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Abstract : 
 
Cuttlefish is a key commercial species in the English Channel fishery in terms of landings and value. 
Age-based assessment methods are limited by time-consuming age determination with statoliths and 
the lack of stock assessment models tailored to this data-limited species. A two-stage biomass model is 
developed in the Bayesian state-space modelling framework that allows inferences to be made on the 
stock biomass at the start, middle and end of each fishing seasons between 1992 and 2014, while 
accounting for both process and measurement errors and to assimilate various sources of information. 
A method that uses ancillary length-frequency data is developed to provide an informative prior 
distribution for the biomass growth rate parameter g (E = 0.89) and its annual variability (CV = 0.1). The 
new model is a substantial improvement on the existing stock assessment method used by the 
International Council for the Exploration of the Seas. Taking into consideration a time-varying g 
parameter provides a more ecologically meaningful model with regard to the sensitivity of the cuttlefish 
population dynamics to environmental fluctuations and improves model fit. The model also provides 
predictions of the unexploited biomass in winter, which is based on survey data, and helps manage the 
stock in the event of strong depletion. 
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1. Introduction 

 

 

 
Fig. 1. Location of the stock studied. The English Channel is composed of ICES divisions VIId and VIIe. 

 

 

Cephalopods stocks are difficult to assess and require specific models to be developed 

(Pierce and Guerra, 1994) because of the nature of their life cycle, including short life span 

and highly variable growth, and because of the difficulty of age determination (Bettencourt 

and Guerra, 2001; González et al., 2000; Lipinski et al., 1998). The lack of routine  stock 

assessment methods for short-lived species restricts sharing of information and comparing 

status among stocks, and reinforces the need for a precautionary approach (Rodhouse et al., 

2014).  

The cuttlefish stock in the English Channel (Fig. 1) is data-limited. This stock is assumed 

to be a single unit because of high catch-per-unit-effort concentration in International 

Council for the Exploration of the Seas (ICES) divisions VIId and VIIe (Wang, 2003). It is 

a shared resource exploited by French and English fishermen (Engelhard et al., 2012). No 

European regulations apply to this stock despite its importance in terms of landings and 

value. The French inshore exploitation is managed by local rules such as minimum landing 

weight and mesh size. In England, no minimum landing size and no restrictions on the 

fishing season have been established for cuttlefish (Pierce et al., 2010). 

The English Channel cuttlefish population is semelparous with a two-year lifespan. 

Migration outside the Channel is suspected to be very low (Boucaud-Camou and Boismery, 

1991). Adults spawn inshore in shallow waters in spring and die. Hatching peaks in summer, 

and juveniles stay inshore until autumn. Recruitment into the fishery starts in October of the 

first year, and the annual cohort is fully recruited at the start of the second summer of life, 

i.e. one year after hatching. Tagging experiments have shown inshore-offshore seasonal 

migrations: cuttlefish concentrate offshore in the deeper central western part of the Channel 

during winter, and move inshore in spring for coastal feeding and spawning (Boucaud-
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Camou and Boismery, 1991). Seasonal migrations are mainly triggered by temperature, 

although day-length also influences pre-adult sexual maturation (Richard, 1971). 

The stock has been assessed using a Thomson and Bell model based on monthly catch-

at-age data (Royer et al., 2006), but the method, based on monthly length frequencies, was 

too data-demanding for a routine stock assessment. Furthermore, conversion of length 

frequencies into age is highly uncertain because growth and timing of migration might vary 

substantially according to seasons and years. A much less data demanding two-stage biomass 

model (Roel and Butterworth, 2000) was proposed for this stock (Gras et al., 2014). The 

model developed by Gras et al. (2014) represents the biomass of group 1+ individuals only, 

and assumes two stages among the exploited population: recruitment and full exploitation. 

Recruited biomass (B1; evaluated on the first of July) is estimated using abundance indices 

from the Bottom Trawl survey (BTS) and the Channel Ground Fish Survey (CGFS). 

Spawning stock biomass (B2) is then estimated using Landings Per Unit Effort (LPUE) from 

French and United Kingdom (UK) bottom trawl fisheries. The model is fitted to the time 

series of catches and abundance indices using a maximum likelihood framework that 

assumes observation errors only, and uncertainties about estimates are quantified using 

bootstrapping. The model suffers from several weaknesses. Firstly, it considers observation 

errors only and hence ignores process errors in the biomass dynamics. It also suffers from a 

lack of flexibility to change model assumptions and/or to assimilate other sources of 

available information or data. Secondly, the growth rate parameter g (between 12 and 23 

months old cuttlefish) is assumed to be known and constant from year to year even though 

the growth rate of cephalopods is known to be highly sensitive to environmental fluctuations 

(Rodhouse et al., 2014). The  parameter g includes natural mortality (set to 1.2 year-1) and a 

mean growth rate in weight (based on historical data from Medhioub (1986) and set to 2.2yr-

1), which are assumed to be constant in time and known without uncertainty. However, Gras 

et al. (2014) showed a high sensitivity of model outputs to the growth rate parameter, and 

advocated the use of more recent data that would provide a more accurate estimate of this 

parameter. Thirdly, the model only captures the dynamics of the 1+ component of the 

population. The time series of abundance indices from the CGFS survey is assumed to be 

based mainly on group 1+ individuals, although length frequencies suggest a mixture of 0+ 

and 1+. Indeed, the CGFS survey occurs in October, when cuttlefish migrate offshore. Some 

of the group 0 individuals are 3 months old at this time of the year and form the lower part 

of the survey length frequencies. Therefore, using the CGFS time series without processing 

the data to separate out the two cohorts might provide a biased estimate of group 1+ cuttlefish 

biomass. 

In this work, we have perfected the two-stage biomass model adapted for cuttlefish, 

based on three substantive new contributions:  

(a) The model is developed in a Bayesian state-space framework (Rivot et al., 2004; 

Buckland et al., 2007; Parent and Rivot, 2013), thus allowing for a comprehensive 

integration of the different sources of uncertainty by considering both process errors 

in the biomass dynamics and observation error in the data.  

(b) We develop an informative prior (Hilborn and Liermann, 1998) on the biomass 

growth rate that takes advantage of various sources of available data to quantify the 

average growth rate and provide a credible range of variability over the years. 

(c) We improve the quality of the data and the demographic realism of the model by 

explicitly considering that two separate age classes (0+ and 1+) can compose the 

abundance indices and the exploited biomass.  

We first build a model considering the dynamics of 1+ only and a time-varying g 

parameter. We then evaluate the benefit of a time-varying g parameter instead and evaluate 

the sensitivity of the results to the amount of data used and the predictive capacity of the 
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model. Finally, we explore the feasibility of considering the dynamics of the two cohorts (0+ 

and 1+) in the same model. 

 

2. Materials and methods 

 

We first describe the data used for stock assessment and provide details about the data 

processing. Then we detail the process equations for the biomass dynamics and the 

observation equations. Thirdly, we detail the method used to construct an informative prior 

distribution on the biomass growth rate parameter (denoted g0,y and g1,y for 0 and 1+ groups 

respectively). Finally, we outline our strategy to analyze the sensitivity of the results to the 

hypotheses about between-year variation of critical parameters, to the age-structure and the 

data sources. All parameters used in the model are summarized in Table 1, and variants of 

the baseline model are summarized in Table 2. 

 

 
Table 1 
The priors. 

