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Abstract : 
 
1.Recent technological development has increased our capacity to study the deep sea and the marine 
benthic realm, particularly with the development of multidisciplinary seafloor observatories. Since 2006, 
Ocean Networks Canada cabled observatories, have acquired nearly 65 TB and over 90,000 hours of 
video data from seafloor cameras and Remotely Operated Vehicles (ROVs). Manual processing of 
these data is time-consuming and highly labour-intensive, and cannot be comprehensively undertaken 
by individual researchers. These videos are a crucial source of information for assessing natural 
variability and ecosystem responses to increasing human activity in the deep sea.  
 
2.We compared the performance of three groups of humans and one computer vision algorithm in 
counting individuals of the commercially important sablefish (or black cod) Anoplopoma fimbria, in 
recorded video from a cabled camera platform at 900 m depth in a submarine canyon in the Northeast 
Pacific. The first group of human observers were untrained volunteers recruited via a crowdsourcing 
platform and the second were experienced university students, who performed the task for their 
ichthyology class. Results were validated against counts obtained from a scientific expert.  
 
3.All groups produced relatively accurate results in comparison to the expert and all succeeded in 
detecting patterns and periodicities in fish abundance data. Trained volunteers displayed the highest 
accuracy and the algorithm the lowest.  
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4.As seafloor observatories increase in number around the world, this study demonstrates the value of a 
hybrid combination of crowdsourcing and computer vision techniques as a tool to help process large 
volumes of imagery to support basic research and environmental monitoring. Reciprocally, by engaging 
large numbers of online participants in deep-sea research, this approach can contribute significantly to 
ocean literacy and informed citizen input to policy development. 
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Introduction 48 

Advances in instrumentation are allowing ecosystems to be investigated at increasing spatial 49 

and temporal resolution (Porter et al. 2009). As a direct result, researchers in the environmental 50 

and biological sciences are faced with growing challenges and opportunities related to ‘big data’ 51 

(Grémillet et al. 2012; Woodward et al. 2014). Data are accumulating faster than the processing 52 

power of research labs and institutions, and their effective exploitation requires more human 53 

resources and additional computational solutions. Computer algorithms have proven to be 54 

effective at assimilating and summarizing large volumes of scalar data (e.g., Belkin and 55 

O’Reilly, 2009), but computer vision software solutions are still far from replacing the human 56 

eye in extracting scientific information from complex data types like imagery (Purser et al. 57 

2009; Aguzzi et al. 2009; Aron et al. 2010; Schoening et al. 2012). For some image analysis 58 

applications, engaging the public in initial data processing or annotation (i.e., adding caption 59 

and metadata to a digital image) has yielded useful results. The astronomical science 60 

community was among the first to apply crowdsourcing approaches to image analysis, engaging 61 

the public in analysing a huge archive of space imagery through the Zooniverse platform 62 

(https://www.zooniverse.org/projects, Galaxy Zoo, Lintott et al., 2008). Crowdsourcing has 63 

become a form of citizen science where members of the public contribute to scientific research 64 

projects by acquiring and/or processing data, with few prerequisite knowledge requirements 65 

(Silvertown 2009). Crowdsourcing has benefited from the Web 2.0 technologies that enabled 66 

user-generated content and interactivity, such as wiki pages, web apps or social media. These 67 

web developments have enabled structured data analysis by a substantial number of online 68 

contributors (Wiggins & Crowston, 2011). 69 

Crowdsourcing has the potential to contribute to biological studies that use deep-sea video and 70 

still photo imagery as a primary source of information. The floor of the deep ocean, and its 71 

important but still unquantified reservoir of biodiversity, are invisible from space and can only 72 
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be imaged from a few metres distance using artificial lighting and deep-sea cameras. As a result, 73 

only about 5% of the seabed has been surveyed by platforms like Remotely Operated Vehicles 74 

