

MODELLING FISHING VESSELS MOVEMENT AND ACTIVITY.

Pierre Gloaguen¹, Stéphanie Mahevas¹, Etienne Rivot², Mathieu Woillez ^{3,2}, Jérôme Guitton², Youen Vermard⁴ et Marie-Pierre Etienne⁵

Introduction

Characterizing spatial distribution of fishing effort on a fine spatial scale is crucial to assess fishing mortalities accurately to understand fishermen's reactions to management measures and improve the assessment of the impact of management plans. In this context, IFREMER developed the RECOPESCA project with volunteer fishermen, whose

vessels positions were recorded at a 15 minute time step. To analyse these observed trajectories, mechanistic mathematical models allows the understanding of movement drivers and the identification of the sequence of hidden (non observed) behaviors. Identifying these different behaviors adopted by vessels during a fishing trip (route towards fishing zone, fishing activity...) is of interest to understand what drives fishing activities and fishing effort dynamics.

The continuous path of fishing vessels is modelled considering movement characteristics such as velocities for instance, conditionally to the behavioral state. These models are commonly called Hidden Markov Models (Rabiner, 1989). We propose to describe the vessel's path using the Ornstein Ulhenbeck process (OUP). This model is equivalent, when considered at discrete and regular time steps, to an Auto-Regressive (AR) process. Analysing the results, waves patterns in observed speed processes create problems of identification. Using the physical model ECOMARS 3D, these patterns can be removed removed as they are results of tide currents.

: Bottom trawler FIGURE 1

AGRO

OUEST

CAMPUS

Ifremer

Describing fishing vessels movement and activity.

Framework : Hidden Markov Model

Observed positions are ruled by

- A sequence of hidden behaviors (fishing or steaming).
- ► This sequence is a Markov chain.

Observed positions are results of the hidden sequence through an unknown distribution (figure 2).

FIGURE 2 : Formal representation of a HMM

Inference **Estimating movement parameters**

- ► 2 states model (steaming and fishing).
- $\Rightarrow \theta = 14$ parameters to estimate.
- To estimate $\theta : \rightarrow EM$ algorithm.
- Iterative algorithm to calculate MLE
- From an estimator θ_n , compute and maximize (see figure 4) :

Results on simulations

FIGURE 6 : Boxplots of results obtained for simulations

Decomposing trajectories

From recorded positions $X_1 \dots X_N$, calculate

- Mean speeds $V_1 \dots V_N$
- Turning angles $\psi_1 \dots \psi_N$

2-dimensional velocity process (

Velocity will be the studied process (figure 3).

 $Q(\theta|\theta_n) = \mathbb{E}_{S|X,\theta_n}(\log(L(\theta; X, S))).$

Estimating hidden behavior sequence

To estimate the sequence of hidden behaviors. (fishing activity) \rightarrow Viterbi algorithm. It computes iteratively :

$$P = \operatorname{argmax}_{s_0 \dots s_T} \left(p(s_0 \dots s_T, X_0 \dots X_T | \hat{\Theta}) \right)$$

Obtaining confidence intervals

Bootstrap methods : Simulating new trajectories from $\hat{\theta}$ and re-estimating parameters. \rightarrow The more time consuming step.

Data

► IFREMER's RECOPESCA Project Section

- ▶ Vessels performing in the Channel in 2007-2010.
- ▶ Positions recorded every 15 minutes (GPS).
- ▶ Bottom trawl, trammel nets, dredge.
- ► 4 examples of trajectories (figure 5).

FIGURE 4 : Formal representation of FIGURE 5 : 4 trips issued from the EM algorithm **RECOPESCA** project.

Simulation approach

- Test quality of estimation on different scenarios.
- Identify influence of parameters

- Need of good separation between steaming and fishing processes.
- ▶ Need of a small σ^2 parameter.
- Importance of length of trajectory.

Results on data

FIGURE 7 : Boxplots of results obtained for simulations

						Steaming state
LE ⁻	I:Sim	ulation :	scena	Persistent (large Π_{11})		
						Fast (large $\eta_{p,1}$), estim
η 2	$^{\mu}$ 12	σ ² 1 2	E 1 2	 1_2	n	knots

Empirical distribution function

Speed (knots)

ming state	Fishing state
stent (large П11)	Persistent (large Π ₂₂)
(large $\eta_{p,1}$), estimated mean : 8.4	Slow (small $\eta_{p,1}$), estimated mean : 2.6
	knots

	Set $n = 0$
	Initialize θ_0
	Set $Q(\theta_0 \theta_{-1}) = -\infty$
	E-step:
	Compute $Q(\theta \theta_n)$
M-s	tep:
Cor	npute $\theta^* = \arg \max_{\theta} Q(\theta \theta_n)$
	$\theta_{n+1}=\theta^*$
N	$Q(\theta_{n+1} \theta_n) - Q(\theta_n \theta_n) = 0$
	$Q(o_n o_{n-1}) \leq C$
	ŢY.
	$\theta_{ML} = \theta_{n+1}$

TAB

 $\begin{pmatrix} p & (6 & 1) \\ 1 & p & (6 & 1) \end{pmatrix}$

Model for the velocity process

The velocity process in a given activity is assumed to solve a stochastic differential equation.

$$V_t =
ho(\gamma - V_t)dt + \zeta dW_t$$

With a regular discrete time step, it is equivalent to an AR process :

$$V_{t+1}^{p}|(S_{t+1} = i) = \eta_{p,i} + \mu_{p,i}V_{t}^{p} + \sigma_{p,i}\epsilon_{p,t}$$
$$V_{t+1}^{r}|(S_{t+1} = i) = \eta_{r,i} + \mu_{r,i}V_{t}^{r} + \sigma_{r,i}\epsilon_{r,t}$$

range on estimation.

