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Abstract :

A growing number of studies have documented increasing dominance of warm-water fish species
(“tropicalisation”) in response to ocean warming. Such reorganization of communities is starting to occur
in a multitude of local ecosystems, implying that tropicalisation of marine communities could become a
global phenomenon. Using 32 years of trawl surveys in the Bay of Somme (English Channel, France),
we aimed to investigate the existence of a tropicalisation in the fish community at the local scale of the
estuary during the mid-1990s, a period where an exceptional temperature rise occurred in Northeast
Atlantic. A long-term response occurred (with a major transition over 6 years) that was characterized by
a marked diminution in the abundance of cold-water species in parallel to a temperature rise generated
by the ocean-scale phenomenon, the Atlantic Multidecadal Oscillation, which switched from a cool to a
warm phase during the late 1990s. Despite finding no significant increase in the dominance of warm-
water species, the long-term diminution of cold-water species suggests that the restructuring of the fish
community was mainly influenced by global-scale environmental conditions rather than local ones and
that indirect effects may also occurred through biological interactions.
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1. Introduction

One of the main challenges in ecology is to undecsthow biodiversity responds to
environmental changes, and the consequences this gemerate for ecosystem
functioning, especially when aiming to anticipaiad-term biological responses to future
environmental changes (Bengtsson, 1998) and prédjgacts on ecosystem services
(Duffy et al., 2007). In marine environments, conmity structure is highly variable and
depends on both natural and human-induced envinotaineariation (Collie et al., 2004),
which may act concomitantly (Chavez et al., 2008xdering the quantification of their
relative contributions difficult (Beaugrand, 2004).

Among human-induced environmental variation, ctenachange alters
environmental conditions including global temperafisea-ice extent, nitrogen levels in
the biosphere, atmospheric and oceanic carbon d#togoncentrations which tend to
affect water acidity (Doney et al., 2009), oxygemitability (Koenigstein et al., 2016),
rainfall patterns, wind, biogeochemical cycles (@egt al., 2003) including salinity
(Durack et al., 2012), frequency of extreme weathents, sea level, ocean circulation
(IPCC, 2007), thermal stratification of water-colusnHordoir and Meier, 2012), and the
size of the oxygen minimum zone (Stramma et alL020Climate change has a wide
variety of effects on the physiology, distributiamd phenology of marine organisms
(IPCC, 2014) (Perry et al., 2005; Cheung et alQ®20Cheung et al., 2013) including
phytoplankton (e.g., Wetz et al., 2011; Rossoldlet2012), zooplankton (e.g., Hays et
al., 2005, Richardson, 2008), fishes (e.g., Cheeingl., 2012b; Pinsky and Fogarty,
2012; Perry et al., 2005; Hawkins et al., 2013)bie.g.Sekerciglu et al., 2012; Niven

et al., 2009), and marine mammals (e.g., McMahahBurton, 2005; Learmonth et al.,
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2006), which ultimately affects humans (Patz et20105; McMichael et al., 2006). These
impacts are fundamentally linked to the close ietesthip between ocean conditions and
the ecophysiology of marine organisms, notably whteathing ectotherms (Somero
2010; Sunday et al., 2011).

Climate change has mainly been characterized bgngoing rise in the global
temperature of the world’s oceans since the miti&mtury (IPCC, 2007), which can be
more or less pronounced in different regions (Belk009; Alexander et al., 2014).
Water temperature is recognized as an abiotic ‘@ndatctor” controlling physiological
processes of aquatic organisms (Beitinger and &litigl, 1979; Singh et al., 2013), and
therefore controls the behaviour, growth, metabwlisabundance and species
composition of fishes (e.g., Thiel et al., 199%r&th et al., 2002), notably in estuarine
ecosystems (Thiel et al., 1995; Harrison and WHdfi 2006). Marine fishes mainly
respond to temperature increases through changhstiibution (e.g., Perry et al., 2005),
generally to higher latitudes (Parmesan, 2006; Bluahd Litzow, 2008; Jung et al.,
2014; Punzédn et al., 2016) and deeper waters (Detwgl., 2008; Punzoén et al., 2016).
Latitudinal shifts can also result in changes inmomnity composition through
increasing dominance by tropical or subtropicah fspecies preferring warm-waters.
Such a reorganization of fish communities, or dteda‘tropicalisation”, appears to be
occurring in a multitude of local ecosystems, sstjgg that this reorganization of
marine communities could become a global phenomévierges et al., 2014Previous
works have indicated that tropicalisation of figimenunities has occurred in response to
global warming in several areas/scales, includingsi&n Australia (Cheung et al.,

2012a), the Aegean Sea (Keskin and Pauly, 201aljant seas (Fortibuoni et al., 2015)
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and in fisheries of Large Marine Ecosystems (Cheahal., 2013). In addition to

potential cascading effects within biological commties, modifications in species

assemblages may lead to substantial impacts on-soconomic components (Chapin et
al., 2000, Cheung et al., 2012a).

In the North Atlantic, several natural climate ilations also occur and act
concomitantly with human-induced climate change.elOthe last three decades in
northeast Atlantic marine systems, abundant evielefaatural, climate-driven changes
in biotic assemblages has been mounting. Amongralatlimate cycles, the Atlantic
Multidecadal Oscillation (AMO) reflects natural ditions of sea surface temperature
(SST) from cool to warm phases with a periodicirying between 60 and 80 years
(Edwards et al., 2013; Auber et al., 2015). The AM(rogressively considered as a
“proxy for complex processes in the coupled atmesplocean system of the North
Atlantic” (Alheit et al. 2014a); this system invels the North Atlantic Oscillation
(NAO), the Atlantic Meridional Overturning Circulah (AMOC), the Mediterranean
Overflow Water (MOW) and the subpolar gyre (Hat@irmle 2009; Alheit et al., 2014Db).
Alheit et al., (2014b) indicated that these complex climatic psses began building in
the North Atlantic in the 1960s and culminated e t1990s, which had pervasive
ecosystem and ecological repercussions. In the aifeginglish Channel, the AMO is
synchronous with the Russell Cycle (Russelal., 1971; Edwardst al., 2013), which
has characterized profound changes in species’dam@ges and distributions since the
mid-19" century, including fishes (Alheit et al., 2014b;ieezkowska et al., 2014).
Another well-known climate cycle, the NAO, correpde to decadal variations in

