at a finer spatial reso-
lution than that considered in the RUMs, the spatial interactions
between (1) fishing activities and aggregate extractions (Marchal
et al., 2014a) and (2) fishing activities and maritime traffic
(Girardin et al., 2015). As shown by these authors, competing ac-
tivities, such as maritime transport or aggregate extraction,
generally have a repelling effect on the distribution of fishing fleets.
However, this effect is probably not linear, and it also depends on
the spatial and temporal scale of the analysis, on the fleet, and on
the targeted species. In the study by Marchal et al. (2014b), some
fleets (e.g., potters targeting whelks and large crustaceans, netters
targeting sole, and even some scallop dredgers) were attracted to
the vicinity of aggregate extraction sites. For shipping lanes, it was
shown that, when stock density was high, the influence of maritime
traffic decreased, possibly because the risk of being caught in an
accident within the shipping lanes was offset by the expected
profit.

These results indicate that the interactions between fishing ac-
tivities and other human activities offshore are complex in nature,
and hence highlight the importance of choosing a sufficiently ac-
curate spatial scale to implement MSP efficiently. In the case of the
Eastern English Channel, the ICES rectangle (300 x 600), or even the
1/8th of an ICES rectangle (150 x 15’) would not be of sufficient
precision to monitor spatial interactions between human uses.

4. Synthesis and discussion

During recent years, research on the integration of fisheries into
MSP has been gaining momentum. Three-fourths of the reviewed
studies were published recently (since 2010). As shown above, tools
and methods for identifying productive areas with relevance for
fish resources, fisheries and the management of fish stocks (e.g.
fishing grounds, spawning grounds, nursery grounds, benthic
habitats, etc.) are widely available or under development. The same
is true for models that support analyses on changes in species
distribution and of effects of MSP or human uses on existing fish-
eries. While we found fewer than three dozen studies with direct
significance for the topic, there is a large number of publications
with general relevance. This suggests that the knowledge that is
actually available might be much larger, while the publications
might simply have been written in a style that did not focus on
spatial management approaches and were therefore not included
in this review. The papers, approaches and case studies reviewed
here indicated that very often the presented tools, methods and
models are still in a scientific stage and not directly usable by MSP
management bodies. Most of the modelling approaches require
large amounts of data, including satellite-based VMS data, fisher-
men's declaration of catches in logbooks, sales slips from fish
auctions, and biological information that is available on various
scales over a range of species, as well as biological and economic
processes and functional relationships. Not all of the data needed is
always easily accessible, e.g. logbook data of foreign fleets oper-
ating in the planning region. In addition, this kind of tool requires
advanced modelling skills; some may even require access to
supercomputing facilities.

As seen in the reviewed studies, extensive and broad expertise is
needed to integrate fisheries and MSP. This may include detailed
knowledge on benthic communities, the biology of selected fish
species during different life stages, and various forms of cause-
effect relationships, as well as proficiency in statistics, economics
or modelling, among others. While such expertise is usually not
part of the infrastructure of MSP agencies, it is increasingly avail-
able, as shown by the reviewed studies.

Spatial resolution is still a challenge for the integration of fish-
eries and MSP. Fisheries research and management often operate
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on the basis of grid systems which are not optimal for MSP. Reso-
lutions of 300 x 60’ (ICES rectangle) or even 100 x 10’ are often not
informative enough for MSP processes. Stock dynamics and fleet
movements operate on fine spatial scales, while the catches and
fishing effort (fishing logbooks) are usually reported at the ICES
rectangle scale or similar grid systems (e.g. Bastardie et al., 2010).
The ICES rectangle resolution does not seem adequate to describe
the space and time structure and change in stock and fleet distri-
bution (nursery areas, spawning areas, economic zones, ports and
vessel mobility, etc.). Offshore platforms are also fine-scale settle-
ments, which makes the use of the current fisheries zoning (for
reporting, i.e. ICES rectangle at best) quite irrelevant. New infor-
mation are now requested by ICES (2015 ICES/OSPAR/HELCOM data
call) to advise on the impact of fishing and the use of space in
European waters on a much finer scale than previously used, by
making use of transnational VMS data. VMS tracks (at least the
vessel position data collected every 2 h) will be coupled to the
logbook information to map the fishing per activity category. Fine
fishing distribution mapping, using coupled VMS/logbook data in-
formation and fishing gear questionnaire surveys at a European
scale, is furthermore currently under way in the EU-FP7 BENTHIS
project. The example by Mazor et al. (2014) suggests that 1 � 1 km
could be an adequate grid resolution.

The reviewed studies gave insights into a number of more
general issues in the integration of fisheries into MSP:

4.1. Space is not equally important to fish stocks and fisheries.

What sounds like a platitude for a fisheries biologist is a chal-
lenge for MSP. Very often, MSP processes fail to identify those
priority areas which are of increased relevance for fisheries or for
fish species during different life stages (cf. Jay et al., 2013). A
planning area should be divided into subspaces to which different
qualitative values of fisheries’ relevance need to be assigned to, e.g.
values on the importance for relevant species during different life
stages or on the relevance for fishing fleets. If such assessments are
omitted, an integration of fisheries into MSP will not succeed. The
approaches used in the reviewed studies are not without con-
straints and obstacles and they may still be unsatisfactory for the
needs of MSP authorities. But they show that detailed assessments
on the dynamics of fishing effort and fish stocks (spawning activ-
ities, etc.) are possible and available. The same is true for the
identification of habitats over different life stages and fleet models
which link species dynamics with fleet behaviour. Another crucial
aspect in this context is foreseeing unwanted detrimental effects of
the plan, such as effects that a misplaced area closure for fisheries
could potentially create by concentrating the fishing effort on the
most sensitive parts of the stock or the ecosystem components
(Suuronen et al., 2010).

