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Abstract : 
 
Ardhuin et al. (2008) gave a second-order approximation in the wave slope of the exact Generalized 
Lagrangian Mean (GLM) equations derived by Andrews and McIntyre (1978), and also performed a 
coordinate transformation, going from a from GLM to a ’GLMz’ set of equations. That latter step 
removed the wandering of the GLM mean sea level away from the Eulerian-mean sea level, making the 
GLMz flow non-divergent. That step contained some inaccuarate statements about the coordinate 
transformation, while the rest of the paper contained an error on the surface dynamic boundary 
condition for viscous stresses. I am thankful to Mathias Delpey and Hidenori Aiki for pointing out these 
errors, which are corrected below. 
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Corrigenda of ’Explicit wave-averaged primi-

tive equations using a Generalized Lagrangian

Mean’,

by F. Ardhuin, N. Rascle and K. A. Belibassakis

Ardhuin et al. (2008) gave a second-order approximation in the wave slope of1

the exact Generalized Lagrangian Mean (GLM) equations derived by Andrews2

and McIntyre (1978), and also performed a coordinate transformation, going3

from a from GLM to a ’GLMz’ set of equations. That latter step removed the4

wandering of the GLM mean sea level away from the Eulerian-mean sea level,5

making the GLMz flow non-divergent. That step contained some inaccuarate6

statements about the coordinate transformation, while the rest of the paper7

contained an error on the surface dynamic boundary condition for viscous8

stresses. I am thankful to Mathias Delpey and Hidenori Aiki for pointing out9

these errors, which are corrected below.10

1 Surface boundary condition and virtual wave stress11

In their equation (61) Ardhuin et al. (2008) wrongly separated the average12

stress as a horizontal force and a vertical force acting on the surface. Instead,13

it is more appropriate to follow the many investigations on the subject and to14

separate the stresses as a normal and a tangential stress (e.g. Jenkins, 1992).15

The horizontal component of the normal stress is the usual pressure-slope16

correlation that we will denote τw, and which is often called ’wave-supported17
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stress’ which is slightly incorrect given the other (small) part of the wave-18

supported stress that is the oscillatory shear stress. The intesting part here,19

and the source of error in the paper is the tangential stress, which is along the20

surface has a local value given by Longuet-Higgins (1953), and also discussed21

in Xu and Bowen (1994), among others. Here we use the expression given by22

Dore (1970, eq. 3.18), valid at the instaneous sea surface z = ζ23

τt = µ

[
∂u

∂z
+
∂w

∂x
− 4

∂ζ

∂x

∂u

∂x

]
. (1)24

As stated by Dore (1970), the proper boundary condition is thus given by the25

continuity of both the normal stresses and tangential stresses. In the case of26

the GLM equations, the boundary condition for the tangential stress is thus27

the horizontal projection of the GLM of eq. (2).28

τt
L = µ


∂u
∂z

+
∂w

∂x

L

− 4
∂ζ

∂x

∂u

∂x

L

 . (2)29

This tangential stress is clearly of second order in the wave slope ka, and thus30

its projection on the horizontal only gives third or higher order correction. For31

the purpose of averaging, we can thus consider this stress to be horizontal.32

For the case of a zero quasi-Eulerian current, the first of these two terms was33

already evaluated by Ardhuin and Jenkins (2006) using linear wave theory,34

which is sufficient here given the small deviation caused by viscosity (e.g.35

Dore, 1970, 1978). We thus only need to add the quasi-Eulerian mean current36

û in the average, namely37

∂u

∂z
+
∂w

∂x

L

=
∂(Us + û)

∂z
(3)38
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with Us the Stokes drift velocity, which, for monochromatic waves of amplitude39

a, radian frequency σ and wavenumber k is given by40

Us = σk
a2

2

cosh(2kz + 2kh)

sinh2(kD)
. (4)41

In the second term, due to the product of the surface slope and velocity gradi-42

ent, which are each first-order terms in the wave slope ka, it is enough to use43

an Eulerian approximation to the Lagrangian average, based on velocities in44

the water, extrapolated to the mean sea surface at ζ = 0. A rigourous Taylor45

expansion up to ζ = 0 yields extra term which are at least of order (ka)2 for46

the velocity gradient, and thus (ka)3 when multiplied by the slope. This has47

already been evaluated by e.g. (Xu and Bowen, 1994, eq. 48),48

4
∂ζ

∂x

∂u

∂x
=
∂Us
∂z

. (5)49

Hence the two terms of τt that contain ∂Us/∂z cancel, leaving ∂û/∂z = 0 at50

this order, on z = ζ.51

We thus obtain the mean continuity equation across the air-sea boundary in52

which the wind stress τ is the sum of the mean tangential and wave-supported53

stresses right at the sea surface54

τ = τL = µ
∂û

∂z
+ τw at z = ζ. (6)55

We note, however, that the subsurface shear, at a small distance δ from the56

free surface is increased by the momentum lost by waves associated to wave57

dissipation. Indeed, in the absence of wind, τ = τw = 0 and ∂û/∂z = 0 right58

at the surface. But this shear increases away from the surface, as measured59

in the laboratory by Longuet-Higgins (1970), who found, at the base of the60
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viscous layer, ∂û/∂z = ∂Us/∂z. Indeed, the glm2z momentum equations (eq.61

