Resilience of benthic deep-sea fauna to mining activities

Gollner Sabine ^{1, 2?*}, Kaiser Stefanie ¹, Menzel Lena ¹, Jones Daniel O.B. ³, Brown Alastair ⁴, Mestre Nelia C. ⁵, Van Oevelen Dick ⁶, Menot Lenaick ⁷, Colaço Ana ^{8,9}, Canals Miquel ¹⁰, Cuvelier Daphne ^{8,9}, Durden Jennifer M. ³, Gebruk Andrey ¹¹, Egho Great A. ¹², Haeckel Matthias ¹³, Marcon Yann ^{14, 15}, Mevenkamp Lisa ¹², Morato Telmo ^{8, 9}, Pham Christopher K. ^{8, 9}, Purser Autun ¹⁴, Sanchez-Vidal Anna ¹⁰, Vanreusel Ann ¹², Vink Annemiek ¹⁶, Arbizu Pedro Martinez ¹

³ National Oceanography Centre (NOC), University of Southampton Waterfront Campus, Southampton, United Kingdom

⁴ University of Southampton, Ocean and Earth Science, National Oceanography Centre Southampton, Southampton, United Kingdom

⁵ CIMA, Faculty of Science and Technology, University of Algarve, Portugal

⁶ Royal Netherlands Institute for Sea Research (NIOZ), Estuarine and Delta Systems (EDS), Yerseke, The Netherlands

⁷ IFREMER, Institut français de recherche pour l'exploitation de la mer, Plouzane, France

⁸ IMAR Department of Oceanography and Fisheries, Horta, Açores, Portugal

⁹ MARE – Marine and Environmental Sciences Centre Universidade dos Açores, Departamento de Oceanografia e Pescas, Horta, Açores, Portugal

¹⁰ GRC Marine Geosciences, Department of Earth and Ocean Dynamics, Faculty of Earth Sciences, University of Barcelona, Barcelona, Spain

¹¹ P.P. Shirshov Institute of Oceanology, Moscow, Russia

¹² Marine Biology Research Group, Ghent University, Ghent, Belgium

¹³ GEOMAR, Kiel, Germany

¹⁴ Alfred Wegener Institute (AWI), Bremerhaven, Germany

¹⁵ MARUM Center for Marine Environmental Sciences, Bremen, Germany

¹⁶ Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, Germany

* Corresponding author : Sabine Gollner, email addresses : <u>sabine.gollner@nioz.nl</u>; <u>sabine.gollner@senckenberg.de</u>

stefanie.kaiser@senckenberg.de; lena.menzel@senckenberg.de; dj1@noc.ac.uk; Alastair.Brown@noc.soton.ac.uk; ncmestre@ualg.pt; Dick.van.Oevelen@nioz.nl; maria.aa.colaco@uac.pt; miquelcanals@ub.edu; daphne.cuvelier@gmail.com; jennifer.durden@noc.ac.uk; agebruk@gmail.com; Egho.Great@UGent.be; mhaeckel@geomar.de; ymarcon@marum.de; yann.marcon@awi.de; Lisa.Mevenkamp@UGent.be; t.morato@gmail.com; phamchristopher@uac.pt; autun.purser@awi.de; annasanchez-vidal@ub.edu; Ann.Vanreusel@UGent.be; Annemiek.Vink@bgr.de; pmartinez@senckenberg.de

¹ German Centre for Marine Biodiversity Research (DZMB), Senckenberg am Meer, Wilhelmshaven, Germany

² Royal Netherlands Institute for Sea Research (NIOZ), Ocean Systems (OCS), 't Horntje (Texel), The Netherlands

Abstract :

With increasing demand for mineral resources, extraction of polymetallic sulphides at hydrothermal vents, cobalt-rich ferromanganese crusts at seamounts, and polymetallic nodules on abyssal plains may be imminent. Here, we shortly introduce ecosystem characteristics of mining areas, report on recent mining developments, and identify potential stress and disturbances created by mining. We analyze species' potential resistance to future mining and perform meta-analyses on population density and diversity recovery after disturbances most similar to mining: volcanic eruptions at vents, fisheries on seamounts, and experiments that mimic nodule mining on abyssal plains. We report wide variation in recovery rates among taxa, size, and mobility of fauna. While densities and diversities of some taxa can recover to or even exceed pre-disturbance levels, community composition remains affected after decades. The loss of hard substrata or alteration of substrata composition may cause substantial community shifts that persist over geological timescales at mined sites.

