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ABSTRACT 
 
A two-stage biomass model is developed in the Bayesian framework that allows us to 
assimilate various sources of information. A method that makes use of ancillary length 
frequency data is developed to provide an informative prior distribution for the intrinsic 
biomass growth rate parameter and its annual variability. The new Bayesian model pro-
vides substantial improvement to the existing stock assessment method used by ICES. 
Considering a time-varying g parameter improves model fit and improves the ecological 
realisms of the model according to the sensitivity of the cuttlefish population dynamics to 
environmental fluctuations. We present results of the English Channel cuttlefish stock 
assessment updated with the new Bayesian model. The model also provides predictions 
of the unexploited biomass in winter based on survey data, and help managing the stock 
in case of strong depletion. 

 

Keywords: stock assessment, short-lived species, data-limited, cuttlefish, Sepia officinalis, English 
Channel, two-stage biomass model, Bayesian 

 
INTRODUCTION 
 
Most of cephalopods fisheries are only occasionally assessed, despite trials of various 
models (Pierce and Guerra 1994). There is no generalized method to conduct stock as-
sessment for short-lived species, which makes it difficult to compare outputs of the as-
sessments or to infer information from one stock to another. There is a need for a 
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precautionary approach when no routine stock assessment is conducted (Rodhouse et al. 
2014). 
 
The cuttlefish stock in the English Channel has already been assessed occasionally with a 
Thomson and Bell model based on monthly catch-at-age data (Royer et al. 2006), but the 
method was too much data-demanding for a routine stock assessment. In order to 
achieve routine stock assessment, a two-stage biomass model (Roel and Butterworth 
2000) was adapted to this stock (Gras et al. 2014). A simplification of cuttlefish life-cycle 
was used, assuming two different stages among the exploited population: recruitment 
and full exploitation. The model was fitted to time-series of catches and abundance indi-
ces by a least-square error method, and uncertainties were estimated by bootstrapping 
the estimates. 
 
However, the model suffers several caveats. First, it is fitted to data sources using a clas-
sical least-square procedure that might not be adapted to fully quantify uncertainties in 
estimates and predictions and that suffers from a lack of flexibility to change model as-
sumption and/or to assimilate other sources of available information or data.  
 
Second, the model is based on a very strong hypothesis of a fixed biomass growth pa-
rameter that embeds a natural mortality and a mean growth coefficient both considered 
constant in time and known without uncertainty. An annual natural mortality rate of 1.2 
was set, and a mean growth coefficient of 2.2 was calculated based on historical data 
(Medhioub 1986). However, a sensitivity analysis showed a high sensitivity of model 
outputs to this biomass growth rate parameter. Gras et al. (2014) advocate for the use of 
more recent data to provide a more accurate estimate of the biomass growth rate parame-
ter. Moreover, using a constant biomass growth rate might not be suitable for short-lived 
species strongly sensitive to environmental factors. 
 
Third, the initial two-stage biomass model represents the biomass of group 1+ individu-
als only, and basic assumptions are made on the data to fit this hypothesis. The model 
assumes that the exploited population can be observed at two different stages: recruit-
ment and full exploitation. Recruited biomass (B1) is estimated with abundance indices 
from the Bottom Trawl survey (BTS) and the Channel Ground Fish Survey (CGFS). 
Spawning stock biomass (B2) is estimated with Landings Per Unit Effort (LPUE) from 
French and UK bottom trawl fisheries. In this initial model, CGFS time-series is assumed 
to be based mainly on group 1+ individuals, but regarding the length frequencies, this 
assumption could be criticized. Indeed, this survey occurs in October, when cuttlefish 
migrates offshore. Part of the group 0 individuals is 3 months old at this period of the 
year, forming the lower part of the survey length frequencies. The same assumption is 
made for BTS data, which is more acceptable, as this survey happens around July, at 
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hatching time. A monthly percentage is applied on French LPUE, based on commercial 
category information from sales data. 
In this work, we elaborate on the two-stage biomass model adapted for cuttlefish, and we 
bring three substantive new contributions:  
 
(i) First, the model is developed in a Bayesian framework (Gelman 2004), thus allowing 
for a comprehensive quantification of the different sources of uncertainty (Punt and Hil-
born 1997, Parent and Rivot 2013) and for the use of informative prior on some key pa-
rameters (Hilborn and Liermann 1998). 
 