 Parameter Description Distribution 

 𝜇B1 Grand mean of B1,y Lognormal(𝜇 = 15000, CV = 0.1) 

 𝜎²𝐵1 Variance of B1,y InverseGamma(0.05, 0.05) 

 
𝜇𝑔1

 
Grand mean of g1,y Lognormal(𝜇 = 0.89,  

CV = 0.1) 

 𝜎²𝑔1 Variance of g1,y  InverseGamma(0.05, 0.05) 

 E1,y Exploitation rate for group 1+ Beta(α = 1.5, β = 1.5) 

 
𝐶𝑉𝑝𝑟𝑜𝑐𝑒𝑠𝑠 

CV used for the lognormal process 

errors 

Exponential(λ = 6) 

 𝐶𝑉𝐶1 CV used for the catch of group 1+ Exponential(λ = 8) 

 log(qbts) Catchability of the BTS survey Uniform(a = -15, b = 3) 

 log(qcgfs) Catchability of the CGFS survey Uniform(a = -15, b = 3) 

 
log(qlpue1) 

Catchability of the group 1+ French 

LPUE 

Uniform(a = -15, b = 3) 

 
𝜎²𝑏𝑡𝑠 

Variance of observation errors for BTS 

survey 

InverseGamma(0.05, 0.05) 

 
𝜎²𝑐𝑔𝑓𝑠 

Variance of observation errors for 

CGFS survey 

InverseGamma(0.05, 0.05) 

 
𝜎²𝑙𝑝𝑢𝑒1 

Variance of observation errors for 

group 1+ French LPUE  

InverseGamma(0.05, 0.05) 
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𝜇B0 Grand mean of B0,y Lognormal(𝜇 = 5000, CV = 0.5) 

𝜇𝑔0
 

Grand mean of g0,y Lognormal(𝜇 = 0.97,  

CV = 0.1) 

E0,y Exploitation rate for group 0 Beta(1.5, 1.5) 

log(qlpue0) 
Catchability of the French LPUE for 

group 0 

Uniform(-15, 3) 

𝜎²𝐵0 Variance of B0,y InverseGamma(0.05, 0.05) 

𝜎²𝑔0 Variance of g0,y InverseGamma(0.05, 0.05) 

𝐶𝑉𝐶0 
CV of observation errors for group 0 

catches 

Exponential(λ = 8) 

𝜎²𝑙𝑝𝑢𝑒0 
Variance of observation errors for the 

group 0 French LPUE 

InverseGamma(0.05, 0.05) 
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Table 2 
Model hypotheses. 

Model Exploited biomass g parameter Abundance indices used 

M1 Group 1+ only Time-varying (g1,y) BTS, CGFS, LPUE (1+) 

M2 Group 1+ only Fixed (g1) BTS, CGFS, LPUE (1+) 

M3 Group 0 and 1+ Time-varying (g0,y and g1,y) BTS, CGFS, LPUE (1+), LPUE (0) 

M4 Group 1+ only Time-varying (g1,y) BTS, CGFS 

 

2.1. Data sources and data processing 

 

We used total catch data from the English and French fisheries, and abundance indices 

from the English BTS and French CGFS surveys, with additional information to separate 

group 0 and group 1+ animals. The BTS abundance indices and UK catch and effort data 

were obtained from the Center for Environment Fisheries and Aquaculture Science 

(CEFAS). The French CGFS abundance indices, French catch and effort, and length data 

were obtained from the French Research Institute for Exploitation of the Sea (IFREMER). 

BTS abundance indices were used to model the biomass of 1+ age group only. This group 

of 0 individuals represents a very small proportion of the BTS survey data because the survey 

occurs around July just after hatchlings are born, and because the research vessel does not 

fish too close to the coast where juveniles are found (Carpentier et al., 2009). BTS abundance 

indices were calculated as catch-per-unit-effort, using trawling time as effort, and scaled so 

that the first value of the time series equals 1. 

The CGFS survey data were used to provide indices of abundance for the 0+ and 1+ age 

groups. The CGFS occurs each year during October (Coppin et al., 2002). Some cuttlefish 

of the group 0 are already 3 months old at this time of the year and are potentially caught 

during the CGFS. The following procedure was used to separate the two cohorts (0 and 1+) 

and to provide a more reliable abundance index for the 1+ group only. The package mixdist 

(Macdonald et al., 2011) was applied to the CGFS length frequency data to calculate the 

mean length and the percentage of number of individuals older than one year-old (%𝑁1+,y) 

for each fishing season y (Appendix A). Mean length was converted into mean weight using 

the Dunn (1999a) length-weight relationship. Percentage in weight of group 1+ individuals 

was calculated as follows: 

%𝑤1+,y  = [%𝑁1+,y ∗ �̅�1+,y] [�̅�1+,y ∗ %𝑁1+,y + �̅�0,y ∗ (1 − %𝑁1+,y)]⁄   (1) 

where �̅�0,y and �̅�1+,y are the mean weight of group 0 and group 1+ individuals for the fishing 

season y. %𝑤1+,y was then applied to CGFS catch data to calculate the catch in weight of 

group 1+ individuals. From 2005 to 2014, group 1+ individuals represented on average 

91.5% of the CGFS catch-in-weight, with a very small between-year CV of 0.056. As length 

data for CGFS survey were available from 2005 only, we used this mean value to calculate 

the pre-2005 catch-in-weight of 1+ individuals. The catch of 1+ individuals was then divided 

by trawl swept area for each haul. The resulting CPUE were averaged per strata s with 

surfaces As (ICES rectangles). CPUE by stratum 𝑈𝑦,𝑠
𝑐𝑔𝑓𝑠

 were then raised to the VIId area 

(Fig. 1), and scaled so that the first value of the time series equals 1: 

𝑈𝑦
𝑐𝑔𝑓𝑠

=

∑ 𝐴𝑠∗𝑈𝑦,𝑠
𝑐𝑔𝑓𝑠

𝑠

∑ 𝐴𝑠𝑠
⁄

∑ 𝐴𝑠∗𝑈1,𝑠
𝑐𝑔𝑓𝑠

𝑠

∑ 𝐴𝑠𝑠
⁄

        (2) 

The French LPUE were calculated using commercial data that provide information about 

the percentage in weight of one year-old cuttlefish by year and month. Following Gras et al. 

(2014), cuttlefish of commercial categories 1 and 2 (animals above 300g) were assumed to 
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be 1+ year old. We applied these percentages to separate group 0 and group 1+ in the catches. 

The zero-inflation in the data was analysed using a Delta-GLM (Fletcher et al., 2005; Gras 

et al., 2014; Lo et al., 1992; Stefansson, 1996) applied to each of the time series (aggregated 

by trip) with ICES statistical rectangle, vessel power, fishing season and month as factors. 

A year effect on the expected abundance indices was extracted and considered as a time 

series of abundance indices (Appendix B). The UK LPUE was not used in the model because 

no information was available to separate the 0 and 1+ age groups in the English catch. 

In the two-stage biomass model, the time series of total catch by age group (from both 

French and UK vessels) were also needed. The same method as for the LPUE was used to 

estimate the percentage of the two age groups in the French catches for each year and quarter. 

For UK catches, the mean percentage of group 1+ individuals from 1992 to 2012 was applied 

from 2013 to 2015 to complete the time series. 

 

 
Fig. 2. The simplified life cycle of the English Channel stock of cuttlefish. For models M1, M2 and M4, only group 1+ 

individuals are modeled (b). For model M3, a cohort of group 0 individuals is added (a). The total catch of French and 

English fishery occurs as a pulse in the middle of the fishing season: C0,y for group 0 individuals, and C1,y for group 1+ 

individuals. 

2.2. The two-stage biomass model 

 

The model is based on a simplified cuttlefish life cycle (Fig. 2): we consider an exclusive 

2 years lifespan, with massive natural mortality occurring shortly after spawning on June 

30th. Each fishing season extends from July 1st (when one year-old individuals are recruited 

to the fishery) to June 30th of the following year (one year later, remaining individuals are 

mature and have spawned). We use subscript y to refer to the fishing season. Catch of 

cuttlefish of the two age groups 0+ and 1+ (denoted 𝐶0,𝑦 and 𝐶1,𝑦 for 0+ and 1+ group, 

respectively) is assumed to happen as a coordinated pulse in the middle of the fishing season 

(on January 2nd).  

We first define the baseline model M1 for the English Channel cuttlefish stock, and then 

the variants M2, M3 and M4. The model M1 captures the dynamics of group 1+ individuals 

only. It assumes an intrinsic biomass growth rate parameter g1,y specific to group 1+, based 

on mortality and growth coefficients specific to this class. A hierarchical structure is 

assumed for the g1,y’s to capture variation among years. The model is fitted to time series of 
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total catches, and BTS, CGFS and French LPUE abundance indices, where CGFS, French 

LPUE and total catch are processed to account for 1+ age group only. Models M2, M3 and 

M4 are constructed to assess the sensitivity of results to alternative model structures and 

sources of data (Table 2).  

