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Introduction

Characterizing spatial distribution of fishing effort on a fine spatial scale is crucial to assess fishing mortalities accurately to understand fishermen’s reactions to management
measures and improve the assessment of the impact of management plans. In this context, IFREMER developed the RECOPESCA project with volunteer fishermen, whose
vessels positions were recorded at a 15 minute time step. To analyse these observed trajectories, mechanistic mathematical models allows the understanding of movement
drivers and the identification of the sequence of hidden (non observed) behaviors. Identifying these different behaviors adopted by vessels during a fishing trip (route towards
fishing zone, fishing activity...) is of interest to understand what drives fishing activities and fishing effort dynamics.

The continuous path of fishing vessels is modelled considering movement characteristics such as velocities for instance, conditionally to the behavioral state. These models are
commonly called Hidden Markov Models (Rabiner, 1989). We propose to describe the vessel’s path using the Ornstein Ulhenbeck process (OUP). This model is equivalent,
when considered at discrete and regular time steps, to an Auto-Regressive (AR) process. Analysing the results, waves patterns in observed speed processes create problems
of identification. Using the physical model ECOMARS 3D, these patterns can be removed removed as they are results of tide currents.

FIGURE 1 : Bottom trawler

Describing fishing vessels movement and activity.

Framework : Hidden Markov Model
Observed positions are ruled by
I A sequence of hidden behaviors (fishing or steaming).
I This sequence is a Markov chain.
Observed positions are results of the hidden sequence through an unknown
distribution (figure 2).

FIGURE 2 : Formal representation of a HMM

Decomposing trajectories
From recorded positions X1 . . .XN, calculate
I Mean speeds V1 . . .VN

I Turning angles ψ1 . . . ψN

I 2-dimensional velocity process
(

V p
j

V r
j

)
=

(
Vj cosψj
Vj sinψj

)
, j = 1 . . .N

Velocity will be the studied process (figure 3).

FIGURE 3 : Calculating velocity process from observed positions in order to
estimate hidden behaviours.

Model for the velocity process
The velocity process in a given activity is assumed to solve a stochastic
differential equation.

dVt = ρ(γ − Vt)dt + ζdWt

With a regular discrete time step, it is equivalent to an AR process :

V p
t+1|(St+1 = i) = ηp,i + µp,iV

p
t + σp,iεp,t

V r
t+1|(St+1 = i) = ηr ,i + µr ,iV r

t + σr ,iεr ,t

Inference
Estimating movement parameters
I 2 states model (steaming and fishing) .
⇒ θ = 14 parameters to estimate.

To estimate θ :→ EM algorithm.
I Iterative algorithm to calculate MLE
I from an estimator θn, compute and maximize (see figure 4) :

Q(θ|θn) = ES|X ,θn (log(L(θ; X ,S))) .

Estimating hidden behavior sequence
To estimate the sequence of hidden behaviors. (fishing activity)→ Viterbi
algorithm. It computes iteratively :

Ŝ = argmaxs0...sT

(
p(s0 . . . sT , X0 . . .XT |Θ̂)

)
Obtaining confidence intervals
Bootstrap methods : Simulating new trajectories from θ̂ and re-estimating
parameters.→ The more time consuming step.

Data
I IFREMER’s RECOPESCA Project
I Vessels performing in the Channel in 2007-2010.
I Positions recorded every 15 minutes (GPS).
I Bottom trawl, trammel nets, dredge.
I 4 examples of trajectories (figure 5).

FIGURE 4 : Formal representation of
the EM algorithm

FIGURE 5 : 4 trips issued from
RECOPESCA project.
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Simulation approach

I Test quality of estimation on
different scenarios.

I Identify influence of parameters
range on estimation.

I Identify problematic scenarios.
I 9 scenarios tested (table 1)

TABLE 1 : Simulation scenarios.

η µ σ2 E V n1 2 1 2 1 2 1 2 1 2

1 p
(

6 1
0 0

)
(

0 0.5
0 0.2

) (
1 0.5

0.5 0.1

) 6 2

1 0.7
0.5 0.1 400

r 0 0

2 p
(

6 2
0 0

)
6 4

r 0 0

3 p
(

6 3
0 0

)
6 6

r 0 0

4 p (
6 1
0 0

) (
0 0.6
0 0.2

) (
1 0.5

0.5 0.1

) 6 2.5
0 0

1 0.8
0.5 0.1 400r

5 p
(

0 0.8
0 0.2

)
6 5
0 0

1 1.4
0.5 0.1r

6 p (
6 1
0 0

) (
0 0.5
0 0.2

) (
2 0.5
1 0.1

)
6 2
0 0

2 0.7
1 0.1 400r

7 p
(

1 1
0.5 0.5

)
1 1.3

0.5 0.5r

8 p (
6 1
0 0

) (
0 0.5
0 0.2

) (
1 0.5

0.5 0.1

)
6 2
0 0

1 0.7
0.5 0.1

100r

9 p 50r

Results on simulations

FIGURE 6 : Boxplots of results obtained for simulations
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Misclassification rate

I Need of good separation between steaming and fishing processes.
I Need of a small σ2 parameter.
I Importance of length of trajectory.

Results on data

FIGURE 7 : Boxplots of results obtained for simulations
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Steaming state Fishing state
Persistent (large Π11) Persistent (large Π22)
Fast (large ηp,1), estimated mean : 8.4
knots

Slow (small ηp,1), estimated mean : 2.6
knots

Lightly autocorrelated (µp,1) No autocorrelation
Low variability (small σp1) in persis-
tence speed ⇒ Mvt in a straight line
at regular speed.

High variability (large σp1) in persis-
tence speed ⇒ Mvt is erratic at irre-
gular speed.

20% of time spent 80% of time spent

Conclusions
I General model to describe fishing boat activity.
I Autocorrelation might capture unwanted phenomenon.

Integrating tide currents to study speed process

Problem
Highly autocorrelated speed processes are observed, resulting on wavy patterns on
time series, and on a 3-modal speed distribution (figure 8).

FIGURE 8 : An observed speed process highly autocorrelated (Bottom trawler, 22
meters, in the Channel, 2010)
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Hypothesis

I Strong tide currents in the Channel
I May create the acceleration/deceleration

patterns.
I Use of MARS 3D model to test the

hypothesis (figure 9).

FIGURE 9 : Exemples of tide
currents predictions from
model MARS 3D www.previmer.org.

Method
MARS 3D
I Grid : 1 point each 4 km.
I Time Step : 1 prevision every hour.
I Only surface current considered.

Interpolation
I Position Xt ↔ Closest point of MARS

3D grid
I Observation recorded at time h :m↔

Weighted by prediction at hour h and
hour (h+1) (weight by minute m).

See figure 10

FIGURE 10 : Method of calculation of the speed without tide currents.

Results

FIGURE 11 : The same speed process than figure 8, without tide currents.
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I Wave patterns have disappeared.
I The speed distribution has now a clear mode between 2 and 3 knots.
⇒ In the channel, studying speed processes implies to remove tide currents.

Perspectives

I Application to a wider fleet with VMS data.
I Using stochastic differential equations (SDE) to describe

fishing vessels activity in continuous time.
I Including environmental covariables such as habitat map of

target species.
I Performing a realistic simulation model for fishing boats

dynamics in the Channel.
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