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AABSTRACT 

 
Among the English Channel fishery, the importance of cuttlefish stock has increased, fol-

lowing the cephalopods global landings and market trend. The stock is currently managed at re-
gional scale but not by European regulations, although it is a shared species targeted by French and 
British fishing fleets at several stages of its life-cycle and across much of its distributional range. 

 An assessment of this stock was conducted in June 2014 by fitting a two-stage biomass 
model on a 22 years’ time-series (1992-2013). We present the last update of cuttlefish stock assess-
ment using the same model on years 1992-2014. As the outputs of the model are sensitive to a fix 
growth parameter, we explore possibilities to improve the model. 

 The use of a Bayesian framework is particularly adapted for decision making, allowing 
the propagation of uncertainty in the model and the use of prior knowledge on some parameter 
distributions. Therefore, we implemented the two-stage biomass model into a Bayesian framework 
and compared the results with the outputs of the initial fit. We found similar trends of biomass 
estimates for both models. The Bayesian model outputs showed a smaller range of variation than 
the initial fit. 

 These results are only a first step toward an improvement of the two-stage biomass model 
currently used for cuttlefish stock assessment in the English Channel. The Bayesian model could 
indeed be improved and particular attention should be paid to the growth parameter g because of 
the high sensitivity of model outputs to its value. We discuss future directions of this work. 

Keywords: stock assessment, short-lived species, data-limited, cuttlefish, Sepia officinalis, English Channel, 
two-stage biomass model, Bayesian methods 

INTRODUCTION 

 
Stock assessment for short-lived species is a delicate matter because of the difficulty of swift data 
collection as well as the challenge of modelling population dynamics. Cephalopod populations are 
fast growing short-lived ecological opportunists. Age based methods in these species are hampered 
by time consuming age determination with statoliths. In spite of trials with a wide range of models 
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(Pierce and Guerra 1994) there is no routine stock assessment in most of cephalopods fisheries, 
although a precautionary approach is often advocated (Rodhouse et al. 2014). 

The English Channel cuttlefish stock is one of the most important resource for the Channel fisheries 
and is exploited by French and English fishermen (Engelhard et al. 2012). Inshore exploitation is 
managed by local rules, but no EU regulation apply to the whole stock. It experiences a short life-
span (considered of 2 years in the English Channel) and performs seasonal migrations. Cuttlefish 
concentrates in the central western Channel during winter and in coastal areas during spring and 
summer (Boucaud-Camou and Boismery 1991). One argument for an English Channel stock unit 
was that migration takes place almost entirely within the English Channel. Boundaries of the stock 
were set as ICES division VIId and VIIe, which was also coherent with the concentration of high 
Catch Per Unit Effort (CPUE) inside these boundaries (Wang 2003). 

Analytical methods have been used to occasionally assess the stock (Royer et al. 2006), but because 
of the difficulty to correctly describe catch structure, less data-demanding models were sought 
(Gras et al. 2014), which could be used routinely (Duhem et al. in WGCEPH 2014). The two-stage 
biomass model (Roel and Butterworth 2000) is not too much data-demanding and is therefore well 
suited for data-limited stocks. It assumes that the exploited population can be observed at two 
different stages: recruitment and full exploitation. It has been adapted to the English Channel cut-
tlefish stock (Gras et al. 2014), based on a simplification of cuttlefish life-cycle, and with bootstrap 
estimated uncertainties. Ibaibarriaga et al. (2008) highlights the advantage of using Bayesian meth-
ods for estimating uncertainties in these models and to face the lack of data. The main idea of 
Bayesian inference is to use the initial knowledge (prior distribution), update it with the most re-
cent information (observed data, interpreted via the likelihood function) and form the posterior 
distribution, which is the new understanding about the studied phenomenon (Pulkkinen 2015). 

This study presents the update of cuttlefish stock assessment using the two-stage biomass model 
from Gras et al. (2014). The evolution of biomass estimates from 1992 to 2012 using a Bayesian im-
plementation of this model is also presented. Outputs are compared with the initial fit. This study 
is a first step in the improvement of the two stag-biomass model currently used for the English 
Channel stock of cuttlefish, and further work will be done as explained in the discussion part. 
 