Highlights

▶ Deep-sea mineral exploration and exploitation licenses have been issued recently. ▶ Mining will modify the abiotic and biotic environment. ▶ At directly mined sites, species are removed and cannot resist disturbance. ▶ Recovery is highly variable in distinct ecosystems and among benthic taxa. ▶ Community changes may persist over geological time-scales at directly mined sites.

Keywords: Deep ocean, Disturbance, Minerals, Mining, Abyssal plains, Hydrothermal vents, Seamounts, Resilience, Recovery, Benthos

- 82 Introduction
- 83

84 Resilience represents a key concept in ecosystem response to disturbance effects. It can be 85 defined as the ability of a system to maintain its overall identity, i.e. the same function and 86 structure, in the face of internal change and external perturbations [1-3]. Resilience relates to 87 a number of processes [4-6]: (1) resistance, as the amount of stress and disturbance that 88 can be absorbed by a system before processes controlling the structure and function of a 89 system change [7], (2) recovery, as the rate an ecosystem returns to pre-disturbance 90 conditions after an disturbance event [8], and (3) reversibility, as whether processes are 91 reversible [8] and if the system is capable returning to the original condition after change [6]. 92 Ecosystems that pass a critical threshold or tipping point, marking a drastic change in 93 ecosystem function, are putatively unlikely to recover to the original state [8-10].

94 With increasing interest of companies and countries in deep-sea mining, it is crucial to 95 evaluate the resilience of deep-sea ecosystems to mining disturbance, and thus to assess 96 the potential ecological consequences of extracting mineral resources from the deep sea 97 floor. Three different types of deep-sea mineral resources are being granted for exploration 98 licenses: polymetallic sulphides on active and inactive hydrothermal vents, cobalt-rich 99 ferromanganese crusts on seamounts, and polymetallic nodules on abyssal plains. Targeted 100 ecosystems support different types of biological communities that may be differently 101 impacted from mining activities. Mining activities will impose disturbances with novel nature, 102 strength, stability and spatial and temporal scale on deep-sea ecosystems [11-21].

103 In this review, we aim to evaluate the potential resilience of benthic deep-sea fauna to 104 mining activities at hydrothermal vents, seamounts and abyssal plains. We first set the scene 105 by shortly introducing ecosystem characteristics, recent mining developments, and potential 106 stress and disturbances created by mining. In particular, we (1) estimate to what extent 107 targeted ecosystems may be resistant to mining disturbance, (2) review known recovery 108 rates to small-scale disturbance events that are considered most similar to future mining 109 disturbance (volcanic eruptions at hydrothermal vents; fisheries at seamounts; disturbance 110 experiments designed to mimic nodule mining on abyssal plains), and (3) relate this

knowledge (and knowledge gaps identified) to potential reversibility of ecosystem changefollowing mineral mining disturbance.

113

114 Materials and methods

115 The study is based on literature review, as well as meta-analyses of empirical and long-term 116 quantitative data assessing the recovery of deep-sea fauna communities following natural or anthropogenic disturbances. For meta-data analyses, we identified impacts most similar to 117 118 future mining events as: (1) volcanic eruptions that locally eliminate entire communities at 119 hydrothermal vents, (2) bottom-trawl fisheries on seamounts, and (3) disturbance 120 experiments designed to mimic nodule mining at nodule fields on abyssal plains. For the 121 meta-data analyses we included only studies where duration between initial disturbance and 122 post-disturbance measurements was known. When pre-disturbance measurements were 123 unavailable, measurements from close proximity reference areas (control) were used instead 124 (see Appendix A). Percent recovery was plotted against time elapsed since the disturbance 125 impact using the program R [22]. Datasets where the pre-disturbance value was zero, i.e. the 126 respective taxon had not been sampled, are discussed in the manuscript, but were excluded 127 from the analyses.

128 Faunal responses to disturbances reported in the literature are presented in Appendix 129 A, identifying ecosystem type, geographic region, type of impact, comparable potential 130 mining impact, scale of impact, response category (density or diversity), type of response measured (e.g. species richness S, Shannon-diversity H'), taxonomy information (phylum, 131 132 class, order, family, genus, species), size class (meio-, macro-, megafauna), and mobility 133 (mobile, sessile). The results of the literature search and specific meta-analysis for nodule 134 systems are reported in more detail in Jones et al. [23]. Mobility was included in the analyses 135 as it may be linked to species connectivity and thus recovery potential [24]. Size classes 136 were used in the analyses since meio-, macro- and megafauna communities influence and 137 depend on each other [25], and recent studies have shown that different sized organisms 138 may respond differently to stress and disturbance [26, 27]. We followed the definition of size-139 classes used in original articles. Megafauna typically included large animals seen with the 140 unaided eye or are visible in seabed photographs. At hydrothermal vents, where fauna is 141 typically large, (adult) macrofauna was classified as fauna larger 1 mm, with no further 142 discrimination into mega- and macrofauna. On nodule fields, where macrofauna is typically 143 small, macrofauna included organisms retained on a 500 µm mesh sieve. Meiofauna was 144 typically classified as fauna smaller than 1 mm. The lower mesh-size used varied from 32 to 145 63 µm (older studies typically used 63 µm). However, Ingole et al. [28] classified all fauna in 146 deep-sea sediments (including nematodes and copepods) as macrofauna, but we 147 reclassified typical meiofauna taxa (nematodes, copepods) as meiofauna.