(ii) Second, we develop a method to build an informative prior on the biomass growth 
rate that takes advantage of various sources of data. The method allows us to provide an 
informative prior for the average growth rate together with a credible range of variability 
among years. 
 
(iii) Third, we improve the demographic realism of the model by explicitly considering 
that two separate age classes (0+ and 1+) can compose the exploited biomass. 
 
We present results of the English Channel cuttlefish stock assessment updated with the 
new Bayesian two-stage biomass model. We also discuss the possible use of a model 
based only on survey data to predict the unexploited biomass in winter and help manag-
ing the stock. 
 
MATERIALS AND METHODS 

The model is written in a Bayesian state-space modelling framework (Gelman 2004) that 
integrates stochasticity in both the process equations for the population dynamics (pro-
cess errors) and the observation equations (observation errors), hence the hierarchical 
framework of the modeling (Rivot et al. 2004, Buckland et al. 2007, Parent and Rivot 2013). 
We first describe the process equation for the biomass dynamic. Second, we describe the 
observations equations. Third, we provide details about the data processing and the 
method used to build an informative prior on the biomass growth rate parameter (denot-
ed g in the following). Last, we detail our strategy to analyse the sensitivity of the results 
to the hypotheses made on the time-variations of critical parameters, to the age-structure 
and the data sources. All parameters used in the model are summarized in Table 4. 
 
The two-stage biomass model 
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Figure 1: Simplified life cycle of the English Channel stock of cuttlefish. 
The model is based on a simplification of cuttlefish life cycle: we consider an exclusive 2 
years lifespan, with mass mortality occurring short after spawning in July. Each fishing 
season extends from 1st July (one year-old individuals are recruited to the fishery) to 30th 
June of the following year (one year later, remaining individuals are mature and have 

spawned). Total catch of cuttlefish ( ) is assumed to happen as a pulse in the middle of 

the fishing season (on 2nd January). We use subscript y to refer to the fishing season. 
 
Spawning stock biomass B2,y of fishing season y is expressed as: 

     

 (1) 

where Ey is the exploitation rate, B1,y is the biomass at the beginning of the fishing season, 

g is the intrinsic biomass growth rate parameter and  the lognormal random noise 

term with variance sigma_B2. 
 
The unexploited biomass estimated on 1st January (B1.jan,y) without catch removals is cal-
culated as follows: 

        

 (2) 
 
Observation equations 
 
Expected mean of the catches are calculated as the product of the biomass in the middle 

of the fishing season,  with the exploitation rate Ey. Catches are then considered 

observed with lognormal observation errors  with variance sigma_C. 

      

 (3) 
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BTS and CGFS survey index are considered as indirect observation of the biomass B1,y 

with catchabilities  and  and lognormal observation errors with unknown vari-

ance sigma_AI, drawn in a non-informative prior distribution (see Table 2): 

     

 (4) 

where  is the BTS survey index for fishing season y,  the CGFS survey index 

for fishing season y,  and  the lognormal observation errors with variance sig-

ma_AI.  
 

French standardized LPUE (  is modelled as follows: 

   

 (5) 

where  is the catchability of French trawlers and  the lognormal observation er-

rors with variance sigma_AI. Setting the same variance for BTS, CGFS and French LPUE 
observation errors is a model hypothesis allowing to reduce the number of estimated 
parameters. 
Both BTS abundance indices and UK catch data were obtained from the Center for Envi-
ronment Fisheries and Aquaculture Science (CEFAS). French CGFS abundance indices, 
French catch and effort data, and length data were obtained from the French Research 
Institute for Exploitation of the Sea (IFREMER).  
 
As BTS survey occurs around July, hatchlings are born very recently inshore, and should 
therefore represent a very small proportion in biomass. BTS abundance indices are there-
fore used to model both global biomass and 1+ biomass.  
 