MMATERIALS AND METHODS 

 

Data used in the model 

The implementation of the two-stage biomass model required abundance indices from the 
Bottom Trawl Survey (BTS) and the Channel Ground Fish Survey (CGFS), as well as landings and 
effort from French and UK trawlers, and total catch of cuttlefish among the English Channel (C1+,y). 
BTS abundance indices and data from UK trawlers were extracted from the Centre for Environ-
ment, Fisheries and Aquaculture Science (Cefas), and data from CGFS and French trawlers were 
extracted from the French Research Institute for Exploitation of the Sea (Ifremer).  

The BTS is carried out each year in July (when cuttlefish recruitment occurs), and the 
CGFS is carried out in the eastern English Channel one quarter later, in October. Trawling lasts 
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approximately 30 minutes at each station for both surveys (Carpentier et al. 2009). Effort data con-
sist on hours of trawling for the trip considered and engine power of the vessel considered. The 
weight of specimens of one year old and more caught in the English Channel was also required. 
This last information could be estimated from sale data, by calculating the percentage of cuttlefish 
belonging to commercial categories 1 or 2 (i.e. animals above 300g). 

Two-stage biomass model 

A package with the version of a two-stage biomass model adapted to cuttlefish was coded 
in R (Gras and Robin 2014). The model (Gras et al., 2014) assumes a simplified life cycle of cuttle-
fish. It assumes that the exploited population can be observed at two different stages: recruitment 
and full exploitation. Recruited biomass (B1) is estimated with abundance indices from BTS and 
CGFS surveys. Spawning stock biomass (B2) is estimated with Landings Per Unit Effort (LPUE) 
from French and UK bottom trawl fisheries. A biomass growth parameter g is fixed externally. It is 
composed by the natural mortality rate, assumed to be equal to 1.2 (Royer et al. 2006, Gras et al. 
2014) and the growth rate, derived from mean weight at age using historical data collected by the 
University of Caen.  

A first step is to calculate standardized LPUE, using the delta-glm function of the cuttle-
fish.model package. LPUE variability is explained by 4 variables: year, month, ICES rectangle and 
engine power of the vessel. 

Total catch of one year old cuttlefish ( ) is assumed to happen as a pulse in the middle 

of the fishing season (on 1st January Y). Spawning stock biomass B2,y of the year y at the end of the 
life cycle is therefore expressed as: 

 

Abundance B1,y at the beginning of the fishing season can be estimated with BTS and 
CGFS survey index:  

  ;   

Where  is the BTS survey index for year y, k1 is the BTS survey catchability, y is the ob-

servation error for year y,  is the CGFS survey index, k2 the CGFS survey catchability, and y is 

the observation error. 

LPUE are modelled based on the mean biomass in the fishing season. UK standardized LPUE (  

and French standardized LPUE (  can be expressed as: 
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Where  is the catchability of UK trawlers,  the catchability of French trawlers, and 

 the landings from July, year y to April, year y+1, considering that UK trawlers exploit cuttle-

fish only in autumn and winter. The model is finally fitted by minimizing the sum of squares re-
siduals. 

The exploitation rate can be expressed as the total landings of year y divided by the bio-
mass estimated on 1st January (B1.jan), year y: 

 

In a first step, we updated the stock assessment of the English Channel stock of cuttlefish. 
Then, we implemented the model used by Gras et al. (2014) into a Bayesian framework and coded it 
with Openbugs. The Bayesian fit required prior distributions for B1 and catchability rates. Priors 
were the same for each year. We chose normal distributions, with a mean of 15000 and a CV of 2.5 
for B1, and a mean of 0.0001 and a CV of 0.0067 for catchability rates to stay close to the work of 
Gras et al. (2014). We also used the same value for g as in Gras et al. (2014): g=-1.01. Posterior distri-
bution of B1 was obtained by combining the likelihood function with the prior distribution. 