2.2.1. Baseline model M1 with one single cohort (1+ age group) 

 

2.2.1.1. Biomass dynamics 

 

Let B1,y be the biomass of the 1+ group at the start of the fishing season. A hierarchical 

lognormal structure is set on the B1,y’s to capture variation among years:  

log(𝐵1,y) ~ N(log(𝜇𝐵1
) −

1

2
𝜎𝐵1

2, 𝜎𝐵1
2)     (3) 

with a grand mean 𝜇𝐵1
 a priori drawn from an informative lognormal prior distribution and 

a variance 𝜎𝐵1
2 a priori drawn from an uninformative prior distribution (Table 1). The 

unexploited biomass estimated on 1st October (B1.oct,y) without catch removals is defined as 

follows: 

log(𝐵1.𝑜𝑐𝑡,𝑦) ~ N (log (𝐵1,𝑦𝑒
𝑔1,𝑦

4 ) −
1

2
𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠

2 , 𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠
2 )     (4) 

where g1,y is the biomass growth rate parameter of group 1+ individuals, and lognormal 

process errors 𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠
2 = log(𝐶𝑉𝑝𝑟𝑜𝑐𝑒𝑠𝑠

2 + 1), with 𝐶𝑉𝑝𝑟𝑜𝑐𝑒𝑠𝑠 drawn from an informative 

prior distribution (see Table 1).  

The unexploited biomass estimated on 1st January (B1.jan,y) without catch removals is 

defined as follows: 

log(𝐵1.𝑗𝑎𝑛,𝑦) ~ N (log (𝐵1.𝑜𝑐𝑡,𝑦𝑒
𝑔1,𝑦

4 ) −
1

2
𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠

2 , 𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠
2 )    (5) 

The spawning stock biomass B2,y of fishing season y is expressed as: 

log (𝐵2,𝑦) ~ N (log ([𝐵1.𝑗𝑎𝑛,𝑦(1 − 𝐸1,𝑦)]𝑒
𝑔1,𝑦

2 ) − 𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠
2 , 2 ∗ 𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠

2 )  (6) 

where E1,y is the exploitation rate for group 1+ individuals and the process error variance is 

twice the  𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠
2  to account for the fact that the time step is twice that given in Eqns 4 and 

5. 

2.2.1.2. Observation equations 

 

The expected values of the catches are calculated as the biomass in the middle of the 

fishing season (𝐵1.𝑗𝑎𝑛,𝑦) multiplied by the exploitation rate E1,y. Catches of 1+ animals are 

then assumed to be observed with lognormal observation errors with a coefficient of 

variation 𝐶𝑉𝐶1. An informative prior distribution that favors small values of CV is specified 

in order to imitate the prior expectation that catches are assumed to be well known for 

trawlers (see Table 1).  

log(𝐶1,𝑦) ~ 𝑁 (log(𝐸1,𝑦𝐵1.𝑗𝑎𝑛,𝑦) −
1

2
𝜎𝐶1

2 , 𝜎𝐶1
2)     (7) 

As the BTS survey occurs in July, the BTS abundance indices  provide information on 

the biomass of one-year old cuttlefish at the start of the fishing season (𝐵1,𝑦). The CGFS 

survey occurs three months later, so abundance indices are assumed to be noisy observation 

of the biomass of group 1+ individuals one quarter after the beginning of the fishing season 
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(𝐵1.𝑜𝑐𝑡,𝑦). The BTS and CGFS survey indices (denoted 𝑈𝑦
𝑏𝑡𝑠 and  𝑈𝑦

𝑐𝑔𝑓𝑠
, respectively) are 

assumed to be an indirect observation of the biomasses 𝐵1,𝑦 and 𝐵1.𝑜𝑐𝑡,𝑦 with catchabilities 

𝑞bts and 𝑞cgfs and lognormal observation errors with variances 𝜎²𝑏𝑡𝑠 and 𝜎²𝑐𝑔𝑓𝑠, drawn from 

a non-informative prior distribution (Table 1): 

{
log(𝑈𝑦

𝑏𝑡𝑠) ~ 𝑁 (log(𝑞𝑏𝑡𝑠𝐵1,𝑦) −
1

2
𝜎𝑏𝑡𝑠

2 , 𝜎²𝑏𝑡𝑠)

log(𝑈𝑦
𝑐𝑔𝑓𝑠

) ~ N (log(𝑞cgfs𝐵1.𝑜𝑐𝑡,𝑦) −
1

2
𝜎𝑐𝑔𝑓𝑠

2 , 𝜎²𝑐𝑔𝑓𝑠)
    (8) 

Two different observation error variances are used in Eqn 8 because the CGFS data are 

supposed to be less reliable before 2005, with CV before 2005 being twice that after 2005. 

Finally, the French standardized LPUE for group 1+ animals (𝑈𝑦
𝑙𝑝𝑢𝑒1) is assumed to be a 

lognormal observation of the mean of the biomass between the start and the end of the fishing 

season (with catchability qlpue1) with variance 𝜎𝑙𝑝𝑢𝑒1
2 : 

log(𝑈𝑦
𝑙𝑝𝑢𝑒1

) ~ N (log (
1

2
𝑞𝑙𝑝𝑢𝑒1[𝐵1,𝑦 + 𝐵2,𝑦]) −

1

2
𝜎𝑙𝑝𝑢𝑒1

2 , 𝜎𝑙𝑝𝑢𝑒1
2 )   (9) 

2.2.2. Priors  

 

We developed a prior for the intrinsic biomass growth rate parameter g1,y for the group 

1+ individuals defined as the difference between the mean growth coefficient (Gr) and the 

natural mortality rate (M) (Appendix A). A lognormal hierarchical structure with grand mean 

𝜇𝑔1 (drawn from an informative lognormal prior distribution; Table 1) and variance 𝜎𝑔1
2 

(drawn from a non-informative prior distribution; Table 1) is defined on the 𝑔1,y’s:  

log(𝑔1,y) ~ N(log(𝜇𝑔1
) −

1

2
𝜎𝑔1

2, 𝜎𝑔1
2)      (11) 

The exploitation rate is drawn a priori from a weakly informative beta prior distribution, 

allowing E1,y to take any value between 0 and 1. The variances of the observation errors for 

the abundance indices, 𝜎²𝑏𝑡𝑠, 𝜎²𝑐𝑔𝑓𝑠 and 𝜎²𝑙𝑝𝑢𝑒1 are all drawn from uninformative inverse-

gamma distributions.  

A sensitivity of the baseline model M1 to the prior distribution of g1,y and on B1 was 

evaluated. A percentage of +/- 20% was applied to the mean values used for the construction 

of both priors. The sensitivity to the variation coefficient controlling the a priori inter-year 

variation in catch was also evaluated (Table 3). 

2.2.3. Alternative model structure and sensitivity analysis 

 

Model M2 is an alternative to the baseline model M1 that assumes that g is constant over 

the years, with a value of 0.89. Comparing the results between M1 and M2 allows us to 

quantify the benefits of considering inter-year variability in g (Table 2; Eqn 11).  