atmospheric and oceanic circulation in the Northatic (Dickson and Turrell, 2000).
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This climate phenomenon has been widely announsednaajor forcing factor acting on
marine communities (Fromentin and Planque, 199&uBeand et al., 2002) because it
affects precipitation patterns, which can influemoesr run-off and therefore nutrient
inputs, salinity, and turbidity (e.g. Enfield et,&001; Trigo et al., 2004; Harley et al.,
2006). The NAO and AMO are partly linked througmaspheric-oceanic circulation
coupling, since SST depends and acts upon atmaspheaulation (Drinkwateret al.,
2014; Harriset al., 2014).

Several studies have shown SST warming from 0@®GeC in the North Atlantic
since the late 1980s (Dulvy et al., 2008; Wang &uhg, 2010), with exceptional
warming after the mid-1990s (Wang and Dong, 20h0jably in the English Channel
(Saulquin and Gohin, 2010). The combined effectanthropogenic climate change and
the positive phase of the AMO after the 1990s mayehcaused higher warming in the
North Atlantic than would be expected from climateange alone (Andronova and
Schlesinger, 2000; Knudsen et al., 2011). Suchoagttemperature rise during the late-
1990s raises the question of whether a tropicadisatlso occurred at local scales. A
recent work (Auber et al.,, 2015) documented a ptnsi structural change in the
exploited fish community of the Eastern English @il in the mid-1990s, characterized
by a strong decrease of cold-water fish speciesaamderate increase of warm-water
species, which was synchronous with a change frooicato a warm phase of the AMO.
According to these authors, a question remainshatiaer thicommunity change was or
was not visible at even more local scales thanBastern English Channel, notably in

fish nursery ecosystems.
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Estuaries are essential ecosystems for the liflesyf many fish species (Lipcius
et al., 2008; Nicolas et al., 2010) since theytawtporarily as nursery and feeding areas
for marine juveniles, offering a highly nutrienthi environment and shallow turbid
refuges suitable for development (Potter et al90]lNicolas et al., 2010). Additionally,
fish species encompass a wide diversity of biolmgicycles and ecological
compartments, making them relevant indicators tfaese conditions at multiple spatial
and temporal scales (Whitfield and Elliott, 2008). Northern France, the estuarine
ecosystem of the Bay of Somme provides a nurseg far many species of the English
Channel (Rybarczyk et al., 2003) that shifted slgtiduring the late-1990s, likely in
response to the AMO switch. Because several trbpaten events have occurred in
multiple local ecosystems, because an excepti@maberature rise occurred in the mid-
1990s in Northeast Atlantic, and because the Beooime constitutes a nursery for fish
species living in the Eastern English Channel (whmany species shifted during the
late-1990s), we suspect that a tropicalisation atsmurred in the Bay of Somme during
this period.

Based on the ecosystem of the Bay of Somnmgligh Channel, France), the
aims of this study are (i) to investigate the terapdynamics of the taxonomic structure
of the fish community, (ii) to better understand tinderlying mechanisms of community
dynamics in this estuary by assessing the resgeetifects of global climate-related
conditions and local conditions in the Bay, andl @ investigate, through a functional
approach, the potential tropicalisation of this camity during the last 32 years in

response to temperature rise.
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2. Materialsand Methods

2.1 Sudy site and Fish community sampling

The Bay of Somme (50°14’N, 1°33’E; Figure 1) is #exond largest coastal ecosystem
in Northwestern France, after the Seine Estuaryb@éiRezyk et al., 2003). With an
intertidal surface of more than 50km?, the Bay imacrotidal system of the Eastern
Channel (Rybarczyk et al., 2003) and is fed byNfage River in north and the Somme
River in south (Figure 1). Marine influences dontnanaking this complex ecosystem
mostly a marine bay with an estuary system reduoethe channel of the Somme
(Rybarczyk et al., 2003).

The fish community (including cephalopods) of By of Somme was sampled
through the ecological and fisheries monitoring tbé CNPE of Penly (Centrale
Nucléaire de Production d’Electricité) in late suermof each year since 1987.
Gastropods and crustaceans were not considered #iecgear used was adapted to
harvest fishes, not benthic invertebrates. The ystperiod was chosen in order to
maximize the availability of juveniles. Thus, sint@37, monitoring has been conducted
annually according to an experimental protocol thas remained unchanged through
time. The sampling scheme was defined accordintdpree depth strata (see Figure 1).
The stratified sampling scheme aimed to achievéalds, 28 hauls using a beam trawl
with a 3-m horizontal opening (CP3) and a 20-mratstred mesh size in strata B and C,
and 16 hauls using a beam trawl with a 2-m horaoopening (CP2) and a 20-mm

stretched mesh size in stratum A. The vertical ogewas 0.5 m for both beam trawls.
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All CP2 hauls lasted 7 min while CP3 hauls last&édnmiin. These trawling lines were

carried out during daylight hours at an averagedé 2.5 knots.

Fig. 1 here

Within each haul, fish species were identified, ded and weighed. A total of 62
taxonomic groups were recorded over the study gerAdl abundance values were

standardized to numbers of individuals per km2.