CGFS survey occurs each year on October. At this time of the year, part of the population 
of group 0 individuals is already 3 months old, meaning that the abundance indices time-
series can’t be directly used to infer information on group 1+ individuals. The following 
procedure was used to derive a CGFS abundance index of group 1+ individuals. The 
package mixdist was used on CGFS length frequency data to calculate mean length and 

percentage in number of individuals older than one year-old ( ). Mean length was 
converted into mean weight using Dunn (1999) length-weight relationship. Percentage in 
weight of 1+ individuals was calculated as follows: 
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 (6) 

where  and  are the mean weight of group 0 and group 1+ individuals.  
was then applied to CGFS catch data to calculate abundance indices for 1+ individuals. 
On average, 1+ individuals represented 91.5% of CGFS catch in weight, with a CV of 
0.056. As length data for CGFS survey are available from 2005 only, we used this value to 
calculate previous abundance indexes for 1+ individuals.  
 
To calculate French LPUE, commercial data were used to know the percentage in weight 
of one year-old cuttlefish (animals above 300g) by year and month, and a Delta-GLM was 
applied with ICES statistical rectangle, vessel power, year and month as factors. Percent-
ages were also applied to total catch data (from both French and UK vessels) to select 
individuals older than one year-old (1+).  
 
As we didn’t have information on the proportion of one year-old cuttlefish among Eng-
lish catch, we couldn’t calculate UK LPUE time-series specific to group 1+ individuals. 
Furthermore, French LPUE are considered to better capture spatial and temporal varia-
bility than UK LPUE for the English Channel stock. Indeed, French otter bottom trawlers 
operate almost every month in all ICES rectangles (Denis and Robin 2001), which is not 
the case for UK trawlers (Dunn 1999b). We chose to favour data quality rather than quan-
tity, and decided therefore not to use UK LPUE. 
 
We calculated Bayesian posterior predictive p-values to evaluate the fit of the posterior 
distribution of the model. The aim is to quantify the discrepancies between data and 
model, and assess whether they could have arisen by chance, under the model’s own 
assumptions (Gelman et al., 2014). p-values concentrating near 0 or 1 indicate that the 
observed pattern would be unlikely to be seen in replications of the data if the model 
were true. 
Building an informative prior distribution for the biomass growth rate parameter g 
 
The biomass growth rate parameter g is defined as the balance between the mean growth 
coefficient (Gr), and the natural mortality rate (M) as follows: 

         
 (7) 

To build a prior for group 1+ individuals (prior_g1+), we first calculate the mean growth 
coefficient for 1+ individuals (Gr). We apply the package mixdist on length frequency 
data obtained from the French Onboard Observer Program (ObsMer). Number of indi-
viduals sampled each year is indicated in Table 1. Mean length of 1+ individuals is calcu-
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lated in October and December, as cohort split-up is of better quality for these months. 
Dunn (1999) length-weight relationship is used to convert mean length into mean weight 

( ). Variability of mean weight values is plotted on Figure 2. The goodness-of-fit is 
checked, and years where one of the cohort split-up model has a p-value above 0.05 are 
not used in the growth rate calculation. 
 
Table 1: Number of individuals sampled in ObsMer. Years followed by “*” were not used 
for growth rate calculation. 

Year October December 
2005 277 252 
2006 1035 186 
2007* 245 138 
2008 409 220 
2009 526 161 
2010* 1304 220 
2011* 655 153 
2012 755 796 
2013 1035 334 
2014 1001 1488 
 

 
Figure 2: Variability of mean weight values of 1+ individuals after cohort split-up of 
ObsMer data. Full lines represent years where p-value of cohort split-up model was not 
significant, and dotted lines represent years used for growth rate calculation. 
For each year where cohort split-up is reliable, the growth rate Gry is calculated (equation 
8) and Gr is calculated as the median value of all Gry. 

    

 (8) 
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To calculate the mean growth coefficient of 1+ individuals (Gr), ObsMer data were used. 
Cohort split-up was reliable for seven years from 2005 to 2014. Length data obtained 
from mixdist package had a CV of 0.058 in October and 0.054 in December. We found a 
value of 1.542 for Gr, with CV of 0.64. 
 