Model M3 explores the feasibility of modeling both the 0+ and the 1+ cohorts using an 

additional LPUE index calculated for 0+ age group. The results from Model 3 are compared 

to those from model M1 to evaluate the influence of considering the dynamics of group 0 

and 1+ individuals (instead of 1+ only for M1). The cohort dynamics start with a lognormal 

hierarchical prior on the biomass of group 0 animals (denoted B0,y)  with grand mean 𝜇𝐵0
 

and variance 𝜎𝐵0
2 drawn from an informative and non-informative prior distribution 

respectively (see Table 1): 

 log(B0,y) ~ N(log(μB0
) −

1

2
σB0

2, σB0
2)     (12) 
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The biomass of the 0+ group then grows with growth rate g0,y to provide the biomass of 

0+ group in October then in January when they can be exploited with harvest rate E0,y before 

being recruited as 1+ group in July at the start of the fishing season y+1: 

log (B0.oct,y) ~ N (log (B0,ye
g0,y

4 ) −
1

2
σprocess

2 , σprocess
2 )      (13) 

log (𝐵0.jan,𝑦) ~ N (log (𝐵0.oct,𝑦𝑒
𝑔0,𝑦

4 ) −
1

2
𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠

2 , 𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠
2 )      (14) 

log (𝐵1,𝑦+1) ~ N (log ([𝐵0.𝑗𝑎𝑛,𝑦(1 − 𝐸0,𝑦)]𝑒
𝑔0,𝑦

2 ) − 𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠
2 , 2 ∗ 𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠

2 )    (15) 

A lognormal hierarchical prior with a grand mean 𝜇𝑔0
 and variance 𝜎𝑔0

2 (Table 1) is set 

for g0,y: 

log(𝑔0,y) ~ N(log(𝜇𝑔0
) −

1

2
𝜎𝑔0

2, 𝜎𝑔0
2)      (16) 

Additional observation equations (Eqns 17 and 18) are needed to incorporate information 

from the French LPUE and the catches of group 0 cuttlefish: 

log(𝑈𝑦
𝑙𝑝𝑢𝑒0) ~ N (log (

1

2
𝑞𝑙𝑝𝑢𝑒0[𝐵0,𝑦 + 𝐵0,𝑦𝑒𝑔0,𝑦(1 − 𝐸0,𝑦)]) −

1

2
𝜎𝑙𝑝𝑢𝑒0

2 , 𝜎𝑙𝑝𝑢𝑒0
2 ) (17) 

log(𝐶0,𝑦) ~ 𝑁 (log (𝐸0,𝑦𝐵0,𝑦𝑒
𝑔0,𝑦

2 ) −
1

2
𝜎𝐶0

2 , 𝜎𝐶0
2 )     (18) 

where 𝑞𝑙𝑝𝑢𝑒0 is the catchability of French trawlers for group 0 individuals, and 𝜎²𝑙𝑝𝑢𝑒0 is the 

unknown variance of the lognormal observation errors, drawn from an uninformative prior 

distribution (Table 1). Catches of 0+ animals are assumed to be observed with lognormal 

observation errors with variance 𝜎𝐶0
2  derived from the informative prior distribution on the 

coefficient of variation 𝐶𝑉𝐶0 (Table 1). The sensitivity of the results of model M3 to the prior 

distribution of g0,y and of B0 was evaluated. A percentage of +/- 20% was applied to the mean 

values used for the construction of both priors. Sensitivity to the variation coefficient 

controlling the a priori inter-year variation in catch was also evaluated (Table 3). 

Model M4 is similar to Model M1, but does not include the French LPUE abundance 

indices, and therefore enabled us to assess the sensitivity of the results to the data and to 

explore the capacity of the model to forecast the biomass of age-1 group at the start of the 

year, B1.jan. 

 
Table 3 
Alternative priors explored in sensitivity analyses. 

 Parameter Alternative priors tested Name of the model run 

M
1
 

𝜇B1 Lognormal(𝜇 = 12000, CV = 0.1) Smaller 𝜇B1 

𝜇B1 Lognormal(𝜇 = 18000, CV = 0.1) Higher 𝜇B1 

𝜇g1 Lognormal(𝜇 = 0.71, CV = 0.1) Smaller 𝜇g1 

𝜇g1 Lognormal(𝜇 = 1.07, CV = 1.07) Higher 𝜇g1 

CVC1 CVC1 ~ Exp (4) Higher CVC1 

M
3
 

𝜇B0 Lognormal(𝜇 = 4000, CV = 0.5) Smaller 𝜇B0 

𝜇B0 Lognormal(𝜇 = 6000, CV = 0.5) Higher 𝜇B0 

𝜇g0 Lognormal(𝜇 = 0.78, CV = 0.1) Smaller 𝜇g0 

𝜇g0 Lognormal(𝜇 = 1.16, CV = 0.1) Higher 𝜇g0 

CVC0 CVC0 ~ Exp (4) Higher CVC0 
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2.3. Model comparison 

 

The deviance information criterion (DIC) and the normalized root mean-squared error 

(NRMSE) were used to compare the models. The DIC is a Bayesian measure of fit, which 

includes a penalty term for model complexity, and was used to compare models fitted to the 

same data sets (M1 versus M2 and sensitivity analysis on M1 and M3). A difference of 7 

between the models was assumed to provide strong evidence in favor of the model with the 

smaller DIC (Spiegelhalter et al., 2002). The capacity to fit the abundance indices time series 

was evaluated using NRMSE, which compares the difference between the observed 

abundance indices with posterior replicates of abundance indices. For each time series of 

length L, a NRMSE is calculated as follows:  

𝑁𝑅𝑀𝑆𝐸 =
1

𝑆
∑ √1

𝐿
∑ (

𝑦𝑖−�̃�
𝑖
(𝑗)

�̅�
)

2

𝑖=𝐿
𝑖=1

𝑗=𝑆
𝑗=1      (19) 

where 𝑦𝑖 is the observed value of the abundance index i (in log scale), �̃�𝑖
(𝑗)

 is a replicated 

value drawn from the posterior predictive distribution (log scale), �̅� is the mean of the time 

series of observed abundance indices (log scale) and S is the size of the MCMC sample. The 

average over a large MCMC sample size enabled us to integrate over the posterior 

distribution of replicated abundance indices. Lower NRMSE values indicate a better fit to 

the time series. 

We also calculated the posterior predictive p-values (Gelman et al., 2014) to evaluate 

how the model a posteriori fitted to the data (see an example in Archambault et al. (2016) 

for details on calculation). p-values concentrating near 0 or 1 indicate that the observed 

pattern would be unlikely to be seen in replications of the data if the model were true, and 

thus indicate lack of model fit. 

2.4. Computational details 

Three chains of 200,000 Markov Chain Monte Carlo (MCMC) samples were simulated 

using OpenBUGS (OpenBUGS V3.2.3 ; Lunn et al. 2009). A burn-in period of 10,000 

samples was used to avoid dependence of the MCMC samples on the initial conditions, and 

each chain was thinned by 30 to reduce autocorrelation. Convergence of the MCMC 

simulations to the posterior distribution was checked using the Brooks-Gelman-Rubin 

(BGR) convergence diagnostic (Brooks and Gelman, 1998). 

3. Results 

 

3.1. Results from the baseline model M1 

 

Results are plotted with years at the start of the fishing seasons on the x-axis. Therefore, 

for a year t, estimates of B1 are for July t, estimates of B1.jan are for January t+1, and estimates 

of B2 are in June t+1 even if the same fishing season y is considered.  

All observed abundance indices were within the range of 95% Bayesian credible 

intervals of posterior replicates for French LPUE (Fig. 3b), BTS survey (Fig. 3c) and CGFS 

survey (Fig. 3d). The posterior predictive p-values (Table 4) ranged from 0.51 to 0.7, 

showing that there were no strong discrepancies between the model fitted a posteriori and 

the data. The model tended to slightly overestimate the CGFS abundance indices (p-values 

> 0.5). Posterior predictive p-values for BTS, LPUE and Catch were close to 0.5, indicating 

that the model is well able to reproduce these data. The fitted and observed catches were 
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very similar (Fig. 3a), with high inter-year variability with no clear trend until 2006, and 

then a decreasing trend from 2006 to 2014.  

Estimates (median of posterior distributions) of B1 showed a decreasing trend from 2002 

to 2014 (Fig. 4a). Estimates of B2 showed no clear trend (Fig. 4b). Estimates of g1,y from 

model M1 fluctuated between 0.64 and 0.83 from 1992 to 2008 with no particular trend and 

increased from 0.72 in 2008 to 1 in 2011. The highest value was estimated at 1.16 in 2014 

(Fig. 4c). The exploitation rate varied between 0.4 and 0.64 from 1992 to 2008, and a drop 

to 0.25 occurred in 2009 (Fig. 4d). The highest values were obtained for the fishing seasons 

2001 and 2011 (respectively 0.64 and 0.62) and were associated with low estimates of 

recruited biomass B1 and spawning stock biomass B2 in 2001, and high estimate of g1,y in 

2011. 