(ROVs) and Autonomous Underwater Vehicles (AUVs) (Ramirez-Llodra et al. 2010). In situ 75 

imagery allows biologists to quantify the spatial distribution and seasonal variability of deep-76 

sea species in their natural habitat, and to document their behaviour (Tunnicliffe 1990; Copley 77 

et al. 1997, 2007; Aguzzi et al. 2010; Porteiro et al. 2013). Seafloor observatories currently 78 

under development or in operation in several areas of the world ocean will produce 79 

unprecedented volumes of imagery that will create a processing bottleneck. The NEPTUNE 80 

and VENUS cabled observatories, operated by Ocean Networks Canada (ONC; 81 

http://oceannetworks.ca) off Vancouver Island, Canada, support continuous observations of 82 

faunal and habitat variables and have been recording daily video imagery from coastal to 83 

abyssal habitats since February 2006. The rapidly growing data archive now contains video 84 

from 26 current and historical video camera systems across the network, whose output, when 85 

added to ROV imagery from observatory installation and maintenance operations, currently 86 

consists of over 90,000 hours of video for a total of nearly 65 TB of video data. 87 

The field of computer vision is well-developed for certain land-based image analysis tasks such 88 

as, among others, human facial recognition (Zafeiriou et al. 2015) and human behaviour 89 

analysis (Vishwakarma & Agrawal 2012). In contrast, underwater imagery analysis is an 90 

emerging field that presents unique challenges not found in other domains, such as light 91 

propagation effects in water (i.e., differential spectral attenuation, scattering) and non-uniform 92 

artificial lighting, to name a few (Schettini & Corchs 2010). Most automated techniques are 93 

designed to sort images based on predetermined criteria or to annotate images to add 94 

information about objects or areas of interest. They vary from semi-automatic methods, which 95 

require various degrees of human intervention during execution, to automatic methods which, 96 

once algorithms are trained using manually generated training sets, can sort or produce 97 
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annotations without human intervention (e.g., Chuang et al., 2014). Best analytical results are 98 

achieved when automated techniques are developed for each specific target application and 99 

dataset, as these techniques often do not generalize easily.  100 

Deep-sea citizen science is still in its infancy, and it is difficult to evaluate its potential for 101 

contributing to our knowledge of this environment. Only two crowdsourcing applications for 102 

underwater seafloor imagery are widely available to date (i.e., the Zooniverse Seafloor 103 

Explorer, https://www.seafloorexplorer.org and Ocean Networks Canada’s Digital Fishers, 104 

http://dmas.uvic.ca/DigitalFishers), and marine citizen science projects are relatively few 105 

compared with projects developed on land (Roy et al. 2012). The goal of the current study was 106 

to evaluate the accuracy of crowdsourcing in relation to computer vision algorithms and human 107 

experts, in the processing of deep-sea video imagery for deep-sea biologists. We focused on 108 

identifying and counting a commercially important fish species (the sablefish Anoplopoma 109 

fimbria; Kulka and Pitcher, 2001). A selected video dataset was screened by untrained citizen 110 

scientists, a computer vision algorithm for fish counting (Fier et al. 2014), undergraduate 111 

university students (3rd year biology class), and a scientific expert (PhD student). Ultimately, 112 

we aim to provide guidance to researchers for optimizing the processing of imagery `big data’ 113 

in the context of a growing global network of deep-sea observatories.  114 

 115 

Material and Methods 116 

Sampling site and data acquisition 117 

The videos analysed in this study were acquired by a camera platform (Mid-East) at a 900 m 118 

depth seabed site in Barkley Canyon, a submarine canyon in the northeast Pacific Ocean, off 119 

Vancouver Island, Canada. For this study, 50 seconds of video (MP4 format) was acquired 120 

every 30 minutes over a one month period, from 21:30 on 14 October to 00:00 on 14 November 121 
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2011, Pacific Standard Time (PST, local time), for a total of 1439 video sequences (See video 122 

S1 for an example). The camera orientation was fixed at 45° down from horizontal,  so that the 123 

field of view imaged approximately 2 m² of the sediment-covered seabed. The task for all 124 

human and machine participants was to count sablefish, Anoplopoma fimbria (Fig. 1), in each 125 

video clip in the project dataset. The target species (sablefish) was easily identifiable by 126 

untrained observers, and images had few non-target fish species. This dataset formed part of a 127 