Identify problematic scenarios. ▶ 9 scenarios tested (table 1)

	r		0)					0	0			
2	p r	$\begin{pmatrix} 6\\ 0 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 0 \end{pmatrix}$	$\left \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right $	0.5 0.2	$\begin{pmatrix} 1\\ 0.5 \end{pmatrix}$	0.5 0.1	6 0	4 0	1 0.5	0.7 0.1	400
3	p r	$\begin{pmatrix} 6\\ 0 \end{pmatrix}$	$\begin{pmatrix} 3\\ 0 \end{pmatrix}$,		,	6 0	6 0			
Λ	р		,	(0	0.6			6	2.5	1	0.8	
т	r	6)	1)	0	0.2/	(1	0.5	0	0	0.5	0.1	100
5	р	0)	0)	(0	0.8	0.5	0.1/	6	5	1	1.4	
5	r			0	0.2)		,	0	0	0.5	0.1	
6	р					(2	0.5			2	0.7	
0	r	(6	1)	(0	0.5	(1	0.1	6	2	1	0.1	100
7	р	0)	0)	0	0.2)	$\int 1$	1)	0	0	1	1.3	400
1	r		/		,	0.5	0.5)			0.5	0.5	
8	p r	(6	1)	(0	0.5	(1	0.5	6	2	1	0.7	100
9	p r	(0	0)	(0	0.2)	0.5	0.1)	0	0	0.5	0.1	50

6 2

Lightly autocorrelated ($\mu_{p,1}$) No autocorrelation Low variability (small σ_{p1}) in persis- High variability (large σ_{p1}) in persistence speed \Rightarrow Mvt in a straight line tence speed \Rightarrow Mvt is erratic at irreat regular speed. gular speed. 20% of time spent 80% of time spent

Conclusions

- General model to describe fishing boat activity.
- Autocorrelation might capture unwanted phenomenon.

Integrating tide currents to study speed process

Problem

Highly autocorrelated speed processes are observed, resulting on wavy patterns on time series, and on a 3-modal speed distribution (figure 8).

FIGURE 8: An observed speed process highly autocorrelated (Bottom trawler, 22 meters, in the Channel, 2010)

Results

FIGURE 11 : The same speed process than figure 8, without tide currents.

d process without time current	_	
]	

Perspectives

- Application to a wider fleet with VMS data.
- Using stochastic differential equations (SDE) to describe fishing vessels activity in continuous time.
- Including environmental covariables such as habitat map of target species.
- Performing a realistic simulation model for fishing boats dynamics in the Channel.

References

Y.Vermard, E.Rivot, S.Mahevas, P.Marchal, and D.Gascuel

Identifying fishing trip behaviour and estimating fishing effort from VMS data using Bayesian Hidden Markov Models. Ecological Modelling, 2010.

P.Gloaguen, S.Mahevas, E.Rivot, M.P.Etienne, M.Woillez, J.Guitton and Y.Vermard

An autoregressive model to describe fishing boat movement and activity. Submitted.

M.Woillez, P.Gloaguen, S.Mahevas, E.Rivot, J.Guitton and Y.Vermard Adapting Hidden Markov Models to the diversity of fishing boat movements and activities.

Speed process without time current

Hypothesis

- Strong tide currents in the Channel
- May create the acceleration/deceleration patterns.
- ► Use of MARS 3D model to test the hypothesis (figure 9).

Method MARS 3D

► Grid : 1 point each 4 km. ► Time Step : 1 prevision every hour.

Only surface current considered.

Interpolation

- ▶ Position X_t \leftrightarrow Closest point of MARS 3D grid
- \blacktriangleright Observation recorded at time h :m \leftrightarrow Weighted by prediction at hour h and hour (h+1) (weight by minute m). See figure 10

- ► Wave patterns have disappeared.
- ▶ The speed distribution has now a clear mode between 2 and 3 knots.
- \Rightarrow In the channel, studying speed processes implies to remove tide currents.

100

In preparation.

P.Lazure and F.Dumas

An external-internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). Advances in Water Resources, 2008.

Remerciements

This study was funded by European project VECTORS, La Région Pays de Loire, IFREMER and Agrocampus-Ouest. Authors thanks Patrick Berthou and Emilie Leblond, leaders of RECOPECA project, the team of PREVIMER and national research network Pathtis funded by INRA for helpful discussions.

¹IFREMER, Centre de Nantes, Département Ecologie et Modèles pour l'Halieutique, France ²AGROCAMPUS OUEST, UMR 985 Ecologie et Santé des Ecosystèmes, Ecologie Halieutique, Rennes, France ³IFREMER, Centre de Brest, Département Sciences et Technologies Halieutiques, France ⁴IFREMER, Centre de Boulogne sur mer, Département Manche-Mer du Nord, France ⁵AGROPARISTECH, UMR MIA 518, Paris, France

E-mail: pierre.gloaguen@ifremer.fr