2.2 Global conditions

The North Atlantic Oscillation (NAO) is an intradetal, basin-scale alternation of
atmospheric mass over the North Atlantic betweea Miigh atmospheric pressure
centered on the Azores and low atmospheric presatoend Iceland (Dickson and
Turrell, 2000). The index used here is based ondtfierence in normalized sea level
atmospheric pressure between Lisbon, Portugal aykkiSholmur/Reykjavik, Iceland
since 1864 (Dickson and Turrell, 2000). During plositive phase of the NAO, Northern
Europe is exposed to warm, wet conditions with butire frequent and stronger winter
storms crossing the Atlantic Ocean in a northedgk (Reid et al., 2001; Ottersen et al.,
2001; Walker and Graf, 2005). The opposite trendsuo during the negative phase:
fewer and weaker winter storms, a west-east pathway cold, dry conditions in
Northern Europe. Concerning biotic compartments,NAO has already led to shifts in
phytoplankton abundance and species composititiowed by changes in the dominant
zooplanktonic specie€alanus spp., in the North Sea (Fromentin and Planque, 1996).
For fishes, the NAO is now considered as a driwing on assemblage composition,

9
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abundance, and juvenile growth (Attrill and Pow2002). Additionally, from one fish
species to another, the influence of NAO on repreitt may vary, notably in European
Shelf seas (Dippner, 1997; Attrill and Power, 200Bhe annual NAO index for the
period 1988-2011 was obtained from the National &Dographic and Atmospheric
Administration (NOAA, US).

The Atlantic Multidecadal Oscillation (AMO) refets a 60-80 year cycle of the
North Atlantic SST (Edwardet al., 2013). Its determinants are not fully understood
are they predictable. The AMO index is computed asonthly area-weighted average of
SST anomalies over the North Atlantic (from 0 t6ND The obtained time series is then
detrended in order to remove the effect of globatming. This index has recently been
reported to influence plankton and fish abundamcedme North Atlantic ecosystems
(Edwards et al., 2013; Alheit et al., 2014b). AM@lues were provided by NOAA, US.

Northern Hemisphere air temperature anomalies (INdies) Were also used in

this work. This index is indicative of temperatwenditions at a global scale; it reflects
both human and natural variations, and previoukyBeaugrand et al., 2002) indicated
that NHT anomalies could play a synergistic rolehwNAO on SST in the Northeast
Atlantic and thus on marine biota. NHT anomaliegehalready been correlated with the
abundance/biomass of several biological compartnepthytoplankton, zooplankton,
fishes (Beaugrand et al., 2002; Beaugrand and R&@3) and also with community
indices like species richness of calanoid copepod$he northwestern North Atlantic
(Beaugrand et al., 2002). The values of Nikies Were calculated from the average
temperature over the period 1950-2014 and prodhgdtie Hadley Centre Research and

Climate Prediction (MetOffice, 2014).

10
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2.3 Local conditions

Sea surface temperatures were extracted from aatsgrovided by the Hadley center,
Met Office (http://www.metoffice.gov.uk/hadobs/hssl/). The data were interpolated to
provide a 1-month resolution SST dataset compodedncsitu and satellite data
(advanced very high resolution radiometer). SSTueslwere interpolated from this
database from 1980 to 2012 from nodes of a 1uti#Hongitude spatial grid (Raynetr
al., 2003) located between 50°17’'N and 50°6’N, an24¥¥ and 1°40E (2 nodes located
in the Bay of Somme). Annual mean SST values wermpcted over this area
(SSThadissn)-

Additional SST values were obtained from the Ifeen®ST data derived from
AVHRR/Pathfinder products interpolated by krigirga(lquin and Gohin, 2010) for the
period 1986-2009, the OSTIA data provided by thet Kffice using the Operational
SST and Sea Ice Analysis (OSTIA) system describddanlonet al., (2011) for 2010,
and the ODYSSEA data, also derived from multi-sem&da incorporating microwave
instruments, provided by MyOcean (Autret and Pjolg011) for 2011-2012. A
comparison with a homogeneous time series covehagntire period, stemming from
global low-resolution GHRSST, showed that the inbgeneity of the high-resolution
time series used here did not generate bias (L'dgvét al., 2016). The three sets of
satellite-derived SST data were projected onto same regular grid --- 0.075° in
longitude and 0.05° in latitude --- allowing a telaly high spatial resolution of about 5

km x 5 km. SST was assessed from this satellitasgatat each sampling site and date

11
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from the year when this trawl was performed. Theumef all temperature values within
each year was then calculated and used in this (88H;).

Other SST values were collected throughkitu measurements carried out during
the ecological monitoring of the CNPE of Penly. Tiean between April, July and
September sessions from 1989 to 2012 were usdusiwbrk (SSHyaro). Finally, SST
and bottom temperatures measured were also incindixis work (mean between May
and June sessions: S&Jo, andBottomTEMP).

Salinity can also influence fish community struetuthrough physiological
responses at the individual scale (e.g., PeteradnMeador, 1994; Rowe and Dunson,
1995). Bottom and surface salinity were obtainadubh the ecological monitoring of
the CNPE of Penly (the mean between May and Jusstoses was used in this work). For
this work, the mean between bottom and surfaceegalvas used as an index of salinity
in the overall water column.

Ecosystem productivity, which is usually assessedugh the concentration of
chlorophyll a (Cravo et al., 2010; Horta e Costet al., 2014) can also influence the
structure of fish communities through trophic cassa Concentration of chlorophwyl
was recorded during the ecological monitoring & @NPE of Penly (the mean between
April, July and September sessions was used fergtidy). Additional Chlorophyl
data were extracted from satellite data (Gohin,120Chlorophylla concentrations were
assessed from the satellite dataset at each sangiehand date when each trawling line
was performed. For each year, the mean betwee@Gdlla values (i.e., between all

trawling lines during the survey period) was used.
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The concentration of suspended matter has prdyibegn documented as a non-
negligible factor that can affect aquatic organishisugh “disruptions in migrations and
spawning, movement patterns, sublethal effects disease susceptibility, growth, and
development, reduced hatching success, and direcality” (Kjelland et al., 2015). The
concentration of suspended matter was recordedgltine ecological monitoring of the
CNPE of Penly from 1980 to 2012. The mean betweenl AJuly and September
sessions was used for this study. Non-algal suggkndhtter was also obtained from
satellite data from 1998 to 2015 (Golehal., 2005; Gohin, 2011). These data were
assessed from the satellite dataset at each sangiehand date when each trawling line
was performed. For each year, the mean betweesallite-derived suspended matter
concentrations was used (i.e., between all trawlimes during the survey period).