 

 

 
Fig. 3. A comparison of model M1 posterior median estimates with observed values for catch (a) and LPUE (b), BTS (c) 

and CGFGS (d) abundance indices. Solid lines: posterior medians. Shaded areas: 95% Bayesian credible intervals. 
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Table 4 

Comparison of deviance information criterion (DIC) value, normalized root mean-squared error (NRMSE) and Bayesian 
p-values for all model runs. 

Model run DIC NRMSE p-value 

 BTS CGFS LPUE Catch BTS CGFS LPUE Catch 

Model M1 422 0.73 0.78 0.72 0.55 0.55 0.7 0.54 0.51 

Smaller 𝜇B1 422 0.74 0.78 0.7 0.54 0.54 0.7 0.54 0.51 

Higher 𝜇B1 422 0.74 0.77 0.74 0.57 0.57 0.7 0.54 0.51 

Smaller 𝜇g1 425 0.74 0.77 0.72 0.55 0.54 0.7 0.54 0.51 

Higher 𝜇g1 420 0.73 0.77 0.73 0.56 0.56 0.7 0.55 0.51 

Higher CVC1 442 0.74 0.77 0.72 0.59 0.55 0.71 0.54 0.54 

 BTS CGFS 0 1+ 0 1+ BTS CGFS 0 1+ 0 1+ 

Model M3 818 0.76 0.81 0.81 0.71 0.46 0.54 0.54 0.7 0.53 0.55 0.51 0.51 

Smaller 𝜇B0 816 0.76 0.81 0.81 0.7 0.46 0.53 0.53 0.7 0.52 0.55 0.51 0.51 

Higher 𝜇B0 815 0.76 0.81 0.81 0.7 0.47 0.53 0.54 0.71 0.51 0.54 0.51 0.51 

Smaller 𝜇g0 816 0.77 0.81 0.8 0.7 0.46 0.53 0.54 0.71 0.52 0.55 0.51 0.51 

Higher 𝜇g0 818 0.76 0.81 0.8 0.7 0.46 0.54 0.54 0.7 0.52 0.54 0.52 0.51 

Higher CVC0 837 0.76 0.81 0.8 0.7 0.51 0.54 0.54 0.71 0.5 0.54 0.53 0.51 

 

3.2. Sensitivity of M1 estimates to the priors 

 

Overall, the results of model M1 were only slightly sensitive to modifications to the 

priors for key parameters (Table 5). B1, B1.jan and B2 were sensitive to the mean value of the 

prior distribution of B1, varying by up to 14%. Changes to the mean value of the prior on g1,y 

impacted mainly the estimates of g1,y and B2, with respectively up to 17% and 11% variation. 

Exploitation rate estimates were mostly sensitive to the choice of prior distribution of the 

grand mean with variation up to 8%.  The sensitivity of the catches were less than 1% for all 

model runs and are consequently not shown. 

The only significant difference of DIC value was observed for the model run with higher 

CV on catches (Table 4) and indicates a better fit of the base model M1 compared to the 

model with higher CV on catches. The NRMSE showed no noticeable differences of fit for 

the three abundance index time series during the various trials. 

 
Table 5 

Mean percentage of variation between posterior means from model M1 and posterior means from the other model runs. 

The mean of percentages from all fishing seasons is given for each parameter and each model run. The CV related to the 
variation between fishing seasons is specified in brackets. 

  Smaller 𝝁𝐁𝟏 Higher 𝝁𝐁𝟏 Smaller 𝝁𝐠𝟏 Higher 𝝁𝐠𝟏 Higher CVC1 

M
1
 

B1 -10.7 (0.4) 8.1 (0.4) 3.4 (1) -3.5 (0.8) 0.67 (0.8) 

B1.jan -8.3 (0.3) 5.9 (0.3) -2.6 (0.5) 2.2 (0.5) 1.8 (1) 

B2 -14.3 (0.17) 9.6 (0.2) -10.4 (0.6) 10.9 (0.7) 1.1 (1.8) 

g1 1.7 (1) -0.8 (1.1) -17.1 (0.2) 15.5 (0.3) 0.9 (1.5) 

E1 8.1 (0.3) -4.5 (0.3) 2.2 (0.6) -1.7 (0.7) 0.8 (1.3) 

 Smaller 𝝁𝐁𝟎 Higher 𝝁𝐁𝟎 Smaller 𝝁𝐠𝟎 Higher 𝝁𝐠𝟎 Higher CVC1 

M
3
 

B0 -0.38 (1.5) 0.9 (0.54) 14.3 (0.08) -11.7 (0.07) 1.34 (0.4) 

B1 -0.3 (1.2) -0.04 (13.3) -1.6 (0.4) 1.37 (0.8) 0.13 (3.7) 

B2 0.19 (7.9) -0.4 (3.6) -2.2 (1) 2.2 (1) 0.88 (1.5) 

g0 0.12 (4) -0.9 (0.5) -19.4 (0.03) 18.1 (0.03) -0.8 (0.6) 

g1 0.67 (1.1) -0.02 (40) 1.1 (0.9) -0.69 (1.4) 0.03 (24.6) 

E0 0.18 (2.9) -0.5 (0.7) -3.9 (0.2) 3.8 (0.3) 0.5 (2.4) 

E1 0.09 (7.5) 0.17 (2.6) 1 (0.8) -0.95 (0.8) -0.32 (1.3) 
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3.3. Assuming a constant g1 (models M1 versus M2) 

 

Model M1, which assumed a time-varying g1,y outperformed the model with a constant 

value of g1 over the years (M2) because a lower DIC value was obtained for model M1 

(Table 6) and a lower value of NRMSE was observed for LPUE for model M1, indicating a 

better fit to the data. p-values for BTS, LPUE and catch were not impacted by the change 

from model M1 to model M2. 

Estimates of g1,y from model M1 were smaller than the grand mean (0.89), except for 

years 2011 and 2014 (Fig. 4c). B1 estimates were very close for both models M1 and M2 

(Fig. 4a), but model M2 provided slightly higher estimates of B2 (Fig. 4b). Posterior 

estimates of exploitation rates followed the same trend, but estimates from model M1 were 

slightly higher (Fig. 4d).  

The limited effect of setting a time-varying g1,y on B1 and E estimates (Figs 4a and 4d) 

is in accordance with the sensitivity analysis conducted on the mean value used for the prior 

distribution of g1,y (Table 5). Changes to the mean value for g1,y prior distribution had little 

effect on the estimates of B1 and E, but a higher effect on B2. Differences between B2 values 

estimated by models M1 and M2 ranged from 128 to 4,080 tons (Fig. 4b). 

 

 

 
Fig. 4. A comparison of B1 (a), B2 (b), g (c) and E (d) for models M1 and M2. Solid lines: posterior medians for model M1. 

Dotted lines in bold: posterior medians for model M2. Dotted line (a): B1 prior medians. Shaded areas: 95% Bayesian 

credible intervals (Lightgrey for model M1, grey for model M2, and darkgrey for the prior distribution of B1). 
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Table 6 

Comparison of deviance information criterion (DIC), normalized root mean-squared error (NRMSE) and Bayesian p-values 
for all models. 

 M1 M2 M3 M4 

DIC 422 430 - - 

N
R

M
S

E
 

BTS 0.73 0.74 0.76 0.74 

CGFS 0.78 0.77 0.81 0.76 

LPUE (Group 0+) 

LPUE (Group 1+) 

- 

0.72 

- 

0.76 

0.81  

0.71 

- 

- 

Catch (Group 0+) 

Catch (Group 1+) 

- 

0.55 

- 

0.56 

0.46 

0.54 

- 

0.33 

p
-v

a
lu

e 

BTS 0.55 0.55 0.54 0.59 

CGFS 0.7 0.7 0.7 0.74 

LPUE (Group 0+) 

LPUE (Group 1+) 

- 

0.54 

- 

0.53 

0.53 

0.55 

- 

- 

Catch (Group 0+) 

Catch (Group 1+) 

- 

0.51 

- 

0.51 

0.51 

0.51 

- 

0.51 

 

3.4. Including the 0+ group in the dynamics (models M1 versus M3) 

 

Overall, extending the model to include the 0+ group did not improve the fit of 1+ group 

category of the model (the one that is common to models M1 and M3). Differences in p-

values between models M1 and M3 were weak for all abundance indices (Table 6). NRMSE 

values for BTS and CGFS were slightly lower for model M1 than for model M3 (Table 6; 

Figs 5c and 5d), indicating a better fit to the data. NRMSE values for model M3, for the 

LPUE of group 1+ individuals were smaller than for the LPUE of group 0 individuals, 

indicating a better fit to the LPUE of group 1+ individuals (Table 6; Fig. 5b).  