Natural mortality (M) is calculated with Caddy (1996) gnomonic time division method. 
This method assumes that M is a simple function of mean lifespan and is constant. A 
vector of natural mortality at age is calculated: life-span is divided into several intervals 
whose duration increases proportionally to the age, and mortality is constant for each 
interval. The time-division is called gnomonic, and for each interval, a constant number 
(β) is obtained when multiplying the instantaneous mortality rate by the interval dura-
tion. Initial death rate is assumed to be high, and after a few months, a plateau is ob-
tained. An initial number of individuals must be chosen, and 2 survivors must remain 
after 2 years to assure population replacement.  
 
The mortality function is fitted with an initial number of hatchlings (N1) derived from 
fecundity estimates. Previous studies on cuttlefish fecundity can help choosing values for 
the initial number of individuals. Mangold-Wirz (1963) reported that females Sepia offici-
nalis may lay from about 150 to 4000 eggs depending on their size. Richard (1971) esti-
mated numbers of 150 to 500 eggs by counting mature ova only, and a mean number of 
2000 eggs was observed in laboratory culture (Hanley et al. 1998). Four values of N1 are 
tested: 500, 1000, 1500 and 2000.  

 

The two years life span are divided into a number i of smaller time intervals . A value 

of 2/365 is set for the first interval . For each interval: 

       
 (9) 

where  is the mortality rate for the interval of duration .  
 

         
 (10) 

where β is a constant. To calculate M, the SOLVER routine of EXCEL is used.  
 
To estimate natural mortality of 1+ individuals, we choose the number of time intervals 
such that the last time interval ends at t = 2 years and lasts approximately 12 months. 
After the division of the lifespan into 10 gnomonic time intervals, SOLVER is used to 
calculate the decline in numbers such that 2 spawners survive by two years of age.  
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We tested four possible values of initial number of individuals (N1) for 10 gnomonic time-
intervals (Table 2). With 10 time-intervals, the pre-spawning interval was 11.5 months, so 
the resulting mortality was related to 1+ individuals. 
 
Table 2: Results of natural mortality for different values of N1 and different pre-spawning 
intervals. 

N1 a β M Pre-spawning 
interval (months) 

Number of gnomonic time-
intervals 

500 0.926 0.552 0.574 11.5 10 
1 000 0.926 0.621 0.646 11.5 10 
1 500 0.926 0.662 0.688 11.5 10 
2 000 0.926 0.691 0.718 11.5 10 
 
Once mean growth coefficient and natural mortality were calculated, we could obtain 
mean value g used for the construction of prior on the g parameter (Table 3). The choice 
of the CV value of 0.4 used to build priors on g parameter was motivated by three con-
siderations: the high CV of Gr, model convergence issues with a CV of 0.6 for prior con-
struction, and density-dependent mortality which might balance the high CV and justify 
a choice of 0.4. 

Table 3: Summary of natural mortality, mean growth coefficient and g parameter. 

Age 
class 

Mean mortality Mean individual growth g parameter mean value 

1+ 0.657 1.542 0.89 

We use the mean g value obtained to construct an informative prior on the biomass 
growth rate: 

     

 (11) 

where the precision of 6.74 results from a CV of 0.4 (inter-annual variability), allowing a 
certain variability of g but keeping the prior informative enough for model fit. 
 
Table 4: Summary of model parameters values and priors. 

Parameter Definition Value/Prior 
prior_g1+,y g for 1+ individuals Log(prior_g1+,y) ~ N(0.89, 6.74) 
B1,y Initial biomass Log(B1,y ) ~ N(15 000, 4.5) 
Ey Exploitation rate ~ Beta(1.5, 1.5) 
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q.bts BTS catchability Log(q.bts) ~ Unif(-15, 3) 
q.cgfs CGFS catchability Log(q.cgfs ) ~ Unif(-15, 3) 
q.fr LPUE.FR catchability Log(q.fr) ~ Unif(-15, 3) 
sigma_B2 Precision for B2 25.5 (for CV=0.2) 
sigma_AI Precision for all abundance indices ~ Gamma(0.05, 0.05) 
sigma_C Precision for total catch 2 500.5 (for CV=0.02) 
 
