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Abstract

The knowledge of extreme events of environmental variables is an issue of
increasing concern to the scientific community. Within the branch of coastal and
ocean engineering there are many fields of application where an accurate esti-
mation of long term return period events is needed, i.e. coastal defenses design,
coastal flooding management, estimation of changes of the littoral morphology,
offshore and onshore renewable energy devices design, etc. But not only the
engineers are concerned by extreme events; biological communities in the open
sea and estuarine systems are also exposed to extreme events that may affect its
natural development (i.e. extreme sea levels in estuarine environments could
raze fields of plants not able to deal with salt in just a few hours).

But the analysis of environmental variables and their extreme behaviors is not
an easy task. In most cases the problem to be solved presents a multivariate
nature, which makes it of a special complexity. For instance, in the case of
flooding analysis, an estimation of joint probability density of astronomical tide,
storm surge and waves is needed; or in the case of floating offshore devices the
parameters of interest would be waves, winds and currents.

Complex mathematical methods and techniques are needed to be able to esti-
mate the joint probability of occurrence of more than one variable at the same
time. In addition, some considerations must be taken regarding the quality of the
data in order to be able to guarantee the achievement of reliable estimations.

In this document, an analysis of the problem of extreme value analyses, the
existing methods, their limitations, and some hints to proceed are exposed. The
document is divided as follows: a first part will introduce the main problems or
aspects that need to be considered concerning data and exposes the main meth-
ods to solve univariate problems and the way to estimate statistical parameters; a
second part is focused on the main multivariate methods; then, a fourth part will
focus on the principal techniques to estimate the uncertainties; finally in the last
part the available softwares useful for EV analysis are exposed.

In the appendices is presented the application of these methods in two different
case studies, one proposed by IFREMER and based on the design of an offshore
structure mooring and the second one proposed by BRGM with a focus on a
practical application to flood risk in coastal areas.
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1. INTRODUCTION 
 

The knowledge of extreme events of environmental variables is an issue of increasing 
concern to the scientific community. Within the branch of coastal and ocean engineering 
there are many fields of application where an accurate estimation of long term return period 
events is needed, i.e. coastal defenses design, coastal flooding management, estimation of 
changes of the littoral morphology, offshore and onshore renewable energy devices design, 
etc. But not only the engineers are concerned by extreme events; biological communities in 
the open sea and estuarine systems are also exposed to extreme events that may affect its 
natural development (i.e. extreme sea levels in estuarine environments could raze fields of 
plants not able to deal with salt in just a few hours).  
 
But the analysis of environmental variables and their extreme behaviors is not an easy task. 
In most cases the problem to be solved presents a multivariate nature, which makes it of a 
special complexity. For instance, in the case of flooding analysis, an estimation of joint 
probability density of astronomical tide, storm surge and waves is needed; or in the case of 
floating offshore devices the parameters of interest would be waves, winds and currents. 
 
Complex mathematical methods and techniques are needed to be able to estimate the joint 
probability of occurrence of more than one variable at the same time. In addition, some 
considerations must be taken regarding the quality of the data in order to be able to 
guarantee the achievement of reliable estimations.  
 
In this document, an analysis of the problem of extreme value analyses, the existing 
methods, their limitations, and some hints to proceed are exposed. The document is divided 
as follows: a first part will introduce the main problems or aspects that need to be 
considered concerning data and exposes the main methods to solve univariate problems and 
the way to estimate statistical parameters; a second part is focused on the main multivariate 
methods; then, a fourth part will focus on the principal techniques to estimate the 
uncertainties; finally in the last part the available softwares useful for EV analysis are 
exposed. 
 
In the appendices is presented the application of these methods in two different case 
studies, one proposed by IFREMER and based on the design of an offshore structure mooring 
and the second one proposed by BRGM with a focus on a practical application to flood risk in 
coastal areas. 
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2. UNIVARIATE ANALYSIS 

2.1. Block Maxima vs. Peaks Over Threshold 
 

There are two main methods to solve univariate extreme value analysis: block 
maxima or peaks over threshold methods.  
 
In block maxima methods, the time series is divided into consecutive blocks of data with a 
constant size. From each block the maxima is extracted, constituting these way the extremes 
sample.  
 
A sample of block maxima can be assumed to follow a Generalized Extreme Values 
distribution (GEV) (Leadbetter G. 1983). This distribution takes the form: 
;ݔ)ܸܧܩ  ,ߤ ,ߪ (ߦ = ݔ݁ ቐ−ቆ1 + ߦ ቀݔ − ߪݑ ቁቇିଵ కൗ ቑ 

 
Where µ, σ and ξ are the location, scale and shape parameters, respectively.  
 
Depending on the value of the shape parameter, the GEV distribution is also known as 
Weibull distribution for ξ<0; Gumbel distribution in the case of ξ=0 and Fréchet when ξ>0. 
 
On the other hand, peaks over threshold methods are based on creating the sample from 
exceedances above a certain threshold.  
 
A sample of exceedances above a high threshold can be approached by a Generalized Pareto 
Distribution (GPD) (Pickands 1975), which can be written as:  
;ݔ)ܦܲܩ  ,ݑ ,ߪ (ߦ = 1 − ቀ1 + ߦ ݔ − ߪݑ ቁିଵ కൗ

 

 
Where σ and ξ are the scale and shape parameters, respectively; and u is the threshold.  
 
Considering the value of the shape parameter, the GP Distribution presents different 
behavior: for ξ<0 (Weibull domain), it presents an upper bound at – σ/ ξ, in the case of ξ=0 
it follows an exponential distribution and for ξ>0 (Fréchet domain) there is no upper bound. 
 
In Figure 1, it is graphically represented the different behavior of the GP distribution 
depending on the value of the shape parameter. As seen, the Weibull distribution (pink line) 
presents an asymptotic horizontal behavior, while the Fréchet distribution (purple line) 
shows a high probability of occurrence of great values.  
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Figure 1. Comparison between Weibull, Gumbel and Fréchet distributions. 

 
The decision of considering a block maxima or a POT method is not trivial and must be taken 
considering the problems that each one presents. 
 
Peaks over threshold methods have two main disadvantages: threshold selection and 
independence between events: 
 
 1. Threshold selection: the threshold will influence the tail of the distribution and it 
should be selected by an agreement between bias and variance. The threshold should be 
high enough to be in the domain of asymptotic validity of the GPD in order to limit bias in 
the parameters estimation, but it should not be too high to limit the variance of the 
estimated parameters. There are two main tools to help in the threshold selection (Méndez 
2006), (Jonathan 2013), (Davison 1990), (R. L. Smith 2004): 
 
  - Mean residual life plot 
  - Stability of shape and modified scale parameters.  
 
 2. Independence between events: only by setting a threshold the independence 
between events is not guaranteed. So, a minimum time-lapse between peaks should be 
established. This time-lapse should consider the typical storm duration, thus is dependent of 
the study site location (Méndez 2006). 
 
Block maxima methods present the disadvantage of establishing the block size. This can be 
easily avoided by assuming yearly maxima. Then the secondary problem that may arise is the 
limited length of the resulting sample (only 1 event per year) and thus higher uncertainties in 
estimated parameters. The independence between extremes is almost guaranteed when 
considering yearly maxima.  
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2.2. Parameters estimation methods 
 

Once the model has been selected, there are several methods to estimate the 
associated parameters.  
 
Here, we provide a brief description of the main methods used and a comparison between 
them, according to (Mackay 2011). 
 
Methods: 
 

• Moment based methods: based on obtaining the estimators by equating the sample 
mean and variance with the population mean and variance and rearranging:  
 Method of moments (MOM) 
 Probability weighted moments (PWM) 
 Generalized probability weighted moment (GPWM) 
MOM, PWM and GPWM always exist and are easy to compute.  
For samples where shape is negative, they can produce estimates low biased but 
with large RMSE.  
 Hybrid-MOM: always provide a solution, either the one from MOM or the one 
from PWM 
 L-moments: used mainly in hydrological problems. It is a particular case of 
PWM, it can be expressed as a linear combination of PWMs 
 

• Maximum Likelihood (ML): consists of maximizing the likelihood function of 
independent observations.  
There are some functions for which no ML solution exists, especially when the shape 
parameter is negative (Hosking 1987). 
A derived form of the ML method is the penalized maximum likelihood (PML), where 
the likelihood function is multiplied by a penalty function.  With this penalty function 
the possible values of the shape parameters can be constrained.  
 

• Maximum entropy (ME): based on maximizing the entropy equation. The estimators 
obtained for the GPD with the maximum entropy method are equivalent to those 
obtained with maximum likelihood if the threshold is chosen before the parameters 
are estimated.   
 

• Likelihood moment (LM): is a hybrid solution between moment-based methods and 
likelihood methods. This method always provides a solution, is always feasible and 
easy to compute. 
 

• Least-squares minimization (LS): there are two types of least-squares methods: 
 - Minimizing the sum of squared differences between empirical and model 
quantiles (Moharran et A. K. and Kapoor 1993). 
 - Minimizing the squared differences between empirical and model distribu-
tion fits (Luceño 2006).  
While the second method could provide results strongly biased for small, the first 
one could have convergence problems.  



 

11  
 

• Empirical percentile method (EPM): based on equating percentiles of the empirical 
and theoretical distribution functions. 
It always provides a solution and it is always feasible but it can be very 
computationally demanding for large samples. 
 

• Bayesian methods (BM): They can produce very good results but they are difficult to 
implement and are often computationally demanding. To achieve a better efficiency, 
(J. a. Zhang 2009) proposed a new Bayesian method based on maximum likelihood. 
They can require an expert knowledge to provide initial values, and thus, could result 
in a subjective method.  
  

• Robust methods (RM): These methods are less sensitive to outliers (outliers are those 
events that are distant from the rest of observations, (Grubbs 1696)), thus, their use 
in extreme values analysis is under controversy because these highest values (the 
outliers) introduce important information about the tail behavior into the model. 
Moreover it has been proved that these methods do not perform as well as ML 
method (Mackay et al in 2011 mentioned (Juarez 2004)). 

2.2.1. Comparison between methods 
 
For positive shape parameter: 
 

• Moment methods present lower RMSE (root-mean-square-error) but a strong bias. 
• ML, LS, EPM and BM present strong bias and high RMSE for small sample sizes 

(n<50). 
• For large sample sizes (n>200) BM has lower bias and its RMSE is similar to the ML 

but BM is faster to be computed (when using the method proposed by (J. a. Zhang 
2009)). 

• LM presents the lowest RMSE for small sample sizes. 
 
For negative shape parameter: 
 

• Moment methods present lower bias but a larger RMSE. 
• LM consistently has lower RMSE and small bias. 
• ML and PML present small bias and low variance but sometimes do not reach a 

solution for small samples. 
• LS has low bias but not so low RMSE. 
• EPM presents strong bias and high RMSE for small sample sizes, decreasing at large 

sample sizes (but it is very slow to compute). 
• BM presents high bias and RMSE for small sample sizes but low bias and RMSE for 

large sample sizes and it is very fast to compute (when using the method proposed 
by (J. a. Zhang 2009)). 

 
To show the differences between some of the methods proposed to estimate the 
parameters two examples were carried on.  
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2.2.2. Comparison applied to a Generalized Extreme Value distribution fit 
 

Considering a significant wave height time series from the IHData database (2.4.8) 
located at the coordinates 2.5W 45N, with a temporal coverage of 67 years (hourly data 
from January 1948 until February 2014), a block maxima was used to obtain the sample of 
extremes. The size of the block was one year, so the 67 annual maxima of significant wave 
height were extracted from the time series. Figure 2 shows the hourly time series of Hs at 
the selected location where the annual maxima are marked with red circles. 
 

 
 

Figure 2. Significant wave height time series (blue line) and annual maxima (red 
circles). 

Parameters estimation: 
 
For the parameters estimation different softwares or packages were used (5): 
 
Matlab: the already implemented functions available in Matlab. 
WAFO with its available options: 

- PWM-Probability Weighted Moments Method. 
- ML-Maximum Likelihood Method. 
- MPS-Maximum Product of Spacings Method. 

EVIM. 
extRemes with its optimization options: 

- ML-NM-Maximum Likelihood method with Nelder-Mead optimization method 
(Nelder 1965).  

- ML-CG-Maximum Likelihood method with Conjugated Gradients optimization 
method (Fletcher 1965). 

- ML-BFGSqN-Maximum Likelihood method with BFGS quasi-Newton optimization 
method.  

- ML-NM-Maximum Likelihood method with L-BFGS-B optimization method. 
- ML-NM-Maximum Likelihood method with simulated annealing Belisle optimization 

method (Belisle 1992). 
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In the table below, all the obtained results are summarized. Note that for the results from 
the extRemes package instead of Confidence Intervals the value refers to the root mean 
square error of the parameter estimation.  
 

  Mu Mu-CI or RMSE Sigma Sigma-CI Xi Xi-CI or RMSE
MATLAB ML 8.663 (8.374, 8.952) 1.095 ( 0.910,1.318) -0.183 (-0.326,-0.039)

W
AF

O
 PWM 8.669 (8.368, 8.972) 1.130 (0.915, 1.345) -0.207 (0.037, 0.377)

ML 8.663 (8.393, 8.933) 1.095 (0.895, 1.296) -0.183 (0.049, 0.317)
MPS 8.634 (8.347, 8.922) 1.153 (0.922, 1.384) -0.161 (-0.021, 0.344)

EVIM ML 8.663 -- 1.095 -- -0.183 -- 

ex
tR

em
es

 ML-NM 8.664 (0.14742) 1.095 (0.10351) -0.183 (0.07322)
ML-CG 8.663 (0.14741) 1.095 (0.10349) -0.183 (0.07324)
ML-BFGSqN 8.663 (0.14741) 1.095 (0.10349) -0.183 (0.07324)
ML-LBFGS-B 8.663 (0.14741) 1.095 (0.10349) -0.183 (0.07324)
ML-SAB 8.662 (0.14756) 1.096 (0.10375) -0.180 (0.07468)

 
Table 1. GEV parameters estimate using different methods and/or softwares. 

 
Comparison: 
 

• The results proposed by almost every method (except WAFO-MPS) give similar 
estimations.  

• Within the options available in the extRemes software, for the data analyzed, the 
optimization method 'Conjugate Gradients' did not get an optimum and the 
maximum number of iterations was reached. 

• With the software extRemes, the standard error, confidence intervals and the 
covariate matrix of the parameters is directly obtained when fitting the data. With 
WAFO and Matlab, the confidence intervals of the parameters are given. 

• Instead of providing different methods to fit the model, the extRemes software 
provides different optimization methods to achieve a solution with maximum 
likelihood estimators: this may offer a solution for cases where computational time 
becomes a problem. 

 
Next figure shows the empirical data (annual maxima) against all the fittings estimated. The 
differences between Matlab, EVIM and extRemes are negligible.  
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Figure 3. Return Period Comparison – GEV. 

2.2.3. Comparison applied to a Generalized Pareto distribution fit 
 

Taking as initial data the same significant wave height time series as the previous 
comparison; a Generalized Pareto Distribution was fitted to independent peaks over 
threshold of Hs. In order to obtain a similar number of events as in the annual maxima tests 
shown before (2.2.2), the threshold was set at 8.75 m and the independence temporal 
criterion between peaks was set at 3 days (72 hours). This threshold was chosen in order to 
get a λ (mean number of events per year) close to 1; this way the obtained results could be 
compared to a GEV fitting to annual maxima. The independence temporal criterion between 
events has been set at 3 days due to the location of the data; in the North Atlantic area it can 
be assumed a storm development time of 3 days (Méndez 2006). Figure 4 shows the hourly 
time series of Hs at the selected location where the independent peaks over the threshold 
are marked with black stars. 
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Figure 4. Significant wave height time series (blue line) and peaks over a threshold of 8.75m 
(black stars). 

Parameters estimation: 
 
For the parameters estimation different softwares or packages were used: 
 
Matlab: the already implemented functions available in Matlab. 
WAFO with its available options: 

- PWM-Probability Weighted Moments Method. 
- ML-Maximum Likelihood Method. 
- MPS-Maximum Product of Spacings Method. 
- MOM-Method of Moments. 
- LS-Least Squares Method. 
- Pickand's-Pickand's Estimator Method. 

EVIM. 
extRemes with its optimization options: 

- ML-NM-Maximum Likelihood method with Nelder-Mead optimization method 
(Nelder 1965). 

- ML-CG-Maximum Likelihood method with Conjugated Gradients optimization 
method (Fletcher 1965). 

- ML-BFGSqN-Maximum Likelihood method with BFGS quasi-Newton optimization 
method.  

- ML-NM-Maximum Likelihood method with L-BFGS-B optimization method. 
- ML-NM-Maximum Likelihood method with simulated annealing Belisle optimization 

method (Belisle 1992). 
 

 
It has been also implemented the Likelihood Moment Estimation proposed by (J. Zhang 
2007). The obtained results for shape and scale parameters are similar to the solution 
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provided by the Maximum Likelihood Method but this method avoids convergence issues, 
computational difficulties and the absence of solution for shape parameters higher than one.   
  
In the table below, all the obtained results are summarized. Note that for the results from 
the extRemes package instead of Confidence Intervals the value refers to the root mean 
square error of the parameter estimation.  
 

  Sigma Sigma-CI or 
RMSE

Xi Xi-CI or RMSE 

MATLAB ML 1.144 (-0.057, 1.530) -0.222 (-0.387, 0.856) 

 LM (J. Zhang 2007) 1.144 -- -0.222 -- 

W
AF

O
 

PWM 1.354 (0.834,1.873) -0.434 (0.069,0.798) 
ML 1.144 (0.805,1.483) -0.222 (0.053,0.391) 
MPS 1.108 (0.747,1.468) -0.157 (-0.108,0.422) 
MOM 1.264 (0.820, 1.709) -0.339 (0.056, 0.622) 
LS 1.354 (0.834, 1.873) -0.434 (0.069, 0.798) 
Pickand's 1.330 (NaN,NaN) -0.576 (NaN,NaN) 

EVIM ML 1.144 -- -0.222 -- 

ex
tR

em
es

 ML-NM 1.144 (0.169) -0.222 (0.084) 
ML-CG 1.143 (0.169) -0.222 (0.084) 
ML-BFGSqN 1.143 (0.169) -0.222 (0.084) 
ML-LBFGS-B 1.143 (0.169) -0.222 (0.084) 
ML-SAB 1.145 (0.169) -0.221 (0.085) 

 
Table 2. GPD parameters estimate using different methods and/or softwares. 

 
Comparison: 
 

• Compared with GEV results, there are greater variations within results obtained from 
different methods. For this case, WAFO offers a greater amount of methods available 
to solve the fitting process.  