Among meteorological parameters, rainfall hasrofieen identified as one of the
main forces acting on the structure of fish commesi(e.g., Castillo-Rivera et al., 2002;
Meyneckeet al., 2006). River flow, which is directly linked tainfall, was also included
in this study because nutrient content, and thasystem productivity, may vary with
river flow. Summer river flow (mean from July to @ember) from 1980 to 2015 was
available from the Data Centre for French Coasfar@tional Oceanography (Fichaatit
al., 2011). Rainfall data (mean between July, August@eptember at Noyelles-sur-Mer;
Figure 1) from 1980 to 2015 were extracted from thi&étéo France website
(https://donneespubliques.meteofrance.fr/). Winekslpcan also act as a forcing factor, as
several studies have already shown that wind mdéwyeince recruitment dynamics,
predator-prey relationships, and assemblage stei¢eig., Menge and Menge, 2013;

Horta e Costeet al., 2014). Therefore, wind speed (mean between Aigust and

13
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September at Dieppe; see Figure 1) and air tempergannual mean: AirTemp at
Dieppe), from 1980 to 2015, were also extractednfrthe Météo France website

(https://donneespubliques.meteofrance.fr/).

2.4 Analysis of community structure changes

Only taxa with abundances above 0.1% of total ahnod across the study period were
included in this study (Kortscht al., 2012), which resulted in a collection of 49 taxa
Spatially aggregated abundance indices at the séalee whole Bay of Somme were
used in the analyses described below. Aggregatditeim were computed for each
species and each year as the mean of the numbengliatuals per km? between all
trawling lines. The resulting data was a matribspéatially aggregated abundance indices
per species (columns) and per year (lines) thaesegmts the times series of community’s
taxonomic structure.

A correlation-based Principal Component Analysis \warformed on the species
abundance matrix in order to characterize tempadrahges in the fish community (see
PCA biplot in supplementary material S1.A.). Theotfirst components of the PCA
(PClaxo and PC32xo) Were used as indices of community structure.

The existence and timing of potential shifts in commity structure was assessed
by chronological clustering using a multivariatgnession tree (MRT) with the species
abundance matrix as the explained matrix and tisnth@ explanatory variable (Borcard
et al.,, 2011). The shift in community structure was tficharacterized by testing for
changes in the abundance of each species, betlwegretiod before and that after the

shift. A Monte-Carlo permutation test was then perfed on the spatially aggregated

14



309 abundance indices using the “max statistic” mettiescribed below in order to account
310 for the increase in the family-wise type 1 errderdue to multiple testing (Gropjgeal.,
311 2011). Lines of the species abundance matrix cooreding to years were randomly
312 permuted between the period before and that after shift. This randomized any
313 potential association between the abundance infleach species and the period, while
314 preserving any correlative structure between speal®indance indices themselves. A
315 one-way ANOVA with period as the explanatory facteas then performed on the
316 abundance index of each species in the permutedxmand the maximum F value
317 across species was recorded. This procedure waategp5000 times and the resulting
318 distribution of permuted maximum F values was usgedhe empirical null distribution
319 against which observed F values, computed throughtway ANOVAs on the actual
320 time series of species average abundance indicee tested. A change in species
321 abundance was declared significant when less tBanobthe permuted maximum F
322 values were larger than the observed F value.

323 In order to assess potential changes in the contynarterms of balance between
324 warmer-water and colder-water species, the MTC xn@iéheung et al., 2013) was
325 computed from the average inferred temperatureepate of species weighted by their

326 density:

327

328 Here Ci corresponds to the density of speciegb.ind./km?2), Ti corresponds to the
329 thermal preference of speciesandn is the total number of species. Thermal preference

330 of each species was obtained from Cheung et al3j2®irst, a one-way ANOVA with
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period as the explanatory factor was performedhenMTC index. Second, in order to
identify which members of the community (cold-waterwarm-water species) mostly
contributed to temporal changes of MTC, severaligsoof species were built based upon
their thermal preferences (e.g., [11-12°C]). Astfag abundance of each species, the max
statistic method was used to test for differenceghe abundance of each thermal

preference group between compared time periods.

2.5 Effects of global and local conditions on community structure

The dynamics of global conditions were assessedgusie first principal component
(PClyoba)) coordinates of a correlation-based PCA appliedh® matrix of variables
relative to global conditions (see supplementaryen@ S1.B; variables: NAO, AMO,
NHTanomalies). The same procedure was used for local conditiP&l.ca; variables: sea
surface temperature, air temperature, suspenddeérs)atver flow, rainfall, wind speed,
Chl.a and salinity; see supplementary material S1.Cg FPharson correlations between
PClyoba and PCiyo and between PGly and PCiyo Were then investigated through a
cross-correlation analysis at several time-lage @ years).