Model construction 

The model used to update the English Channel cuttlefish stock assessment (M1) is based 
on a time-varying g parameter and BTS, CGFS and LPUE.FR time-series, and captures the 
dynamics of 1+ individuals only. A second model is constructed (M2), based only on BTS 
and CGFS time-series. After comparing outputs of models M1 and M2, we run a retro-
spective analysis to evaluate model predictive capacity. We construct model M2r1 which 
is similar to M2, but catch of the last fishing season (2014) is replaced by the mean of the 5 
previous years of catch. For model M2r2, all data from 2014 are deleted, and catch value 
used for 2013 is the mean of the 5 previous years of catch. Model M2r3 is constructed 
with the same logic, deleting data from 2013. 
 

RESULTS 

Results from the full model M1 

Results are plotted with years at the beginning of the fishing seasons on the x-axis. There-
fore, for a fishing year y, estimates of B1 are on July y, estimates of B1.jan are on January 
y+1, and estimates of B2 are on June y+1. Catch of group 1+ (Figure 3a) show high be-
tween-years variability with no clear trend until 2006. From 2006 to 2014, a decreasing 
trend can be identified.  

All observed abundance indices are within the range of 95% Bayesian credible intervals 
for French LPUE (Figure 3b) and BTS (Figure 3c). For CGFS (Figure 3d), only 2011 ob-
served abundance index is outside the Bayesian credible intervals.  

Variability is greater for French LPUE than for the survey abundance indices. One possi-
ble explanation is that French LPUE abundance indices cover the entire fishing season, 
whereas the calculation for CGFS and BTS is based on data from a single month each 
year. 
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Figure 3: Comparison of posterior median estimates with observed values for catch (a) 
and LPUE (b), BTS (c) and CGFGS (d) abundance indices. Solid lines: posterior medians. 
Shaded areas: 95% Bayesian credible intervals. 

 

Biomass estimates B1 and B1.jan show a slight decreasing trend from 2002 to 2013 (Figure 
4a). Biomass estimates of B2 show no clear trend (Figure 4b). Estimates of g from model 
M1 fluctuate between 0.63 and 0.92 from 1992 to 2008 with no particular trend. Median g 
estimate increases from 0.8 in 2009 to 1.2 in 2011. The highest value is estimated to 1.47 in 
2014 (Figure 4c). Exploitation rate varies between 0.34 and 0.57 from 1992 to 2008, and a 
drop to 0.2 occurs in 2009 (Figure 4d). Highest values are obtained for years 2001 and 
2011 (respectively 0.57 and 0.55) and are associated with low estimates of recruited bio-
mass B1 and spawning stock biomass B2 in 2001, and high estimate of g in 2011. 
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Figure 4: Posterior medians estimates of recruited biomass and unexploited biomass on 
1st January (a), spawning stock biomass (b), growth rate (c) and exploitation rate (d) for 
model M1. Shaded areas: 95% Bayesian credible intervals. 
 
Posterior predicted p-value for catch is 0.5, showing a good capacity of the model to re-
produce similar results when data are replicated. This is explained by the small value of 
CV used for catch data. The model tends to slightly overestimate BTS abundance indices 
(p-value > 0.5) and slightly underestimates CGFS and LPUE.FR abundance indices (Table 
5). 

Table 5: Posterior predictive p-values for model M1. 

 Catch BTS CGFS LPUE.FR 
Model M1 0.5 0.61 0.46 0.46 

Results from model M2 and predictive capacity of the model 

We compare results of the full model M1 and model M2 based only on survey abundance 
indices, to evaluate the impact of suppressing French LPUE abundance indices. Biomass 
estimates B1 and B1.jan (Figures 5a and 5b) follow the same trend for models M1 and M2, 
but model M2 outputs show a greater decreasing trend between 2002 and 2014 than 
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model M1. This result is due to the French LPUE abundance indices which are higher 
than survey abundance indices for the five last fishing seasons (Figures 3b, 3c and 3d). 