• From the options available in the WAFO software, and for the data analyzed, solution 
achieved with a Maximum Product of Spacings method gives highest return levels of 
wave heights while the Pickand's estimator gives the lowest results. 

• Comparing different softwares but the same method (maximum likelihood 
estimator), the solution achieved is the same (black line overlapping red, pink and 
green lines in Figure 6). 

• With the software extRemes, the standard error, confidence intervals and the 
covariate matrix of the parameters are directly obtained when fitting the data. With 
WAFO and Matlab, the confidence intervals of the parameters are given. 

 
Next figure shows the empirical data (peaks over a threshold of 8.75 meters of wave height) 
against all the fittings estimated.  
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Figure 5. Return Period Comparison – GPD (threshold=8.75m). 

2.2.4. General comments on the GEV and GPD comparisons 
 

• In the WAFO software they recommend using PWM method since it works for a 
wider range of parameters and have the same asymptotic properties as the 
Maximum Likelihood (ML) method.  

• The Pickand’s estimator method and Least Squares (LS) estimator also work for any 
value of the shape parameter ߦ 

• The ML method is only useful when 1 ≥ ߦ, the PWM when ξ >−0.5 and the MOM 
when 0.25−< ߦ. 

• The variances of the ML estimates are usually smaller than those of the other 
estimators. However, for small sample sizes (less than 50 events) it is recommended 
to use the PWM, MOM or MPS if they are valid. 

2.3. Statistical tests 
 

Goodness-of-fit tests and measures encompass all the methods and techniques 
available to determine how well fits a model to the actual observations. The majority of 
these tests try to quantify the discrepancy between the model and the observations but 
there are also graphical tools that might be helpful.  

 
Some of those statistical tests that may be helpful in the model fitting process to validate or 
not a given statistical model are summarized below. More detailed information and 
examples of the different methods and tests to asses in any statistical analysis could be 
found in (Corder 2014), (Greenwood 1996) 
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2.3.1. Akaike criterion 
 

Akaike criterion is a measure of the relative quality of a statistical model, for a given 
dataset: 

 
2 2ln( )AIC k L= −  

 
Where k is the number of parameters in the statistical model and L is the maximized value of 
the likelihood function for the estimated model. 

 
Given a set of candidate models for the data, the preferred model is the one with the 
minimum AIC value.  

2.3.2. Anderson-Darling test 
 

The Anderson-Darling test is a statistical test to decide whether a given data sample 
of data follows a given probability distribution or not. 

 

2( ( ) ( )) ( ) ( )nn F x F x w x dF x
∞

−∞

−  

 
Where the hypothesized distribution is F(x), the empirical sample is Fn(x) and w(x) is a 
weighting function.  

 
If w(x) =1, this test is the same as the Cramér-von Mises test. (T. W. Anderson, Asymptotic 
theory of certain "goodness-of-fit" criteria based on stochastic processes 1952) (T. W. 
Anderson, A test of goodness-of-fit 1954).   

2.3.3. Cramér-von Mises criterion 
 
It is a criterion used for judging the goodness of fit of a cumulative distribution 

function compared to a given empirical distribution function, or for comparing two empirical 
distributions. Applied to one sample takes the form: 
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Where n is the size of the sample and F(x) is the hypothesized distribution.  

 
If the value of T is larger than the tabulated value (this value depends on the size of the 
sample and on the significance level), then the hypothesis that the empirical data follow the 
distribution F(x) should be rejected. (T. W. Anderson 1962) 

2.3.4. D’Agostino’s K2 test 
 

This is a test to establish whether or not a sample comes from a normally distributed 
population. The test is based on transformations of the sample kurtosis and skewness 
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coefficients, and combining them to produce a statistic that is χ2 distributed when the 
sample follows a normal distribution.  

 
From a sample, its skewness and kurtosis can be defined as: 
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Where n is the sample size, and ̅ݔ is the sample mean.  

 
Transforming g1 and g2 into Z1 and Z2 as proposed by (R. D'Agostino 1970), the statistics K2 
can be estimated: ܭଶ = ܼଵ( ଵ݃)ଶ + ܼଶ(݃ଶ)ଶ 

 
The hypothesis of the sample being normally distributed will be accepted if the statistics K2 
is ߯ଶ-distributed (R. B. D'Agostino 1990) 

2.3.5. Jarque-Bera test 
 
The Jarque-Bera test is a goodness of fit test to determine if a sample data have the 

skewness and kurtosis that corresponds to a normal distribution. 
 

If the data comes from a normal distribution, the JB statistic asymptotically has a χଶ 
distribution with two degrees of freedom.  
 

2 21
( 3)

6 4

n
JB S K

 = + − 
   

 
Where n is the sample size, S is the sample skewness and K the sample kurtosis. (Jarque, 
Efficient tests for normality, homocedasticity and serial independence of regression residuals 
1980) (Jarque, Efficient tests for normality, homocedasticity and serial independence of 
regression residuals: Monte Carlo evidence 1981) (Jarque, A test for normality observations 
and regression residuals 1987). 

2.3.6. Kolmogorov-Smirnov test 
 
The Kolmogorov-Smirnov is a nonparametric test for one dimensional distributions 

that can be used to compare a sample with a reference probability distribution, or to 
compare two samples. The Kolmogorov-Smirnov statistic for a given empirical distribution 
Fn(x) compared to a known distribution F(x) is: 

ܦ  = ݔݑݏ (ݔ)ܨ| −  |(ݔ)ܨ
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Where sup denotes the supremum of the set of distances. 
 

If the sample Fn(x) comes from the distribution F(x), then Dn converges to 0 in the limit 
when n goes to infinity (Massey 1951). Thus, in practice, this statistic is better for large 
samples. 

2.3.7. Likelihood ratio test 
 
The likelihood ratio test is a statistical test used to compare the fit of two models. It 

requires nested models; it means that if we want to compare a null model which considers a 
certain number of parameters x with an alternative model that considers y parameters, all 
the x parameters considered in the null model must be also considered in the alternative 
model.  

 

( ) ( )

likelihood for null model
2ln

likelihood for alternative model

2ln likelihood for null model 2ln likelihood for alternative model

D
 

= −  
 

= − +
 

 
The alternative model fits significantly better and should thus be preferred to the null model 
if the difference D is higher than ߯ଶ with n degrees of freedom. Being n the increment of 
parameters between the two models compared (y-x).  

2.3.8. Pearson’s ߯ଶtest 
 

This test can be used to assess two types of comparison: tests of goodness of fit and 
tests of independence. A test of goodness of fit establishes whether or not an observed 
frequency distribution differs from a theoretical distribution. A test of independence 
assesses whether paired observations on two variables, expressed in a contingency table, 
are independent of each other. 

 
The test statistic for a goodness of fit comparison takes the form: 
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Where O are the observed values, E the expected ones (expected according to the 
hypothetical distribution assumed) and n the size of the sample. A step-by-step guide of 
these tests can be found in (Greenwood 1996). 

2.3.9. PP plot 
 

The PP plot is a probability plot that helps in assessing how close two datasets are. 
The two cumulative distribution functions (cdfs) of the datasets are plotted against each 
other. The pattern of points in the plot is used to compare the two distributions. If the two 
distributions being compared are identical, the P–P plot follows the 45° line y = x. 
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2.3.10. QQ plot 
 
The QQ plot is q graphical method for comparing two probability distributions by 

plotting their quantiles against each other. The pattern of points in the plot is used to 
compare the two distributions. If the two distributions being compared are identical, the Q–
Q plot follows the 45° line y = x. 

2.3.11. Spearman’s rank correlation coefficient ρ 
 

The Spearman’s rank correlation coefficient ρ is a nonparametric measure of 
statistical dependence between two variables. If there are no repeated data values, a perfect 
Spearman correlation of +1 or −1 occurs when each of the variables is a perfect monotone 
function of the other. 

2 2
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Where ݔ and ݕ are the two variables and ̅ݔ and ݕത are their means. More information 
regarding this coefficient and other nonparametric measures can be found in (Corder 2014). 

2.4. Identified problems/limitations 
 

The analysis of environmental variables encompasses multiple particularities. Often 
the available data to work with are not good enough in terms of recorded data size or 
quality of the recorded data. Moreover, there are also aspects that have to be considered 
when applying extreme value analysis to environmental data such as dependences existent 
between events or the presence of covariates in the variable analyzed that may have an 
influence in our study. Here some of these limitations and concerns are going to be depicted 
and graphically illustrated through examples.     

2.4.1. Sample Size 
 

The size of the sample we are working with may become a problem when dealing 
with extreme value analysis because the uncertainty in parameters and return value 
estimates will increase (Jonathan 2013). 

 
To graphically see the influence of the sample size in extreme value analysis some tests were 
carried out. All these tests have been made considering a time series of significant wave 
height at the coordinates 2.5W 45N. These data comprise 67 years of hourly significant wave 
heights (1948-2014).  

 
GPD fitting comparison with different time series lengths 
 

From the time series, different sample sizes were taken and a Peaks Over Threshold 
method was applied considering a mean number of events per year equal to 1 and 
independence lapse of 3 days (Méndez 2006). With these conditions, the resulting 
thresholds are those shown in the table below. Fitting a GPD for all these cases and 
comparing them graphically we obtain the results shown in Figure 6; the black dots 
represent the peaks for the sample that covers 1948-2014 and the lines the different fittings. 
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To help the understanding of Figure 6, in Figure 7 are shown the empirical distributions of 
the peaks over threshold of the sub-samples considered (1948-1958, 1948-1968, 1948-1978, 
1948-1988, 1948-1998 and 1948-2008) and its correspondent GPD fit.  
 
Years 1948-1958 1948-1968 1948-1978 1948-1988 1948-1998 1948-2008 1948-2014
Threshold 8.45 8.5 8.75 8.85 8.79 8.72 8.67

Table 3. Threshold that provides a sample of peaks over threshold with λ=1 for the 
different time series. 

 
 

Figure 6 GPD fit for different sample sizes. 

 
Figure 7. Empirical distributions of POT samples for the different considered periods 

of time with its GPD fit.  
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As seen, there is one event above 12.5 meters (exactly it is 12.61 meters and it was recorded 
on the 26th of February of 1989) which seems to control the discrepancy between the 
fittings. For the records that include this event (orange line for the data covering 1948-1998; 
yellow line,1948-2008 and green line, 1948-2014), the expected return wave heights are 
much higher than for smaller records (up to 1 meter of difference, from 11 to 12 meters, for 
the 100-year return value of Hs). It can also be seen that the smallest sample, the one 
covering 1948-1958, presents a fitting clearly different from those with a higher number of 
events, indicating there are probably too few data points to fit a GPD 

 
Plotting the fitted GPD parameters for all the cases we can see how they show a 
monotonous trend as the number of years (and thus, the sample size) increases above 10 
years (Figure 8).  

 
 

Figure 8. Evolution of scale and shape parameters of the GPD. 
GEV fitting comparison with different time series lengths 
 
The same analysis but considering a GEV was also made. In this case, the events 

considered were annual maxima. Figure 9 shows the GEV fittings for different sample sizes 
and in black dots the annual maxima for the sample that covers 1948-2014. To help the 
comprehension of Figure 9, in Figure 10 are shown the empirical distributions of the annual 
maxima of the sub-samples considered (1948-1958, 1948-1968, 1948-1978, 1948-1988, 
1948-1998 and 1948-2008). 



 

24  
 

 
 

Figure 9. GEV fit for different sample sizes. 
 

 
Figure 10. Annual maxima empirical distributions for the different lengths samples 

with its GEV fits. 
The evolution of the estimated GEV parameters is shown in (Figure 11). As seen, the location 
and scale parameters increase as sample size increases. But the shape parameter presents a 
decreasing trend with the sample size. In the three parameters estimation appears a 
breaking point in the tendencies for the sample of 40 years; this fact can be related to the 
extreme event occurred in 1989, because the 40-years sample is the first one that records 
this event and more sensitive to these event than the longer ones (50, 60 and 67-years 
samples). 
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Figure 11. Evolution of scale, shape and location parameters of the GEV distribution. 
 
Gumbel fitting comparison with different time series lengths 
 
The Gumbel distribution is a particular case of the GEV distribution, with a shape 

parameter equals to zero. In Figure 12 the obtained results with this distribution are shown. 
This comparison was also made considering annual maxima; in Figure 13 the annual maxima 
of the different samples are depicted as well as their Gumbel fits. 

 
 

Figure 12. Gumbel fit for different sample sizes. 
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Figure 13 Annual maxima empirical distributions for the different lengths samples 

with its Gumbel fits. 
 

 
 

Figure 14. Evolution of scale and location parameters of the Gumbel distribution. 
 

In Figure 14 is plotted the evolution of the Gumbel parameters as the sample size varies. The 
scale parameter presents a decreasing trend until the 40-years sample where it changes 
from a value lower than 1.1 to 1.3. The location parameter does not present a clear trend 
related to the sample size and its value does not vary that much: from 9.65 until 9.8. 

 
Exponential fitting comparison with different time series lengths 
 
Parallel to the relation existing within the Gumbel and the GEV distributions, there is 

a particular case of the GP distribution where the shape parameter is equal to zero: the 
exponential distribution. To make this comparison the peaks over threshold (with a suitable 
threshold that assures a mean number of 1 event per year) were used. The fitted 
distributions to different sample sizes are shown in Figure 15 and the peaks for the different 
sample sized are depicted in Figure 16 as well as their exponential fits. The evolution of the 
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parameters’ values is shown in Figure 17. As seen, after some initial fluctuations, the value of 
the scale parameter tends to establish around 1 as the sample size increases.  

 

 
 

Figure 15. Exponential fit for different sample sizes. 
 

 
Figure 16. Empirical distributions of POT samples for the different considered periods 

of time with its GPD fit. 
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Figure 17 Evolution of the scale parameter of the Exponential distribution. 
 
Comments regarding the sample size 

 
As seen, the sample size is an important issue when dealing with extreme value 

analysis. When the available data are not long enough might be a practical solution to 
complement the existent data with data with similar extremal characteristics; for instance 
using data from more than one location or combining more than one source of data. For 
example, in (Minguez 2013) they combine the use of reanalysis and buoy data in order to 
enlarge the available data and thus could make a better estimation of the extreme behavior.  

 
Another option could be to synthetically sample data that keep the same characteristics 
than the original ones. For example, in the case of sampling waves (C. a. Guedes Soares 
1996) or (Longuett Higgins 1952) propose different methods to treat this issue. 

 
From a different approach, instead of trying to enlarge the sample a practical option would 
be to constrain one or more parameters before fitting the model. The big drawback of this is 
that it requires expert knowledge and can be subjective. 

 
Finally, regarding the decision between selecting a GEV or a GPD model; in terms of sample 
size, the POT (Peaks Over Threshold) typically allows taking into account more observations 
than block maxima (yearly maxima for instance) for the same period of time when λ (mean 
number of events per year) is larger than 1 (more observations of high values). 

 
Complementing the sample with other data with similar extremal characteristics (for 
example using data from more than one location; or combining more than one source: (R. T. 
Minguez 2013) uses reanalysis and buoy data combined).  

2.4.2. Sample Variability 
 

Another aspect to be considered apart from the sample size is its variability. This 
concept it is intimately related to the previous one because as the sample size becomes 
smaller, its variability increases. To show this issue, the same 67 years’ time series of wave 
height used in the previous section (2.4.1). From this time series, different samples of 
shorter lengths were compared (10, 20 and 30 years). Initially, with the six different 10-year 
samples available within the entire time series (1948-1958, 1958-1968, 1968-1978, 1978-
1988, 1988-1998,1998-2008) a GEV was fitted to each of them considering annual maxima. 
Results can be seen in Figure 18.  
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Figure 18. Sample variability considering 6 different samples of 10 years length.  
  
As seen, the estimated fit to each 10-year time series presents a high variation. In the table 
below, the estimated parameters for each sample are summarized as well as the 100-year 
return value of Hs. The location parameter seems to keep stable around 8.5m except for two 
of the samples: 1968-1978 and 1978-1988 where in the first one it is only of 8m and in the 
second one goes up to 9.3m. This, together with the great variations in the shape parameter 
(with values that range from -1.09 in the 1978-1988 sample to 0.551 in the 1968-1978 
sample) give explanation to the differences depicted in Figure 18: the red line presents a 
saturated extreme distribution, where there are no values above 11m while the purple line 
represents a heavy tailed distribution and therefore the 100-years return value for this 
fitting it is above 18m. Although the rest of the fittings seem not to be so different, the 100-
years return value associated to them present variations up to 3m (from 11m in the sample 
of 1998-2008 to 14.1m in the one that covers 1988-1998) 
 

Years 1948-1958 1958-1968 1968-1978 1978-1988 1988-1998 1998-2008
Location (µ) 8.503 8.753 8.060 9.341 8.834 8.697

Scale (σ) 0.950 1.047 0.695 1.701 1.104 0.790
Shape (ξ) -0.001 -0.212 0.551 -1.091 0.012 -0.216

Hs R=100y (m) 12.87 11.83 >18 10.89 14.1 11 
 

Table 4. GEV parameters for the different 10-years length samples. 
  
Then, the same analysis was made but considering samples of 20 years length. Thus, up to 3 
samples can be extracted from the 67-years’ time series: 1948-1968, 1968-1988 and 1988-
2008. The GEV fits to the annual maxima of these three samples are depicted in Figure 19, 
while the estimated parameters are summarized in Table 5. In this case, the variations 
presented by the three distributions fitted are much lower; however, the sample that covers 
1968-1988 presents a different behavior than the other two having a high negative shape 
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parameter and thus a lower 100-years return value; because its fit seems to have an 
horizontal asymptote around 11m; which means that extreme events above this value are 
rarely expected.   
 

  
 

Figure 19. Sample variability considering 3 different samples of 20 years length.  
 

Years 1948-1968 1968-1988 1988-2008
Location (µ) 8.6165 8.8848 8.7065

Scale (σ) 0.9920 1.3662 0.9148
Shape (ξ) -0.0890 -0.6376 0.0207

Hs R=100y (m) 12.37 10.92 13.1
 

Table 5. GEV parameters for the different 20-years length samples 
 

And finally, using 30-year time series, the same test produces the results shown in Figure 20 
and summarized in Table 6. In this third case, as expected, the variations between the 
samples are much more reduced. Although the parameters estimated differ a bit from one 
sample to the other, the 100-years return value is practically identical and both distributions 
present a similar behavior not being heavy tailed nor horizontally asymptotic.  
 