Estimates of B0 for model M3 showed little variation (Fig. 6a), but were sensitive to the 

prior distribution of g0,y (Table 5). Estimates of B1 and B2 were smaller for model M3 than 

for model M1 (Figs 6a and 6b). Estimates of g1,y were similar for models M1 and M3. 

Estimates of g0,y were sensitive to the prior distribution of g0,y with up to 19% variation in 

posterior means (Table 5; Fig. 6c). The exploitation rate estimated for group 1+ individuals 

followed the same trend for models M1 and M3, but model M3 had higher estimates. The 

exploitation rate of group 0 individuals increased greatly between 1992 and 2000, as well as 

the catch of group 0 individuals (Figs 5a and 6d). 

The sensitivity analysis conducted on model M3 showed that changes to the prior 

distribution of B0,y or to the prior distribution of g0,y had little effect on DIC, NRMSE and 

the p-values (Table 4). However, the model with a higher CV on catches was associated with 

higher DIC and NRMSE values for the catch of group 0 animals, indicating a better fit of 

the model M3 with baseline priors (Table 4). 
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Fig. 5. A comparison of model M3 posterior median estimates with observed values for catch (a) and LPUE (b), BTS (c) 

and CGFGS (d) abundance indices. Solid lines: posterior medians. Shaded areas: 95% Bayesian credible intervals. 
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Fig. 6. A comparison of B1 (a), B2 (b), g (c) and E (d) for models M1 and M3. Solid lines: posterior medians for model M1. 

Dotted lines: posterior medians for model M3. Shaded areas: 95% Bayesian credible intervals (Light grey for model M1 

and grey for model M3). 

 

3.5. Effect of deleting the French LPUE abundance indices (models M1 versus M4) 

 

Overall, model M4 did not show any improved performance with regards to model M1. 

NRMSE values of catch were smaller for model M4 than for model M1, indicating a better 

fit. However, the p-values for the BTS and CGFS were higher for model M4 than for model 

M1, indicating a better fit of model M1 (Table 6). Model M4 provided less variable estimates 

of g1,y (Fig. 7c), but more variable estimates of the exploitation rate (Fig. 7d) than model 

M1. The lower variability of the estimates of g1,y in model M4 is in accordance with lack of 

information from the LPUE to update the prior distribution of g1,y. The estimates of B1 and 

B1.jan (Figs 7a and 7b) followed the same trend as for models M1 and M4. Because the French 

LPUE abundance indices were higher than survey abundance indices for the last five fishing 

seasons (Figs 3b, 3c and 3d), results of model M4 showed a slightly greater decreasing trend 

between 2002 and 2014 than in model M1. 
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Fig. 7. A comparison of B1 (a), B1.jan (b), g (c) and E (d) for models M1 and M4. Solid lines: posterior medians for model 

M1. Dotted lines: posterior medians for model M4. Shaded areas: 95% Bayesian credible intervals (Light grey for model 

M1 and grey for model M4). 

 

4. Discussion 

 

4.1. A new two stage biomass dynamic model for cuttlefish in the Eastern Channel 

 

The Bayesian state-space two-stage biomass dynamics model provided a substantial 

contribution to the existing assessment method for the English Channel cuttlefish stock.  

A Leslie-Delury depletion model was applied by Dunn (1999b) based on data from the 

UK beam trawl fleet only, but French landings were not taken into account in this model, 

although they are higher than English landings. Royer et al. (2006) have developed a 

monthly VPA, but the method could not be applied routinely because of the inconsistency 

of size structures.  

The two-stage biomass model is an alternative for short-lived species with a lack of 

reliable age-data (Giannoulaki et al., 2014; Roel et al., 2009; Roel and Butterworth, 2000). 

In particular, the model developed in this study provides substantial extension to that 

developed by Gras et al. (2014) inter alia because it is developed in a state-space modelling 

framework that allows for a comprehensive integration of several sources of uncertainty in 

the biomass dynamics and in the data. The Bayesian framework also allows use of prior 

information on the biomass growth rate parameter. Finally, the flexibility of the state-space 
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modelling framework allows us to easily expand the model and to test for the benefits of 

considering both 0+ and 1+ age groups in the biomass dynamics.  

Model M1, based on a time-varying biomass growth rate and BTS, CGFS and LPUE 

time series and specific to group 1+ individuals, was found as the best trade-off between 

ecological significance, data requirement and transferability to other stocks, and is therefore 

the one we advocate for the English Channel cuttlefish stock.  

The hypothesis of a time-invariant biomass growth rate parameter (model M2) was 

clearly rejected by our analysis because model M1 outperformed model M2 in terms of 

model fit, with a smaller DIC and a smaller NRMSE for the LPUE. This result is in 

accordance with published literature on cephalopods, which are known to experience high 

inter-annual growth variation (Challier, 2005; Domingues et al., 2006).  

We found no clear advantages to including the 0+ group in the model (model M3). Model 

M3 did not outperform M1 in terms of quality of fit, and including an additional 0+ group 

in the model required additional data and information that increased the sensitivity of model 

outputs. Hypotheses related to the prior distribution of the growth rate parameter g0,y  can be 

questioned, as environmental variability might have a stronger impact on group 0 individuals 

than on group 1+ individuals. In fact, temperature and nutrient availability are known to 

affect both growth and natural mortality of cuttlefish, particularly during the juvenile phase 

(Moltschaniwskyj and Martinez, 1998). Calculation of growth of 0+ group might be biased 

because of micro-cohort issues. For example, Royer et al. (2006) indicates the presence of 

two micro-cohorts of cuttlefish in the English Channel, with a first recruitment around 

October, and a second around April. As the CGFS takes place in October, the mean growth 

calculated for group 0 animals might be biased for years when there were two micro-cohorts: 

only the first micro-cohort would be represented in the data of age class 0 in year t, whereas 

both micro-cohorts would be represented for age class 1 in year t+1.  

Our model also illustrates the capacity of the framework to forecast biomass dynamics 

while propagating posterior uncertainty in forecasting. Model M4 provided predictions of 

the unexploited biomass in winter based on survey data, and could help manage the stock in 

the event of strong depletion.  

4.2. Limits of the approach 

 

The approach provides a framework for structuring further research and data collection. 

It is based on the assumption of a single population for the English Channel stock of 

cuttlefish. This assumption is supported by several authors (Dunn, 1999b; Le Goff and 

Daguzan, 1991; Pawson, 1995; Wang, 2003). However, stock boundaries are still not clearly 

defined and other research supports a substantial gene flow between the English Channel 

and the northern Northeast Atlantic (Gulf of Biscay, France) (Pérez-Losada et al., 2007). 

Wolfram et al. (2006) also showed there is an extensive gene flow among weakly structured 

cuttlefish populations from the Bay of Biscay into the North Sea. Investigating the spatial 

structure of cuttlefish populations in the Channel and Gulf of Biscay and its impact on stock 

assessment and management should form the basis for future research. 

The results were sensitive to some of prior assumptions. Results from model M1 showed 

that B2 and g1,y were the most sensitive variables (Table 5). The sensitivity of the exploitation 

rate to the prior distribution of g1,y was low, therefore this variable should be a good indicator 

of stock status, as proposed by Gras et al. (2014). Future research is needed to improve 

knowledge on the biomass growth rate and on the length-weight relationship. The method 

we developed to construct an informative prior on g made use of data from Dunn (1999b) 

that ignores the variability over the years and within years of growth parameters. Future 

research should investigate the variation of the growth rate and length-weight relationship 
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of cuttlefish, both over the years and within the years (e.g. through tag-recapture 

experiments). 