Temporal changes in the fish community were alssessed by analyzing a
“thermal matrix” containing the abundance of 14up® defined by thermal preferences
([7-8°C], 18-9°C], ..., ]20-21°C]). Like with the tanomic approach, the shift(s) in
community structure was/were characterized byrtgstor changes in the abundance of
each thermal group, between the period before laatdafter each shift by using the max
statistic method (Groppe et al., 2011). A correlatbased Principal Component Analysis

was performed on the thermal matrix and the coatdmof the first principal component
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(PClnerm) Were used in order to describe the dynamics ef‘thermal structure” of the
community. Additionally, cross-correlation analyagsre performed between the MTC
index and all indices relative to temperature (§SSSTadisst, SSThydror SSTentyos
BottomTEMP, AirTemp, AMO, NH7omaies and NAO) with time-lags ranging from O to
3 years. In order to investigate which index (IRCax Or PClperm) mostly responded to
AMO, p-values and determination coefficients ofr@ss-correlation analysis between the
AMO index and PCgem Were compared to those provided by the cross-Hetior
between the AMO index and P&d (with several time-lags ranging from 0 to 3 years)
Finally, the same procedure was performed with“ibeal SST” variable (i.e., the mean
between all SST variables: SQTSSTadisst, SSThydro, SSTichtyo, BOttomTEMP).

Statistical analyzes were performed using the Ravsoé version 3.1.3 (R Core
Team, 2015). Potential temporal autocorrelationsxpiained variables (i.e., P& and
PClnem, and the MTC index) were checked before all gtasik analyses, and effects

were declared statistically significant with ankedpvalue of 0.05.

3. Results

3.1. Temporal changes of the fish community

The multivariate regression tree of community dagainst time detected the existence of
a significant change in community structure in 198rmutation testp < 0.001). This
change represents 34% of community structure vaniaver the overall study perioth
view of the first and second principal componenidraeted from the PCA (see
Supplementary material S1.A.) and applied on thle Giommunity matrix (PC1 and PC2

explained 20 and 10% of total variation, respetfivethe change in the taxonomic
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structure of the fish community especially occurfemim 1998 to 2003 (Figure 2). As
indicated by the first principal component, thedaamic structure was relatively stable
before 1998 and quickly changed until 2003, befstabilizing again (Figure 2).

Similarly, the second principal component also ¢ated 1998 as the breaking year

(Figure 2).

Fig. 2 here

The change in community structure was charactefized diminution in the abundance
of the majority of species during the mid-1990gy(ffe 3). In the overall fish community,
five taxa significantly decreased in abundance fribba period “before 1998” to the
period “after 1998”. Gobiidae family (permutatioest: p < 0.001),Callionymus lyra
(Dragonet;p = 0.004) Limanda limanda (Dab;p = 0.008),Pleuronectes platessa (Plaice;

p = 0.004), andorattus sprattus (sprat;p = 0.008), whereas only one genus, Arnoglossus

(Scaldfish), significantly increased in abundanze 0.023) (Figure 3).

Fig. 3 here

3.2. Effects of environmental conditions on the taxonomic structure of the fish community

Significant relationships were found between thabgl conditions index (PGlsa: 82%
of total variation; Supplementary material S1.Bl @he structure of the fish community

(PClaxo: 20% of total variation) with O, 1, 2, 4, 5 andy@ar lags (Figure 4A), and a
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significant correlation was observed with the locahditions index (PGga: 33% of

total variation; Supplementary material S1.C.) vatR-year lag (Figure 4B).

Fig. 4 here

3.3. Effects on the thermal structure of the fish community

In parallel with a significant temperature risetire Bay of Sommep(< 0.05) and the
switch from a cold to a warm phase of the AMO, MiEC index increased at an average
rate of 0.2 °C per decade from 1987 to 2012, eafpgedrom the mid-1990s to early
2000s (Figure 5), and significantly increased frai49 + 0.36 to 11.91 + 0.45 °C
between the periods “before 1998” and “after 1998NOVA: F(1,28) = 7.075p <
0.05). Significant positive correlations were détecbetween MTC and the majority of
temperature-related variables: S${time lag = 0 year), SSilaissr (time lag = 0 year),
SSTichyo (time lag = 0 year), AirTemp (time lag = 0 andday), NH Gnomaiies (time lag =

0 and 1 year) and AMO (time lag = 0 and 3 yearsg (Eable 2 for detailed results).

Fig. 5 here

According to Figures 6A and 6B, the increase ofNt#&C index was especially due to a
decrease in the abundance of species preferrimyveatiers. Significant diminutions in
abundance were observed for three thermal gro9ps0{C], [10-11°C], and [11-12°C]
(Figure 6A). We also observed that several speewdh significant diminutions
(Gobiidae family,Callionymus lyra, Limanda limanda; Figure 3) belonged to the [11-

12°C] thermal group, which largely explains thengfigant decrease of this group. The
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two last species showing a significant decredeufonectes platessa and Sprattus
sprattus), belonged to the [9-10°C] thermal group, and tbostributed to the significant
decrease of this group. Figure 6B indicates tlmtritiers Platichthys flesus), which did
not significantly change in abundance, also couatedl to the decrease of the [9-10°C]
thermal group. The [10-11°C] thermal group, repnésgé by mackerel Scomber
scombrus), sculpins (Cottidae family), whitingMerlangius merlangus), European eel
(Anguilla anguilla), European pollock Rollachius pollachius) and lemon sole
(Microstomus kitt), showed a significant decrease, although no iddal species
significantly decreased over time. Despite obsgrveome abundance increases for
“warm-water species” these increases were not fgignt (e.g.,Sardina pilchardus,
Mullus surmuletus), except for Arnoglossus, which was characteribgdntermediate
thermal preference (Figure 6B). A significant chamgcurred in the thermal structure of
the community (characterized by a decrease in tmimance of cold-water species)
between the two periods (permutation tgst 0.001). A significant positive correlation
was also observed between the amplitude of abuedaation and thermal preference
(Pearson’s r = 0.34% = 0.022; Figure 6B), and a significant differeneas noted
between the thermal preferences of species thatased in abundance and the thermal
preferences of species that increased in abundaN@VA: F(1,43) = 6.376p = 0.015;

Figure 6C).