Years 1948-1978 1978-2008
Location (µ) 8.520 8.814

Scale (σ) 0.991 1.142
Shape (ξ) -0.085 -0.187

Hs R=100y (m) 12.30 12.34
 

Table 6. GEV parameters for the different 30-years length samples. 
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Figure 20. Sample variability considering 2 different samples of 30 years length. 
From these three figures (Figure 18 to Figure 20) it can be stated that as the sample size 
increases, its variability in terms of extreme value analysis decreases, this can be confirmed 
with the estimated parameters values expressed in the tables.    
 

These last three graphs are also a good illustration of the minimum sample size requirement 
to perform an extreme value analysis: with 10 years only, the results obtained with the GEV 
are not meaningful as the results vary too much between samples, even for return periods 
smaller than 10 years. They also show the limitation of extrapolation time: extremes should 
not be extrapolated for too high return periods compared to the period of time covered by 
the sample. 

2.4.3. Independence between events 
 

The temporal independence between events in extreme value analysis has to be 
guaranteed in order to achieve accurate results. In the cases of block maxima, this 
independence is almost guaranteed depending on the size of the blocks, but in the case of 
peaks over threshold it has to be considered.  
 

In case of developing a Peaks Over Threshold analysis, as stated in (Méndez 2006) "the time 
spam should be taken as the optimal compromise between the minimum time interval over 
which the Poisson process may be assumed to be valid [Luceño et al. 2006], the physical time 
interval to guarantee the independency between consecutive storms and the length of the 
time series". In their study, located in the Atlantic coast of the United States, they tested 
different values of time span up to 10 days and although the Poisson assumption was slightly 
better satisfied with 6 days than with 3, they chose a time span of 3 days to reach a good 
compromise between Poisson assumptions and longer sample size which rebound in smaller 
confidence intervals.   
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Numerous authors have developed studies to analyze the time span necessary to be 
considered in different parts around the globe. Among them, (Gulev 2001) provided a study 
of the extra-tropical cyclone variability in the Northern hemisphere winter. They stated that 
the modal life time of cyclones in the Northern hemisphere is 2-3 days, with 50% of all 
cyclones existing from 1 to 4 days. Considering the different basins, the eastern Pacific 
lifetime is shorter (2 to 4 days), while the 60% of cyclones in the Atlantic last from 2 to 6 days 
with a mean length of 4 days. The Arctic region is characterized by the shortest cyclone 
lifetimes with a mean of less than 3 days.  
 

To illustrate the influence of this issue, the same time series of significant wave eight used in 
the precious sections (2.4.1 and 2.4.2) has been used. From this time series, a block maxima 
analysis was made, varying the block size: annual, monthly, weekly, daily and 6-hourly 
maxima. In Erreur ! Source du renvoi introuvable., a graphical representation in a Gumbel 
Probability scale for the different block size maxima data compared to the Generalized 
Extreme Value distribution fitted with the annual maxima is represented.  
 

The probability of occurrence of Hs varying the block size (or the independence time lapse in 
case of GPD) is related in the following way: 
 

/( ) ( )life sea state N sea states life
s sP H h P H h− ° −≤ = ≤  

 
The probability of Hs below a certain h within the entire sample is equal to the probability of 
Hs above the same h within the block size at an n power. Being n the number of these block 
sizes within the entire sample (n=N° sea-states/life; being life the entire sample and N° sea-
states the number of clusters in which it has been divided). For example, in case of 
comparing the probability of occurrence of annual, monthly and weekly maxima the relation 
between them would be:  
 

12 52( ) ( ) ( ) ...annualMAX monthlyMAX weeklyMAX
s s sP H h P H h P H h≤ = ≤ = ≤ =  

 

From the figure it can also be seen that as the block size used decreases, the maxima depart 
more and more from the GEV fitting. This is because in a small block size (i.e. less than one 
week) the independence between maxima events cannot be directly assumed. This kind of 
graphs allows the designer to select the appropriate block size previous to the model fitting. 
By selecting a smaller block size, the number of events will be higher and thus the variance 
of the model parameters will be reduced.  
 

In case of needing more data, the block size might become smaller than that required to 
guarantee the independence between events; an extremal index could then be introduced. 
This extremal index takes into account the dependence between the events and allows using 
the data as independent events. In this case, the general formula above written would 
become:  

/ ( )( ) ( )life sea state N sea states life h
s sP H h P H h α− ° − ⋅≤ = ≤  

 

With α as the extremal index function of h. The extremal index is interpreted as being the 
inverse of the average duration of the extreme events or in other words, the parameter that 
enables us to measure the degree of clustering of extremes. However, its estimation is not a 
trivial issue. Some approaches could be found in (R. a. Smith 1994), (Hamidieh 2010) or 
(Leadbetter 1983).  
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Figure 21. Gumbel Probability Plot for different block sizes in a GEV analysis. 

 
The same analysis has been undertaken considering a Peak Over Threshold sample fitted to 
a Generalized Pareto distribution with the same initial wave height time series at the same 
location. The time span between events in the POT selection varied from 12 hours to 7 days 
(12 hours, 1 day, 2 days, 3 days, 5 days and 1week), while the threshold was varying in such 
a way that guaranteed a fixed number of 1 event per year (λ=1). The results have been 
plotted in an exponential probability plot in Figure 22. As seen, while for the highest values 
the independence is maintained regardless the time span, for smaller values and 
probabilities this cannot be guaranteed.  
 

 
 

Figure 22. Exponential Probability Plot for different independence lapses in a POT analysis. 
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2.4.4. Covariates influence 
 

Previous to the performance of an Extreme Value Analysis the possible existence of 
covariates which make that our data vary systematically should be checked. In the particular 
case of wave height, the most important covariates are seasonality and direction. In Figure 
23 is depicted the seasonality present in the significant wave height record at the location 
2.5W 45N. As seen, the magnitude (for example, waves above 8 meters) of the wave height 
is higher in the winter months (from October to April), while during the summer months only 
few values are higher than 6 meters height. This is clearly a presence of seasonality in the 
data record.  

  
 

Figure 23. Seasonality. 
This temporal behavior should be considered in an extreme value analysis (Menéndez 2009). 
In order to test if this behavior will influence the results some comparisons can be made. 
With the data depicted in Figure 23, the monthly maxima were extracted and divided 
between those belonging to winter months (October, November, December, January, 
February and March) and those to summer months (April, May, June, July, August and 
September). With those two databases, a GEV was fitted. As seen in Figure 24, there is a 
notable difference between both extreme models for summer (purple data) and winter (blue 
data). In black are represented the annual maxima and a GEV fitted to them. The resulting fit 
of annual maxima is quite similar to the winter maxima curve for return period values above 
2 years; this is an indicator that in this particular case seasonality is not so important in 
terms of extremes. This is because all the annual maxima occurred in winter. 
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Figure 24. Comparison between winter (Oct-Mar) and summer (Apr-Sep) monthly maxima 
with Annual Maxima. 

 
The same analysis was done considering the seasonality by splitting the monthly maxima 
into 4 seasons: winter (December, January and February), spring (March, April and May), 
summer (June, July and August) and autumn (September, October and November). The 
comparison of the GEV fits to all of the seasons and the annual maxima are presented in 
Figure 25. Similarly to the previous analysis, the annual maxima fit is quite similar to the 
winter maxima for return periods greater than 2 years.  

 
Figure 25 Seasonal [spring (MAM), summer (JJA), autumn (SON) and winter (DJF)] monthly 

maxima comparison. 
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But this cannot be extended up to a monthly analysis of the data, because not all the annual 
maxima occur in the same month. Because of that, the annual maxima distribution and fit 
shown in Figure 26 present higher values than the monthly data. 
 

 
 

Figure 26 Monthly maxima comparison. 
  
Dealing with covariate influence in terms of parameters estimation is not a trivial problem. 
The estimation of the parameters becomes more difficult and sometimes unfeasible when 
they are function of a certain covariate(s). In the case of introducing seasonality to study the 
generalized extreme value distribution parameters, the IH-Ameva software was used. This 
software, as a package for Matlab has already implemented the functions to fit the GEV 
parameters under different assumptions. In order to use it, monthly maxima were used 
(because, as seen before, seasonality has no influences on yearly maxima or seasonal 
maxima). The expressions fitted by the model are summarized below. 
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The results obtained by the model and the appearance of the seasonal behavior of the fitted 
parameters are shown below. 

 
 

 
 

Figure 27. Seasonality of the GEV parameters. 
 
As another example, Figure 28 shows the distribution of wave heights according to its 
direction at the same location and for the same record. It can be seen that the majority of 
waves comes from the 4° quadrant, from Westerly directions. In addition, the highest waves 
only arrive from directions between 270°-300°, thus, the direction is a covariate that should 
be taken into account in any study of extremes made in that area. 
 

 
Figure 28. Rose directions (standard-left rose and quantiles-right rose). 

 

2.4.5. Plotting position 
 

Within the scientific community there is still no agreement related to the plotting 
position of the empirical distribution of data. This problem influences in the graphical 
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representation and it can lead into different visual appreciations of the goodness of fit of a 
model. A general formula to estimate the probability of empirical data is given by: 

1i

i a
p

N b

−=
+ +  
 

Where a and b are constants, i is the position of each observation within the sample once it 
has been increasingly sorted and N is the sample size.  
 
A summary of the most common plotting position formulas is given in the table below.  
 

Author a  b ip Year 

Weibull 0 0 
1

i

N +
 1939 

Beard 0.31 -0.62 0.31

0.38

i

N

−
+

 1943 

Gringorten 0.44 -0.88 0.44

0.12

i

N

−
+

 1963 

Hazen 0.5 -1 0.5i

N

−  1914 

Cunnane 0.4 -0.8 0.4

0.2

i

N

−
+

 1978 

 
Table 7. Plotting position formulas. 

 
In order to give an example of the difference between these different methods a graphical 
comparison has been made. From the same wave height time series as used before, the 
annual maxima has been extracted and to this sample the different formulae shown in Table 
7 has been applied. Then, the results in terms of return period, R=1/ (1-p), are plotted in 
Figure 29. In this figure it has also been depicted a GEV distribution fitted to the sample of 
annual maxima. As seen, considering one plotting method or another would give a different 
visual impression of the goodness of fit of the distribution. These differences are only 
appreciable in the upper values, giving notably different empirical return periods for the 
highest events. For example, the maximum event of the record (12.61 meters of significant 
wave height) presents an empirical return period varying from 68 to 134 years depending on 
the plotting position method (Table 8).  
 

 Weibull Beard Cunnane Gringorten  Hazen 
R in years for the 12.61m event 68 98 112 120 134 

 
Table 8. Return period (years) for the 12.61m event according the different plotting position 

formulae. 
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Figure 29. Plotting position comparison.  
 
Note that in all of the graphical representations included within this report the Weibull 
plotting method has been used.  

2.4.6. Measurement scale influence 
 

The results obtained with an extreme value analysis generally are not invariant to the 
measurement scale. It may happen that a simple pre-treatment becomes really helpful or 
even indispensable to achieve a good EV model fit.  
 
For example, let assume that the parameter of relevance in our study is ܪ௦ଶwith a return 
period of 100 years. To estimate its value two approaches can be followed:  
 

1. Fit ܪ௦, estimate (ܪ௦)ଵ௬ and then make the square of it: ((ܪ௦)ଵ௬)ଶ. 
2. Make the square of the variable,	ܪ௦ଶ and then fit this new variable and obtain (ܪ௦ଶ)ଵ௬. 

 
With the same significant wave height time series as in the previous tests, this comparison 
has been made (considering 4 different fittings: GEV, Gumbel, GPD and Exponential).  

 
 GEV Gumbel GPD Exponential ((ܪ௦)ଵ௬)ଶ 145.44 134.56 144.96 173.98 (ܪ௦ଶ)ଵ௬ 146.5 134.5 144.1 160.2 

 
Table 9. Comparison of the measurement scale influence with the variable Hs.  
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The same analysis was also made to the variable wind speed (W), the obtained results are 
shown in the table below. 

 
 GEV Gumbel GPD Exponential ((ܹ)ଵ௬)ଶ 711.8 641.1 666.1 791.3 (ܹଶ)ଵ௬ 720.5 638.4 669.1 752.7 

 
Table 10. Comparison of the measurement scale influence with the variable W 

 
As seen in the tables before, there are discrepancies within the two ways of estimating the 
value. It can be also seen that these discrepancies vary between the variable analyzed and 
also within the distribution fitted to estimate the 100-years return period. In the case of Hs 
the discrepancies are lower than for the variable W, and regarding to the distribution fitted: 
the exponential one presents the highest discrepancies while the Gumbel and the GEV the 
GPD the lowest ones. Thus, for those cases where our study is clearly influenced not by the 
variable itself but by a transformation of it (squared, cubic, normalized …) it may be 
advisable to test different variations applied to the initial data.  

2.4.7. Location influence 
 

Several studies have already shown the differences on marine climate regarding the 
location (Gulev 2001) (C. M. Izaguirre 2011), (C. M. Izaguirre 2012). Independently to the 
database or the method used there is a spatial variability along the oceans that is relevant, 
thus, higher waves are expected in the northern hemisphere in the North Atlantic or the 
Bering Sea while smaller waves are more present in the Atlantic and Pacific oceans at 
equatorial latitudes.  
 
In Figure 30, extracted from (C. M. Izaguirre 2011), it is represented the seasonal 20-year 
return period significant wave height in a global scale. In this study the authors used satellite 
data to analyze the spatial variability of extreme waves. As seen, there are clearly 
differentiated behaviors according to the location.  
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Figure 30. Seasonal distribution of the 20y return period Hs (C. M. Izaguirre 2011). 

 
In this study the have also performed and adjustment of the annual maxima to a GEV 
distribution at each location. Figure 31 shows the variability of the shape parameter around 
the world. They state that 'Tropical areas where high cyclone and typhoon activity occur 
present a Fréchet like behavior: the Caribbean, the Gulf of Mexico, the western tropical 
Pacific (Philippine Sea) and French Polynesia. Areas of swell generation, such as the North 
Atlantic Ocean or the Austral Ocean (Roaring Forties) present Weibull distribution. This 
aspect of the behavior of the shape parameter is especially relevant when it comes to the 
estimation of high return-period quantiles, such as the 100 or 50 year return level values.' 
 

 
Figure 31. Spatial variability of the shape parameter of extreme wave height distribution 
around the world. Only statistically significant values at the 90% confidence interval are 

dotted (from Izaguirre et al 2011).  
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In Figure 32, the same analysis as that proposed by (C. M. Izaguirre 2011) is shown, but 
considering the NOAA database. As seen, there are areas where the shape parameter is 
clearly positive (around the tropical areas of the Caribbean Sea o in front of the coasts of 
Australia); these values of the shape parameter are related to Fréchet distributions, and it 
means heavy tailed extremes distribution. These lasts figures clearly represent the spatial 
variability in terms of marine climate extremes, and thus, the importance of the location 
where our study takes place.  
 

 
 

Figure 32. Spatial variability of the shape parameter of extreme wave height distribution 
using the NOAA database.  

2.4.8. Database influence 
 

Within the different met-ocean databases available there are some discrepancies. 
Different sources of data (buoy measurements, results from reanalysis models, satellite 
observations …) or different initial conditions and hypothesis within the models will lead into 
differences between different sources of information. These differences may conduct to 
differences in the extreme value analysis and on the expected return values. In order to 
quantify these discrepancies, various databases at the same location have been compared.  
 
Databases 
 
The data bases used for this were the followings: 
 

• NOAA 
 
The NOAA (National Oceanic and Atmospheric Administration) from the EEUU develop 
databases for different ocean and atmospheric variables, as well as forecast and real-time 
observations of several meteo-ocean phenomena (http://www.nodc.noaa.gov/). Their wave 
database is an open source database available for any utilization but in the models they have 
used to develop their data they have not considered currents or tides.  
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They provide different spatial grids of resolution (1°x1.25°, 0.5x0.5, 0.5°x2.5°) and different 
temporal coverage but all of them with a 3-hourly temporal resolution.  
  
The time series from NOAA used in this study covers 17 years, from 1/2/1997 until 
31/10/2013, with data 3-hourly and with data from the parameters: Hs (m), Tp (s), Dir (°), 
Wind Speed (m/s) and Wind Direction (°).  
 

• ERA40 
 
The ERA40 (http://data-portal.ecmwf.int/data/d/era40_daily/) is a reanalysis product of the 
ECMWF (European Center for Medium-Range Weather Forecasts) of atmospheric and 
surface conditions. It is also an open source database but it is only available for research 
purposes. In their models they did not take into account currents or tides.  
 
With a 6-hourly temporal resolution and a spatial resolution of 2.5°x2.5°, they provide data 
of Hs (m), Tm (s), Dir (°), Wind Speed (m/s) and Wind Dir (°) for a period of 46 years, covering 
from 1/9/1957 until 31/8/2002. 
 

• HOMERE 
 
The HOMERE database is a reanalysis database developed by IFREMER, which is available for 
all purposes and that, takes into account currents and tides in their models 
(http://www.previmer.org/en/produits/hindcast_sea_states_homere).  
 
They provide an hourly time series that spans 19 years covering from 1/1/1994 until 
31/12/2012. It has been developed with an unstructured mesh of 100.000 nodes that cover 
the French Coast. The parameters provided are: Hs (m), Tp (s), Dir (°) Wind Speed (m/s), Wind 
Dir (°), Currents, sea level and swells and seas.  
 

• BoBWA 
 
The BoBWA (Bay of Biscay Wave Atlas) is a reanalysis database developed by BRGM available 
for all purposes but that does not take into account in their models currents or tides 
(http://bobwa.brgm.fr/).  
 
The grid used has a spatial resolution of 0.5°x0.5° in the North Atlantic Coast and 0.1°x0.1° 
around the French Coast. This grid has a temporal resolution of 6 hours, but in the nodes of 
the grid they have hourly temporal resolution. It has a temporal coverage of 45 years from 
1/1/1958 to 31/08/2002 and with data from the parameters: Hs (m), Tm (s), Tp (s) and Dir (°). 
 

• IH-DATA 
 
IH-DATA is a reanalysis meteo-ocean database developed by IH-Cantabria, freely available 
only for research purposes (http://www.ihcantabria.com/es/software/item/719-ihdata). 
They have produced different databases of wind fields, wave’s data and sea level. The wave 
database has been developed for different grids (with variable spatial resolution: 1.5°x1° -
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Global; 0.25° x 0.25°- Europe; 0.125° x 0.125°-Mediterranean Sea) covering different spatial 
areas. The model used to generate the wave database does not take into account the 
currents or tides.  
 
Within the products they provide, in this study it has been used a time series of 67 years of 
hourly data covering the period from 1/1/1948 to 28/2/2014 and with data for the 
parameters: Hs (m), Tp (s), Tm (s), Dir (°). 
 