Chain convergence was checked with the BGR diagnostic suggested by Brooks and Gel-
man (1998) and a sensitivity analysis was conducted on B1 prior distribution and g value. A 20% 
variation was applied on the mean of B1 prior distribution, and values of g=-0.5 and -1.5 were tested 
in order to compare results with the sensitivity analysis conducted in Gras et al. (2014). Initial and 
Bayesian fit of the two-stage biomass model were applied on years 1992-2013. 1000 iterations were 
conducted for the initial model with bootstrap methods, and 100 000 iterations for the Bayesian 
model using Markov chain Monte Carlo (MCMC) methods. Update took longer for the initial fit 
than for the Bayesian fit. 

 

RRESULTS 

Stock assessment update  

Total landings of cuttlefish in the English Channel have increased between 1992 and 2004 
(Figure 1), mostly because of the French landings evolution. Between 2004 and 2009, French land-
ings have decreased, leading in 2009 to the smallest value of total landings among the entire time-
series. Since 2009, French and UK landings are of the same order of magnitude, with no clear trend 
in total landings evolution. 



88  | ICES WGCEPH REPORT 2015 

 

 
Figure 1: Evolution of cuttlefish landings in the English Channel from 1992 to 2014 
 
 Comparison of predicted and observed abundance indices (Figure 2) permits the evalua-
tion of the model fit. In general, observed abundance indices are within the confidence intervals of 
the model prediction. However, this is not true for years 2000 and 2011. It is interesting to notice 
that BTS and CGFS survey observed abundance indices seem to follow a same trend, slightly dif-
ferent from the trend of UK and French LPUE. The 95% confidence intervals for years 2001 and 
2013 are small, with low abundance indices observed for all data sources. 
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Figure 2: Time-series of the observed and predicted abundance indices for the two-stage biomass 
model fit with 95% confidence interval from fishing season 1992 (July 1992 to June 1993) to 2013 
(July 2013 to June 2014). 
 

As expected in the light of Figure 2 observations, predicted recruited and spawning stock 
biomass have decreased between 2012 and 2013 (Figure 3), whereas exploitation rate has increased 
(Figure 4). Although no clear trend of B1 and B2 evolution is observed between 1992 and 2002, there 
seem to be a slight decreasing trend of biomass since 2002. However, no stock-recruitment relation-
ship was observed between spawning stock biomass and recruited biomass (Figure 5). In Gras et al. 
(2014), the minimum estimated B2 (11 000 tons) was proposed as Blim for English Channel cuttlefish, 
based on the precautionary principle. As the stock assessment update didn’t produce any Blim value 
smaller than Gras et al. (2014) result, conclusions remain unchanged. 
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Figure 3: Evolution of cuttlefish recruited biomass (B1) and spawning stock biomass (B2) from fish-
ing season 1992 (July 1992 to June 1993) to 2013 (July 2013 to June 2014). 
 

 
Figure 4: Evolution of cuttlefish exploitation rate from fishing season 1992 (July 1992 to June 1993) 
to 2013 (July 2013 to June 2014). 
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Figure 5: Stock-recruitment relationship with the average annual recruitment (solid line) and its 
95% confidence interval (horizontal dashed lines). Years plotted are the years of spawning stock 
biomass estimates (year Y), which are linked to the recruited biomass (year Y+2). 
 

Comparison of initial and Bayesian fit of the two-stage biomass model  

The evolution of estimated abundance indices (Figure 6) shows a better fit of the initial 
model for BTS and CGFS surveys, but a better fit of the Bayesian model for French and UK LPUE. 
The models do not succeed in estimating high values of BTS and CGFS abundance indices (e.g. 
2000, 2002 for both surveys, and 2006 for CGFS survey). Survey abundance indices in 2012 pull 
model fit downward, whereas LPUE abundance indices pull it upward. 

Evolution of recruited biomass estimates (Figure 7a) and spawning stock biomass esti-
mates (Figure 7b) are similar between initial fit and Bayesian fit of the two-stage biomass model. 
But outputs from Bayesian fit show a smaller range of variation than the initial fit. Confidence 
intervals are smaller for Bayesian fit, except during years of small biomass estimate (i.e. 1994, 1997 
and 2001). 