Estimates of biomass growth parameter (Figure 5c) and exploitation rate (Figure 5d) 
show that model M2 estimates less extreme values for g and more extreme values for E 
than model M1. In 2011 and 2014, g estimates are above 1.1 for model M1 and under 0.9 
for model M2, whereas E estimates are above 0.7 for model M2 and under 0.6 for model 
M1. For these years, survey abundance indices are low, therefore the estimated biomass 
at the beginning of the fishing season is low. But as catches are not low, model M2 esti-
mates high exploitation rate, whereas model M1 estimates higher g value thanks to the 
information brought by French LPUE. 

 

 

Figure 5: Comparison of B1 (a), B1.jan (b), g (c) and E (d) for models M1 and M2. Solid lines: 
posterior medians for model M1. Dotted lines: posterior medians for model M2. Shaded 
areas: 95% Bayesian credible intervals (Light grey for model M1 and grey for model M2). 

The retrospective analysis conducted on the unexploited biomass (Figure 6a) shows a 
good predictive capacity of model M2 for this variable. Results obtained for the exploita-
tion rate (Figure 6b) are less conclusive, as 2013 exploitation rate estimates from M2 and 
M2r2 differ greatly. 
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Figure 6: Retrospective analysis of B1.jan (a) and E (b) for model M2. Grey shaded areas: 
95% Bayesian credible intervals. 

 
Model M2 posterior predicted p-value is 0.5 for catch and 0.51 for CGFS abundance indi-
ces, showing a good capacity of the model to reproduce similar results when data are 
replicated. The model tends to slightly overestimate BTS abundance indices (p-value > 
0.5), and this is amplified for models M2r1, M2r2 and M2r3. Models M2r2 and M2r3 tend 
to slightly underestimate CGFS abundance indices (Table 6). 
 

Table 6: Posterior predictive p-values for models M2, M2r1, M2r2 and M2r3. 

 Catch BTS CGFS 
Model M2 
Model M2r1 
Model M2r2 
Model M2r3 

0.5 
0.5 
0.5 
0.5 

0.56 
0.57 
0.6 
0.62 

0.51 
0.51 
0.48 
0.45 

 

DISCUSSION 

Quality and limits of the data and the model 

We present a Bayesian implementation of a two-stage biomass model adapted to the 
English Channel stock of cuttlefish. The initial model (Gras et al., 2014) was based on 
CGFS and BTS abundance indices, as well as LPUE from both French and UK trawlers. 
The model was sensitive to the fixed biomass growth parameter g, whose value was 
based on individual growth estimated with historical mean weight at age data and as-
sumption of a natural mortality equals to 1.2. The first aim of the present study was to 
build an informative prior for the g parameter and to test a model with a time-varying g. 
For the stock used in this study, we had data available to calculate abundance indices 
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time-series specific to 1+ individuals. We were also able to build a prior on g parameter 
specific to 1+ individuals, using ObsMer length frequency data. This data source contains 
a risk of bias because the sampling plan is not entirely achieved, and the percentage of 
achievement varies between years. But these data are only used to construct a prior on g, 
which is then updated during model runs. 
 
Our choice to focus on 1+ individuals was based on two main arguments. A previous 
study (Royer et al. 2006) indicates the presence of two micro-cohorts of cuttlefish among 
the English Channel, with a first recruitment around October, and a second around April. 
But the presence of two micro-cohorts observed during the study is not always verified, 
which makes it difficult to use CGFS length data to calculate a mean growth coefficient. 
Furthermore, environmental conditions might have stronger impact on group 0 individ-
uals than on group 1+ individuals. Indeed, temperature and nutrient availability are 
known to affect both growth and natural mortality of cuttlefish, particularly in the juve-
nile phase (Moltschaniwskyj and Martinez 1998). 
 
Other stock assessment methods have already been used on the English Channel stock of 
cuttlefish. A Leslie-De Lury depletion model has been applied by Dunn (1999a) based on 
data from UK beam trawl fleet only. French landings were not taken into account, alt-
hough higher than English landings. Trials with a monthly VPA have also been conduct-
ed by Royer et al. (2006). But because of the inconsistence of size structures, this stock 
assessment method could not be applied routinely. Using complex models requires more 
data, and human resources to gather data and run the model. The two main advantages 
of the two-stage biomass model are its simplicity, allowing a routine update of the stock 
assessment, and its suitability in case of short-lived species and lack of reliable age-data 
(Roel and Butterworth 2000, Roel et al. 2009, Giannoulaki et al. 2014). A Bayesian model 
allowing time-variability of the g parameter is closer to reality, and brings additional 
information about the biomass growth parameter.  