Databases Influence 
 

To show the existent differences between databases, time series of significant wave 
height of the different sources mentioned above (NOAA, ERA40, IH, HOMERE and BoBWA) at 
the same location (2.5W 45N) have been compared. Their characteristics are resumed in the 
table below.  
 

Database Initial date Final date N° Years Maxima 
IH-GOW 1/1/1948 28/2/2014 67 12.61 
ERA40 1/9/1957 31/8/2002 46 10.42 
NOAA 1/2/1997 31/10/2013 17 10.92 

HOMERE 1/1/1994 31/12/2012 19 12.36 
BoBWA 1/10/1958 31/08/2002 44 13.51 

 
Table 11. Summary of the characteristics of the different databases used. 

  
Figure 33 shows the time series of the five different databases used along a temporal axis. As 
seen, the IH GOW database is the one covering the largest time span (dots in grey), while the 
shortest one is the NOAA (red dots).  
 

 
 

Figure 33. Databases time series (IHData-Grey, ERA40-Purple, HOMERE-green, NOAA-red 
and BoBWA-blue). 

 
With these data some distributions were fitted. Extracting the annual maxima of each 
database a GEV distribution and a Gumbel distribution (particular case of the GEV 
distribution with the shape parameter fixed to zero) were fitted. On the other hand, a Peaks 
Over Threshold approach was performed to all of the databases guaranteeing a mean 
number of events per year equal to 1 (λ=1). With these POT samples, a GPD distribution and 
an Exponential distribution (being the Exponential distribution the same as fixing the shape 
parameter to zero within a GPD) were fitted.  
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GEV fitting comparison  
 
 In Figure 34 the GEV comparison carried out is shown. The dots represent the annual 
maxima for each database and the solid line the GEV distribution fitted to these maxima. It 
can be seen that there are some discrepancies between the different databases. While 
fittings from GOW, ERA40 and BoBWA present a Weibull behavior with shape parameters 
lower than 0, the results from NOAA and HOMERE present a heavy tailed distribution, with 
Fréchet behavior and positive shape parameters. This could be related to the fact that those 
two databases (NOAA and HOMERE) are the ones with shortest time coverage (17 and 19 
years respectively) and an annual block size to the GEV might not be enough. 
 

 
 

Figure 34. GEV distribution at 2.5W 45N for the different databases. 
 

Database Location (µ) Scale (σ) Shape (ξ) Hs R=100y (m) 
IH-GOW 8.663 1.095 -0.183 12.08 
ERA40 7.276 1.087 -0.153 10.87 
NOAA 7.463 0.741 0.274 14.1 

HOMERE 7.842 0.544 0.744 >20 
BoBWA 8.906 1.298 -0.010 14.75 

 
Table 12. GEV distribution parameters estimated for the different databases. 

 
Gumbel fitting comparison  

 
 Figure 35 represents the Gumbel fitting comparison. The Gumbel distribution is the 
particular case of a Generalized Extreme Value distribution with the shape parameter equal 
to 0. By fixing this parameter the behavior obtained does not vary that much for all the 
databases but still there are discrepancies of almost 3 meters within the different databases 
in terms of the 100-year return value estimates.   
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Figure 35. Gumbel distribution at 2.5W 45N for the different databases. 
 

Database Location (µ) Scale (σ) Hs R=100y (m) 
IH-GOW 9.721 1.233 11.61 
ERA40 8.389 1.231 10.26 
NOAA 8.751 1.315 10.73 

HOMERE 9.500 1.694 12.09 
BoBWA 10.493 1.696 13.09 

 
Table 13. Gumbel distribution parameters estimated for the different databases. 

 
GPD fitting comparison  

 
 With the samples obtained by performing a Peaks Over Threshold analysis to all of 
the databases a General Pareto Distribution was fitted. The comparison is shown in Figure 
36. As seen, the behavior of the different databases is as same as the one seen with the GEV: 
shorter databases (NOAA and HOMERE) present heavy tailed distributions while longer 
database present bounded distributions.   
 

Database Scale (σ) Shape (ξ) Threshold Hs R=100y (m) 
IH-GOW 1.199 -0.236 8.670 12.04 
ERA40 1.263 -0.295 7.350 10.53 
NOAA 0.545 0.383 7.570 14.2 

HOMERE 0.561 0.586 7.830 >19 
BoBWA 1.831 -0.305 8.935 13.46 

 
Table 14. GP distribution parameters estimated for the different databases. 
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Figure 36. GP distribution 2.5W 45N location for the different databases. 
 
Exponential fitting comparison  

 
 As it was done with the GEV, the shape parameter has been fixed to analyze its 
influence. In this case, fixing the shape parameter to 0 within a Generalized Pareto 
Distribution is the same as fitting an Exponential Distribution. Results to this test are shown 
in Figure 37. As it can be seen in the graphical representation, by fixing the shape parameter, 
the heavy tailed behavior of the shorter databases (NOAA and HOMERE) is avoided; but 
there are discrepancies of up to 4 meters between the highest estimator of the 100year 
return value (for BoBWA database) and the lowest one (for NOAA database).  
 

Database Scale (σ) Threshold Hs R=100y (m) 
IH-GOW 0.980 8.670 13.18 
ERA40 0.970 7.350 11.81 
NOAA 0.823 7.570 11.36 

HOMERE 1.070 7.830 12.76 
BoBWA 1.397 8.935 15.37 

 
Table 15. Exponential distribution parameters estimated for the different databases. 
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Figure 37. Exponential distribution at 2.5W 45N for the different databases. 
  
The results shown for the different distributions (from Figure 34 to Figure 37), are an 
example of the important discrepancies existent between databases. In the case of the GEV 
and the GP distributions (Figure 34 and Figure 36, respectively); the time series from NOAA 
and HOMERE present a Fréchet behavior, with heavy tailed distributions and positive shape 
parameters. While the other three databases present shape parameters close to 0 in the 
GEV distribution case (Table 12) and negative in the GPD case (Table 14). In case of fitting a 
Gumbel or an Exponential distributions (Figure 35 and Figure 37, respectively), because of 
having fixed the shape parameter to be equal to 0, the behavior of the 5 databases is similar. 
In terms of 100-years return period value, there are great discrepancies between databases 
and between distributions fitted, having values between 10.26m and 15.37m for those 
distributions without shape parameter (Gumbel and Exponential) and higher variations in 
the two distributions where the shape parameter was involved (GEV and GPD).  
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3. MULTIVARIATE ANALYSIS 
 

The characterization of marine climate in terms of extreme events, and therefore the 
design or coastal defenses or coastal management requires a careful treatment of the 
variables involved. Wave climate is usually described in terms of sea-states variables like 
significant wave height, Hs, and spectral peak period, Tp. But, other variables might be of 
interest in the process like wave mean direction, θm , sea level, η, or even wind parameters 
like wind speed and wind direction.  

 
The complexity of a multivariate extreme values analysis relies in the lack of knowledge of 
the dependences between variables in the tail of the distribution. Then, we need to make an 
estimation of the tail behavior of the multivariate distribution.  

 
Multivariate extreme value distribution is a wide research topic, with many contributions in 
the last years. As an example, (Jonathan 2013) and (Monbet 2007) give a survey of the 
existent models to deal with multivariate analyses. 

 
Generally speaking, existent multivariate approaches for solving extremes can be divided 
into 5 main groups. In the following sections (3.1 to 3.5) those models will be succinctly 
explained. Then, in section 3.6 Bayesian inference techniques will be briefly presented and in 
section 3.7 the characteristics of reliability methods will be explicated.  

 

3.1. Parametric models 
 

The aim of the parametric models is try to describe the tail dependences between 
variables using a finite number of parameters. The initial approach to achieve this would be 
to impose a given distribution (bivariate Normal, multivariate kernel …) to the variables of 
our study and then estimate its parameters.  

 
In the last decades, a large number of parametric models have been proposed trying to 
establish the relationship between different met-ocean variables. For example (Ferreira 
2002) propose a parametric model of significant wave height and mean period based on a 
bivariate density function or (C. C. Guedes Soares 2000) provides a bivariate model based on 
ARMA (autoregressive moving average) techniques to establish the joint distribution of wave 
height and wave period. In (Cai 2011), they propose a multivariate model able to deal with 
more than two variables also based on ARMA models, although in the paper they only apply 
it to the simulation of significant wave height wave period. A review in this kind of models 
could be find in (Kotz 2000), (Beirlant 2004) or (Monbet 2007).  

 
The main drawback of these methods is that the estimation of parameters might become a 
tedious or even unaffordable if the number of variables is too high, therefore they are 
limited to 2 or even 3 variables. Moreover, they require the imposition of a particular 
structure to the extreme tail behavior of both the marginal and the joint distribution. This 
may not be accurate in all the cases and also may lead to common misunderstandings. For 
example, in the case of two variables that both follow a normal distribution it does not imply 
that the joint distribution follows a binormal distribution.  
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3.2. Conditional extreme models 
 
Parametric models showed some limitations in terms of number of variables involved and 
difficulties to assign a given distribution to an empirical sample. To overcome this were 
developed the conditional extreme models. These models are based on taking each variable 
as the conditioning variable by turns and model the remaining variables conditioned to the 
large values of the one being the conditioning one. For example, in a bivariate case the 
model process would encompass modeling X2|X1=x1 for large x1 and X1|X2=x2 for large x2.  
 
The two main advantages of these methods are that they can be extended to higher 
dimensions than the other methods easily and also to samples in which not all the variables 
are simultaneously extreme.  
 
(Haver 1985) applied a conditional extreme model for significant wave height an wave 
period based on a Weibull distribution for the significant wave height and a log-normal for 
the wave period. The selection of those distributions may be questionable, so (Heffernan 
2004) went a step forward avoiding these problems. Their model can be succinctly described 
as follows:  
  i) Transform each variable into a Gumbel distribution.  
  ii) Estimate the dependence between variables for extremes.  
  iii) Sample values that follow these dependences.  
  iv) Transform them back into the original scale. 
 
The major advantages of their model are that there is no need of estimating the coefficient 
of tail dependence, it can be applied to higher dimension problems and there is no need of 
assuming given distributions to the marginals. Moreover, compared to max-stable models 
this kind of models admits all forms of extremal dependence.  
 
Recently, the method proposed by (Heffernan 2004) has been introduced into the modeling 
of flood risk analyses by (Wyncoll 2013) sampling extreme hydraulic loading events (rainfall) 
in several locations within a spatial grid. Moreover it has been also introduced into the 
analysis of coastal flooding and structural design by sampling extreme met-ocean conditions, 
waves and winds, (Gouldby 2014). This method have been compared with two other 
methods for a bivariate case of extreme rainfall and storm surge and its application to 
flooding risk in (Zheng 2013) 
 

3.3. Copula models 
 

Copula models are based on Sklar’s theorem which says that any multivariate 
distribution can be written in terms of univariate marginal distribution functions of the 
variables involved and a copula function that describes the dependence between the 
variables (Sklar 1996).  

 
In the last years, the use of copula functions to approach a multivariate analysis has become 
widely popular. In the field of coastal and ocean sciences applications can be found in (De 
Waal 2005), (De Michele 2007), (Salvadori 2011), (T. M. Wahl 2012) or (T. B. Wahl 2013).  
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The Copula function to calculate the joint probabilities can belong to different Copula 
families: i.e.; the Elliptical, the Normal, or the Archimedean family among others. For the 
case of hydrological sciences, the most often used Copulas belong to the Archimedean 
family due to their flexibility and because they are easy to construct and able to model a 
wide range of dependence structures (Favre 2004).  

 
The utility of these models to solve several problems have been demonstrated. But, 
although they represent a promising alternative to address multivariate problems, they 
present two main drawbacks: the first one is that for a practitioner not familiar with Copulas 
the selection of the best Copula function to be used could be difficult; and the second one is 
that these models become not practical for more than 2-3 variables. More details regarding 
these methods could be found in (Nelsen 1999).  
 

3.4. Extreme dependence models 
 

Extreme dependence model consist of estimating directly from the sample, a tail 
dependence coefficient η (a constant in [0, 1]) which quantifies the extremal dependence for 
the joint distribution. When η is equal to 1 it means the distribution is asymptotically 
dependent, otherwise it is asymptotically independent.  

 
In (Ledford 1997) they introduce the estimation of the dependence coefficient within joint 
tail regions for those cases where the variables involved have Gumbel marginal. In addition, 
(Schlather, Examples for the coeffitient of tail dependence and the domain of attraction of a 
bivariate extreme value distribution 2001) provides examples for a wide range of 
multivariate extreme value distributions. There is also a summarized η estimation 
explanation in (Jonathan 2013). 
  
The main disadvantage of these methods is that they require a careful treatment of the 
obtained results because any misunderstood in the asymptotic dependence-independence 
assumption may change drastically the occurrence rate of joint events. But on the contrary, 
they are useful because they can be applied to different forms of extremal dependence.  
 

3.5. Max-stable models 
 

The theory of multivariate max-stable processes is the generalization of the 
univariate max-stable theory used to motivate the choice of the Generalized Extreme Value 
Distribution in the case of independent and identically distributed (i.i.d.) events. Models 
based in this theory and the their basic principles can be found in (de Haan 1984) (Schlather, 
Models for Stationary Max-Stable Random Fields 2002), (Padoan 2010) 

 
Max-stable models are a very practical option for spatial problems. They consist of defining 
the distribution of maxima (also called the componentwise maximum, which is the 
maximum value across all the observations for that variable) and make the extreme value 
analysis to sample extracted from the data.  
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These models are useful to model certain types of dependence structure (asymptotic 
dependence and perfectly independence), but not asymptotically independence.  
 
Because they only apply to componentwise maxima, they may therefore exaggerate 
dependence effects (Jonathan 2013).  

 

3.6. Bayesian inference models 
 

Generally speaking, the goal of Bayesian inference is to update prior information about 
estimated parameters of a model with information gained from observation to generate 
improved posterior information. It enables the combination of data from observation with 
past experience and expertise in a consistent manner.  

 
Regarding the existent literature related Bayesian inference to extremes the reader can be 
addressed to the reviews developed by (S. Coles 2001) or (Beirlant 2004). And more 
specifically, related to metocean applications: (S. a. Coles 2005) use Bayesian inference 
methods to estimate extreme surges along the coast of UK or in (Scotto 2007) they develop 
a method that combines Bayesian theory and extreme value techniques to obtain long-term 
estimations of significant wave height in the North Sea based in a Markov Chain Monte Carlo 
Scheme.  
 
However, Bayesian inference presents some difficulties. Its main drawback is its subjective 
nature; different practitioners would set different prior information and this would lead into 
different results for the same initial data. Moreover, parameter estimation using Bayesian 
inference in high dimensions can become a very computational demanding problem. 
 

3.7. Methods of Reliability Estimation 
 

In engineering, a reliable design of any structure must be done so as to ensure that 
during its service life, some limit states are not exceeded. By service life is meant the period 
of time during which the structure must maintain acceptable safety, functionality and aspect 
conditions without requiring any rehabilitation operation. The limit state refers to the 
threshold above which the structure is not able to accomplish any of the functions for which 
it was designed (Melchers 1999).  

 
From a practical point of view, in the maritime structure design, reliability methods are 
divided into Level I, Level II and Level III methods. By the application of a reliability method, a 
design that ensures safety, service and operation over the structure’s lifetime can be 
formulated. 
 

3.7.1. Level I 
 
 Level I methods are those based on safety factors estimation. There are two main 
branches within these methods: methods based on global safety factors, and those based on 
partial safety factors for all the involved variables. With the first set, a minimum safety factor 
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that the infrastructure has to ensure over its lifetime is estimated. This coefficient is 
obtained from the main failure modes and lifetime of the structure, and from the limit 
states, ultimate and service. On the other hand, methods based on the estimation of partial 
safety factors disaggregate the safety factor into several partial factors. Each of them is 
obtained through the quantiles of the different involved variables. Global safety factors are 
easier to be estimated than partial factors, but they might be more imprecise.  
 
Level I methods represent an easy and traditional approach to structural design. They are 
very useful and easily applied methods, but they are not able to inform about the possibility 
of not satisfying the requirements. Examples of these methods applied to coastal structures 
can be found in (Burcharth 1999) or (Kim 2013). 
 

3.7.2. Level II 
 
 Level II and III methods are based on estimating the failure probability, pf. An 
analytical solution of pf, where all the involved variables are taken into account, can be 
expressed as: 
 

1 2
1 2 1 2 1 2( , ,..., ) 0

x , x ,..., x ( , ,..., ) ...
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f n n ng x x x
p f x x x dx dx dx
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=   

 
Where ݃(ݔଵ, ,ଶݔ … , (ݔ ≤ 0 is the equation that defines the limit state of the structure 
design and ௫݂భ,௫మ,…,௫	(ݔଵ, ,ଶݔ . . . ,  ) is the density function of all the variables involved inݔ
terms of loads and resistances. Usually, the achievement of an analytical solution of this 
integration is not possible. There are different approaches to estimate the failure 
probability. In the case where the involved variables are not correlated it is possible to 
estimate the two first moments of the joint distribution f and proceed with them to the 
design. But, in the case of correlated variables, they must first be transformed into 
independent variables. That way, the joint distribution can be expressed as a product of 
marginal distributions. 
 
Level II methods are also known as FOSM (First Order Second Moment) methods. The 
theoretical basis of FOSM lies in the statement that satisfactory estimates of the parameters 
of a distribution may be given by first order approximations of Taylor series expansions of 
second moment parameters (e.g. mean and variance) of a random variable calculated from 
samples (Melchers 1999). Practically, FOSM methods simplify the ultimate limit state 
equation to a straight line (in the case of being in dimension 2), and instead of using the 
actual joint distribution of the variables, uses its two first moments: its mean and variance. 
With that, it is possible to define the point on the linear approximation for which the 
distance is the minimum to the central value of the joint distribution (its mean). This point of 
the linear approximation will be the design point (Figure 38) and distance β represents the 
reliability index as a constant measurement, to determine whether the system is safe or not. 
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Figure 38. Limit state surface graphical and its linear approximation for a 2-D case. 
  

3.7.3. Level III 
 
 Finally, Level III methods are those that try to solve equation of pf by integration 
techniques (analytically or numerically), or by using simulation techniques. Only in a few 
cases does an analytical solution exist, so normally simulation techniques are used. Level III 
methods based on the estimation of the failure region can be split into FORM (First Order 
Reliability Methods), and SORM (Second Order Reliability Methods). On the other hand, 
Level III methods that consist of the synthetic generation of involved variables are generally 
based on simulation techniques such as Monte Carlo (Metropoli 1949). 
 