148 Since the nature of measurements, the number of samples, and sampling technique 149 was often substantially different across studies, we calculated mean percent recovery 150 following a specified period (in years) for each study (Appendix A). Calculation of mean 151 percent recovery was based on mean original values of pre-disturbance conditions and the 152 mean (experimental) values measured post-impact (100 x pre disturbance/after disturbance). 153 To account for variability, original values for pre- and post-disturbance and their standard 154 deviation are provided whenever possible in Appendix A and in figures, and are discussed. 155 Mean values of pre-disturbance conditions were interpreted as representing 100% of the 156 original densities or diversities. Consequently, 50% density recovery after one year would 157 imply that mean density value was half the pre-disturbance value one year after disturbance, 158 and 200% density recovery after one year would imply that mean density value was double 159 the pre-disturbance value one year after disturbance.

160 To unravel large scale underlying patterns of recovery in the three different 161 ecosystem types, we tested for differences in mean percent recovery for diversity and density between organism size-classes (meio-, macro-, megafauna), mobilities (sessile, 162 163 mobile), and localities (different ocean basin of nodule fields) using the one-sided Wilcoxon 164 rank sum test [29]. The non-parametric one-sided Wilcoxon rank sum test tests for 165 differences between each set of pairs of two paired groups, assuming that values of one of 166 the paired groups are larger than the other. The Benjamini-Hochberg correction was used to 167 account for the number of possible comparisons in order to control the expected proportion 168 of false discoveries [30]. Whilst these analyses may identify potential large scale trends in 169 species recovery they cannot account for variability within samples. Where mobility of study 170 organisms comprised mobile as well as sessile taxa, mobility was defined as "mixed", and 171 data were excluded from mobility analyses.

- 172
- 173 **Results and Discussion**
- 174

175 **1. Ecosystem characteristics**

176

177 **1.1 Polymetallic sulphides, active and inactive hydrothermal vents**

178

179 **1.1.1** *Minerals and physical environment*

Polymetallic sulphides (Figure 1a), also referred to as seafloor massive sulphides (SMS), form on or below the seabed where hydrothermal vents release mineralized seawater [31-33]. Minerals in hydrothermal fluids precipitate when they come into contact with cold seawater, and form chimney structures (Figure 2a) and/or disperse with the hydrothermal plume through the water. Deposits are patchily distributed at mid-ocean ridges, in back-arc

basins, and along submarine volcanic arcs (seamounts). The abundance and content of
sulphides differs between fast- and slow-spreading ridges; whilst lavas commonly disrupt the
flow of hydrothermal fluids and bury sulphide deposits every decades at fast spreading
ridges (e.g. the East Pacific Rise, EPR), eruptions occur on intervals of thousands of years
and deposits are of larger scale at slow spreading ridges (e.g. the Mid Atlantic Ridge (MAR),
the Central Indian Ridge (CIR)) [16, 18].

191

192

Figure 1. Examples of deep-sea minerals. a. Polymetallic sulphide sample from Edmond vent field in the Indian Ocean (photo courtesy BGR). b. Cobalt-rich ferromanganese crust from the Great Meteor seamount chain (photo courtesy EMEPC). c. Polymetallic nodule (size ~ 12 cm in length) from the Clarion-Clipperton Fracture Zone (photo courtesy of S. Kaiser, SGN)

197

198 The mineral-rich hydrothermal fluids range in temperature from just a few degrees Celsius to 199 >400°C [31, 32]. Local fluid flows at active hydrothermal vent sites can reduce and stop 200 within a few months at fast-spreading ridges such as the EPR [34] or can be stable for 201 decades on slow-spreading ridges such as the MAR [35]. Vent chimneys and edifices can be 202 several tens of metres high and are commonly inhabited by specialised communities [17]. 203 The stability at individual sites as well as vent fields exerts a strong influence on the largely 204 endemic mega- and macrofauna that are dependent on rich *in situ* primary production by 205 sulphide- and methane oxidizing bacteria [36].