 
Management implications 
 
Following Gras et al. (2014) conclusions, we did not find any stock-recruitment relation-
ship. In their work, they do not detect any trend in exploitation rates between 1992 and 
2008. Our study adds 6 years of data, and results differ as we detect a decreasing trend of 
exploitation rate from 2001 to 2009. Our results show that the highest exploitation rates 
occur in 2001 and 2011, with a slightly higher exploitation rate in 2001. Exploitation level 
from 2001 should be a limit reference point for future management. This recommenda-
tion was also specified in (Gras et al. 2014).  
 
Because of the short lifespan of cuttlefish and the strong effect of environmental condi-
tions on recruitment, usual management applied to finfish cannot be considered. In-
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season assessment and management might be necessary to avoid overexploitation risk 
(Rosenberg et al. 1990, Pierce and Guerra 1994). In France, the minimum landing weight 
of cuttlefish is 100 g and otter trawl nets are not allowed to use mesh size <80mm. For pot 
fishery, there is also a limited number of fishing licenses. In Normandy, trawlers are al-
lowed to fish cuttlefish spawners 6 weeks in spring inside the 3 nautical miles as an ex-
emption which is decided each year around April. Another exemption allows them to 
target hatchlings 2 weeks in summer. BTS survey occurs in July/August and CGFS in 
October. It is therefore possible to have the abundance indices in winter and estimate the 
unexploited biomass B1.jan with model M2. Therefore, based on the prediction of B1.jan, 
these exemptions could be avoided in case of very low biomass predicted for the fishing 
season considered. This would give adult cuttlefish better chances to spawn and would 
increase juveniles’ survival chances. 
 
Targeting juveniles leads to a loss in production for the following year, and discarding 
juveniles would still not be a solution. The survival rate of discarded cuttlefish has in-
deed been studied by (Revill et al. 2015). They found an immediate survival rate of 31% 
for cuttlefish smaller than 15 cm dorsal mantle length, and additional mortality occurred 
later. The exemption of the 3 nautical miles law is systematically granted in Normandy, 
which might result in a loss of production as well as a destruction of juvenile habitats. 
 
In a context of global warming, we can fear a strong impact of sea temperature on cuttle-
fish growth and life cycle. Indeed, with the warming of the sea, we can expect higher 
growth rates and shorter life span (Forsythe et al. 1994). But at the same time there might 
be an effect of size at hatching on the resultant size-at-age. Due to the exponential nature 
of growth, the effect of hatchling size is more apparent at higher growth rates. There is a 
decrease in hatchling size as temperatures increase (Vidal et al. 2002), therefore the small-
er initial size of cephalopods might balance the higher growth rates induced by increased 
temperatures (Pecl et al. 2004). These conclusions are valid for cephalopods in general, 
but more specific studies were conducted on S. officinalis. (Safi 2013) found an effect of 
incubation’s environmental conditions on hatchling sizes, with larger juveniles obtained 
when eggs were incubated in colder waters. But the difference observed with different 
incubation temperatures was compensated when individuals grew in the same biotic and 
abiotic conditions. With the combined effect of sea temperature increase and pollution, 
changes in both growth and mortality could be expected. A time-varying g will bring 
additional information allowing to detect these changes. 
 
Applicability of the model on other stocks 

By using a Bayesian framework, we intended to incorporate uncertainty at different lev-
els of the model, in order to propagate uncertainty to final outputs. We also intended to 
build a simple and general model which could be easily modified for an application on 
other stocks. We wanted to use the English Channel cuttlefish stock as a case study for 
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this kind of stock assessment models. As some stocks suffer from a severe lack of data, it 
might not be possible to calculate abundance indices separated by age class, in which 
case both group 0 and 1+ individuals could be modelled as a single group. The issue re-
mains the calculation of the g parameter. The use of a meta-analysis could help improv-
ing precision around this parameter and transfer information to stocks where no data are 
available for the calculation of g. 
 