4.3. Management implications 

 

The estimates of exploitation rates differ noticeably from those of Gras et al. (2014). 

Specifically, Gras et al. (2014) did not detect any trend in exploitation rates between 1992 

and 2008. Our study added six years of data, and estimated a decreasing trend of exploitation 

rate from 2001 to 2009.  

Our model can be used to help define in-season assessment and management to limit the 

risk of overexploitation (Pierce and Guerra, 1994; Rosenberg et al., 1990). In France, the 

minimum landing weight of cuttlefish is 100 g and otter trawl nets are not allowed to use 

mesh size <80mm. For pot fishery, there is also a limited number of fishing licenses. In 

Normandy, trawlers are allowed to fish cuttlefish spawners six weeks in spring inside 3 

nautical miles as an exemption, which is decided each year around April. Another exemption 

allows them to target hatchlings for two weeks in the summer. Predictions of the unexploited 

biomass in winter (B1.jan) from model M4 could be used as information to authorize or 

alternatively to close those exemptions in the event of a very low biomass predicted for the 

fishing season.  

4.4. Applicability of the model to other stocks 

 

Beyond the case study of the English Channel cuttlefish stock, the approach provides 

general insights to improve cephalopod assessment models that can be transferred to other 

stocks of S. officinalis, in France or abroad, or even to other cephalopods species 

Some European cuttlefish stocks monitored by the ICES Working Group on Cephalopod 

Fisheries and Life History have not been assessed. For most of them, data required for the 

two stage biomass dynamic model are available. An assessment of S. officinalis in the Bay 

of Biscay was conducted by Gi Jeon (1982), who used a VPA with a monthly time-scale and 

two age groups, based on data from years 1978-1979. A series of the French standardized 

LPUE can be calculated. Scientific data are available from Ifremer EVHOE survey 

(Evaluation of Fishing Resources in Western Europe), but the reliability of those data to 

construct an abundance index for cuttlefish abundance remains questionable because the 

survey occurs offshore in November, and therefore catches cuttlefish only if the migration 

has already happened.  

Another stock of S. officinalis is found around Spain and Portugal. A time series of LPUE 

for Spanish trawlers is available, as well as a time series of survey abundance indices.  The 

Moroccan Dakhla (2001-2006) stock, the Cape Blanc (1990-2006) stock in Mauritania-

Morocco, and the Senegal-the Gambia stocks (1993-2006) have been assessed through a one 

stage Schaefer biomass production model (FAO/CECAF, 2007). As both catch and 

abundance indices from the survey and/or CPUE are available for all those S. officinalis 

stocks, developing a two-stage biomass model for those stocks would mean taking an 

interesting direction of research. 

Other species of cuttlefish have been assessed (in India: Nair et al., 1993; Rao et al., 

1993; off the Arabian Sea coast of Oman: Mehanna et al., 2014; and in the Gulf of Suez: 

Mehanna and Amin, 2005; Mehanna and El-Gammal, 2010). All these studies use length-

based cohort analysis, which requires the very strong and not realistic assumption of a 

constant age-length relationship (Forsythe and Heukelem, 1987; Saville, 1987) and it could 

be worth developing more parsimonious two stage biomass models. 
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Our results highlighted the key role of the informative priors on biomass growth rate 

parameters in the two stage model. Developing a meta-analysis to populate estimates of 

those parameters across many cuttlefish stocks (e.g., through hierarchical Bayesian models) 

could help improve the precision of informative priors and transfer information to stocks 

where only little information is available. 

Some model assumptions should be tailored to fit some stock specificities. For stocks in 

warmer waters, we could expect a higher value of Gr (Richard, 1971). Cuttlefish experience 

a slower growth rate in the English Channel than in South Brittany, and a water temperature 

effect is suspected (Le Goff and Daguzan, 1991). The model presented here is developed 

under the assumption of an exclusive two-year life cycle which would no longer be valid. 

The model should be modified to take into account the co-existence of several reproduction 

strategies with various durations, as suggested for the Bay of Biscay stock that exhibit a 

mixture of 1 and 2 year life cycles.  
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Appendix A 

 

We applied the package mixdist (Macdonald et al., 2011) to length frequency data 

obtained from the French Onboard Observer Program (Obsmer) to calculate the individual 

growth rate for group 1+ individuals (Gr1+). This program aims to collect catch data onboard 

commercial fishing vessels. External observers follow a specified sampling scheme and 

collect data on fish kept on board and discarded fish. The number of cuttlefish sampled each 

year is given in Table A.1. The mean length of group 1+ individuals was calculated in 

October and December, as the cohort split-up is of better quality for these months. The Dunn 

(1999a) length-weight relationship was used to convert mean length into mean weight (�̅�1+). 

The variability of mean weight values is plotted on Fig. A.1. The goodness-of-fit of the chi-

square statistic was checked, and the fishing seasons where one of the cohort split-up model 

has a p-value above 0.05 were not used in the growth rate calculation. 

For each fishing season where the cohort split-up is reliable, annual growth coefficients 

Gry1+ were calculated using Eqn A1, then Gr1+ was calculated as the median value of all 

Gry1+. 

𝐺𝑟𝑦1+ = log(�̅�1+,𝐷𝑒𝑐𝑒𝑚𝑏𝑒𝑟 �̅�1+,𝑂𝑐𝑡𝑜𝑏𝑒𝑟⁄ ) ∗ 6     (A1) 

To calculate the mean growth coefficient for group 0 individuals (Gr0) we used the 

package mixdist on length frequency data from CGFS survey: 

𝐺𝑟𝑦0 = log(�̅�1,𝑦+1 �̅�0,𝑦⁄ )        (A2) 

where �̅�0,𝑦 is the mean weight of group 0 individuals in year y and �̅�1,𝑦+1 is the mean weight 

of group 1+ individuals in the following fishing season. Gr0 was calculated as the median 

value of all Gry0. 

CGFS data from 2006 to 2014 were used. Length data obtained from the mixdist package 

had an inter-year CV of 0.14 for age 0 and 0.065 for age 1. To calculate the mean growth 

coefficient of group 1+ individuals (Gr1+), Obsmer data were used (Table A.1). Cohort split-

up was reliable for seven years from 2005 to 2014 (Fig. A.1). Length data obtained from the 

mixdist package had an inter-year CV of 0.058 in October and 0.054 in December. A CV 

value of 0.1 was used to construct the parameters 𝜇𝑔0 and 𝜇𝑔1, used as mean values for the 

construction of the priors for g0,y and g1,y (Table 1). We found a value of 2.816 for Gr0 and 

a value of 1.542 for Gr1+, with inter-year CVs of 0.13 and 0.64 respectively. 

Natural mortality (M) was calculated using the Caddy (1996) gnomonic time division 

method. This method assumes that M is a simple function of mean lifespan and is constant. 

A vector of natural mortality-at-age is calculated: the life-span is divided into several 

intervals whose duration increases proportionally to the age, and natural mortality is assumed 

to be constant for each interval. The time-division is called gnomonic, and for each interval, 

a constant number (β) is obtained when multiplying the instantaneous mortality rate by the 

interval duration. The initial death rate is assumed to be high, and after a few months, a 

plateau is obtained. An initial number of individuals must be chosen, and exactly 2 survivors 

must remain after 2 years to ensure population replacement. 

The mortality function was fitted with an initial number of hatchlings (N1) derived from 

fecundity estimates. Previous studies on cuttlefish fecundity were used to choose values for 

the initial number of individuals. Mangold-Wirz (1963) reported that females Sepia 

officinalis may spawn from about 150 to 4,000 eggs depending on their size. Richard (1971) 

estimated numbers of 150 to 500 eggs by counting mature ova only, and a mean number of 

2,000 eggs was observed in laboratory culture (Hanley et al., 1998). Four values of N1 are 

tested: 500, 1,000, 1,500 and 2,000. 
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The two years life span is divided into a number i of smaller time intervals ∆𝑖. A value 

of 2/365 is set for the first interval ∆1. For each interval: 

𝑁𝑖+1 = 𝑁𝑖 ∗ exp (−𝑀𝑖 ∗ ∆𝑖)        (A3) 

where 𝑀𝑖 is the mortality rate for the interval of duration ∆𝑖.  