206

207 **1.1.2** Biological communities at active and inactive vents and in the vent periphery

208 Fauna associated with polymetallic sulphides at active hydrothermal vents (Figure 2 a, b) are 209 fueled by rich in situ primary production generated via chemosynthesis. Many mega- and 210 macrofaunal groups have evolved complex physiological or behavioural adaptations to the 211 extreme environmental conditions in vent habitats [37-39]. Dominant symbiotrophic 212 megafauna include mussels, snails, shrimps and polychaetes, whereas dominant 213 macrofauna taxa include limpets, crabs, amphipods and polychaetes [36]. Whilst these fauna 214 are typically abundant with high biomass, species richness is low [40]. Mega- and 215 macrofauna show a high level of endemism in biogeographic provinces at both species 216 (95%) and generic level (76%) [41]. Furthermore, the mega- and macrofauna are commonly

endemic to the active vent environment [42]. In contrast to the macrofauna, meiofauna are not exceptionally abundant at the vents, but meiofauna and macrofauna show similar species richness [27, 43-45]. However, vent meiofauna species also occur in the vent periphery, with few species restricted to the vents [46]. Since vents are patchy, transient, and often separated by tens to hundreds of kilometers, connectivity among invertebrate populations is through larval dispersal [26, 47-49].

223 Fauna associated with polymetallic sulphides at inactive vents (Figure 2 c) are little 224 known. Consequently, it is largely unclear whether assemblages that thrive at inactive vents 225 are similar to active vent fauna, are similar to fauna inhabiting hard substrata on non-mineral 226 rich grounds, or are unique [17]. Inactive chimney structures provide substratum for benthic 227 suspension feeders and typically host sponges and cnidarians [50-53]. Some macrofauna 228 and nematode species from active vent sites are also observed at inactive vent sites [54, 55]. 229 A comparative study of an active hydrothermal seamount, an inactive hydrothermal 230 seamount with polymetallic sulphides, and a seamount without hydrothermal activity and 231 without mineral deposits, revealed that magnetivity, as a proxy for hydrothermal activity, 232 explained the majority of the variation in megafauna assemblage structures present at the 233 three seamounts [50].

234 There is a paucity of data on fauna from the vent periphery (also termed vent 235 proximate areas, or vent background) but fauna appears to vary with region. Vent peripheral 236 megafauna on the MAR consist of sessile, filter-feeding, long-lived and slow-growing taxa 237 such as sponges, corals and deep-sea crabs [51, 56, 57] (Figure 2 d). Peripheral areas near 238 the Eiffel Tower (Lucky Strike vent field) have high diversity, e.g. of copepods, and also 239 harbour several copepod species typical for active vents. Additionally, juvenile vent fauna 240 have been observed in the vent periphery [45]. Similarly, vent-peripheral areas on the 9% 241 EPR support juveniles of macrofauna typical of the vent environment, as well as a diverse 242 meiofauna community [27]. Vent-peripheral macrofauna communities in the Lau Basin are 243 largely distinct from active vent communities, with few vent endemic species present [58]. 244 Peripheral macrofaunal communities at Eastern Lau Spreading Center and Valu Fa Ridge 245 (ELSC-VFR) harbour mainly zoanthids, anemones, symbiont-containing mussels, brisingid 246 seastars, and polynoids at the northern peripheral sites, whereas sponges, pycnogonids and 247 ophiuroids dominate at southern peripheral sites. Taxonomic richness in these ventperipheral macrofauna communities is similar to that of active vent communities [59]. In 248 249 comparison, peripheral assemblages at Scotia Ridge in the Southern Ocean typically 250 comprise asteroids and pycnogonids [60].

- 251
- 252
- 253

255

Figure 2. Examples of ecosystems/habitats and associated biological communities potentially affected by mineral mining. a. Active black smoker (Kairei; Indian Ocean). b. Vent field colonized by shrimps, anemones, and mussels (Kairei; Indian Ocean). c. Inactive vent field (Edmond; Indian Ocean). d. Pillow lava in vent peripheral areas (adjacent to Sonne; Indian Ocean). e. Coral gardens on inactive vent/seamount (near Menez Gwen, Atlantic; photo courtesy of Missão Seahma). f. Nodule field (Clarion-Clipperton Fracture Zone, Pacific). Photos a-d, f of courtesy of GEOMAR.