 Similar trends of exploitation rate are observed for both fit of the two-stage biomass mod-
el (Figure 8).  An important decrease in exploitation rate is observed between 2006 and 2008 for 
both fit, but the following 2011 spike predicted by the Bayesian fit is not as high as the one predict-
ed by the initial fit.  

Catchability rates estimated by Bayesian model are higher than estimations from initial fit 
(Table 1), from +3.3% to +12.6%. Biggest differences between the two fit are observed for CGFS 
catchability rate (k2). Table 3 shows the percentage of variation between outputs from Bayesian and 
initial fit of the two-stage biomass model. In average, biggest differences between both fits are 
observed for the exploitation rate. 

 Results of the sensitivity analysis conducted on the Bayesian two-stage model (Table 2) 
show that B2 estimates are very sensitive to variation of g. A change of 20% in the mean value of B1 
prior distribution leads to 30% variation of B2 estimates. Estimates of exploitation rates are most 
sensitive to underestimation of B1 prior distribution and overestimation of g. Survey catchability 
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estimates are most sensitive to variation of B1 prior distribution, whereas UK and French fleet 
catchability estimates are most sensitive to variation of g. 

 

Figure 6: Time-series of the observed and predicted abundance indices for initial model and Bayes-
ian model fit with 95% confidence interval from fishing season 1992 (July 1992 to June 1993) to 2012 
(July 2012 to June 2013). 
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Figure 7: Comparison of the evolution of a) recruited biomass B1 and b) spawning stock biomass B2 
for initial and Bayesian fit of the two-stage biomass model. 

 

a b
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Figure 8: Comparison of the evolution of exploitation rate for initial and Bayesian fit of the two-
stage biomass model. 

Table 1: Variability between initial model and Bayesian model estimates of catchability rates (in 
percentage). 

k1 k2 quk qfr 

7.258 12.64 7.197 3.253 

k1 = catchability rate of BTS survey, k2 = catchability rate of CGFS survey, quk = catchability rate of 
French trawlers, qfr = catchability rate of UK trawlers. 

Table 2: Sensitivity analysis of the Bayesian two-stage biomass model 

B1_mean = 12000 B1_mean = 18000 g = -0.5 g = -1.5 

B1 -19.96 20.06 -2.657 × 10-2 2.249 × 10-3 

B2 -29.72 29.87 -48.56 80.64 

B1.jan -19.96 20.06 -22.53 27.77 

Exp 24.95 -16.71 29.09 -21.73 

k1 -25.02 16.67 0.0742 0.0297 

k2 -24.98 16.71 13.7 -11.5 

quk -30.44 20.69 35.9 -34.2 

qfr -35.03 18.95 45.6 -26.4 

B1_mean = value of the mean for B1 normal prior distribution 

 

Table 3: Percentage of variation between Bayesian model outputs and initial model outputs. 

year B1 B2 B1.jan Exp 

1992 10.89 10.84 16.45 -9.802 



ICES WGCEPH REPORT 2015 |  95 

 

1993 -4.283 -4.311 -6.332 4.513 

1994 32.43 32.42 55.59 -24.49 

1995 -3.977 -3.959 -5.866 4.138 

1996 -6.940 -6.925 -10.14 7.444 

1997 6.548 6.576 10.91 -6.136 

1998 -8.488 -8.494 -13.57 9.289 

1999 -8.695 -8.669 -12.20 9.491 

2000 -18.56 -18.55 -25.77 22.77 

2001 14.25 14.27 25.79 -12.46 

2002 -15.04 -15.04 -22.58 17.69 

2003 -10.62 -10.64 -16.05 11.88 

2004 -13.64 -13.66 -20.31 15.81 

2005 -11.14 -11.11 -15.34 12.52 

2006 -14.07 -14.06 -22.06 16.38 

2007 -11.00 -11.00 -15.93 12.38 

2008 9.677 9.725 12.16 -8.846 

2009 1.698 1.686 2.176 -1.639 

2010 1.504 1.515 1.938 -1.476 

2011 36.43 36.46 63.07 -26.73 

2012 9.375 9.364 11.67 -8.558 

Mean variation -0.1742 -0.1695 0.6482 2.103 

SD 14.95 14.59 24.22 13.67 

B1 = Recruited biomass, B2 = spawning stock biomass, B1.jan = biomass estimated on 1st January in the 
middle of the fishing season, Exp = exploitation rate, SD = standard deviation. 