4.2. How to define valuable areas?

Fisheries are often mainly understood as an economic sector. In
these cases (e.g. Jin et al., 2013; Bartelings et al., 2015), areas
valuable for fisheries are often defined as those areas with high
fishing effort, high catches, or high revenues. These methods usu-
ally work fine but they partly ignore the broader approach of spatial
planning as defined within the European Regional/Spatial Planning
Charter (Council of Europe (1983)), according to which “spatial
planning gives geographical expression to the economic, social,
cultural and ecological policies of society.” In particular, the inte-
gration of social and cultural dimensions may require additional
criteria for the definition of valuable areas. These could, for
instance, be information on those areas to which small-scale fish-
ermen are most attached (which might not be of high value at the
scale of thewhole fisheries) or information on areas for recreational
fisheries. Currently, the link to social aspects is still relatively weak
in the tools and models developed, and only a small amount of
literature on the social value of marine areas was found.

Even in those cases where economic goals are in the focus, a
decision on how “value” is defined may be necessary (e.g.,
employment vs. total revenue from catches; cf. Bastardie et al.,
2014). The definition of valuable areas can be dynamic and
changeable, as is often the case with societal decision-making
processes. It is important that this discussion is taken up by MSP
processes to prove that MSP actually reflects societal policies, as
stated above.

4.3. MSP's responsibility for fisheries and fish stocks

How MSP goals and approaches are understood around the
world differs from country to country, and ranges from lean
zonation methods to comprehensive ecosystem-based ocean
management approaches (Jay et al., 2013). If and how fisheries are
integrated into MSP processes is influenced in part by these dif-
ferences in howMSP is understood. Independent of a country's MSP
philosophy, MSP may affect fisheries and fish stocks on various
levels. MSP assigns spaces to human uses which usually impose
limitations on fisheries, with effects on effort, fleet behaviour, and
revenues. These effects can be analysed with model simulations,
and these analyses can also help to identify affected stakeholders,
down to the level of single harbours and coastal communities. Even
if these assessments sometimes include a large number of un-
certainties, they are still capable of supporting stakeholder map-
ping and the establishment of MSP discussion fora.

Examples like Simons et al. (2015) and Janben and Schwarz
(2015) indicate that MSP may have direct and indirect influence
on the development of fish stocks. In the case of indirect impacts,
one could argue that these effects are usually not caused by the
MSP itself but by single human activities (e.g. sediment extraction,
harbour dredging) which MSP merely coordinates but does not
implement. In that case, these impacts would have to be addressed
within sectoral Environmental Impact Assessments (EIA), but not
necessarily within a MSP procedure. On the other hand, these in-
teractions between human uses and fish stocks may well be rele-
vant for the decision making on spatial designations within MSP.
Within Europe, Article 5 of the EU MSP Framework Directive
(Directive 2014/89/EU) obliges member states to implement MSP,
among others with the objective of achieving a sustainable devel-
opment of the fisheries sector. MSP also requires, from the
perspective of the fisheries, some evaluations on how biological
targets and targets set within the fishery management context can
still be achieved in the broader context of multi-sector use of the
sea. The above-mentioned examples give various indications on
issues and interactions, which MSP processes should reflect. The
increasing competition formarine space and the cumulative impact
of human activities on marine ecosystems render the current,
fragmented decision-making in maritime affairs inadequate,
especially for co-management of fisheries and other pressures on
fish habitats and fish populations. A MSP which ignores its re-
sponsibility for that would not only not be rising to its full potential,
but might also fail to meet the requirements of the EU MSP
Directive. MSP could be especially efficient for preventing new
alteration by managing present human activities.

4.4. Spatial dynamics and temporal dimension

The spatial dynamics of commercial fish species and fisheries
are often understood as a major challenge for MSP. However, this is,
in principle, nothing new, as all ecological and social systems are
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dynamic, such that specificmanagement decisions and tools should
and often already use an adaptive management process (cf. Foley
et al., 2010). Fish and fisheries, together with their management,
can be highly dynamic in time and space, in contrast to MSP, which
is often associated with more stable conditions and planning ho-
rizons of decades (see Directive 2014/89/EU). This may include
space and time displacement of fishing effort within amanagement
area, depending on natural or non-natural variability in population
distributions. With certain limitations, these shifts can be pro-
jected. The scientific foundations of those projections may still be
too weak to be directly used in administrative MSP decisions, but
they can nevertheless serve today as assessments for the identifi-
cation of areas with an increased probability for shifting fisheries
effort. This may help to define areas for the application of the
precautionary principle in MSP, e.g. areas that may be suitable for
limited or non-permanent human uses. Long-term changes, e.g.
impacts of climate change, may further complicate the integration
of fisheries into MSP. But again, model simulations can help to
identify the spatial and temporal dimensions of these shifts with
the aim to identify those areas that fish and fisheries might shift
towards (and away from).

If a zonation scheme is set in stone, then fishermen can lose
fishing grounds or access, in the case of a hypothetic shift in stock
distribution, e.g. due to climate change. This touches the question of
revision periods of MSP plans, which should occur with an appro-
priate time frame of at most 10 years. However, it is unrealistic to
require infrastructure to bemoved because of a plan revision. It will
therefore be important to define, at an early stage, those areas that
underlie relevant fish and fisheries dynamics and to apply this
knowledge to the implementation of the precautionary principle.
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