𝑀𝑖 ∗ ∆𝑖= 𝛽          (A4) 

where β is a constant.  

To create a series of intervals of increasing duration starting at t = 0, given a first time 

interval ∆1 = t1, we multiply the time elapsed to the start of each new interval by a constant 

multiplier, 𝛼 (Caddy, 1996). 

𝑡𝑛 = ∑ ∆𝑖
𝑛
𝑖=1 ,       where ∆𝑖= 𝛼 ∗ 𝑡𝑖−1       (𝑖 ≥ 2)     (A5) 

Parameters 𝛼 and 𝛽 were calculated using iterations to achieve  ∑ ∆𝑖
𝑛
𝑖=1 = 2 and 𝑁𝑛 =

2. 

To estimate the natural mortality of group 1+ individuals (M1+), we set the number of 

time intervals such that the last time interval ends at t = 2 years and lasts approximately 12 

months. After the division of the lifespan into 10 gnomonic time intervals, we calculated the 

decline in numbers such that exactly 2 spawners survive by two years of age. To estimate 

the natural mortality of group 0 individuals (M0), we calculated the mean mortality value of 

the 8th and 9th intervals, which matches the period when animals are between 3 months and 

12 months old. We tested four possible values for the initial number of individuals (N1) for 

10 gnomonic time-intervals (Table A.2). With 10 time-intervals, the pre-spawning interval 

was 11.5 months, so the resulting mortality was related to group 1+ individuals. Once the 

values of individual growth and natural mortality were calculated, we could obtain Grand 

mean 𝜇g0 and Grand mean 𝜇g1, used for the construction of 𝜇g0 and 𝜇g1 (Table A.3). 

 

 

Table A.1 

Number of individuals sampled in Obsmer and CGFS. “*” indicates years that were not used for growth rate calculation 
because one cohort split-up of this year was not reliable. 

Obsmer CGFS 

Year October December Year October 

2005 277 252 2005 341 

2006 1035 186 2006 344 

2007* 245 138 2007 157 

2008 409 220 2008 110 

2009 526 161 2009 146 

2010* 1304 220 2010 147 

2011* 655 153 2011 81 

2012 755 796 2012 161 

2013 1035 334 2013 131 

2014 1001 1488 2014 140 
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Fig. A.1. The variability of mean weight values of group 1+ individuals after cohort split-up of Obsmer length data. W1 is 

the mean weight in October and W2 is the mean weight in December. Full lines represent the years where p-value of cohort 

split-up model was not significant (NS). Dotted lines represent the years where p-value of cohort split-up model was 

significant (S) and therefore used for growth rate calculation. 

 

 

 

Table A.2 
Estimates natural mortality for different values of N1 and different pre-spawning intervals. 

N1 a β M (group 

0) 

M  

(group 1+) 

Pre-spawning 

interval (months) 

Number of gnomonic 

time-intervals 

500 0.926 0.552 1.618 0.574 11.5 10 

1 000 0.926 0.621 1.821 0.646 11.5 10 

1 500 0.926 0.662 1.94 0.688 11.5 10 

2 000 0.926 0.691 2.024 0.718 11.5 10 

 

Table A.3 
Summary of natural mortality, mean growth coefficient and g parameter. 

Age class Mean mortality Mean individual growth Mean biomass growth 

0 1.851 2.816 Grand mean 𝜇g0 = 0.97 

1+ 0.657 1.542 Grand mean 𝜇g1 = 0.89 
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Appendix B 

 

To calculate the French LPUE used in this work, we first separated out the catch into 

two age groups 0 and 1+ for each year and month. Four variables were used in the statistical 

model to explain the variability of the LPUE: fishing season y, month m, ICES rectangle r 

and the engine power of the vessel p. No interactions were taken into account. For the engine 

power, the values were classified into 13 modalities. In the following,  𝑈𝑦,𝑚,𝑟,𝑝
𝑙𝑝𝑢𝑒1_𝑜𝑏𝑠

 denotes 

the LPUE abundance indices observed for fishing season y, month m, ICES rectangle r and 

engine power modality p. To calculate 𝑈𝑦,𝑚,𝑟,𝑝
𝑙𝑝𝑢𝑒1_𝑜𝑏𝑠

, the catches of group 1+ individuals in 

kilograms were divided by the effort in number of fishing hours.  

We present only the equations related to the calculation of the LPUE time series of group 

1+ individuals. The same method was applied for group 0 animals. To account for zero-

inflation in the data, a binomial error GLM (Eqn B1) and a Gaussian error GLM on positive 

values (Eqn B2) were developed separately and then combined to provide model estimates 

of the abundance. Standardized abundance indices 𝑈𝑦,𝑚,𝑟,𝑝
𝑙𝑝𝑢𝑒1_𝑠𝑡

 were calculated for each fishing 

season, month, ICES rectangle and vessel power modality as the probability of positive 

observations multiplied by the expected catch rate conditional to the observations being 

positive (Eqn B3).  

The binomial GLM model on presence-absence data: 

𝑙𝑜𝑔𝑖𝑡(𝑈𝑦,𝑚,𝑟,𝑝
𝑙𝑝𝑢𝑒1_𝑜𝑏𝑠)0/1 = 𝛼𝑦 + 𝛽𝑚 + 𝛾𝑟 + 𝛿𝑝 + 𝜔𝑦,𝑚,𝑟,𝑝    (B1) 

The log-gaussian GLM model on positive data: 

𝐿𝑛(𝑈𝑦,𝑚,𝑟,𝑝
𝑙𝑝𝑢𝑒1_𝑜𝑏𝑠)>0 = 𝐿𝑛(𝛼𝑦) + 𝐿𝑛(𝛽𝑚) + 𝐿𝑛(𝛾𝑟) + 𝐿𝑛(𝛿𝑝) + 𝜀𝑦,𝑚,𝑟,𝑝  (B2) 

The prediction of abundance indices based on the combination of the two models: 

𝑈𝑦,𝑚,𝑟,𝑝
𝑙𝑝𝑢𝑒1_𝑠𝑡

=
𝑒

𝑙𝑜𝑔𝑖𝑡(𝑈𝑦,𝑚,𝑟,𝑝
𝑙𝑝𝑢𝑒1_𝑜𝑏𝑠

)0/1

1+𝑒
𝑙𝑜𝑔𝑖𝑡(𝑈𝑦,𝑚,𝑟,𝑝

𝑙𝑝𝑢𝑒1_𝑜𝑏𝑠
)0/1

∗ 𝑒𝐿𝑛(𝑈𝑦,𝑚,𝑟,𝑝
𝑙𝑝𝑢𝑒1_𝑜𝑏𝑠

)>0 ∗ 𝑒
𝜎2

2 >0   (B3) 

where 𝜔𝑦,𝑚,𝑟,𝑝 and 𝜀𝑦,𝑚,𝑟,𝑝 are the residuals for fishing season y, month m, ICES rectangle 

r and engine power modality p. 𝜎 is the standard error of the Gaussian error GLM. 

The standardized re-scaled LPUE 𝑈𝑦
𝑙𝑝𝑢𝑒1

 was calculated for each fishing season as the 

average on all predicted values divided by the first value of the time series: 

𝑈𝑦
𝑙𝑝𝑢𝑒1 =

∑ 𝑈𝑦,𝑚,𝑝,𝑟
𝑙𝑝𝑢𝑒1_𝑠𝑡

𝑚,𝑝,𝑟

𝑁𝑚,𝑝,𝑟
𝑦

⁄

𝑈1
𝑙𝑝𝑢𝑒1        (B4) 

where 𝑁𝑚,𝑝,𝑟
𝑦 is the number of predicted values for each fishing season. 

 

 