263

264

265

266 **1.2 Cobalt-rich ferromanganese crusts, seamounts**

267

268 **1.2.1** *Minerals and physical environment*

269 Cobalt-rich ferromanganese crusts (Figure 1 b) are formed by the precipitation of metals 270 dissolved in seawater, grow at rates of 1 to 6 mm per million years, and can form thick 271 pavements of up to 26 cm thickness [20, 61, 62]. These crusts typically form on exposed 272 hard rock on seamounts, and especially on guyot plateaus with strong currents that prevent 273 the accumulation of sediments. Seamounts are underwater mountains of volcanic origin, and 274 hydrothermal venting may be associated with seamounts, making seamounts a target not 275 only for crust mining but also for polymetallic sulphide mining [53]. Approximately, 10,000-276 33,000 seamounts are arrayed across the ocean floor [63-65]. Like terrestrial mountains, 277 seamounts exhibit a range of shapes and sizes. Geophysical characteristics of seamounts 278 accelerate water currents, generate upwelling of nutrients, and create retention of water 279 masses, thereby increasing local productivity and external flow of organic matter [66-68].

280

281 **1.2.2** Biological communities at seamounts with and without crusts

282 Seamounts are considered to be hotspots of species richness [69]. High productivity at 283 seamounts supports relatively high biomass of demersal fish populations and large numbers 284 of benthic filter feeders, such as corals and sponges (Figure 2 e) in comparison to adjacent 285 deep continental margins at comparable depths [70, 71]. However, there is little known about 286 the seamount fauna in general, and about crust-associated fauna in particular [72-74]; few 287 seamounts (<1%) have been sampled [67, 72]. Furthermore, studies have focused on 288 megafaunal organisms, with little information available on macro- and meiofauna [75, 76], or 289 on microbiota.

290 Many seamount taxa are long-lived and slow-growing, especially those forming 291 biogenic structures. Individuals of some species may be hundreds to thousands of years old: 292 for example, it may take thousands of years for stony corals to build complex biogenic 293 structures [77]. Seamount faunas can vary greatly even at local (km) spatial scales [72, 73, 294 78]. Variation in community composition and diversity has been related to a number of 295 environmental factors, particularly those linked to depth and seabed structure (e.g. 296 substratum, relief, presence of bio-constructors), as well as current regimes and distance to 297 source populations, amongst others [50, 67, 73].

Owing to a paucity of data, it remains uncertain whether fauna associated with crusts differs from similar non-crust areas [73, 74]. However, Schlacher et al. [73] and Morgan et al. [79] identified differences in biodiversity and community structure between seamounts with and without crusts. Nonetheless, it remains unclear whether chemical components of the crusts are dominant drivers of benthic assemblage structure, or whether differences result from contrasting seafloor parameters, such as geographic location, topography and depthrelated factors [73].

305

306 1.3 Polymetallic nodules, abyssal plains

307

308 **1.3.1** *Minerals and physical environment*

309 Polymetallic nodules, also referred to as manganese nodules, are potato-shaped concretions 310 with a size range of 2-8 cm (max. 15 cm) that are composed of manganese oxides and iron 311 oxihydroxides (Figure 1 c, Figure 2 f). Polymetallic nodules grow with average rates of 10 to 312 20 mm per million years. They occur in high abundances on the sediment-covered abyssal 313 plains of all oceans, where sedimentation rates are low (≤ 10 mm kyr⁻¹). Nodules are 314 embedded in the sediment surface. Nodules therefore provide a hard substratum habitat on 315 abyssal plains dominated by sediment. Deep-sea sediments around nodules typically consist 316 of a mixture of siliceous ooze and deep-sea clay and are rich in oxygen [80-82]. The

environment is very stable, with low current velocities $(3.8 \pm 2.0 \text{ cm s}^{-1})$ [83, 84]. Well-studied 317 318 occurrences of manganese nodules are known from the Clarion Clipperton Fracture Zone 319 (CCZ) in the NE equatorial Pacific, the Peru Basin in the SE Pacific, the Cook Island region 320 in the SW Pacific, and in the Central Indian Ocean Basin [85]. The CCZ contains the largest 321 known contiguous occurrence of nodule fields and covers an area of approximately 4 million 322 square kilometers (an area as large as the European Union) [80]. Nodule abundance in the CCZ ranges between 0 and \sim 30 kg m⁻² (based on wet nodule weight) with an average of 15 323 324 kg m⁻² [19].