PhD study by C. Doya (Doya et al. 2014), referred to hereafter as the ‘Expert’. For each video 128 

segment, the Expert manually reported in a spreadsheet the number of individuals of the most 129 

abundant and discernible species over the entire video, using QuickTime© media player 130 

software. When a sablefish was not fully included in the Region of Interest (ROI) or partially 131 

hidden by another fish, but was still identifiable, the animal was counted. When several 132 

sablefish overlapped and to avoid miscounting, orientation and trajectory were used to identify 133 

individuals.  134 

 135 

University student participation 136 

The project dataset was provided to a class of sixty 3rd year biology students as a laboratory 137 

exercise for Biology 335 (Ichthyology), at the University of Victoria in 2012. Each video clip 138 

was reviewed by 1 to 4 different groups of students (working in pairs). Students were asked to 139 

count individuals and identify fish species in the videos and also record data on the laterality of 140 

fish behavioural response (left or right turning) to the camera structure as part of the laboratory 141 

exercise requirements (results not shown). The students involved had no background in image 142 

analysis. They were given a 10-minute introduction to ocean observatories and camera systems, 143 

followed by a 15 minute demo of the online data access and annotation tools. The students were 144 

then instructed on the tasks to be accomplished and the methodology, including how to 145 
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recognize the species of interest. The videos were watched independently by each group of 146 

Students on their own computers. They were given a period of a few weeks to complete the 147 

tasks, outside of lecture/lab time. Students performed all annotations online using the ONC 148 

online annotation tool available in the video viewer SeaTube (dmas.uvic.ca/SeaTube, S2). After 149 

watching the full segment of video, students were asked to add an annotation using the 150 

dedicated button on the interface (S2). All annotations were recorded in the ONC database. 151 

Results from a student who did not annotate a single fish in all processed videos were 152 

disregarded. 153 

 154 

Crowdsourcing 155 

In collaboration with the Centre for Global Studies at the University of Victoria, ONC 156 

developed Digital Fishers (http://digitalfishers.net; Hoeberechts et al., 2015) in 2011, an online 157 

crowdsourcing platform to help analyse and annotate video acquired from deep-sea cameras. A 158 

special ‘sablefish mission’ to annotate the project video data set was conducted from May 2014 159 

to February 2015. When connecting to the Digital Fishers platform, participants were informed 160 

though a pop-up window of the ongoing task which consisted of determining, after watching 161 

the 1-minute video, how many sablefish were present. An ’ad hoc tailored’ tutorial provided 162 

cues for recognizing the species of interest, mainly through pictures. At the end of each video 163 

clip, observers were prompted to enter an observed sablefish count, which when completed 164 

allowed them to view the next clip (see S3). Clips were provided in random temporal order to 165 

the users.  A button with choices from 0 to 12+ (i.e. maximum number of fish observed by the 166 

Expert) simplified the annotation task and linked participant information to counts in the 167 

database.  168 

 169 
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Computer vision algorithm 170 

A custom computer vision algorithm was developed over the course of 4 months as a computing 171 

science student project to specifically detect and count sablefish in video from the Barkley 172 

Canyon camera site (referenced as the ‘Algorithm’ in this paper). An overview of the method 173 

is presented here (see S4); for details, the reader is referred to Fier et al. (2014). The approach 174 

consisted of 3 sequential modules: “Preprocessing”, “Detection”, and “Tracking and Counting”. 175 

The first module (Preprocessing) used sequential application of filters, colour restoration 176 

techniques and lighting and contrast adjustments to enhance fish-related features while reducing 177 

noise in the videos. The underwater video used for this work presented challenges for automated 178 

analysis, including limited visible range, low contrast, non-uniform lighting, wavelength 179 

dependent colour attenuation, compression artifacts, light scattering by marine snow or 180 

resuspended sediment, and turbidity. The preprocessing step attempted to mitigate these effects 181 

to enhance the performance of the subsequent steps.  182 

The second module (Detection) identified potential fish candidate regions using three separate 183 

background subtraction techniques which were combined using logical operators. Shape 184 

descriptors including height, width, and area thresholds removed any small or oblong non-fish 185 

shaped objects from the candidate set. A hue-based threshold was used to filter out any false 186 

positives generated by background such as marine snow or clouds of sediment, which had 187 

different colour characteristics than target sablefish. Thresholds for merging and noise detection 188 

were empirically determined by evaluating results for the experimental database. The output of 189 

the Detection step was a binary image representing the segmented fish candidate regions.  190 

