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Abstract :

Ardhuin et al. (2008) gave a second-order approximation in the wave slope of the exact Generalized
Lagrangian Mean (GLM) equations derived by Andrews and Mclintyre (1978), and also performed a
coordinate transformation, going from a from GLM to a 'GLMZz set of equations. That latter step
removed the wandering of the GLM mean sea level away from the Eulerian-mean sea level, making the
GLMz flow non-divergent. That step contained some inaccuarate statements about the coordinate
transformation, while the rest of the paper contained an error on the surface dynamic boundary
condition for viscous stresses. | am thankful to Mathias Delpey and Hidenori Aiki for pointing out these
errors, which are corrected below.
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1 Surface boundary condition and virtual wave stress

In their equation (61) Ardhuin et al. (2008) wrongly separated the average
stressvas’a horizontal force and a vertical force acting on the surface. Instead,
it is more appropriate to follow the many investigations on the subject and to
separate the stresses as a normal and a tangential stress (e.g. Jenkins, 1992).
The horizontal component of the normal stress is the usual pressure-slope

correlation that we will denote 7,,, and which is often called "'wave-supported
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stress’ which is slightly incorrect given the other (small) part of the wave-
supported stress that is the oscillatory shear stress. The intesting part here,
and the source of error in the paper is the tangential stress, which is along the
surface has a local value given by Longuet-Higgins (1953), and also discussed
in Xu and Bowen (1994), among others. Here we use the expression given by
Dore (1970, eq. 3.18), valid at the instaneous sea surface z = ¢
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T
As stated by Dore (1970), the proper boundary condition i8.thus given by the
continuity of both the normal stresses and tangential stresses. In the case of

the GLM equations, the boundary condition for the tangential stress is thus

the horizontal projection of the GLM of eq."(2).
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This tangential stress is elearlyiof second order in the wave slope ka, and thus
its projection on thedorizontal only gives third or higher order correction. For

the purpose of averaging, we can thus consider this stress to be horizontal.

For the case of'azero quasi-Eulerian current, the first of these two terms was
already evaldated by Ardhuin and Jenkins (2006) using linear wave theory,
whichwis” sufficient here given the small deviation caused by viscosity (e.g.
Dore, 1970, 1978). We thus only need to add the quasi-Eulerian mean current
u in the average, namely

du ow OU,+ 1)
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with U, the Stokes drift velocity, which, for monochromatic waves of amplitude

a, radian frequency o and wavenumber £ is given by

2
U = a0 cosh.(2k2z + 2kh)
2 sinh“(kD)

(4)

In the second term, due to the product of the surface slope and velocity gradi-
ent, which are each first-order terms in the wave slope ka, it is enough touse
an Eulerian approximation to the Lagrangian average, based on velogities in
the water, extrapolated to the mean sea surface at ( = 0. A rigourousyTaylor
expansion up to ¢ = 0 yields extra term which are at least of-order (ka)? for
the velocity gradient, and thus (ka)® when multiplied by~ the slepe. This has

already been evaluated by e.g. (Xu and Bowen, 1994,%eq.-48),

oCou  dU,
FRE e v (5)

Hence the two terms of 7, that contain @U/0z cancel, leaving 0u/0z = 0 at

this order, on z = (.

We thus obtain the mean contintity equation across the air-sea boundary in
which the wind stresSir is theé sum of the mean tangential and wave-supported

stresses right at‘the sea surface

~

7:?L:p%+rw at 2 =C_. (6)

We noete, however, that the subsurface shear, at a small distance ¢ from the
free surface is increased by the momentum lost by waves associated to wave
dissipation. Indeed, in the absence of wind, 7 = 7, = 0 and 0u/0z = 0 right
at the surface. But this shear increases away from the surface, as measured

in the laboratory by Longuet-Higgins (1970), who found, at the base of the
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viscous layer, 0u/0z = 0U,/0z. Indeed, the glm2z momentum equations (eq.
(42) in Ardhuin et al., 2008) can be integrated from z = ¢ down to z = { — ¢,
provided that the force X, is understood to represent all the momentum lost
by the wave field, including viscous dissipation. In the absence of wind, and
for constant wave conditions we have,

@
“az

¢
== / Xdz. (7)
z=(—6 )

For viscous dissipation, the momentum X lost by the wave field=per unit
volume is concentrated near the surface, and its integral is the rate of loss of

wave energy divided by the phase speed, i.e.

¢
[ Xz = ougha? /(o /k) = u ®)
=)

where the first equality is only valid for menochromatic waves in the x direc-

tion, while the second equality=holds for a random sea state.

2 Vertical coordinate transformation from GLM to GLMz

In the transformation of the vertical coordinate Ardhuin et al. (2008) incor-

rectly defined the new coordinate by their eq. (48),

S=2+8& (9)

That transformation does not satisfy the desired equation (46) because of the

vertical stretching of ;. Instead one may introduce a vertical displacement (.
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attached to a constant vertical coordinate c,

Cc = 53(xom Z=¢C, t)' (10)

As a result the Stokes correction of (., just like for the position of the free

surface, will only contain terms associated with horizontal gradients,

ES:aCc

;§a|z:c + O(k_1€3) — a(§3‘Z=C)

T

§a|z:c+0(k_1€3)- (17)

Using linear wave theory this gives

@S = (—akymFsgsin1) x (—am [%FOS + m%Fssl sin 1[)) + O(k™te%),
o 8z

(12)

where 1) is the phase of waves and all notations are defined in Ardhuin et al.

(2008).
Neglecting the effect of current sheax, m = 1, 94, /0z =0

S

— 1
Cc = §a2k(FCSF55)z:c —|— O(k’_163). (13)

and we finally have the desired relation

O (@GR (Fos + F2) + 01 = (14)

We may thus define implicitly the vertical coordinate 2* for each z = c,

z=s8(2")=2" +§S (15)

to obtain a non-divergent set of equations, and, in particular, a mean sea level

that is at the Eulerian mean sea level.
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