325

326 **1.3.2** Biological communities on nodules and in deep-sea sediments

327 At higher taxonomic levels, the composition of the soft-sediment fauna around nodules 328 resembles abyssal areas elsewhere. The dominant meiofaunal groups are nematodes, 329 followed by harpacticoid copepods, whilst polychaetes and isopods are the dominant 330 macrofaunal taxa. Typical megafaunal organisms include ophiuroids, holothurians, fish, large 331 komokiaceans and xenophyophore protists [86]. Diversity can be high at both local and 332 regional spatial scales [87-89]. Across the CCZ there are pronounced changes in species 333 composition in some taxa such as polychaetes, isopods, and nematodes [88, 90, 91]. 334 Differences among samples are typically driven by a high proportion of rare species (defined 335 as species with only few individuals occurring in samples and/or with a restricted 336 geographical range) [92].

337 Nodule surfaces are often covered with sessile organisms such as sponges, 338 cnidarians and xenophyophores, but crevices are also inhabited by meiofauna, such as 339 nematodes, harpacticoid copepods, tardigrades, and foraminiferan protists [93-97]. Nodule 340 surface and adjacent soft sediment fauna are distinct in a number of protozoan and 341 metazoan taxa [95, 96, 98, 99]. Epifaunal densities are higher in regions with dense nodule 342 seafloor coverage, and epifauna such as alcyonacean and antipatharian corals are virtually 343 absent in nodule-free areas [100]. Many larger epifaunal species appear to be widespread, 344 but these distributions are based predominantly on morphological examination from video 345 and/or still images which provide insufficient resolution for species-level identification. 346 Nonetheless, recent analysis of nodule encrusting foraminiferans revealed that most morpho-347 species are widely distributed across the CCZ [101]. Remarkably little is known regarding the 348 geographic distribution of the nodule associated fauna, such as whether species are unique 349 to nodules or whether adjacent seamount crusts host these same species.

- 350
- 351

352 **2. Mineral Mining**

354 **2.1 Licencing in international and national waters**

355 Many deep-sea mineral resources are found in areas beyond national jurisdiction i.e. "The 356 Area" (>200 nautical miles offshore, depending on whether a state has an extended 357 continental shelf), which are managed by the International Seabed Authority (ISA). 358 Contractors may apply for a 15-year exploration contract at the ISA, which gives them 359 exclusive rights to prospect for mineral resources in a specific exploration area. In the case of manganese nodules, a single exploration area covers up to 75 000 km² of seafloor (Figure 360 361 3), but areas are smaller in the case of polymetallic sulphide or crust exploration comprising 362 3,000 and 10,000 km², respectively [102]. Ocean-wide, 26 exploration contracts have been 363 issued to date. In 2014 alone, the ISA approved seven new mineral exploration licences 364 (https://www.isa.org.jm/deep-seabed-minerals-contractors). The first six pioneer contractors 365 ended their 15-year exploration period in 2016. These contractors have applied for 366 exploration extensions for a further 5-year period. Subsequent to the exploration contract, 367 nations/companies may apply for an exploitation licence.

368 Within the Exclusive Economic Zone (EEZ) of a country, mineral resources on the 369 ocean floor are not managed by the ISA, but are instead managed by national regulation. 370 Nations may grant exploration and exploitation licences to companies. Within EEZs, most 371 exploration licenses for deep-sea minerals have been issued by island states in the SW 372 Pacific, Japan, and New Zealand [18, 53]. Nautilus minerals, Bluewater Minerals (Nautilus 373 subsidiary), Neptune Minerals, Bismarck (Neptune subsidiary), Diamond Fields International, 374 Korea Institute of Ocean Science and Technology (KIOST), Japan Oil, Gas & Metals 375 National Corp (JOGMEC) have applied for or have been granted SMS or cobalt-rich crust 376 exploration licences in the South Pacific. The first exploitation license for polymetallic 377 sulphides and for deep-sea minerals in general was granted by Papua New Guinea to the 378 company Nautilus minerals in 2011. Approximately 10 hectares are being considered for 379 mining at Solwara1 [103, 104]. Neptune Minerals has prospecting license applications and 380 granted prospecting licenses covering 175 000 km² in the EEZ of Japan, Papua, New 381 Guinea. Solomon Islands, Vanuatu, Fiji, Tonga and New Zealand 382 (http://www.neptuneminerals.com/our-business/tenements/).