FORM. First Order Reliability Methods 
 
 While FOSM estimates the failure probability considering the two first moments of 
the random variables (mean and variance), FORM methods take into account the actual 
distributions of the variables but keep on using a linear approximation of the limit state 
problem. The process undertaken by FORM methods is similar to FOSM ones, the main 
difference is related to the transformation applied to the random variables to transfer them 
to the multivariate normal space. More detailed information regarding these methods could 
be found in: (Freudenthal 1956), (Hasofer 1974), (Rackwitz 1978) and (Ditlevsen 1973) 
among others.  
 
SORM. Second Order Reliability Methods 
 
 There are cases where it is not feasible to approximate the state limit equation to a 
straight line (in the case of 2D). This occurs when the state limit equation is a sharp curve, or 
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when this curve is not so sharp in the original space but is sharp in the transformed space. 
When this occurs, the problem can be solved by using SORM (Second Order Reliability 
Methods).  
 
These second order methods are based on an approximation of the state limit equations by 
parabolic or spherical approximations in the surroundings of the maximum probability 
design point. The results obtained by these methods are very accurate and can be more 
efficient than Monte Carlo simulation techniques at estimating extreme percentiles.  
 
Among these methods can be listed the approaches proposed by: (Breitung 1984), (Castillo, 
Estimating extrerme probabilities using tail simulated data. 1996), (Castillo, High probability 
one-sided confidence intervals in reliability models 1997), (Haskin 1996), (Koyluoglu 1994). 
 
i-FORM. Inverse First Order Reliability Methods 
 
 (Winterstein 1993) introduced a novelty way to deal with the problem of a 
multivariate extreme values analysis. In their approach, instead of estimating β as the 
minimum distance between the joint distribution barycenter and the limit state equation, 
they initially specify a probability of failure and thus a value for β. Then they search for all 
the possible FORM with a certain return period (hyper-sphere with radius β). This way they 
obtain all the maximum responses the structure must withstand. This new approach allows 
the determination of multivariate contours associated to a previously specified return 
period.  
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4. CHARACTERISING UNCERTAINTIES 
 

In any statistical analysis it is needed to quantify the accuracy of the obtained 
estimations. In term of economic losses or casualties, the characterization of these 
uncertainties acquires a vital importance when the study’s objectives are the extreme values 
analysis of environmental variables for any coastal protection design or management.  

 
Quantify the uncertainty of an estimation made based on probabilities is a complex issue 
because there are several sources that may introduce uncertainties in our estimation: error 
induced by experimental measurements (buoys), error induced by the models and the 
hypothesis they assume (reanalysis models), error induced by the assumption of a statistical 
distribution or method and the estimation of its parameters (block maxima or POT, GEV or 
GPD), etc. 

 
In this study there is no intention to solve this issue, but here are summarized some of the 
most used methods to give an estimation of the uncertainties in terms of probabilities. 

 
A practical form to characterize the uncertainty of an estimated value is giving a confidence 
interval around it. A confidence interval is a range of values (interval) around the estimated 
parameter value with a confidence level. This confidence level indicates the probability that 
this interval captures the parameter estimation given several samples. For example, if we 
have a sample of a variable which its mean value is estimated to be 5, with a confidence 
interval of (4,6) with a confidence level of 99% it means than in 1% of samples of this 
variable we will obtain a mean out of the interval (4,6). In practice, confidence intervals are 
usually estimated with a 95% confidence level, but in graphical representations it is also 
usual to represent 50% and 99%.  

 

4.1. Standard Likelihood Theory or Theoretical Delta Method. 
 
For a large sample size n and assuming that a proposed model is valid, the 

distribution of the ML estimators θ̂  is approximately multivariate normal with mean θ  (the 
true parameter values) and covariance matrix given by the inverse of the observed 
information matrix ( )OI θ , 
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Evaluated at ˆθ θ= . If an arbitrary term in the inverse of ( )OI θ  is i js , the square root of the 

diagonal entry iis  is approximately the standard error, ˆ( )ise θ , of the ith component of the 

ML estimators vector θ̂ . Therefore confidence intervals for iθ  can be obtained in the form
ˆ ˆ ˆ ˆ[ ( ), ( )]i i i iz se z seα αθ θ θ θ− + , where 0.95 1.96z =  gives a 95% confidence interval (Méndez 2006). 

 
This method has the advantage of being an analytical approach and being fast to compute. 
But in the other hand it can be only applied to Maximum Likelihood estimators and might 
not be very accurate for small samples. 
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4.2. Resampling Confidence Intervals or Bootstrapping Method 
 

This method is based on simulating numerous random samples with the same size of the 
original one and estimate same extreme value model parameters with each of them. Then, 
from the range of estimators obtained, confidence intervals can be estimated. If quantiles 
are estimated for each set of estimators, it is also possible to derive confidence intervals on 
quantiles. 
 

This method has the advantage of being generally accurate and applicable to any estimation 
method. But it can become computationally demanding for large samples.  
 

4.3. Bayesian Confidence Intervals or Credible Intervals 
 

Credible intervals or also called Bayesian Confidence Intervals in Bayesian statistics are 
analogous but not equal to confidence intervals in frequentist statistics.  
 
To express uncertainty, the frequentist approach uses a confidence interval: a range of 
values designed to include the true value of the parameter with some minimum probability, 
say 95%. So that out of every 100 experiments run start to finish, at least 95 of the resulting 
confidence intervals will be expected to include the true value of the parameter. In the other 
5 experiments, the true value of the parameter might be outside of the confidence intervals.  
 
Bayesian approaches formulate the problem differently. Instead of saying the parameter 
simply has one true value, the Bayesian paradigm says the parameter's value is fixed but has 
been chosen from some probability distribution - known as the prior probability distribution. 
This prior might be known or it might be an estimation. If no knowledge is available a priori, 
the prior probability distribution might be the uniform distribution. Within the Bayesian 
inference some data are collected, and then the probability distribution of the parameter 
given the data is calculated. This new probability distribution is called the a posteriori 
probability or simply the posterior. Bayesian approaches summarize the uncertainty by 
giving a range of values on the posterior probability distribution that includes for instance 
95% of the probability; this is called a 95% credibility interval. Contrary to confidence 
intervals in the frequentist approach, the actual value of the parameter has a particular 
probability (e.g. 95%) of being in the credibility interval given the data actually obtained. 

 
Within this Bayesian framework, there is the possibility of avoiding the credibility intervals 
working directly with the predictive probability distribution. This distribution aggregates all 
the uncertainties combining and integrating them into a one single probability distribution. 
According to (S. a. Coles 2005) and applied to a lock maxima case, it can be defined by:  

 ܲ൫ܼ < ൯ܪหݖ = න ;ݖ൫ܩ ,ߠ݀(ܪ|ߠ)൯݂ߠ  

 
Where Z are the annual maxima, ݖ)ܩ;  is the conditional annual maximum GEV (ߠ
distribution with model parameters ߠ = ,ߤ) ,ߪ  is the posterior term being H (ܪ|ߠ)݂ and ;(ߦ
a subset of the observed data that contains all of the relevant information on extreme 
events. The reader can refer to (S. a. Coles 2005) to have a more detailed explanation of this 
approach as well as a practical application.   
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5. SOFTWARES 
 

Here, a summary of available softwares that solve extreme values analysis or at least 
help with time series analysis, most of them are explained in the review of softwares and its 
features done by (Stephenson 2006). They are divided following a writing language criteria 

5.1. R 
 

BSquare Conduct Bayesian quantile regression for continuous, discrete and censored data.  
  
 dqreg  Plots posterior density for parametric basis functions. 
 qreg MCMC code for the quantile regression model of Reich and Smith, 2013. 
 qreg_spline Quantile regression using spline basis functions for the quantile process. 
 qr_plot Plot of posterior distribution of effects 
 
http://www4.stat.ncsu.edu/~reich/QR/  
  
copula Modeling multivariate dependences with copulas. 
   
The copula package provides: 
 
 • Classes of commonly used copulas including elliptical (normal and t; ellipCopula), 
Archimedean (Clayton, Gumbel, Frank, Joe, and Ali-Mikhail-Haq; archmCopula), extreme 
value (Gumbel, Husler-Reiss, Galambos, Tawn, and t-EV; evCopula), and other families 
(Plackett and Farlie-Gumbel-Morgenstern). 
 • Methods for density, distribution, random number generation (dCopula, pCopula 
and rCopula); bivariate dependence measures (rho, tau, etc), perspective and contour plots. 
 • Functions for fitting copula models including variance estimates (fitCopula). 
 • Independence tests among random variables and vectors. 
 • Serial independence tests for univariate and multivariate continuous time series. 
 • Goodness-of-fit tests for copulas based on multipliers, and the parametric 
bootstrap, with several transformation options. 
 • Bivariate and multivariate tests of extreme-value dependence. 
 • Bivariate tests of exchangeability. 
 
evd univariate and multivariate parametric EV distribution . 
 
Extends simulation, distribution, quantile and density functions to univariate and 
multivariate parametric extreme value distributions, and provides fitting functions which 
calculate maximum likelihood estimates for univariate and bivariate maxima models, and for 
univariate and bivariate threshold models.  
 
evdbayes functions for the bayesian analysis of extreme value models. 
  
 Accept Rate Compute suited proposal standard deviations for the MCMC algorithm. 
 dinfo Show means, variances and modes for beta and gamma distributions. 
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 Jumps Definition These are function useful to define reversible jumps for the 
algorithm. There is currently three functions: jacFun which evaluates the jacobian, 
movType1 which returns a special proposal of type 1 and movTyp2 which returns a special 
proposal of type2. 
 lh Calculate log-likelihoods for the gev, orderstatistics or point process models. 
 mc.quant Compute gev quantiles from samples stored within a Markov chain, 
corresponding to specified probabilities in the upper  tail. 
 mposterior Maximizing prior and posterior distributions for the location (with 
optional trend), scale and shape parameters under the gev, order statistics or point process 
models. 
 posterior Constructing MCMC samples of prior and posterior distributions for the 
location (with optional trend), scale and shape parameters under the GEV, order statistics or 
point process models. 
 posterior.mix Constructing MCMC samples of prior and posterior distributions for the 
location (with optional trend), scale and shape parameters under the GEV, order statistics or 
point process models. Note this function is only effective for a mixture denned in the prior 
distribution. 
 prior Constructing prior distributions for the location, scale and shape parameters 
using normal, beta or gamma distributions. A linear trend for the location can also be specie, 
using a prior normal distribution centered at zero for the trend parameter. 
 rainfall A numeric vector of length 20820 containing daily aggregate rainfall 
observations, in millimeters, recorded at a rain gauge in England over a 57 year period, 
beginning on a leap year. Three of these years contain only missing values. 
 rl.pred Produce return level plots depicting prior and posterior predictive GEV 
distributions. 
 rl.pst Produce return level plots depicting prior and posterior distributions of GEV 
quantiles. 
 
evir Extreme Values in R. 
  
Functions for extreme value theory, which may be divided into the following groups; 
exploratory data analysis, block maxima, peaks over thresholds (univariate and bivariate), 
point processes, GEV/GPD distributions. 
 
extRemes  
 
 A suite of functions for carrying out analyses on the extreme values of a process of 
interest; be they block maxima over long blocks or excesses over a high threshold. 
 
 It provides a windows GUI for the ’ismev’ package, allowing easy use of the tools that 
the ismev package provides, in addition to a few extra useful functions.  
 
http://www.ral.ucar.edu/staff/ericg/extRemes/  
  
extremevalues Detect extreme values in one dimensional data. 
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 evGui Opens a Graphical User Interface and plots results. Options of the extreme 
value package functions can be set and results are updated instantly. Includes a code 
generator button. 
 
 extremevalues This package offers outlier detection and plot functions for univariate 
data. The package is the implementation of the outlier detection methods introduced in the 
reference below. Briefly, the methods work as follows. Using a subset of the data, the 
parameters for a model distribution are estimated using regression of the sorted data on 
their QQ-plot positions. A value in the data is an outlier when it is unlikely to be drawn from 
the estimated distribution. There are two methods to determine the "unlikelyness". The 
first, called "Method I", determines the value above which less than ρ observations are 
expected, given the total number of observations in the data. Here ρ is a parameter which 
should have a value of 1 or less. The second notion of unlikelyness uses the fit residuals. 
Extremely large or small values are outliers when their residuals are above or below a 
confidence limit α, to be determined by the user. 
 
 getOutliers is a wrapper function for getOutliersI and getOutliersII. Both methods use 
the subset of y-values between the Fmin and Fmax quantiles to fit a model cumulative 
density distribution. Method I detects outliers by checking which are below (above) the limit 
where according to the model distribution less then rho[1] (rho[2]) observations are 
expected (given length(y) observations). Method II detects outliers by finding the 
observations (not used in the fit) who’s fit residuals are below (above) the estimated 
confidence limit alpha[1] (alpha[2]) while all lower (higher) observations are outliers too. 
  
 invErf Inverse error function 
  
 outlierPlot  This is a wrapper for two plot functions which can be used to analyze the 
results of outlier detection with the extreme values package. 
 
 pareto  Pareto density distribution, quantile function and random generator. 
 
ismev univariate extreme value modeling.  
  
Functions to support the computations carried out in ‘An Introduction to Statistical Modeling 
of Extreme Values’ by Stuart Coles. The functions may be divided into the following groups; 
maxima/minima, order statistics, peaks over thresholds and point processes. 
 
lmom functions to compute L-moment estimates for extreme value distribution parameters.  
  
 Functions related to L-moments: computation of L-moments and trimmed L-
moments of distributions and data samples; parameter estimation; L-moment ratio diagram; 
plot vs. quantiles of an extreme-value distribution. 
 
 L-moments are measures of the location, scale, and shape of probability distributions 
or data samples. They are based on linear combinations of order statistics. Hosking (1990) 
and Hosking and Wallis (1997, chap. 2) give expositions of the theory of L-moments and L-
moment ratios. Hosking and Wallis (1997, Appendix) give, for many distributions in common 
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use, expressions for the L-moments of the distributions and algorithms for estimating the 
parameters of the distributions by equating sample and population L-moments (the 
“method of L-moments”). This package contains R functions that should facilitate the use of 
L-moment-based methods. For each of 13 probability distributions, the package contains 
functions to evaluate the cumulative distribution function and quantile function of the 
distribution, to calculate the L-moments given the parameters and to calculate the 
parameters given the low-order L-moments.  
 
lmomRFA functions for regional frequency analysis (RFAA). 
  

 This package implements methods described in the book “Regional frequency 
analysis: an approach based on L-moments” by J. R. M. Hosking and J. R. Wallis. It is a 
supplement to the lmom package, which implements L-moment methods for more general 
statistical applications. 
 

lmomco compute L-moments, trimmed L-moments, L-comoments, and probability-weighted 
moment estimation for extreme value distributions.  
 

 The package is a comparatively comprehensive implementation of the theory of L-
moments. 
L-moment, probability-weighted moment (PWM), and parameter estimation for numerous 
familiar and not-so-familiar distributions are provided. L-moment estimate for the same 
distributions are provided. L-moments are analogous to product moments; however, L-
moments have many advantages including unbiasedness, robustness, and consistency. L-
moments can outperform maximum likelihood for small to moderate samples.  
  

POT POT analysis for both univariate and bivariate cases . 
 
Some functions useful to perform a Peak Over Threshold analysis in univariate and bivariate 
cases.  Some features: 
 
 - Analysis-of-deviance tables for univariate and bivariate cases. 
 - GPD  for univariate and bivariate cases. 
 - Dependence measures for EVA 
 - Extremes clusterization 
 - Extremal Index: estimation, plot, density. 
 - Estimate confidence intervals and convergence assessment 
 - Threshold Selection:  dispersion index, mean residual life and threshold choice plots 
 - Markov Chain: fitting MC to POT, simulation. 
 - Compute SampleL-moments 
 - Graphical Diagnostic: the univariate/bivariate GPD Model, Markov Chains for all  
exceedances, the bivariate EV distribution model, pp plot, qq plot, return level plot, spectral 
density 
 
QRM 
 
 Routines developed by Alexander McNeil, then included in the packaged QRMlib (see 
EVIS in section S/S-Plus), based on his book: Quantitative Risk Management: Concepts, 
Techniques, and Tools by Alexander J. McNeil, Rüdiger Frey, & Paul Embrechts.   
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 Includes tools related to Copula models, GEV and GPD fitting and graphical checking 
plots like PP or QQ plots among other features. It is focused on econometrics and finances. 
 
Rmetrics  
  
 Open source solution for teaching financial market analysis and valuation of financial 
instruments. With hundreds of functions build on modern methods, Rmetrics combines 
explorative data analysis and statistical modeling and rapid model prototyping. Rmetrics 
covers Time Series Econometrics, Hypothesis Testing, GARCH Modeling and Volatility 
Forecasting, Extreme Value Theory and Copulae, Pricing of Derivatives, Portfolio Analysis, 
Design and Optimization. 
 
https://www.rmetrics.org/ 
 
SpatialExtremes  
 
 SpatialExtremes is a package that provides tools for the statistical modeling of spatial 
extremes. The main types of statistical models thus far implemented are: 
  
 • Max-stable processes 
 • Conditional max-stable simulations  
 • Bayesian Hierarchical models 
 • Copula approaches 
 • GEV and GP distributions 
  
http://spatialextremes.r-forge.r-project.org/index.php  
 
texmex conditional EVA approach of H&T 2004.   
  
 Statistical extreme value modeling of threshold excesses, maxima and multivariate 
extremes. Univariate models for threshold excesses and maxima are the GP, and GEV model 
respectively. These models may be fitted by using maximum (optionally penalized) 
likelihood, or Bayesian estimation, and both classes of models may be fitted with covariates 
in any/all model parameters. Model diagnostics support the fitting process. Graphical output 
for visualizing fitted models and return level estimates is provided. For serially dependent 
sequences, the intervals declustering algorithm of Ferro and Segers is provided, with 
diagnostic support to aid selection of threshold and declustering horizon. Multivariate 
modeling is performed via the conditional approach of Heffernan and Tawn, with graphical 
tools for threshold selection and to diagnose estimation convergence.  
 
VGAM allows for modeling parameters as linear or smooth functions of covariates.  
 