The third module (Tracking and Counting) used motion analysis to track the fish candidates 191 

and count them. A fish was assumed to enter and leave the frame at a boundary and to move on 192 

a connected path, sometimes stopping on the way. The tracking system matched fish through 193 

their motion between successive frames. This counting method could detect both unoccluded 194 
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and partially occluded fish present in the frame. Note that the refinement of the algorithm did 195 

not incorporate a machine learning element, but was done by human evaluation of the results 196 

and subsequent improvement the techniques used. To evaluate the algorithm’s performance, it 197 

was tested on 100 randomly selected videos from the dataset for which the fish were counted 198 

manually and compared with the output of the algorithm. 199 

 200 

Data analysis and comparison 201 

Data from all groups were matched using the date and time information contained in the 202 

metadata. Results from Students and Crowd were automatically recorded in the ONC common 203 

database with the accompanying metadata following international ISO 19115 standards. Each 204 

annotation is associated with a UserID, the video acquisition and annotation dates and times, 205 

and a set of additional metadata (e.g. metadata associated with the instrument, the observatory, 206 

the type of data). In the case of the Expert and the Algorithm, data were locally saved on a hard 207 

drive and each count was associated with the original video filename that includes the 208 

observatory location, type of camera, and date and time of acquisition, allowing for subsequent 209 

data combination. 210 

For the Crowd annotators, three groups were identified: the “Total” Crowd included all data 211 

from all participants (503 individuals), the “Novice Crowd”, included data from the first 100 212 

annotated videos of all users, and the “Advanced Crowd” included videos 101 and higher for 213 

all users. An analysis comparing the percentage of correct answers with the number of video 214 

processed showed that above 100 videos watched (“Advanced Crowd”), with few exceptions, 215 

the percentage of correct counts remained above 70% (Fig. 2A). Only 6.5% of all observers 216 

(i.e. 33 individuals) annotated more than one hundred videos. Fish classification results for the 217 

3 different groups of human operators plus the Algorithm were compared considering only 218 

videos screened at least once by all groups. When there were multiple records of sablefish 219 



11 
 

counts for individual videos (Students and Crowd, Table 1), three statistics were considered: 220 

the mean, median, and larger mode. Sablefish counts from Students, Crowd, and Algorithm 221 

were assessed in relation to the Expert ‘groundtruthing’ data using a Pearson’s product moment 222 

linear correlation coefficient, and a paired Wilcoxon signed-rank tests. These two tests were 223 

performed on the raw data (before combining data), as well as on the mean, median and larger 224 

mode calculated on each video. Accuracy was determined by calculating the percentage of 225 

counts that fit the Expert’s, and the percentage of counts above (positive difference) and below 226 

(negative difference) the Expert’s. For this, within each group and for each video, the difference 227 

was obtained by subtracting individual sablefish count from that obtained by the Expert.  228 

In order to test for groups’ abilities to detect similar temporal trends and patterns in the dataset, 229 

Whittaker-Robinson periodograms were calculated on fish counts for the Expert and Algorithm 230 

and the median for the Students and Crowd in order to screen for periodicities in fish abundance 231 

data. Period significance was tested by a permutation procedure (Legendre & Legendre 2012). 232 

All data analyses were conducted in R language (R Core Team 2015). 233 

 234 

Results 235 

In total, 1,059 video files were screened by all four groups (Expert, Students, Crowd and 236 

Algorithm). Details on group size and the number of times a video was viewed are listed in 237 

Table 1. Over the crowdsourcing  (Digital Fishers) campaign period, 503 Citizen Scientists, 238 

participated in the mission and collectively contributed 14,192 annotations to 1,430 videos. 239 