383

384 **2.2 Mineral Mining operations**

The anticipated mining disturbance varies greatly among the different mineral resources and their associated ecosystems. Mining operations will be conducted by machines operating at water depths down to several kilometers. Seabed crawlers for sulphide mining will have auxiliary cutters and bulk cutters to shred mineral deposits (Figure 3 b) and also collecting machines (Figure 3 c). The resulting rock mixture will be transported to a surface support vessel as a slurry by a riser and lifting system (Figure 3 c). Similar conceptual plans exist for

391 mining crusts (Figure 3 d). Machines for nodule collection are not yet available, but several 392 concepts exist and prototypes have been built. Nodule-mining machines are proposed to 393 plough tens of centimeters into the seafloor sediments, mechanically or hydraulically 394 removing the nodules from the sediment. The nodule-sediment mixture will be transported to 395 a surface support vessel as a slurry by a riser and lifting system, where the sediment will be 396 separated from the nodules and returned to the water column through a discharge pipe [105] 397 (Figure 3 e). The nature of mining disturbance will also depend on the technology used, even 398 for the same mineral type. For example, tools proposed for sulphide mining by Nautilus for 399 Solwara 1 are less smothering than methods suggested by the Japan Deep Sea Technology 400 Association (DESTA) [16] (and references therein).

401 The potential size of mined areas may vary greatly among the different mineral 402 resources. For each exploitation license issued by the ISA, nodules may be extracted from 403 300 to 800 square kilometers in a year of mining [106, 107] and ~8500 square kilometers 404 over a 20 year period [11, 16, 108, 109]. In contrast, Nautilus Minerals would target only 0.112 km² of seabed during polymetallic sulphide mining at Solwara 1, although it could 405 406 disrupt connectivity of hydrothermal habitat in the region [16, 110]. Some mining plans, such 407 as those of Nautilus Minerals, propose a patchy removal strategy with a mixture of temporary 408 and quasi-permanent refuge areas [16].

410

Figure 3. a. Mining scenario for polymetallic sulphides at hydrothermal vents. b. Bulk cutter for sulphide mining (photo courtesy Nautilus Minerals). c. Collection machine for sulphide mining (photo courtesy Nautilus Minerals). d. Mining scenario for cobalt-rich ferromanganese crusts at seamounts. e. Mining scenario for polymetallic nodules on abyssal plains. All scenarios show the marine environment, seafloor production tools and sediment plumes, riser and lifting system to the vessel, and release of mineral washings.

417

418 **2.3 Mining threats**

419 Mining activities will impose disturbances with novel nature, strength, persistence, and 420 spatial and temporal scale on deep-sea ecosystems. Direct mining impacts will include 421 mortality and removal of fauna living on mined substrata, removal of substrata and habitat 422 loss, habitat fragmentation, habitat modification (i.e. change of mineral and sediment 423 composition, topography, chemical regimes), and diverse other direct impacts such as sound 424 and electromagnetic radiation by mining instruments. Indirect impacts comprise the formation 425 of (potentially toxic) sediment plumes by the activity of crawlers, seabed installations and 426 risers, and potential release of toxic substances into the water column along the riser system 427 and/or by process material discharged from the ship (return plume) [11-21]. Further details428 are discussed in the reversibility chapter (3.3).

- 429
- 430

431 **3. Estimating resilience of deep-sea ecosystems**

432

433 **3.1 Resistance**

434 To date, large-scale commercial mineral mining has not taken place. Very likely, the removal 435 of minerals will kill fauna inhabiting mineral deposits. However, the capacity for populations 436 of deep-sea species to stay essentially unchanged despite disturbances (resistance sensu 437 [111]) associated with deep-sea mining remains uncertain. Resistance (natural ability to 438 remain unaffected by a force) may apply to species response to sound/vibration and 439 electromagnetic radiation produced by mining operations. Shallow-water marine mammals, 440 fish, and invertebrates are physiologically sensitive to acoustic disturbance [112] with 441 potential for ecological effects such as alteration in natural behaviour, reduction in 442 communication ranges, reduction in foraging ability, prevention of predator avoidance, 443 complete habitat avoidance, and death [113, 114]. These physiological and behavioral 444 effects can alter the ecology of marine systems [115]. However, the effects of these potential 445 stressors on deep-sea fauna are poorly constrained: data on sound/vibration and/or 446 electromagnetic radiation impact at deep-sea vents, seamounts or nodule fields are few and 447 uninformative in a deep-sea mining context. For example, high-intensity illumination 448 associated with Human-Occupied Vehicles (HOVs) and Remotely Operated Vehicles (ROVs) 449 has been implicated in photoreceptor damage in shrimp that aggregate on black smokers at 450 Mid-Atlantic Ridge vents [11]. The structure and light-sensitive visual pigment (rhodopsin) of 451 thoracic eyes in adult vent shrimp suggests that they are adapted to detecting the dim light 452 generated by high-temperature venting as a near-field remote-sensing means of avoiding 453 thermal stress and mortality. The initial description of these photoreceptors identified 454 degradation inferred to result from light exposure [116] and it was suggested that cellular 455 machinery to support recovery from light damage disappears during ontogeny [117]. The 456 behavioral consequences of light-damaged photoreceptors in vent shrimp are unknown, but 457 there is no evidence of impacts on shrimp populations repeatedly exposed to high-intensity 458 illumination [118]. However, these shrimp populations are only intermittently exposed to high-459 intensity illumination, which may not be representative of exposures that will occur during 460 mineral exploitation. Further, the significant variation in visual ecology among deep-sea taxa 461 [119] is likely to influence resistance. Consequently, extrapolating resistance potential to 462 radiation caused by deep-sea mineral exploitation processes to other taxa is not yet possible.