Fig. 6 here
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The AMO index was significantly correlated to th&dnomic structure of the community
with 1 and 2 year time-lags and significantly ctated to the thermal structure of the
community for all tested time-lags (Figure 7A, 78daTable 1). In parallel, local SST
was not significantly correlated with Pgd or PClem (for any time-lag) (Figure 7C,
7D and Table 1). We can note here that all logapterature-related variables in the Bay
of Somme were positively and significantly correthato the global AMO index (SSf

p < 0.05 with time-lag = 4 years; SQdissr: p < 0.001 for time-lag = 0 and 1 year, gnd
< 0.01 for time-lag = 2 years; AirTemp:< 0.001 for time-lag = 1 angi< 0.01 for time-
lag = 0 and 2 years).

The results (p-values and R2? coefficients) extihcfeom cross-correlation
analyzes between Pgdn and AMO compared to those relative to the corn@tat
between PGl and AMO revealed that, whatever the consideree-tayg, the thermal
structure of the community was better correlatethetoAMO than to taxonomic structure

(Table 1). This result was not observed with I8, except with time lag = 3 years.

Table 1 here

4. Discussion

Our analyses revealed a noteworthy change in tletste of the Bay of Somme fish

community at the end of 1990s (from 1998 to 2003} tvas related to an increase of
SST at the global scale. This change in the fishrmaanity was mainly characterized by a

decrease in the abundance of species preferrirdyveaters. Several other fish species
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(bream,squids from the loliginidae familysardine, red mullet), characterized by higher
thermal preference, increased (non-significantly) abundance over time. These
dynamics, which led to the observed increase of M¥C index, are in line with
numerous works (e.g., Perry et al., 2005; Cheurg).eR012a; Fortibuongt al., 2015,
Tsikliras et al., 2014, 2015) documenting a tropicalisation ot fisommunities in
response to temperature rise. Such a tropicalis@icharacterized by an increase in the
dominance of warm-water species in temperate areagssponse to ocean warming
(Cheunget al., 2013).Our results differ from what we expected and fréva tnajority of
documented tropicalisations in the sense thatédhpanse of the community to warming
was mainly characterized by a diminution in theradance of cold-water species rather
than an increase of warm-water species. We alsoeabthat, at the local scale of the Bay
of Somme, the MTC index increased at a similar (@@°C/decade) to the rate of
increase of non-tropical MTC observed at the glaale (0.23°C/decade, according to
Cheung et al., 2013) during the last four decades.

Whatever the considered approach (taxonomic astimmal), the fish community
has changed in relation to temperature conditioeasured at the local scale of the bay,
which appear themselves highly dependent on globatlitions. A reason that could
explain why global conditions (especially conductad the AMO and NHT) mainly
determined the community structure at the localessathat certain fish species do not
spend their entire life cycle in the Bay of Sommv&jch indicates that they might also be
exposed to other conditions (e.g., at the basirewgichle of the English Channel, North
Sea). Species rely on different coastal habitattulfdl their life cycles (Seitz et al.,

2014), therefore, habitat quality and connectiatg considered essential characteristics
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of coastal ecosystems (Lipcius et al., 2008). Ban®le, adult common sol&dea
solea) spawn in the continental shelf whereas juvergiesv in coastal nurseries where
environmental conditions differ, notably in watemperature (MacPherson and Duarte,
1991).

In this study, most of the local temperature vdasahvere significantly correlated
with the AMO index, which therefore suggests tlret Bay of Somme is substantially
dependent on global phenomena like climate osaifiai although several local
processes occur. We therefore inferred that thg-term increase in local SST, which is
reflected by the AMO index, was the main forcingtéa affecting the structure of the
fish community. The idea that temperature was aomapntributing forcing factor was
reinforced by the fact that the MTC index was clatexl with the majority of temperature
measures and several time lags. Much more signifimarrelations were indeed observed
between community indices and global conditiores,(many more time lags above zero)
than between community indices and local conditiGgee for example Table 1 and
Figure 4). This potentially means that the fish owmity may have presented a long-
term response to global conditions during thetlaste decade.

The long-term characteristic of the response (dveyears here) of the fish
community notably suggests the existence of indireffects through biological
interactions (that may necessitate delays in resptime) like trophic cascades following
direct effects on other biological compartmentsy.(ephyto-zooplankton and benthic
macroinvertebrates), or direct impacts on the gnooftlarvae and/or juveniles, or on the
physiology of adults like fecundity that potentyatyenerate inter-cohort effects. Long-

term responses at community scale are increasohgfiycted in marine ecosystems like
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for example in the North Sea, where Daan et al0§2@bserved a minimum of 6 year-

lagged response of fish communities to indirectea# of fishing pressure. Our

understanding of long-term changes in exploitedh fommunities necessitates to
consider numerous aspects like species interac{ieasetti et al., 2013) that are now
recognized as one of the main driving mechanisrdibgato community changes over

time and space (Ferretti et al., 2010). In a neé&p,sinvestigating how the trophic

structure of the entire biocoenose (or at leasfifilecommunity) have changed over time
in the Bay of Somme will be therefore extremelyphfigll to better understand the reason
leading to the observed long-term response. Thg-term characteristic of the response
can be also explained by several other mechanigasphysiological effects of sea

warming on fish larvae and/or juvenile and/or aslulbr also progressive shifts in

latitudinal distributions. We present in Figure &gntial processes that may explain the
community changes.