Over 9 months, each video was on average screened by 10 different Citizen Scientists from 240 

both the Novice and Advanced Crowds (Fig. 3). When only considering the Advanced Crowd, 241 

each video was only screened two/three times on average, similar to the Students group. In 242 

terms of annotations, 27 individual Citizen Scientists (5% of the total Crowd) contributed to 243 
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more than 50% of the total number of annotations, and among them 6 (i.e., 1%) contributed 244 

20% of total annotations. The most involved Citizen Scientist contributed 10% of the total 245 

number of annotations and annotated all videos included in the campaign.  246 

In general, all groups performed well in comparison to data from the Expert and all Pearson 247 

linear correlations were significant (Table 1). Results obtained with the mode matched those of 248 

the median and are not presented. For all groups, considering the median (or larger mode) value 249 

per video clip improved the correlation with Expert data (Table 1). The paired Wilcoxon signed-250 

ranked test rejected the null hypothesis of no difference between Expert counts and each 251 

individual group counts except when comparing against the mode/median for the Novice Crowd 252 

and the total Crowd. When comparing raw count data, the Students performed best (cor = 0.90) 253 

and the Novice Crowd worst (cor  = 0.78). However when comparing the different measures of 254 

central tendency, the three groups of Crowd outcompeted the Students and the Algorithm (Table 255 

1). The Crowd as a whole performed slightly better than members of the Novice and the 256 

Advanced Crowd with respect to mean and median values, while the Advanced Crowd 257 

performed better when considering the raw data. This implies that the use of a central statistic 258 

for any group of people decreased the influence of mistakes and thus, a higher number of 259 

participants help improve the quality of the results.  260 

The Algorithm displayed the lowest accuracy of correct counts for individual clips (62.9%) and 261 

the Advanced Crowd the highest (76.2%) compared to the Expert (Table 1). The Crowd’s 262 

accuracy was related to the number of fish in the videos with dramatic increases in ‘wrong 263 

answers’ with increasing numbers of sablefish (Fig. 2B, black line). However this tendency 264 

disappears if we permit a certain margin of error in defining the ‘right’ answer. Indeed, when 265 

allowing for +/- 2 fish around the real (Expert) value, the percentage of correct answers remains 266 

high (Fig. 2B). This latter point is important to consider as missing 2 fish when only 2 are 267 

present will have greater consequences than missing 2 when there are 12. 268 
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The Algorithm, and to a lesser degree the Students, showed the strongest tendency to 269 

undercount fish (30.2% and 23.3% clips undercounted, respectively) relative to the Expert 270 

(Table 1). Conversely, the three groups of Crowd tended to overcount (Table1). Examining 271 

count distributions for each video provided insights into the reasons for miscounting. For 272 

Students, wrong answers were mostly observed when 2 fish or more were present in the videos. 273 

Missed fish appeared to be those furtively passing in the background or behind other fish, or 274 

those for which only a small part enter the field of view, making them difficult to detect. 275 

Looking at the Crowd data, several situations were identified: i) Citizen Scientists tended to 276 

overcount as they included fish shadows in their counts; ii) when a high number of fish passed 277 

in front of each other, Citizen Scientists tended to overcount (while students undercounted); iii) 278 

similarly to Students (but more rarely) undercounting by Citizen Scientists may have been 279 

related to missed fish in the shadowed back corners of the field of view, and iv) in some rare 280 

situations where counts were obviously inaccurate, Citizen Scientists may have simply 281 

inadvertently hit the wrong key or knowingly entered biased results. It is important to note that 282 

this study did not consider miscounting by the Expert.  283 

Despite divergence among the different groups in over- and undercounting, sablefish counts 284 

accuracy was > 60% for the Algorithm and > 70% for the human groups (Table 1). 285 

Periodograms calculated for each dataset revealed common periodicities detected by the 286 

different groups (Fig. 4). All groups successfully detected a tidal related 12.5 h and 24 h 287 

periodicities in the data set, while a 48 h harmonic was detected by all but the Algorithm. An 288 

additional significant periodicity at 64 – 65 h was identified by the Expert, the Students and the 289 