DDISCUSSION 

This work presents the stock assessment update of the English Channel stock of cuttlefish. 
The R package used for the assessment (Gras and Robin 2014) has proven itself effective as a tool to 
assess the stock routinely. From next year on, the French scientific survey CGFS will be carried out 
with a new scientific vessel. This raises the issue of the abundance index time-series future. Some 
inter-calibration exercises have been carried out, showing that time-series can’t be continued for 
some species. Fortunately, the inter-calibration worked well for cuttlefish, as both scientific vessels 
exhibited similar catchability rates and selectivity.  

In this work, we also wanted to implement the two stage biomass model in a Bayesian 
framework and check if results were similar. Estimates obtained from the initial fit (Duhem et al. in 
WGCEPH 2014) and from the Bayesian fit of the two-stage biomass model showed similar trends. 
But the model still doesn’t succeed in estimating some values of abundance indices (Figure 6). 
Outputs from Bayesian fit showed high sensitivity to prior distribution of B1 and to g value. The 
need to give good prior estimations is a common issue of Bayesian methods. Gras et al. (2014) iden-
tified a significant positive correlation between the sea surface temperature during the third quar-
ter (summer) of the year before recruitment and B1. This result could be a starting point to 
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investigate a Bayesian model including environmental factors, in order to give better prior distribu-
tions for B1. 

High sensitivity to g was already highlighted by Gras et al. (2014) and further work also 
needs to be done on this particular point. Growth used for the two-stage biomass model is assumed 
to be the same for each year, which is a strong assumption for cephalopod species. One possibility 
would be to build an informative prior for g, using meta-analysis on other cephalopod stocks. Ide-
ally, variations of g in other stocks could be used to infer g annual variations of the English Channel 
cuttlefish stock in the Bayesian fit. But this information might be hard to obtain, as no regular eval-
uation of growth seem to be conducted for cephalopods stocks in the English Channel.  

Parameter g could also vary with season, as suggested in Dunn (1999). He found that fast-
est growth in length took place between July and October in males, and between August and Octo-
ber in females. The slowest growth rates were recorded from the winter before spawning in the 
spawning period. If we could for example find a relationship between sea surface temperature and 
cuttlefish growth, we could use this link to infer information on annual growth variation. Finally, 
size frequency data could be an additional source of information on growth variation. To better 
model reality, the Bayesian two-stage biomass model could also be improved by integrating migra-
tion. Massiot-Granier et al. (2014) developed an integrated hierarchical Bayesian life cycle model-
ling framework which could be a starting point to build such a model adapted to cuttlefish. 

Another idea is to use the Stock Synthesis (SS) framework (Methot and Wetzel 2013) to 
compute an adapted model, using all available information, including data used by the two-stage 
biomass model, as well as mean individual weight by month and length composition data. This 
framework offers many possibilities to use different sources of data and can be adapted to complex 
life histories. The model can account for time-varying growth, as well as cohort specific growth 
rate, environmental factors, and could also include migration. An SS model has for example been 
adapted for bigeye tuna Thunnus obesus, using five areas (Aires-da-Silva and Maunder 2012). 

In Gras et al. (2014), an exploitation rate below 40% is recommended, and a threshold of 
11 000 tons is proposed for the spawning stock biomass. Setting quotas to manage the English 
Channel cuttlefish stock is unlikely to be efficient because of the high variability in cephalopod 
stock sizes (Caddy 1983, Beddington et al. 1990). Currently, the stock is managed at regional scale. 
In Normandy, fishing of cuttlefish is forbidden within the 3-miles inshore zone, except during 2 
weeks at the end of August, and during another 6 weeks in spring. In order to better manage the 
stock, a management strategy evaluation could be conducted. Reduction of effort at particular 
times or in particular areas could be tested. Best management rules could thus be predicted, with 
good uncertainty estimates, thanks to the Bayesian framework. 
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