 Vector generalized linear and additive models, and associated models (Reduced-Rank 
VGLMs, QuadraticRR-VGLMs, ReducedRank VGAMs).This package fits many models and 
distribution by maximum likelihood estimation (MLE) or penalized MLE. Also fits constrained 
ordination models in ecology. 
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5.2. Matlab 
 

EVIM  
  

 Open source toolbox developed in Matlab to analyze and work with extreme value 
analysis. It functions can be divided into: preliminary data analyses, distribution and tail 
estimation and predictions at the tail. 
i) preliminary data analyses: 
 

 emplot This function plots the empirical distribution of a sample. 
 meplot This function plots the sample mean excesses against thresholds. 
 qplot This function provides a QQ plot of data against the GPD in general. 
 hillplot This function plots the Hill estimate of the tail index against thek upper-order. 
 statistics (number of exceedances) or against different thresholds. 
 qgev This function calculates the inverse of a GEV distribution. 
 qgpd This function calculates the inverse of a GPD. 
 pgev This function calculates the value of a GEV distribution. 
 pgpd This function calculates the value of a GPD. 
 rgev This function generates a particular number of random samples from a GEV 
distribution. 
 rgpd This function generates a particular number of random samples from a GPD. 
 records This function creates a MATLAB data structure showing the development of 
records in a data set and expected record behavior of an i.i.d. data set with the same sample 
size. 
 block This function divides the input data vector into blocks and calculates block 
maxima or minima. 
 findthresh This function finds a threshold value such that a certain number (or 
percentage) of values lie above it. 
 
ii) distribution and tail estimation: 
 

 exindex This function estimates the extremal index using the blocks method. The 
extremal index is utilized if the elements of the sample are not independent. 
 pot This function fits a Poisson point process to the data. This technique is also 
known as the peaks over threshold (POT) method. 
 plot_pot This function is a menu-driven plotting facility for a POT analysis. 
 decluster This function declusters its input so that a Poisson assumption is more 
appropriate over a high threshold. The output is the declustered version of the input. 
Suppose that there are 100 observations, among which there are four exceedances over a 
high threshold. Further suppose that these exceedances are the 10th, 11th, 53th, and 57th 
observations. If thegap option is entered in the above function as 0.05, the 11th and 57th 
observations are skipped, since there are fewer than five observations (5 percent of the 
data) between these exceedances and the nearest previous exceedances. This function is 
useful when exceedances are coming from a Poisson process, since Poisson processes 
assume low density (no clustering) and independence. 
 gev This function fits a GEV distribution to the block maxima of its input data. 
 plot_gev This function is a menu-driven plotting facility for a GEV analysis. 
 gpd This function fits a GPD to excesses over a high threshold. 
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 plot_gpd This function is a menu-driven plotting facility for a GPD analysis. 
 

iii) predictions at the tail: 
 

 gpdq This function calculates quantile estimates and confidence intervals for high 
quantiles above the threshold in a GPD analysis. 
 shape This function is used to create a plot showing how the estimate of the shape 
parameter varies with threshold or number of extremes. 
 quant This function creates a plot showing how the estimate of a high quantile in the 
tail of data based on a GPD estimation varies with varying threshold or number of 
exceedances. 
 

http://www.sfu.ca/~rgencay/index.html 
 

EXTREMES 
 

 EXTREMES is an interface developed in Matlab to work with tools written in C++. This 
software is dedicated to extreme values study, focused on extreme quantiles estimation and 
model selection for distribution tails. Its functions can be divided into: 
 

i) Statistical functions: 
 

 - Sample simulation 
 - Plotting distribution related functions 
 - Parameter estimation  
 - Non parametric estimation of density  
 - Parametric estimation of quantiles  
 - Anderson-Darling or Cramer-von Mises test 
 

ii) EVA functions: 
 

 - Estimation of extreme value analysis for both GEV and GP.  
 - Graphical and numerical tests (Hill, Dekkers ...) to check model fittings. 
 - Extreme quantiles estimation  
 

iii) Other procedures:   
 

 - Bayesian regularization procedure 
 - Central fits tests (-Darling or Cramer-von Mises) to check data distribution in both 
central and extremal ranges. 
 

http://mistis.inrialpes.fr/software/EXTREMES/ 
 

IH-AMEVA 
 

 AMEVA free software is a compendium of Matlab based functions to study and 
characterize environmental variables. It is divided into different modules all of them 
independent. This modules are: 
 
 i) Calibration: 
Set of functions that allow a directional calibration by using quantiles and assuming a 
smooth directional variation by means of splines. 
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 ii) Descriptive statistic: 
 Package developed to perform statistical analysis of environmental variables: 
clusterization techniques, several diagnosis plots, persistence analysis, temporary maximum 
and occurrence charts among others.   
 
 iii) Distributions fit: 
 Fitting functions to different known distributions (normal, exponential, rayleigh, 
gamma, gumbel, extreme value, logistic, t-student, lognormal, weibull, weibul min, weibull 
max, beta, pareto) for both kind of data: continuous and discrete. Also the possibility of 
several diagnosis plots is available: time series, PDF, CDF, PP plot, QQ plot and probability 
plot. Confidence intervals can be also estimated. 
 
 iv) Extremal statistic: GEV and POT-Pareto Poisson: 
 GEV tool is used to fit monthly or yearly maxima. This maxima can be obtained with 
the function specially determined for it. Within the GEV some settings are displayed: 
introduction of seasonality, long term trend or influence of covariates in the parameters 
estimation; criteria to stop the parameters optimization (akaike or chi-square criteria). 
POT tool is used to fit independent events above a certain threshold and the annual 
frequency is fitted with a Poisson model. The sample of extreme events can be provided to 
the tool or extracted from a raw data sample. Some settings refereeing to the POT model 
are the definition of the threshold, the significance of the parameters or the timelaps 
between two consecutive events to be considered independent. 
For both models some diagnosis plots can be generated: QQ plot, PP plot, autocorrelation, 
partial autocorrelation, aggregated quantiles, and plots referred to each parameter 
estimated. 
 
 Apart from these main modules it also has some secondary models of applicability to 
the main modules: 
 
 a) Clusterization tools: It includes three kind of clusterization techniques such as Self-
Organizing-Maps (SOM); Maximi-Dissimiliarity Algorithm (MDA) and K-Means Algorithm 
(KMA). The number of clusters can be changed as well and diagnosis plots are also 
generated. 
 b) Temporal maxima: Data selection can be performed at 5 different levels: 
    Weekly, monthly or yearly maxima 
    Weekly, monthly or yearly mean 
    Weekly, monthly or yearly quantile 
    Data above a certain threshold 
    Independent peaks above a certain threshold 
 c) Persistence analysis: This tool allows obtaining the array of durations for one, two 
or three variables that follow some restricting criteria.  
 
 d) Occurrence plots: It allows obtaining the occurrence frequency or the number of 
events between two variables.  It is also possible to obtain monthly or sectorial occurrence 
charts. The number of classes in which the variables will be divided can be given. 
 
 e) Homocedastic/Heterocedastic models: With this tool homocedastic (constant 
variance and constant/linearly variable or cuadratically variable mean) and heterocedastic 
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(constant/linearly variable or cuadratically variable mean and variance) regression models 
can be performed.  
  
http://ihcantabria.com/IHAMEVA/  
 
WAFO 
 
 WAFO is an open source toolbox of Matlab routines for statistical analysis and 
simulation of random waves and random loads.  
 
i) Fatigue Analysis: 
 - Fatigue life prediction for random loads 
 - Theoretical density of rain flow cycles 
 - Sea modeling 
 - Simulation of linear and non-linear Gaussian waves 
 - Estimation of frequency spectra and directional wave spectra 
 - Model spectra (JONSWAP, Torsethaugen, Bretschneider, Pierson-Moskowitz,...) 
 - Joint wave height, wave steepness, wave period distributions 
 
ii) Statistics: 
 - Extreme value analysis 
 - Multivariate Gaussian probabilities and expectations 
 - Profile log-likelihood analysis  
 - Regression analysis  
 - Hypothesis tests (one-sample and two sample T-test, Wilcoxon signed rank and 
rank-sum test,....) 
 - Kernel density estimation (Fast data-gridders with various bandwidth selectors) 
 - Hidden markov models 
 - Probability distributions and random number generators (Beta, Chi-2, Exponential, 
 - Gamma, GPD, GEV, Gumbel, Inverse Gaussian, Lognormal, Normal, Rayleigh, 
Students-T, Weibull,...) 
 - Bootstrap 
 - Design of Experiments 
 
iii) Numerics: 
 - Derivatives (gradient, hessian, jacobian) (Available in next release) 
 - Integration (Gaussian quadratures (1D and 2D), simpson, Clenshaw-Curtis) 
 - Smoothing spline 
 
http://www.maths.lth.se/matstat/wafo/index.html 

5.3. S/S-Plus 
 

EVIS - Alexander McNeil’s Routines 
  
 Routines developed by Alexander McNeil, then included in the packaged QRMlib, 
based on his book: Quantitative Risk Management: Concepts, Techniques, and Tools by 
Alexander J. McNeil, Rüdiger Frey, & Paul Embrechts.  (see QRM in section R) 
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 Includes tools related to Copula models, GEV and GPD fitting and graphical checking 
plots like PP or QQ plots among other features. It is focused on econometrics and finances. 
 
 Initially is an open source software to be acquired after registration on the author's 
web page. 
 
http://www.macs.hw.ac.uk/~mcneil/book/QRMlib.html 
 
S+FinMetrics – EVANESCE : René Carmona’s Routines 
 
 The Extreme Value Analysis Employing Statistical Copula Estimation (EVANESCE) 
library for S-PLUS FinMetrics module provides a set of functions for bivariate extreme value 
analyses using parametric and non-parametric copula estimation methods. It is  contributed 
by Rene Carmona and described in Carmona (2001) and Carmona and Morrison (2001). 
Some of the original functions are renamed and model objects restructured when the library 
is incorporated into FinMetrics to be consistent with the other extreme value theory library 
in the package (EVIS by Alexander McNeil). This document gives an overview of the copula 
concept and their implementation. The detailed function documentation is available both in 
S-PLUS FinMetrics Reference Manual and the product online help.  
 
http://www.princeton.edu/~rcarmona/SVbook/svbook.html 
 

Stuart Coles’s Routines 
  
 Prof. Coles has developed some functions in S. I haven't been able to easily find them 
in Internet and its description, but some packages in R (ismev, eXtremes) are based in his 
functions so may not be so different from them.   

5.4. Others 
 

Dataplot 
 
 DATAPLOT is an open source multi-platform software to perform scientific, 
engineering, statistical, mathematical, and graphical analysis with a multipatform. It is 
basically focused on graphical analysis and its capabilities include: 
 
 - Summary Graphics: charts, histograms, bar plots, X-Y plots, ... 
 - Diagrammatic Graphics: graphs with symbols (geometric, electrical, logical,...) 
 - Graphical Data Analysis: Histograms, scatter plots, probability plots, qq plots... 
 - Exploratory Data Analysis: Box plots, stem-and-leaf diagrams, bootstrap plots... 
 - Time Series Analysis: Lag plots, autocorrelation plots, spectral plots... 
 - Smoothing: Moving average, general least squares polynomial smoothing, robust... 
 - Fitting: Linear, polynomial, multi-linear, general spline, graphical residual analysis... 
 - General Data Analysis: t-test, Chi-squared tests, F tests, ANOVA... 
 - Statistics/Probability Calculations: cdf's, pdf's, random number generation, 
simulation, moment calculations... 
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 - Multivariate Analysis:  Star plots, profile plots, principal components, Andrews 
curves, scatter plot matrix, condition plots, multiplotting 
 
http://www.itl.nist.gov/div898/software/dataplot/index.htm 
 

Hyfran  
 
 Private software (300 $ the basic version and 450 $ the version plus) with tools for 
statistical analysis of extreme events.  
 
 Some of its features can be summarized as: 
 
 - Verification of independence or homogeneity. 
 - Fitting to known distributions: exp, GP, GEV, Gumbel, Weibull, Normal, LogNormal, 
Gamma, Poisson, ... 
 - Different fitting methods: method of moments, probability weighted moments, ML. 
 - Estimation of quantiles and confidence intervals. 
 - Test and graphics to decision support. 
 
http://www.wrpllc.com/books/HyfranPlus/hyfranplusdescrip.html  
 

STABLE 
 
 Calculates stable densities, cumulative distribution functions and quantiles.  Also 
includes stable random number generation and maximum likelihood estimation of stable 
parameters using a fast 3-dimensional cubic spline interpolation of stable densities. 
 
 Initially is an open source software, it can be downloaded from the author's page. A 
registration is demanded for knowledge purposes. 
 
http://academic2.american.edu/~jpnolan/stable/stable.html 
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ANNEX 1. CASE STUDY 1 
 
This annex refers to the first of the two proposed cases within the project.  
 
In this first case of study an analysis of a variable related to the design and estimation of 
maritime engineering is studied. In order to do so, a theoretical case of tension is proposed. 
This load variable can be assumed to be a simple approach of the mooring lines tension in a 
floating offshore structure. Both waves and winds have been considered in this example.  
 

A. Tension Model Determination 
 
This first case study proposed is related to the design and calculation of any coastal or 
offshore structure where both waves and winds are met-ocean variables to be considered.  
 
The data used to this case study are those provided by the reanalysis database developed by 
IH Cantabria, which cover a time span of 67 years of data: from 1948 until 2014 with an 
hourly temporal resolution. The location selected for this example is a point located in front 
of the French Atlantic coast in the Biscay Bay near Bordeaux: 2.5 W, 45 N. 
 
Considering a theoretical case of a floating offshore structure, the tension of its mooring 
lines can be estimated as a function of the waves and the wind to which the structure will be 
affected during its life time.  
 

( , )sT f H W=  
 
For the sake of simplicity a simple relation of square significant wave height (Hs) and winds 
magnitude (W) is going to be considered.  
 

2 2
1 2( , )s sT f H W H Wα α= = +  

 
Where α1 and α2 are two coefficients that may quantify the influence of each variable (Hs 
and W) into the tension estimation.   
 
 In order to estimate high return values of T (let say 100 years return value) as a 
function of Hs and W, there are different approaches depending on the dependence 
between the variables and also the complexity of its joint distribution. 
 
Estimation of the coefficients α1 and α2 

 
The coefficients α1 and α2 are going to be set in such a way that guarantee the same 
influence of both variables in the equation for a certain return period (let say 100 year 
return period).  
 

( ) ( )2 2100 100
1 2sH Wα α=  
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There is needed another equation to be able to set the values of the coefficients. Because, 
the theoretical nature of this example a simple equation that allows this estimation has been 
considered. In case of a real design process, there may exist structural or geometrical 
impositions that should be considered.  

2 2
1 21 α α= +  

 
The values of 100

sH  and 100W  are estimated by fitting an extremes distributions to the 
empirical time series. For both variables two approaches were conducted: on one hand 
annual maxima from the time series were extracted and they were fitted to a Generalized 
Extreme Value distribution and to a Gumbel distribution; and on the other hand a Peaks 
Over Threshold analysis was performed to the time series and the sample of peaks was fitted 
to a Generalized Pareto distribution and to an Exponential distribution. The POT method was 
undertaken considering an independence lapse of 3 days between events and the threshold 
was set to guarantee a mean of 1 event per year. The method used to obtain the parameters 
of the distributions was Maximum Likelihood for all the distributions. Next figures (Figure 39 
to Figure 42) show the different fittings for both variables and in the table below there are 
summarized the values of 100 years return period.  
 

Distribution Location (µ) Scale (σ) Shape (ξ) 
GEV 8.66 1.095 -0.183 

Gumbel 9.721 1.233 ----- 
Distribution Threshold (u) Scale (σ) Shape (ξ) 

GPD 8.67 1.199 -0.236 
Exponential 8.67 0.980 ----- 

Table 16. Parameters fitted for Hs 
 
 
 
 

Table 17. 100 years return period estimations for Hs. 
 
Note that in all the graphical representations included within this annex the Weibull plotting 
method for the empirical distribution, within those methods explained in 2.4.5, has been 
used. 
 

Distribution Location (µ) Scale (σ) Shape (ξ) 
GEV 20.542 1.546 -0.065 

Gumbel 22.318 1.966 ----- 
Distribution Threshold (u) Scale (σ) Shape (ξ) 

GPD 20.38 2.238 -0.316 
Exponential 20.38 1.684 ----- 

Table 18. Parameters fitted for W 
 

GEV Gumbel GPD Exponential 
100W  (m/s) 26.68 25.32 25.81 28.13 

Table 19. 100 years return period estimations for W 

GEV Gumbel GPD Exponential 
100
sH  (m) 12.07 11.6 12.04 13.19 
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Figure 39. GEV and Gumbel fittings for Hs annual maxima. 

 

 
Figure 40. GPD and Exponential fittings for Hs peaks over threshold. 
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Figure 41. GEV and Gumbel fittings for W annual maxima. 

 

 
Figure 42. GPD and Exponential fittings for W peaks over threshold. 

 
It can be stated from the figures and the return period values that the variable Hs presents 
behavior more upper bounded than the wind speed. Furthermore, for both variables, the 
fittings made based on the annual maxima provide more conservative estimations than 
those made based on the peaks over threshold. According to the values obtained with the 
different adjustments, a design value of 12 meters is assumed for 100

sH  and a wind velocity of 
26.25 m/s for 100W . Having this, the values of α1 and α2 can be estimated. 
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( ) ( )2 2100 100 2 2
1 2 1 2 1 212 26.25 4.785sH Wα α α α α α= → = → =  

( )2 2 2 2
1 2 21 1 4.785α α α= + = +  

2 10.205 0.979α α= =  

B. T100 Estimation 
 
Once the model of T has been established, the 100 years return period value of T can be 
estimated. In order to do so, different approaches are going to be considered 

a. Direct Estimation of T100  
 
The estimation of the coefficients α1 and α2 allows us to have an empirical estimation of the 
mooring lines tension distribution as a function of Hs and W: 
 

2 20.979 0.205sT H W= +  
 
 Then the estimation of the 100 return period estimate of T can be directly be done in 
the same way it was done with the wave and wind variables by fitting them a distribution.  
 
Below, in Figure 43 is shown the adjustment of the T annual maxima to a GEV and a Gumbel 
distributions. While in Figure 44 are depicted the fittings to a GPD and an Exponential 
distributions made based on the Peaks Over Threshold. The samples of Peaks is obtained 
with a threshold that assures a mean of 1 event per year (λ=1) and with a minimum lap 
between peaks of 72 hours. The method used to obtain the parameters of the distributions 
was Maximum Likelihood for all the distributions. As seen in the table summarizing the 100 
return period estimations of T, the distributions fitted considering the shape parameter (GEV 
and GPD) provide estimations around 265, while when fixing the shape parameter equal to 
zero the Gumbel distribution predicts a lower value: 243 and the exponential a much higher 
one: 275.  
 