Algorithm. 290 

 291 

Discussion 292 
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As the deep ocean is increasingly monitored by networks of fixed (i.e., observatories), mobile 293 

(i.e., ROVs and AUVs) and semi-mobile (i.e., crawlers) imaging platforms, improving our 294 

capacity to extract biological information from underwater imagery is becoming a strategic 295 

imperative. Here, we found that human groups (i.e., Citizen Scientists, Students) and an 296 

automated computer vision algorithm performed relatively well in counting a single species of 297 

fish, compared to an Expert observer (a PhD student). Until computer vision algorithms become 298 

fully competent for such tasks, hybrid solutions that combine machine vision and human visual 299 

discrimination may help reduce the ‘image analysis bottleneck’ (Gaston & O’Neill 2004; 300 

Aguzzi et al. 2009). These hybrid solutions will require systematic development and validation, 301 

using results from studies such as presented here.  302 

In terms of count accuracy, data from human groups (i.e. Crowd, Students) were nearly 303 

equivalent with the highest accuracy (vs. Expert) observed for Students and the Advanced 304 

Crowd. Elsewhere, comparisons of marine and terrestrial alpha-diversity data (number of 305 

species in a sample/area) obtained by professional scientists vs. volunteers given structured 306 

training, have shown that volunteers perform almost as well as professionals (Crall et al. 2011; 307 

Holt et al. 2013). Even for more complicated tasks such as adding measurements to 308 

identifications, citizen scientists can provide comparable results to experts (Delaney et al. 2008; 309 

Butt et al. 2013). For other requirements, advanced training may be needed to ensure accurate 310 

results. For example, in this study Students outperformed citizen scientists (Crowd) when their 311 

results were subjected to periodogram analysis for identification of temporal trends and 312 

patterns. They were the only human group that identified all significant periodicities detected 313 

by the Expert, corresponding here to the tidal signal (Doya et al. 2014). This result is of 314 

particular interest for environmental monitoring where detecting trends and events in time series 315 

is more relevant than absolute counts. Other studies of citizen science have also observed better 316 

performance from highly-trained or educated volunteers, highlighting the influence of 317 
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education on the quality of results (Delaney et al. 2008). Note that for this study, advanced 318 

citizen scientists were distinguished from novices based on their viewing and annotation 319 

experience (more than 100 video clips), a threshold above which citizens had more than 70% 320 

correct counts. A high involvement in the project benefitted the user’s performance, and could 321 

be argued to represent a form of training. On the other hand, the quality of the results can also 322 

be a function of the number of volunteers involved. Our study compared 503 citizen volunteers 323 

and 60 students against an expert. We obtained the highest correlation with the Expert for the 324 

combined results (i.e., median) of the two largest human groups (Novice Crowd and Crowd). 325 

Crowdsourcing or ‘virtual citizen science’ benefits from multiple replications of the same tasks 326 

by hundreds or thousands of people, allowing the use of statistics to improve the quality of the 327 

results (Wiggins & Crowston 2011; Bird et al. 2014; Kosmala et al. 2016). Here the use of the 328 

median or mode further increased the strength of the correlation and appeared to be a simple 329 

and efficient way to combine large citizen datasets.  330 

In most citizen science studies, volunteers are formally trained in dedicated sessions with 331 

professionals, so that their level of expertise is closer to our undergraduate Student category 332 

(Azzurro et al. 2013). Taking advantage of university classes might provide higher quality 333 

results but requires more planning and researcher involvement to establish collaborations, fit 334 

projects to teaching programs and priorities, and provide training prior to data processing. In 335 

this case, the educational value constituted a priority over data processing. Asking students to 336 

complete the task as a course requirement (as we did in this study), could also ensure higher 337 

quality results, though outliers, such as the student who systematically annotated zero fish, can 338 

also occur. These investments should be weighed against task complexity and potential returns 339 

in terms of data quality (Delaney et al. 2008). Here, the task to be accomplished was relatively 340 

easy and all approaches yielded a valuable solution.  341 
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While our results demonstrated that computer vision can yield valuable results for fish 342 

population monitoring, the algorithm was the poorest performer when compared against the 343 