(42) in Ardhuin et al., 2008) can be integrated from z = ζ down to z = ζ− δ,62

provided that the force X̂α is understood to represent all the momentum lost63

by the wave field, including viscous dissipation. In the absence of wind, and64

for constant wave conditions we have,65

µ
∂û

∂z

∣∣∣∣∣
z=ζ−δ

= −
ζ∫

ζ−δ

X̂dz. (7)66

For viscous dissipation, the momentum X lost by the wave field per unit67

volume is concentrated near the surface, and its integral is the rate of loss of68

wave energy divided by the phase speed, i.e.69

ζ∫

ζ−δ

X̂dz = 2µgk2a2/(σ/k) = µ
∂Us
∂z

, (8)70

where the first equality is only valid for monochromatic waves in the x direc-71

tion, while the second equality holds for a random sea state.72

2 Vertical coordinate transformation from GLM to GLMz73

In the transformation of the vertical coordinate Ardhuin et al. (2008) incor-74

rectly defined the new coordinate by their eq. (48),75

s = z? + ξ3
L

(9)76

That transformation does not satisfy the desired equation (46) because of the77

vertical stretching of ξ3. Instead one may introduce a vertical displacement ζc78
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attached to a constant vertical coordinate c,79

ζc = ξ3(xα, z = c, t). (10)80

As a result the Stokes correction of ζc, just like for the position of the free81

surface, will only contain terms associated with horizontal gradients,82

ζc
S

= ∂
ζc
xα
ξα|z=c +O(k−1ε3) = ∂

(ξ3|z=c)
xα

ξα|z=c +O(k−1ε3). (11)83

Using linear wave theory this gives84

85

ζc
S

= (−akαmFSS sinψ)×
(
−am

[
kα
k
FCS +

m

σ

∂uα
∂z

Fss

]
sinψ

)
+O(k−1ε3),

(12)

where ψ is the phase of waves and all notations are defined in Ardhuin et al.86

(2008).87

Neglecting the effect of current shear, m = 1, ∂uα/∂z = 088

89

ζc
S

=
1

2
a2k(FCSFSS)z=c +O(k−1ε3). (13)

and we finally have the desired relation90

∂

∂z

(
ζ
S
)

=
1

2
a2k2

(
F 2
CS + F 2

SS

)
+O(ε3) = J2. (14)91

We may thus define implicitly the vertical coordinate z? for each z = c,92

z = s(z?) = z? + ζc
S

(15)93

to obtain a non-divergent set of equations, and, in particular, a mean sea level94

that is at the Eulerian mean sea level.95

5



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

References96

Andrews, D. G. et M. E. McIntyre, 1978: An exact theory of nonlinear waves97

on a Lagrangian-mean flow. J. Fluid Mech., 89, 609–646.98

Ardhuin, F. et A. D. Jenkins, 2006: On the interaction of surface waves and99

upper ocean turbulence. J. Phys. Oceanogr., 36, 551–557.100

Ardhuin, F., N. Rascle, et K. A. Belibassakis, 2008: Explicit wave-averaged101

primitive equations using a generalized Lagrangian mean. Ocean Modelling ,102

20, 35–60.103

Dore, B. D., 1970: Mass transport in layered fluid systems. J. Fluid Mech.,104

40, 113–126.105

— 1978: Some effects of the air-water interface on gravity waves. Geophys.106

Astrophys. Fluid. Dyn., 10, 215–230.107

Jenkins, A. D., 1992: A quasi-linear eddy-viscosity model for the flux of en-108

ergy and momentum to wind waves using conservation law equations in a109

curvilinear coordinate system. J. Phys. Oceanogr., 22, 843–858.110

Longuet-Higgins, M. S., 1953: Mass transport under water waves. Phil. Trans.111

Roy. Soc. London A, 245, 535–581.112

— 1970: Mass transport in the boundary layer at a free oscillating surface. J.113

Fluid Mech., 8, 293–306.114

Xu, Z. et A. J. Bowen, 1994: Wave- and wind-driven flow in water of finite115

depth. J. Phys. Oceanogr., 24, 1850–1866.116

6