 
 
 
 
 
 
 

Table 20. Parameters fitted for T 
 

GEV Gumbel GPD Exponential 
T100 266.2 243 264.6 275 
Table 21. 100 years return period estimations for T 

 
 

Distribution Location (µ) Scale (σ) Shape (ξ) 
GEV 148.3 28.34 -0.045 

Gumbel 181.74 40.108 ----- 
Distribution Threshold (u) Scale (σ) Shape (ξ) 

GPD 149 29.389 -0.0751 
Exponential 149 27.325 ----- 
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Figure 43. GEV and Gumbel fittings for T annual maxima 

 

 
Figure 44. GPD and Exponential fittings for W peaks over threshold 

 

b. Estimation of T100by estimating 100
sH  and 100W  independently 

 
An initial estimation of the T100 value can be done by directly estimating it by using the 
values of 100

sH  and 100W . This is an estimation that assumes complete dependence between 
the variables and also, assumes both 100-year return values (for Hs and W) occur at the 
same time. Thus, generally it is a very conservative method.  
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( ) ( )2 2100 100 1000.979 0.205sT H W= +  

( ) ( )2 2100 0.979 12 0.205 26.25 282.23T = + =  

 
T100=282.23 

c. Estimation of T100by estimating 100W  conditioned to 100
sH  

 
The model of dependence of this method is complete dependence as in the previous 
method shown. The difference relays in not considering a simultaneous occurrence of 100

sH  

and 100W . In order to do so, a heteroscedastic model was fitted to the joint distribution of Hs 
and W where the mean expected value was fitted to a quadratic polynomial and the 
standard deviation to a linear function. A heteroscedastic model is that in which the 
standard deviation around the mean is not considered constant, it can be assumed to follow 
a linear or a quadratic function. 

2
1 2 3

4 5

( )

( )
W s s s

W s s

H p p H p H

H p p H

μ
σ

= + +
= +

 

 
 

 
Figure 45. Heteroscedastic model fit to W conditioned to Hs. 

 
p1 p2 p3 p4 p5 

3.506 1.576 -0.007 1.773 0.443 
Table 22. Hesterocedastic parameters estimated 

 
2( ) 3.506 1.576 0.007

( ) 1.773 0.443
W s s s

W s s

H H H

H H

μ
σ

= + −
= +
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By introducing the value of 100
sH  of 12 meters obtained before, the mean value of W

associated with this value of 100
sH  could be estimated and then the expected value of T100 

since complete dependence is assumed.  
 

100

100

23.506 1.576 12 0.007 12 21.71

1.773 0.443 12 7.089
W

W

μ
σ

= + ⋅ − ⋅ =

= + ⋅ =
 

( ) ( )2 2100 0.979 12 0.205 21.41 237.59T = + =  

T100=237.59 

d. Estimation of T100by estimating 100
sH  conditioned to 100W  

 
In a parallel way that done before, the value of 100

sH  can be estimated conditioned to the 
estimated value of 100W . To do so, the following model was fitted. 
 

2
1 2 3

4 5

( )

( )
s

s

H

H

W p p W p W

W p p W

μ
σ

= + +

= +
 

 
Figure 46. Heterocedastic model fit to Hs conditioned to W. 

 
p1 p2 p3 p4 p5 

1.574 -0.092 0.021 0.685 0.05 
Table 23. Hesterocedastic parameters estimated 

 
2( ) 1.574 0.092 0.021

( ) 0.685 0.05
s

s

H

H

W W W

W W

μ
σ

= − +

= +
 

 
By introducing the value of 100W  of 26.25 m/s obtained before, the mean value of 100

sH  could 
be estimated and then the expected value of T100.  
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100

100

21.574 0.092 26.25 0.021 26.25 13.62

0.685 0.05 26.25 1.998
s

s

H

H

μ

σ

= − ⋅ + ⋅ =

= + ⋅ =
 

( ) ( )2 2100 0.979 13.62 0.205 26.25 322.87T = + =  

T100=322.87 

e. Heffernan and Tawn 2004 
 

The method proposed by (Heffernan 2004) to sample variables interrelated can be 
summarized in the following steps. This method is useful when the extreme tail behavior of 
the dependence of the variables is unknown, and allows an artificially enlargement of 
dataset. In order to illustrate the method, an example of simulating significant wave height 
and wind speed will be carried out: 

 1. Extraction of declustered maxima.  
 
 From the time series independent maxima should be extracted to serve as initial data 
for the method. The way of selecting the maxima may vary from one application to another, 
in this case a Peak Over Threshold analysis to the variable T has been done. Being T a 
function of Hs and W ( 2 20.979 0.205sT H W= + ) and setting the threshold at the 80% percentile 
and a lag between events of 3 days (Figure 47).  
 

 
Figure 47. Peaks Over Threshold of T 

 
With this, a set of 2500 maxima were obtained. These maxima are depicted in red in Figure 
48.  
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Figure 48. Declustered maxima. 

 

2. Pre-treatment of the marginal distributions  
 

  2.1. Setting thresholds: To thresholds must be set to perform the method. The 
first one is the threshold above which the variables dependence is going to be estimated: 
dependences threshold. The second one is the threshold above which a GPD is fitted to 
each variable and is assumed within the sampling process (GPD threshold). In accordance 
with (Gouldby, A methodology for deriving extreme nearshore sea conditions for 
structural design and flook risk analysis 2014):    
 

-  Dependences threshold: 85% percentile.  
- GPD threshold: 95% percentile. 

 
To set the dependences and GPD thresholds, a sensibility analysis should be done. In this 
case, since the variables and databases used are the same as those used by (Gouldby, A 
methodology for deriving extreme nearshore sea conditions for structural design and flood 
risk analysis 2014), this selection criterion was not necessary and their same thresholds were 
used.   
 
  2.2. GPD fit to the upper 5% tail to each variable. 
 
  2.3. Re-escalation of the variables: Up to the 95% percentile threshold the 
empirical distribution is taken; above, the empirical distribution is re-escalated using the 
values of the GPD fit as proposed by (S. a. Coles 1991)  
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Where iξ  and iβ are the GPD parameters and iu is the threshold.  
 
  2.4. Transformation of the marginal distributions to a standard Gumbel scale. 
 

{ } ( ) ( )log log ( ) ; ;
i ii X i i i i X i iY F X t X F t Xϕ = − − = = 


                     for 1,...,i d=  

 
Where ( , )i i iϕ β ξ=  are the marginal parameters.  

 3. Estimation of the dependence coefficients (a and b)  
 
A multivariate non-linear regression is fitted and the dependence coefficients a and b are 
estimated.  
 

| b
i i i iY Y aY Y W− = +                      for iY v>  

 
Where a and b are vectors of parameter to each pair-wise of variables, v  is the specified 
threshold and W is a vector of the residuals. The model is fitted using maximum likelihood 
assuming the residuals follow a normal distribution.  

 4. Simulation process 
 
  4.1. Once the marginals are all in a Gumbel scale they can be directly 
compared to obtain the proportion of events where each variable iY is a maximum.(*) In our 
case of study the proportion of events with the variable Hs as the maximum is 51.4% while 
the percentage of events where the wind speed is maximum is 48.6%. These proportions will 
be used within the Monte Carlo simulation.  
 
  4.2. Sampling by Monte Carlo simulation considering the a and b coefficients 
related to each variable, and introducing a residual from the empirical data residuals 
(assuming to be uniformly distributed). 
 
  4.3. During the Monte Carlo simulation, rejection sampling is used to ensure 
the initial proportions (*) of each variable being maxima. The Monte Carlo simulation is done 
in two steps: in a first step datasets (pairs of wave and wind data) considering the wave 
height as the conditioning variable are sampled and then in a second step are sampled the 
datasets considering the wind speed as the conditioning variable. All the datasets sampled in 
each step have to ensure that the variable considered as conditioning variable is maxima, 
thus the proportions estimated at 4.1 are guaranteed; so any sampled dataset that does not 
satisfy this condition is rejected and sampled again.  
 
  4.4. Transformation back from the Gumbel to the original scale of the sampled 
variables, taking into account the empirical distribution below the GPD threshold and the 
GPD fits for the upper tail (above the GPD threshold).  
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In Figure 49 the marginal distributions of Hs and W obtained through a 1.000 years 
simulation are shown; while in Figure 50 the joint distribution of both variables is 
represented. In grey dots there are represented the original 60-years time series of Hs and 
W, in orange are marked the maxima declustered from the historical record and in in purple 
are depicted the 1.000 years simulated time series.  

 

 
Figure 49 Hs and W samples 

 

 
Figure 50. Hs-W joint distribution comparison between empirical and sampled data. 
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5. Estimation of T100 from the simulated data.  
  
 
Once Hs and W have been sampled, the tension T can be calculated. Then, the value of T100 
can be assumed to be the tenth biggest value of the sample because 1000 years have been 
simulated.    
 
Considering the sampled events of the variables related to T (Hs and W), a certain return 
period value of T could be estimated.  
 
A value of T100 =266.57 has been obtained 

 
Based on the theory of conditioned probabilities T100 can be estimated in the following way:  
 

Pr(T>T100) = Pr(T>T100|T>Tu) Pr(T>Tu) 
  
Assuming Tu as the tension associated to the dependence thresholds (Hs

u=5.96 m and 
Wu=16.94 m/s), it is Tu=93.67.   
 
Pr(T>Tt|T>Tu) is the probability of T being above Tt conditioned to T being above Tu and 
Pr(T>Tu) is the probability of T being above Tu. 
 
Pr(T>Tu) could be empirically estimated by calculating the ratio between the number of 
sampled events with T above Tu and the entire synthetic time series of T (purple dots). Then, 
Pr(T>Tu) = 0.6555.  
 
Independently, Pr(T>Tt) could be theoretically estimated for a given return period, t. 
Pr(T>Tt) =1/(t⋅n); with n being the number of events per year: in this case it has been 
sampled 7.67 events/year (number of events above the dependence threshold from the 
2500 declustered events from the historical data divided by the number of years) and t the 
return period, t=100. With these two values (t=100 and n=7.67), we obtain a value of 
Pr(T>T100)= 0.0013 
 
With that the value of T100 that assures Pr(T>Tt|T>Tu) Pr(T>Tu)= Pr(T>T100)/Pr(T>Tu) can 
be estimated.  In this case, the value of T100 has been estimated to be 266.57.  
 

f. Mínguez et al 2013 
 

In 2013 (R. G. Minguez 2013) performed a methodology to determinate the joint probability 
of occurrence of interrelated variables in such a way that allow to avoid the decision of 
working with the entire time series (point-in-time distribution) or just with the extremes 
(extreme value distribution).  
 
This method consists basically on assuming one variable to be conditioned to the other one. 
In our case we have assumed the significant wave height conditioned to the wind speed. The 
method can be summarized in the following steps:  
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 1. Fitting the marginal distributions of W 
 
 The entire time series of wind speed is fitted to a GEV distribution, the election of this 
distribution corresponds to the nature itself of wind data but for other environmental 
variable another distribution may be chosen. To appropriately reproduce the extremes, a 
GPD is fitted to the events above a certain threshold; in this case the threshold has been set 
at 17.1 m/s. The values obtained for the two distributions fitted are showed below: 

 

GE
V µ σ ξ 

5.37 2.93 -0.063 

GP
D u σ ξ 

17.1 1.54 -0.084 

Table 24. Distribution fits 
 

2. Fitting the conditional distributions of Hs 
 
The conditional distribution of significant wave height for given values of wind speed is fitted 
to a GEV. In order to do so, the values of Hs are divided into groups of similar value of wind 
speed, i.e.:  
  
     Hs|0<W<1 
     Hs|1<W<2 
     ... 
     Hs|19<W<20 
     Hs|20<W<22 
     Hs|W<22 
 
As done with the wind speed, a GPD is fitted to all the groups in order to correctly 
characterize the upper tail of each distribution. The threshold has been set to be the 95% 
percentile.  
 

 3. Fitting the parameters to a 3rd order polynomial.  
 
The parameters of the distributions fitted before are fitted to a third order polynomial. Then 
for the GEV parameters would be: 
 

3 2 1
1 2 3 4

3 2 1
1 2 3 4

3 2 1
1 2 3 4

( )

( )

( )

W p W p W p W p

W p W p W p W p

W p W p W p W p

μ μ μ μ

σ σ σ σ

ξ ξ ξ ξ

μ
σ
ξ

= + + +

= + + +

= + + +
 

 
In Figure 51, the polynomial fitted for the three parameters (red line) as well as the points 
based to the fitting (black dots) are shown.   
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Figure 51. Third order polynomial fitted to the GEV parameters 

 
The same process has been done to the GPD parameters:  
 

3 2 1
1 2 3 4

3 2 1
1 2 3 4

3 2 1
1 2 3 4

( )

( )

( )

u u u uu W p W p W p W p

W p W p W p W p

W p W p W p W p

σ σ σ σ

ξ ξ ξ ξ

σ
ξ

= + + +

= + + +

= + + +
 

 
Below, Figure 52 shows the fitted polynomial (red line) and the values used (black dots).  

 

 
Figure 52. Third order polynomial fitted to the GPD parameters 

 

4. Application to the use of IFORMS 
 
Once the conditional distributions have been fitted the joint n-year environmental contours 
can be represented, being n the return period. This can be done by application of the 
Rosenblatt transformation:  
 

1

2 |

( ) ( )

( ) ( )
s

W

H W s

z F w

z F h

Φ =
Φ =  

 
Where ( )WF w  is the marginal distribution of wind speed and | ( )

sH W sF h  is the conditional 
distribution of significant wave height for given values of wind speed. The contours are 
defined by those points that satisfy the equation  
 

2 2 2
1 2z z β+ =  
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Where β  is obtained from the return period:
1

( ) 1
N

βΦ = − , being N the number of 

independent sea states in n years. A detailed description of the IFORMS method could be 
found in (Hasofer 1974).  
 
This way, Figure 53 represents the scatter plot of the 60-years of hourly data of wind speed 
and significant wave height with the contours for n-years, with n=0.01, 1, 5, 50, 100 and 500 
years.  

 
Figure 53. Hs-W contour plot. 

 

5. Estimation of T100 from the IFORMS 
 
From the contours depicted in Figure 53, the T100 can be estimated. Considering the points 
that define the 100-years return period contour T is calculated. From these values of T, 
selecting the maxima is obtained the T100.  
 
In our particular case, a value of T100 =289.37 has been obtained.  

g. Estimation of T100 assuming that Hs and W are completely independent 
 
An estimation of the tension considering that the variables involved are completely 
independent has been carried out. In order to do so, to avoid the existent dependences in 
the original time series the variable W has been shifted half a year, creating this way a new 
data set where the independence between variables is assured. 

 
With this modified dataset the 100 years return period estimate of T can be estimated in the 
same way as it was done in 3.1. To do so, the time series of T is obtained through the same 
equation as before,      

 
2 20.979 0.205sT H W= +  
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To the annual maxima extracted from T time series a GEV and a Gumbel distributions has 
been fitted. These distributions are shown in Figure 54. Moreover, a GPD and an Exponential 
distribution have been fitted to a sample of peaks extracted from the T time series. These 
peaks were extracted assuming a threshold that assures a mean of 1 event per year (λ=1) 
and with a minimum lap between peaks of 72 hours. The fitted distributions together with 
the peaks are shown in figure Figure 55. In the fitting of all the distributions, the method 
used to obtain the parameters was Maximum Likelihood. Below the figures there is a table 
summarizing the 100 return period estimations of T and the parameters of the distributions 
fitted. All the values obtained for T100 with the four distributions fitted using a dataset were 
the independence between Hs and W is assured are in the range 154-172. These values are 
much lower than the ones obtained with the original dataset (between 243 and 275 
depending on the distribution fitted) and this is because the existent dependence within 
variables of environmental nature such as waves and winds (with high winds there might be 
high waves). Thus, it may not be accurate to design assuming independence.  

 
 
 
 
 
 
 
 

Table 25. Distribution fits 
GEV Gumbel GPD Exponential 

T100 169.3 154.6 171.9 167.9 
Table 26. 100 years return period for T 

 

 
Figure 54. GEV and Gumbel fittings for T annual maxima. 

 

Distribution Location (µ) Scale (σ) Shape (ξ) 
GEV 100.27 16.15 -0.032 

Gumbel 119.77 22.79 ----- 
Distribution Threshold (u) Scale (σ) Shape (ξ) 

GPD 100.7 16.13 -0.044 
Exponential 100.7 15.45 ----- 
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Figure 55. GPD and Exponential fittings for W peaks over threshold 

C. Comparison 
In the table below is summarized a brief comparison of the different estimations obtained 
for T100.  

   T100 

Empirical distribution of T (GEV fit)  266.2 

Empirical distribution of T (Gumbel fit)  243.0 

Empirical distribution of T (GPD fit)  263.6 

Empirical distribution of T (Exponential fit)  275.0 

With 100W and 100
sH  completely dependent  282.23 

With W  conditioned to 100
sH   237.59 

With sH  conditioned to 100W  322.87 

Heffernan and Tawn 2004 266.57 

Mínguez et al 2013 + IFORM 289.37 

Empirical distribution of T, W shifted (GEV fit)  169.3 

Empirical distribution of T, W shifted (Gumbel fit) 154.6 

Empirical distribution of T, W shifted (GPD fit) 171.9 

Empirical distribution of T, W shifted (Exponential fit) 167.9 

Table 27. Comparison of the results obtained for T100 
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The values estimated for T100 vary from 154.6 obtained with the application of a Gumbel 
distribution to the modified dataset that assures the independence between the variables 
and 322.87 as a result of considering the value of wind speed for 100 years and the value of 
wave height conditioned to it. Such a big range in the estimations can be related to the 
different nature of the methods applied.  
 
The estimation of T100 based on W100 and Hs

100|W100 gives the biggest value estimated due to 
the quadratic relation fitted that gives a value of Hs

100|W100 of 13.6 m., while when analyzed 
independently Hs

100=12m.  
  
Fitting the empirical distribution of T to a GEV with annual maxima or a GPD with a 
lambda=1 gives similar results; around 260. But if the scale parameter is forced to be equal a 
zero then the Gumbel fit (done with the annual maxima) gives a lower estimation (243) and 
the Exponential fit (done with the same peaks extracted as for the GPD) results in a higher 
estimation (275).  
 
On the other hand, considering fully dependent the variables and estimating T100 directly 
applying to the model established the values of Hs

100 and W100, gives a conservative value of 
T100 with of 282.2.  
 
The application of more complex and elaborated methods like the one proposed by 
Heffernan and Tawn results in value of: 266.57. While applying the conditioned model 
proposed by Mínguez et al together with IFORM contours provides a value of 289.37 which 
is higher than those obtained by the direct analysis of T.  
 
Finally, the values obtained with the assumption of Hs and W being completely independent 
(whatever the distribution fitted it is) are much lower to all the rest that consider somehow 
the existent dependence within waves and winds. This way, any design made under this 
assumption may be not be accurate or safe enough. This enhances the importance of a 
correct characterization of these dependences within variables.  
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ANNEX 2. CASE STUDY 2 
 

This annex refers to the second case study proposed within the MASTENV project.  
 