Expert and the different human groups. The lower performance observed for the Algorithm 344 

(compared to Expert, Students and Crowd) can be related to the limitations already identified 345 

in Fier et al. (2014) where fish were camouflaged in the poorly illuminated background, 346 

overlapping and occluding each other. It is possible that with additional effort and innovation 347 

in the development, the results of the algorithmic method could be improved. Furthermore, the 348 

Algorithm results for this dataset might not easily generalize to other seafloor video datasets. 349 

Computer vision algorithms are often specific and must be designed to detect and classify 350 

particular targets against different background types (Purser et al. 2009; Aguzzi et al. 2011). 351 

Different techniques may be required, for example, to detect and classify marine species of 352 

interest in more complex environments where organism densities are high and the background 353 

is made of complex 3D biological and mineral structures (e.g. hydrothermal vents or coral 354 

reefs). Object detection algorithms perform best in situations of uniform background, such as 355 

detecting plankton in the water column (Tsechpenakis et al. 2007) or benthic animals on soft 356 

sediments (Aguzzi et al. 2009; Schoening et al. 2012). Until computer vision algorithms can 357 

overcome these limitations, citizen science and the use of volunteer networks will likely be an 358 

important near-term solution for analysing large image data sets from complex marine 359 

environments, provided that observer accuracy can be understood, and perhaps improved with 360 

training (Dickinson et al. 2010; Holt et al. 2013).  361 

 362 

Intermediate, hybrid solutions may also be possible. Ours and other study results suggest that 363 

volunteer data can be used to improve machine learning results. For example, in astronomy, 364 

where numbers of galaxy images exceed even the processing power of crowds of online citizen 365 

scientists, astronomers have successfully used samples of crowdsourced data that had a high 366 
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degree of internal agreement to train computer algorithms (Kuminski et al. 2014). Statistical 367 

methods being developed to facilitate the use and validity of citizen science data (Bird et al. 368 

2014; Isaac et al. 2014) could be used to select subsamples of quality citizen data for machine 369 

learning systems. For this, it is essential that any crowdsourcing project includes systematic 370 

archiving of metadata in the project development. Here, the quality of the metadata permitted 371 

an accurate matching and comparison of annotations from different sources. Our successful 372 

combining of results of student and citizen annotations suggest that additional metadata could 373 

be generated by an algorithm that would flag videos/images that have been processed by 374 

scientists, trained volunteers or citizens, and automatically calculate the median for subsequent 375 

statistical comparisons, or to identify high quality datasets for training computer vision 376 

algorithms. Another human-machine hybrid approach could involve having volunteers and/or 377 

students and focus on validating events and trends identified by automated screening systems. 378 

This method could enhance participant motivation and improve performance by focussing their 379 

attention on higher quality tasks such as verifying abundances or behaviour in specific time 380 

blocks identified by the computer processing, rather than sorting long, continuous imagery time 381 

series.  382 

Our knowledge of deep-sea ecosystems is limited and fragmented (Ramirez-Llodra et al. 2010), 383 

at a time when industrial incursions into the deep ocean are increasing with unknown 384 

consequences for benthic ecosystems and the planetary support services they provide (Boschen 385 

et al. 2013; Wedding et al. 2013). Remote monitoring that continuously collects imagery is one 386 

tool that can be used to document and assess long-term ecosystem change in the deep sea. 387 

Realizing the full potential of this technology will require effective solutions for processing 388 

massive image datasets to extract relevant biological and habitat information. This study has 389 

demonstrated that citizen science, using both crowdsourcing and trained volunteers, together 390 

with constantly improving computer vision and machine learning technologies, can contribute 391 
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to meeting the image processing challenge. In the case of ocean observatories, crowdsourcing, 392 

perhaps partnered with algorithms, can help researchers extract trends and events from imagery 393 

time series that will improve our understanding of natural variability and therefore our ability 394 

to identify anthropogenic impacts. Interactions between science and society have become an 395 

important focus for ‘big science’ programs and infrastructure installations. Citizen science can 396 

contribute to developing scientific literacy and informed societal decision-making (Bonney et 397 

al. 2009). Engaging the public in data analysis will ultimately benefit marine conservation and 398 

protection of marine ecosystem services by increasing awareness of our oceans.  399 
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Table 1. Group size (N), number of times a video was viewed (Nt), Wilcoxon paired rank test 558 

and Pearson linear correlation coefficient with Expert for each treatment group (i.e. Experts, 559 