First, potential changes in fish community struetmay have occurred following
the physical movement of fishes, possibly in reseao climate-induced latitudinal shifts
in food resources (e.g., zoo-planktonic communitBeaugrandt al., 2002; Perryet al.,
2005) or the direct influence of temperature insee@Figure 8). Fish movements may
have been encouraged by northeastward water msaasg into the Channel in the
mid-1990s from the Bay of Biscay, which charactlizhe beginning of a new warm
phase (positive AMO index values) (Mieszkowskal., 2014). Several cold-water fish
species (e.g.Scomber scombrus, Trisopterus luscus, Trisopterus minutus) decreased in
abundance in the Bay of Somme, showing oppositelsréo what has been observed

since the mid-1990s in the North Sea (Beziral., 2004; Astthorssomt al., 2012). As
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proposed by these authors, our results also supgherthypothesis of a northward
migration of fishes from the Channel to the Norda$n response to ocean warming. In
parallel, we documented a decrease in the abundainsprats and herring, two cold-
water species, similar to previous observatiorthénEastern, North, and Central Atlantic
Seas, which also varied in synchrony with warm aadl AMO phases (Alheit et al.,
2012, 2014b). We also observed an increase in blomdance of some warm-water
species (e.g., red mulleMullus surmuletus; although non-significant), similar to
previous studies (Cheung et al., 2012b), which oesean increase in catches of red
mullet (Mullus barbatus) around the UK in response to ocean warming. & shme
manner, we observed similar trends to those predely several authors concerning
sardine, another warm-water species, which incceasabundance in response to AMO
variations in the Western English Channel, Nortla,Send Baltic Sea (Petitgas al.,
2012; Alheitet al., 2012) through northward migrations, particularlytire mid-1990s
(Alheit et al., 2014b). Several works have docureéntorthward movements of
Lusitanian fish species into the English Channelti€and North Seas over the last few
decades (Perrst al., 2005; ter Hofstedet al., 2010; Simpsormt al., 2011; Petitgast al.,
2012).

Fig.8 here

Second,the observed changes in the fish community may Hee result of
modifications in hydrodynamic connectivity betwdaabitats that are vital for successive
life-stages, especially for eggs and larvae thpedd highly on ocean circulation (Figure

7; Kendall et al., 2016). We can suppose that ladispersion patterns were modified
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following the exceptional inflow of oceanic waterthe mid-1990s (Toresen and @stvedt
2000; Mieszkowska et al., 2014). According to Kdhdaal. (2016), climate change is
“predicted to alter ocean currents that transpggseand young larvae through changes in
atmospheric circulation and ocean stratificatiomhich may therefore impact the
structure of the fish community.

Third, fish recruitment may have been affecteddmgperature rise through:

(i) physiological effects on larval and/or juvenigrowth and mortality rates
(Pepin, 1991; Green and Fisher, 2004; Genner g@l0) (Figure 8). For example,
Arula et al., (2015) showed that exceeding the jofygical thermal preferences of fish
larvae can cause decreased growth rates and iadreasrtality. In the specific case of
this study in the Bay of Somme, despite no sigaiftancrease in the abundance of warm
water species was observed, the temperature imcrees/ have improved juvenile
growth rates, resulting in higher recruitment ahdradance of certain of these species
(Nye et al., 2014). In contrast, the temperature increase mag neduced the growth
rates of cold-water species, leading to substadimainutions in abundance.

(i) physiological effects on adults themselvegy(ife 8; Rijnsdorgt al., 2009),
which could cause changes in community dynamicstuly on tropical fish species
(Pankhurst and Porter, 2003) showed that relatiselgll changes in temperature lead to
changes in fishes’ endocrine systems, which by equesnce influenced reproductive
activity. However, for some species, areas thatewseviously unsuitable may have
become more favourable (Cheung et al., 2013). Cemg@htary investigations on the

temperature tolerance range of species rather tthain thermal preferences would be
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useful, notably because rates of temperature \@miatmay be decisive for fish
communities.

(i) physiological effects on the prey of fish Vae and/or juveniles therefore
causing a trophic cascade on fish larvae and/aenies themselves (e.g., Arula et al.,
2015; Hatun et al., 2009) (Figure 8). Several olmerns have confirmed this climate-
induced change. For example, in the Western Endl$iannel, the zooplanktonic
community quickly changed from large to small-sizedpepods with warm-water
affinities in parallel to the AMO (Hatuet al., 2009; Eloireet al., 2010). This trophic
cascade hypothesis could therefore be tested l®gtigating spatio-temporal changes in
prey species within the Bay of Somme but alsorabee global scale (at least the Eastern
English Channel scale). In opposite, the obsenfethges in fish community structure
may have led to a series of cascading effects grdrophic relationships, potentially
impacting planktonic communities, seabirds or marimammals. The study of
Hernandez-Farinas et al., (2014) indicated thaerséwdinoflagellate genera and some
diatoms (e.g.Pseudo-nitzschia) increased from 2001 to 2007/2010 in the Bay ohBe
in relation to the AMO. Such an increase during 2080s is probably linked to the
decrease of total fish abundances we describeisnsthdy. In their work, Hernandez-
Farinas et al., (2014) also inferred that, in thsuary, global conditions (AMO and
NAO, especially AMO) may be stronger than local ditions in impacting the structure
of phytoplanktonic communities. Lefebvre et alQ12) also showed that, in the Bay of
Somme, several exceptional changes occurred bettheelate 1990s and early 2000s,
such as an increase in chloropteytoncentration (from 1996 to 2005), an increasthef