In this second case of study, an analysis of the flooding risk in a certain area of the French 
coast is studied. This application involves the selection of multivariate data sets to be 
introduced in a wave propagation model (SWAN) and a latter flooding model (MARS).  

A. Case Study 
 

The main objective of this second case study is the determination of the 100 years return 
period of the flooding level in a certain region. In order to do this, the extreme events (wave 
height, sea water level and river level) needed to be introduced in the flooding model as 
input have to be determined.  

 
a. Location and data available 

 
The study proposed is located in the southern French coast, in the region of Hyéres. At this 
location the combination of the storm surge and the set up related to the incident waves 
together with high levels of the river may provoke flooding events. To study this problem, 
flooding event simulations can be conducted with the MARS model. To be able to run the 
model, the input variables should be accurately estimated. In Figure 56, the location of the 
study as well as the situation of the available data is represented.  

 

 
Figure 56. Study location and data points of the different variables 

 
There are available data records from the three main parameters involved in the process: 
river level, sea level and waves. The record of sea water level is located in the gauge of 
Toulon, although this gauge is not directly in Hyéres, not big differences in terms of sea level 
are expected. Two points of reanalysis wave data are located near the area of study (P81 and 
P82) and there is also a gauge which records river level measurements at Saint-Eulalie. 
Nearshore wave data are needed for the flooding model; these data are obtained after 
propagating the offshore conditions until the shore line with the SWAN model.  
 
Not all the data have the same temporal coverage and resolution, and there are also gaps in 
the time series. In Figure 57, there are represented the time series of wave height, river level 
and sea water level without gaps in any of the three variables.  
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Figure 57. Time series of wave height at P81, river level and sea water level 

 

b. Problem presentation 
 
There are multiple possible approaches to deal with the problem presented. In this case of 
study we are going to focus in one and analyze its different options. The scheme of the 
procedure followed in this approach is as follows:  
 

1. Independent events selection. 
2. Multivariate Extreme Value Analysis method application. 
3. 100 years Return Period triplets (Hs, SWL, RL) selection. 
4. Propagation of the 100y. RP triplets to the nearshore. 
5. Flooding model with the propagated 100y RP cases. 
6. Estimation of 100y RP flooding levels. 

 
In the following sections all this steps will be described in detail.  

B. Independent events selection 
 
The use of multivariate extreme value methods usually require a previous declusterization of 
the data in order to work with a subset of independent extreme events. This first step is then 
of great importance because it would lead into different results.  
 
Two procedures of selection were studied, one based on a Peaks Over Threshold method 
and another one based on a Block Maxima method.  
 

5-days block maxima  
 
Considering the River Level, a subset of 5-days block maxima was extracted. Then, the other 
two variables were selected as the maximum within a 2.5 days window centered in the river 
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level maxima. In Figure 58 there is a graphical representation of the procedure followed to 
extract the independent events.  
 

 
Figure 58. Graphical scheme of the 5-days block maxima procedure followed 

 
By means of this technique a subset of 1200 independent triplets (Hs, SWL and RL) were 
extracted from the 16.5 years’ time series.  

FL-POT 
 
The other way of extracting the independent events used was by means of a Peaks Over 
Threshold method. In order to do so, a theoretical flooding level (FL) parameter combining 
the 3 variables involved in the process was constructed. This parameter should include the 
relative weighted influence of the river level respect to the sea parameters. In a theoretical 
case, and avoiding the effect of the waves, we can assume that the level at the river mouth 
is the addition of the sea water level plus the river level multiplied by a coefficient α (see 
Figure 59).  
 

RML=SWL+αRL 
 

 5 jours 

2,5 jours 
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Figure 59. River mouth level scheme 

 
To estimate this different influence of parameters (estimate α) some theoretical tests with 
the flooding model were carried out. These theoretical tests comprised all the combinations 
between 6 values of SWL (0, 0.2, 0.4, 0.6, 0.8 and 1 m) and 7 values of river discharge (0, 50, 
100, 150, 200, 250 and 300 m3/s) which in terms of river level, RL, gives values of (0, 1.127, 
1.578, 1.928, 2.225, 2.487 and 2.724 m). This made a total of 42 tests. The results of these 
tests are depicted in Figure 60. From these results a value of α=0.11 (slope of the regression) 
could be estimated.  
 

 
Figure 60. α estimation 

 
Then, the flooding level could be calculated by: 
 

FL=SWL+Set up+0.11 RL 
 
To extract the independent events, a Peaks Over Threshold method was applied to this 
flooding level variable. The threshold of the POT was set in such a way that assured a subset 
of 1200 events (to be able to compare with the other method) and a lag between events of 1 
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day minimum was established. In Figure 61, the peaks extracted from the time series are 
depicted.  
 

 
Figure 61. Flooding level peaks over threshold 

 
The subset of triplets (Hs, SWL and RL) associated to the FL peaks extracted from the POT 
analysis is then the second subset of independent events used in the extreme value analysis 
methods.  

C. Multivariate Extreme Value Analysis 
 
Once a subset of independent extremes has been extracted from the times series, a 
multivariate extreme value analysis can be done. Two different methods to do it were used: 
the method proposed by (Heffernan 2004) and the Join Sea method, a software developed 
by HR Wallingford. The three variables sampled are significant wave height (Hs), sea water 
level (SWL) and river level (RL). Other parameters related to the waves (peak period, Tp and 
peak direction, θp) are sampled conditioned to Hs. In the case of the peak period, this 
conditioned sampling was done considering the wave steepness relationship.  

Heffernan and Tawn 2004 
 
The Heffernan and Tawn method (Heffernan 2004) is a method that can be classified as a 
conditioned extreme model. This method can be succinctly described as follows:  
 
  i) Transform each variable into a Gumbel distribution.  
  ii) Estimate the dependence between variables for extremes.  
  iii) Sample values that follow these dependences.  
  iv) Transform them back into the original scale. 
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The major advantages of their model are that there is no need of estimating the coefficient 
of tail dependence, it can be applied to higher dimension problems and there is no need of 
assuming given distributions to the marginals.  
 
More detailed information was specified in the Annex1. Case Study 1, and bibliography 
regarding this model and its application to different studies are summarized in 3.2. 

Join Sea 
 
Join Sea is a software package coded in Fortran 77 developed by HR Wallingford together 
with the University of Lancaster in the late 90s. It is an open source code but it requires the 
use of NAG libraries (Numerical Algorithms Groups), which requires a license.   
 
The Join Sea code allows a statistical analysis of input data to obtain estimates: 
 

⋅ Marginal distributions and extreme values of water levels, wave heights and 
steepness (which is directly related to Tp and is more robust to statistical calculations) 

⋅ Extremes of the joint distribution of Hs and SWL, 
⋅ Distributions and extreme values of structural variables (such as run-up, or 

overtopping). 
 
It has the advantage that includes the variability of the wave period (or steepness) which 
plays an important role in certain structural features. 
 
The method is divided into 5 steps: 
 

1. Pre-treatment of the input data. 
2. Marginal fitting. 
3. Correlation between variables estimation. 
4. Extremes simulation. 
5. Extreme value analysis. 

D. Cases 
 
Combining the 2 ways of extracting the independent extreme events and the 2 methods of 
multivariate extreme value analysis, 5 different cases were tested:  
 

- Case 1. 5 days block maxima + Join Sea 
- Case 2. 5 days block maxima + Heffernan and Tawn with rescaling the marginals 
- Case 3. Flooding level POT + Join Sea 
- Case 4. Flooding level POT + Heffernan and Tawn 

Rescaling process 
 
In Case 2 the dataset of independent events extracted through the method of 5 days block 
maxima is used as input for the model proposed by (Heffernan 2004). In order to follow the 
same procedure as in the Join Sea method, after the simulation process a rescaling of the 



 

98  
 

simulated events is performed. This rescaling is an option available in the Join Sea software. 
With this option, the use of improved marginal is allowed to get a better estimation of the 
simulated data. In the case we are studying the three variables only share a common period 
of 16.5 years of data, although the time series of wave height and sea water level is longer. 
By this rescaling we can take into account the marginals of the variables as long as they are, 
and thus, a better estimation of the GPDs of their right tails. The rescaling proposed within 
Join Sea is as follows:  
 

 
Figure 62. Scheme of the rescaling process 

 
In Figure 62 is represented a scheme of the rescaling process which is implemented in the 
Join Sea software and which has been used in Case 2. Being xi and xj, two values of the 
empirical marginal distribution of independent events (in our case, that is the declustered 
data, the subset of 1200 triplets) and xs, a simulated value lying between xi and xj; the 
rescaled value of xs will be xst, which lies between xit and xjt, being xit and xjt two values of the 
marginal used to rescale (in our case, that is the 5 days block maxima marginal of the entire 
time series, not only of the 16.5 years of common data). Note that this can be done as the 
way of selecting the independent events is the same for the 16.5 years’ time series and for 
the entire marginal of the three variables. For this reason, this rescaling process cannot be 
applied to the cases where the independent events selection was done through the POT to 
the FL.  
 
In Figure 63 the results of the rescaling process applied to the three variables (Hs, SWL and 
RL) is presented. In red dots there are plotted the declustered marginals, it means, the 1200 
independent events extracted from the 16.5 years’ time series. Black dots represent the 
simulated data with Heffernan and Tawn considering as input the red dots. In grey dots it is 
represented the distribution of 5 days block maxima for the entire time series (31 years in 
the case of Hs, 27.1 years of sea water level data and 37.8 years of river level). Finally, the 
green dots represent the simulated data once they have been rescaled to consider the 
influence of the entire time series and not only the one of 16.5 years.  
 
As seen; for the SWL variable there are no big differences before and after the rescaling. But, 
for the other two variables the differences are bigger. For example, in the Hs, there is a 
difference of around 0.5 meters for 100 years return period. 
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Figure 63. Marginals rescaled 
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E. Extreme simulations results 
 

Case 1. 5 days block maxima + Join Sea 
 

 
Figure 64. Joint distributions of the 3 variables sampled (Hs, SWL and RL). Case 1. 

Case 2. 5 days block maxima + Heffernan and Tawn + Rescaling 
 

 
Figure 65. Joint distributions of the 3 variables sampled and rescaled(Hs, SWL and RL).Case 2. 

Case 3. Flooding level POT + Join Sea 
 

 
Figure 66. Joint distributions of the 3 variables sampled (Hs, SWL and RL). Case 3. 
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Case 4. Flooding level POT + Heffernan and Tawn 
 

 

Figure 67. Joint distributions of the 3 variables sampled (Hs, SWL and RL). Case 4. 

Figure 64 to Figure 67, represent the joint distributions of the three variables simulated 
according to the 4 cases proposed.  

F. 100 years return period triplets selection 
 
In order to select the 100 years return period triplets (Hs, SWL and RL), the surfaces and 
contour lines of the joint occurrence were plotted. In Figure 68 until Figure 75 the 100y RP 
surfaces and contours for the 4 different cases are showed. As it can be seen, there are 
differences between the centennial surfaces (and in consequence the contours) obtained. 
These differences are related to both: the two different methods to sample synthetic 
extremes and the two different ways of extracting the independent events.  

Case 1. 5 days block maxima + Join Sea 

 
Figure 68. 100-years return period surface of Hs, SWL and RL 
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Figure 69. 100-years return period contours of Hs and SWL for different values of RL 

Case 2. 5 days block maxima + Heffernan and Tawn + Rescaling 
 

 
Figure 70. 100-years return period surface of Hs, SWL and RL 
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Figure 71. 100-years return period contours of Hs and SWL for different values of RL 

Case 3. Flooding level POT + Join Sea 
 

 
Figure 72. 100-years return period surface of Hs, SWL and RL 
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Figure 73. 100-years return period contours of Hs and SWL for different values of RL 

Case 4. Flooding level POT + Heffernan and Tawn 
 

 
 

Figure 74. 100-years return period surface of Hs, SWL and RL 
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Figure 75. 100-years return period contours of Hs and SWL for different values of RL 

Triplets selection 
 
The procedure followed to obtain the 100 years return period triplets from the contour plots 
showed before can be summarized as follow:  
 

- In each case a SWL limit was established. This SWL limit is the highest value of SWL 
for which the contours lines are horizontal.  

- 100 years return period triplets (Hs, SWL and RL) selected will be the intersections 
between the contour lines at different RL values (each 0.25m) and SWL values (each 
0.05 above the SWL limit) (see Figure 76).   

 
In Figure 76 it is depicted the procedure followed. In dashed pink vertical line is defined the 
SWL limit in this case, and the rest of the dashed purple vertical lines are each 0.05 m of 
SWL. The black stars represent the points that will define the triplets, for simplicity there 
have been only depicted the ones corresponding to the SWL limit, the rest of triplets of this 
case would be the intersections between the purple dashed lines and the contour lines.  
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Figure 76. Example of the triplets selection procedure 

This procedure has been repeated to the 4 cases of study to get the triplets to be 
propagated to the nearshore.  
 
The subset of 100 years return period triplets selected is summarized in Table 28: 
 

 SWL values RL values N° triplets 
Case 1 0.7-1 0.5-3 74 
Case 2 0.8-1 0.5-3 49 
Case 3 0.6-1 0.5-3 85 
Case 4 0.75-1 0.5-3 56 

  Total: 264 
Table 28. Summary of the triplets selected.  

The peak period associated has been determined through the steepness relationship. In 
Figure 77, the results for the 4 cases are shown. In the left plot, in grey dots there are the 
16.5 years data of Hs and steepness and by colors the steepness associated to the values of 
Hs extracted to all the 100 years return period triplets of each case. The right side plot 
represents the joint distribution of Hs and Tp for all the 16.5 years’ time series in grey dots 
and for the triplets of the 4 cases in different colors.  
 

 
Figure 77. Left: Hs-St scatter of the 16.5 y time series and the 100 y return period triplets. 

Right: Hs-Tp scatter of the 16.5 y time series and the 100 y return period triplets. 
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The peak direction has been assumed as 180° for all the triplets. This was assumed because 
this is the main direction for high waves in the studied location (it is the only direction 
registered for waves higher than 3 meters).  

G. Storms from the historical record (16.5 years) 
 
The historical record comprised about 16.5 years of data of the three variables of interest: 
Hs, SWL and RL. From these data, applying a Peaks Over Threshold technique, 161 storms 
were extracted. These 161 storms were propagated to the nearshore by means of the SWAN 
model and then applied to the MARS model to get the flooding estimations.  
 

H. Flooding simulations (MARS) 
 
The sea states from the triplets selected (Hs, Tp and θw) at each case were propagated from 
offshore conditions to nearshore conditions by means of the SWAN model. Once the sea 
conditions at the nearshore were obtained they were used as input (together with the river 
level and sea level from the triplets) for the MARS model. 
 
All the simulations were performed considering a storm profile (see Figure 78) extracted 
from the historical record. The peaks of the three variables (Hs, SWL and RL) were 
considered to occur simultaneously.  
 

 
Figure 78. Storm profile normalized. Red-RL, green-Hs and blue-SWL.  

To validate the assumption of the three peaks occurring at the same time, the real storm 
profiles from the 161 historical storms extracted from the database were analyzed. In Figure 
79 the appearance of some storm profiles from the 161 historical records are shown; the 
delay between peaks was estimated in three ways: delay between Hs and SWL peaks 
(positive values for SWL occurring after Hs), delay between Hs and RL peaks (positive values 
for RL occurring after Hs) and delay between SWL and RL peaks (positive values for RL 
occurring after SWL).    
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Figure 79. Storm profiles (normalized) from the historical records.  

The delays estimated between variables for the 161 storms are plotted in Figure 80. And in 
Figure 81 are shown the boxplots of the delays with the statistics of the delay between each 
variable. As seen from the results depicted in Figure 81, assuming that the three peaks occur 
at the same time is not far away from the historical records.  

Storm 1 

Storm 2 

Storm 3 

Storm 161 

Storm 4 
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Figure 80. Delay (hours) between variables peaks for the historical storms.  

Figure 81. Statistics of the delays estimated.  

I. Results 
 
Once the simulations with the MARS model have been done, the results obtained can be 
compared with the estimations resulting from the historical 161 storms.  
 
In Figure 82, the results obtained in terms of sea level at the river mouth are shown. Black 
dots represent the peaks from the historical storms, green lines represent a GPD fit 
performed to the historical storms with the 95% confidence intervals (estimated through 
bootstrapping). Colored dots represent the maximum value obtained from the triplets 
simulated according each case: in purple the case with the 5 days Block selection criteria and 
Join Sea simulation process, in green 5 days Block and Heffernan and Tawn simulation 
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model, in yellow the POT applied to a combined variable as selection criteria and the Join 
Sea simulation model and in blue the POT applied to a combined variable and the Heffernan 
and Tawn method. 

 
Figure 82. Results in the river mouth level 

In terms of maximum flooded surface (m2), Figure 83 represents the comparison between 
the simulation estimations and the historical storms. Same as before the black dots 
represent the historical peaks, green lines a GPD fitted to the black dots and colored dots the 
maximum flooded surface obtained from the triplets associated to each case proposed (the 
four combinations of selection procedure and simulation method already mentioned). 

 
Figure 83. Results in the max flooded surface 
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J. Comments 
 
From the results obtained in this Case Study 2, some comments can be extracted:  
 

• The selection of the independent events to perform the multivariate simulation 
technique is really important and has direct influence in the results of the entire 
process. As seen in the last two plots, the results obtained with those cases where 
the events where selected with the 5 days block maxima are slightly higher than the 
other two cases: in this method, blocks of 5 days were selected and the maximum 
value of each variable was selected in each block. Compared to the other selection 
method, the triplets obtained with the 5 days blocks are higher, then the multivariate 
simulations gave higher results. 
 

• The great advantage of the 5 days block selection method compared to the POT base 
selection method is that the first one allows a posterior rescaling of the simulated 
values (with both models, Join Sea and Heffernan and Tawn). This rescaling process 
takes into account the entire dataset of each variable. In this particular case, because 
of the existent gaps in the different records only 16.5 years of data could be 
considered comprising the three variables; but the waves and sea level record are 
much longer (about 30 years). Then, this rescaling ‘corrects’ the simulations by 
considering the entire records not only the common period of 16.5.  

  
• There are no very big differences between the multivariate simulations made either 

with the Join Sea software or the Heffernan and Tawn method. The first method is 
based in Copulas functions while the second one is a conditional extreme model.  
 

• The results presented in the previous paragraph were done in terms on maximum 
flooded surface over the simulated grid and sea level at the mouth of the river. Other 
parameters could be studied but no very big differences should be expected. In both 
cases, the results obtained are within the confidence interval around the GPD fitted. 
In the case of the sea level at the mouth river results, the four cases give results 
below the GPD fit while the results of the maximum flooded surface are more 
variable. 

 