Students, Novice crowd, Advanced crowd, Total Crowd, and Algorithm). * significant at p < 560 

0.001, ** p < 0.0001. Differences (diff) in counts relative to Expert provide the percentage of 561 

counts within each group that are below or above the Expert counts. 562 

 563 

  Students Novice 

Crowd 

Advanced 

Crowd 

Crowd Algorithm 

N  60 503 33 503 1 

Nt  1-4 1-20 1-8 5-23 1 

Wilcoxon 

signed-rank  

test 

Data - - - - * 

Mean ** ** ** ** - 

Median * ns * ns - 

Pearson 

Correlation 

coefficient 

Data 0.90* 0.78* 0.81* 0.79* 0.82* 

Mean 0.93* 0.93* 0.92* 0.95* - 

Median 0.95* 0.96* 0.94* 0.97* - 

Differences in counts for individual video clips relative to Expert 

No diff (%) 74.1 71 76.2 72.5 62.9 

Positive diff (%) 2.6 15.7 12.5 14.7 6.9 

Negative diff (%) 23.3 13.3 11.3 12.8 30.2 
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Figure Captions 565 

Figure 1. Photo extracted from a video recorded in Barkley canyon, off Vancouver Island (BC, 566 

Canada) showing sablefish, Anoplopoma fimbria.  567 

Figure 2. A. Percentage of correct counts in relation to the number of videos processed for each 568 

member of the Crowd. One citizen scientist who annotated more than 1400 videos was removed 569 

from the analyses. Circles in red depict the only 3 users who annotated more than one hundred 570 

videos but obtained less then 70% correct counts. B.  Percentage of correct counts in relation to 571 

the number of sablefish in the video as determined by the Expert (see text for details). ‘d’ 572 

provides the margin of error tolerated for the absolute difference in number of fish between the 573 

expert and each member of the Crowd, and the numbers on the curves indicate the number of 574 

videos containing a given number of sablefish. Both graphs were calculated using 1391 videos 575 

processed by both the Expert and the Crowd.  576 

Figure 3. Frequency distribution of the number of times a video was watched within the 577 

different groups.  578 

Figure 4. Whittaker-Robinson periodograms generated from the counts acquired by the 579 

different groups. Squares and vertical lines represent significant periodicities. The vertical lines 580 

were only drawn to assist in the reading of the period value.  581 

 582 

Supporting Informations Captions 583 

Supporting Information 1 (S1) 584 

Example of video  from the project dataset recorded in Barkley Canyon (British-Columbia, 585 

Canada, using the Ocean Networks Canada Observatory (avi file). 586 
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Supporting Information 2 (S2). 587 

S2. Annotation system used by the students to count the number of Sablefish in the videos (jpeg 588 

file). The number of fish was added in the comment section at the end of the videos. This 589 

interface is available at dmas.uvic.ca/SeaTube. 590 

Supporting Information 3 (S3).  591 

S3. Tutorial provided to the Crowd participants through the web interface Digital Fishers 592 

(http://dmas.uvic.ca/DigitalFishers) (jpeg file). Left: annotation window showing the button 593 

with choices from 1 to 12+ sablefish. Right: images provided to help in the recognition of the 594 

target species. 595 

S4. Summary of automated analysis method to detect fish in the Barkley Canyon videos 596 

recorded by the Ocean Networks Canada observatory (pdf file). 597 

  598 
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Figure 2 602 
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Figure 3 606 

 607 

 608 

  609 



32 
 

Figure 4 610 
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Figure S2 613 
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Figure S3 616 

 617 