standard molar ratio for dissolved inorganic nigong(from 1999 to 2003), and an
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increase in the density of phytoplanktonic cell®rff 1999 to 2003), with exceptional
dominance of Prymnesiophyceae algae (espedrideocystis globosa). These results
therefore indicate that the changes we observdatierfish community also concerned
phytoplanktonic communities. According to Lefebwe al., (2011), changes in the
phytoplanktonic compartment were mainly due to glotlimate processes through the
direct effects of AMO and NAO, but we can also swg® that indirect effects (e.g.,
trophic cascades) occurred. We can indeed assuatethle Bay of Somme fish
community changes were due to the observed motdiceof the phytoplanktonic
community, and vice versa. Nonetheless, becausehidnege in the fish community was
mainly characterized by a decrease of fish dessited because thermal preference
appears to be a structuring trait, we believe tihat fish community was directly
impacted by temperature increase and that phytkfgam communities (e.g., increase of
algae density) were both directly impacted by terafpee increase and indirectly through
a top-down effect. We are therefore convinced thagstigating the dynamics of the
phyto-zooplanktonic and macroinvertebrates comnesidf the Bay constitutes the best
next step for understanding the ecological mechasibat occurred in this estuary.
Unfortunately, the effects of fishing were not a&ssel in this work because no
data were available. Despite its known catastropffiects on fish assemblages, fishing
mortality has declined in the Northeast Atlantioicg the beginning of 1990s (ter
Hofstedeet al., 2010). However, the long history of exploitationtire EEC may have
facilitated the observed community change by rendeathe entire fish community more
sensitive to climatic variations (Hsieh et al., 80@uber et al., 2015). Furthermore,

caution must be taken concerning the non-implicataf fishing in the observed
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reorganization of the fish community, since sevepacies spend part of their life cycle
in the open English Channel, an ecosystem thatbbas subjected to intense fishing
pressure for multiple decades, which can be alsorapanied of time-lagged effects on
fish communities (e.g., Daaal., 2005).Consequently, future investigations are needed
to assess the potential effects of fishing at tivall scale of the bay, notably by focusing
initially on species that are known to move betwdenBay of Somme and the English
Channel.

In conclusion, the observed change of the Bay @hi@e fish community
constitutes an additional observation of ‘tropisation’ since it is now added to the
numerous previous works showing such type of conityjueorganization. It therefore
reinforces the hypothesis that a global scale pmemon is occurring in fish
communities. This study also tends to show thatréis&ructuring of the fish community
was mainly influenced by global-scale sea warmiather than local environmental
conditions. The response was characterized by gtknmn change in the structure of the
community and thus reinforces the idea that thecefbf warming is, the most often, not
detectable in the short term (Godbold and Solat3P0This highlights the necessity to
mostly consider the appropriate timescales for ssésg@ ecological repercussions of
climate forcings (e.g., Hettinger et al., 2012; Gold and Solan, 2013), especially in the
aim to better identify responsible drivers, to eetinderstand mechanisms of action and
finally, to support decision making in the contef{t the policy adaptation to global

warming.
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Figure captions:

Fig. 1. The Bay of Somme with locations of sampling séed meteorological stations of
Dieppe and Noyelles-sur-Mer.

Fig. 2. Temporal dynamics of the fish community structurghe Bay of Somme from
1980 to 2012. Shaded grey represents the “breakeay” (1998). PC1 and PC2
explained 20 and 10% of total variation, respetyive

Fig. 3. Radar plot comparing fish abundances before aed 5998 in the Bay of Somme
(nb.ind.km?; log, transformed). Results of permutation tests for geanin taxa
abundance before and after 1998 accounting foriphaltesting: ***: p < 0.001; **:
0.001<p <0.01; *: 0.01<p <0.05.

Fig. 4. A. Cross-correlation plot between the index of glot@tditions (PCgoba) and
the index of fish community structure (P&d. B. Cross-correlation plot between the
index of local conditions (PGuky) and the index of fish community structure (Rl

Fig. 5. Temporal dynamics of thelean Temperature of the Catch index (MTC).

Fig. 6. A. Structure of the fish community before and afte®8 according to thermal
preferences. Results of permutation tests for ahamgpach “thermal group” before and
after 1998 accounting for multiple testing: *{5:< 0.001; **: 0.001<p <0.01; *: 0.01<p
<0.05.B. Thermal preferences and trends of abundancetieariincrease/decrease) of
each species between the two tested periods. Umettdpecies changed significantly in
abundance between the two periods.Thermal preferences of species that decreased in
abundance over time.

Fig. 7. A. Temporal dynamics of the taxonomic structure effish community (PG)

and AMO.B. Thermal structure (PGdm) and AMO.C. Taxonomic structure (PGl)
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and local SSTD. Thermal structure (PGdm) and local SST. PG, explains 19% of
total variation of the taxonomic structure of tlwrenunity and PGglem explains 27% of
total variation of the thermal structure of the coumity.

Fig. 8. Potential mechanisms of effects related to tentperachange on the structure of

the fish community. Each arrow indicates a potéefi@ct.
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1102 Table 1. Pearson correlation results (p-values and R?) tviRC L, and AMO, PCiy,
1103 and local SST, PGlmand AMO, PClem and local SST with four time-lags (0, 1, 2 and

1104 3 years). Shaded cells correspond to significametations.
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1107 Table 2. Pearson correlation results (p-values and r) betwd&@C and temperature-
1108 related indices with four time-lags (0, 1, 2 and/éars). Shaded cells correspond to

1109 significant correlations.

time-lags | Spearman correlation
. p value
(years) coefficient r
0 0.558 0.003
1 0.085 0.686
SSTsat 2 0.131 0.543
3 -0.064 0.771
0 0.565 0.001
1 0.349 0.064
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a 2 0317 01
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(%]
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T 1 -0.125 0.56
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ienve g 2 0.188 0.39
2 3 -0.157 0.407
g 0 0.398 0.059
£ 1 6.10" 0.998
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ottom b 2 0127 0.574
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0 0.494 0.005
. 1 0.473 0.009
MTC vs. AirTemp 5 0339 0078
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0 0.347 0.114
1 0.322 0.154
SSThydro 2 0.09 0.706
3 -0.031 0.9
0 0.465 0.009
1 0.53 0.003
H (%]
NHTanomalies .g > 0344 0073
2 3 0.344 0.078
g 0 0.153 0.417
B 1 -0.159 0.408
NAO s
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o 2 0.334 0.083
3 0.392 0.042
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