Some trials of stock assessment have been conducted on other cuttlefish stocks. An as-
sessment of S. officinalis stock in the Bay of Biscay was conducted by (Gi Jeon 1982). He 
used a VPA with a monthly time-scale and two age groups, based on data from years 
1978-1979. A Schaefer dynamic production model was implemented for the Dakhla 
(2001-2006), Cape Blanc (1990-2006) and Senegal-the Gambia stocks (1993-2006) 
(FAO/CECAF 2007). Results obtained for Cape Blanc stock were judged unreliable be-
cause of the bad model fit. Results obtained for the two other stocks showed a situation 
of overexploitation. As both catch and abundance indices from survey and CPUE are 
available, a two-stage biomass model can be applied on these stocks to estimate g param-
eter. 
 
Other species of cuttlefish have also been subject to assessment trials in India (Nair et al. 
1993, Rao et al. 1993), in the Arabian Sea coast of Oman (Mehanna et al. 2014), in the Gulf 
of Suez (Mehanna and Amin 2005, Mehanna and El-Gammal 2010). But these studies use 
length-based cohort analysis, which requires the assumption of a stable age-length rela-
tionship. Cephalopod growth rates are known to be highly variable (Pierce and Guerra 
1994), and the use of Von Bertalanffy growth model for cephalopods might not be valid 
(Forsythe and Heukelem 1987, Saville 1987). 
 
Some European cuttlefish stocks monitored by the International Council for the Explora-
tion of the Sea Working Group on Cephalopod Fisheries and Life History have not been 
yet subject to an assessment, but data are available to try the two-stage biomass model. 
For the Bay of Biscay stock of S. officinalis, a series of French standardized LPUE can be 
calculated, and data are available from Ifremer EVHOE survey. But data from EVHOE 
survey might not be reliable abundance indices because it occurs offshore in November, 
therefore catching cuttlefish only if the migration already happened. Another stock of S. 
officinalis is found in ICES divisions VIIIc and IXa, exploited mainly by Spain and Portu-
gal, with most of the catches occurring in division IXa. A time-series of Spanish trawlers 
LPUE is available, as well as a time-series of survey abundance indices in division IXa 
South. For stocks in warmer waters, we could expect a higher value of Gr. Indeed, cuttle-
fish seems to experience faster growth in warmer waters, even at small scale (Richard 
1971). Cuttlefish experiences for example a slower growth rate in the English Channel 
than in South Brittany, and a water temperature effect is suspected (Le Goff and Daguzan 
1991). The initial two-stage biomass model (Roel and Butterworth 2000) was developed 
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for a squid with a one-year life cycle. Care must be taken when adapting the model to 
other stocks, as the assumption of an exclusive two-year life cycle is no longer valid. The 
model should be modified to take into account a proportion of the population experienc-
ing a one-year life cycle. 
 
For several cuttlefish stocks, there might be enough available data to apply a two-stage 
biomass model. For others, this model might not be appropriate, but as data are some-
times available to calculate growth, information could be extended to establish for exam-
ple a relationship between growth, latitude of the stock and length of the life-cycle. But 
care should be taken to establish data reliability, and to distinguish parameters which can 
be assimilated to Gr or to g. 
 
One of the consequences of overfishing is the decrease of many fish stocks, impacting the 
whole ecosystem. As cephalopod predators’ abundance decrease, biotic changes might 
benefit cephalopods. At the same time, changes in environmental conditions as well as 
density-dependent mortality might impact these stocks. Doubleday et al. (2016) show that 
cephalopod populations have increased globally and may have benefited from a chang-
ing ocean environment.  Using a model with a time-varying g parameter could allow the 
detection of long-term changes in either growth or natural mortality for the stock consid-
ered. It might not be possible to identify the role played by mortality or growth, or to 
know whether biotic or abiotic factors had the most impact. But it could help identifying 
a general tendency in the evolution of the ecosystem toward a favorable situation or an 
unfavorable situation for a specific stock. 
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