463 Mining will produce sediment plumes on the sea floor, as well as producing discharge 464 sediment plumes in the water column, following mineral washing and fractioning procedures 465 on board of the support vessels. Plumes will disperse beyond the area of direct mining 466 impact. The concept of resistance applies to communities living in these indirectly impacted 467 areas that may cover larger areas than the directly mined area. Sulphide test mining at the 468 Solwara 1 site off Papua New Guinea, indicated increased sedimentation (up to 500 mm) 469 within 1 km of the discharge site, with some material potentially dispersing up to 10 km away 470 [16, 110]. Natural sedimentation rates at vents are much lower, ranging for example from ~1-471 2 mm per year in Guaymas basin [120] to ~ 0.0025-0.03 mm per year at Juan de Fuca [121]. 472 On abyssal plains and seamounts, natural sedimentation rates are in the order of only 473 several mm per thousand years [122]. Yet, it remains unclear if and to what extent deep-sea 474 communities may be resistant to particle plumes generated by mineral extraction and 475 resuspension of sediments.

Environmental impact assessment of the deep-water oil and gas exploitation industry indicates that both increased sedimentation and toxicant exposure have significant ecological effects that can extend to more than 5 km from the point source (see [123] and references cited therein). However, impacts depend on both the magnitude and composition of the released material which differs significantly both within and between the deep-sea oil and gas industry and the deep-sea mineral industry, preventing direct inferences of resistance to deep-sea mining impacts.

483 Particle plumes generated by mineral mining may physically smother benthic 484 organisms, clogging gas exchange and feeding structures [123]. Seafloor coverage by a 3 485 mm thick layer of drill cuttings can significantly affect infaunal communities [124]. However, 486 significant quantitative impacts on meiofaunal abundance and community composition have 487 also been observed beyond the extent of observable drill cuttings deposition [125]. 488 Resistance to sedimentation generated by mineral extraction processes is likely to vary 489 based on the ecology of individual species, for example depending on whether taxa are 490 epifauna or infauna, errant or sessile, suspension feeders, filter feeders, deposit feeders, or 491 necrophages (see [123] and references cited therein).

492 Shifts in density, biomass, and diversity of benthic assemblages in response to 493 offshore oil and gas exploitation have also been linked to increased toxicant concentrations 494 [126-129]. However, sulfide mineral metal bioavailability and toxicity data are currently only 495 available from laboratory studies with shallow-water fauna [110, 130], which may be 496 unrepresentative of deep-adapted fauna [131]. Mineral particles have high metal 497 concentrations and deep-sea sediments are typically metal enriched [12]. Metal 498 concentrations present in mineral particle plumes appear less toxic than the corresponding 499 concentration of dissolved metals [130] thus the oxidation/reduction processes during mining

500 operations will significantly affect toxicant bioavailability. Mineral dissolution rates depend on 501 the composition of mineral deposits and are also sensitive to redox conditions [132], 502 therefore toxicant bioavailability will be site specific with spatial and temporal variability. 503 Further, toxicant bioavailability may also be influenced by the ecology of individual species, 504 depending on e.g. whether taxa are epifauna or infauna, errant or sessile, suspension 505 feeders, filter feeders, deposit feeders, or necrophages [133]. For example, the ability of 506 species to tolerate (and resist) potentially toxic particles is likely higher at active vents, which 507 are already under the influence of the putatively toxic hydrothermal fluid and plumes [37], 508 than at inactive vents and in the wider deep sea, where taxa are not typically exposed to 509 such toxicants.

510 Deep-sea hydrothermal vent organisms appear to have developed enhanced defence 511 pathways to respond to the presence of high concentrations of dissolved metals released at 512 hydrothermal vents. Induction of antioxidant, biotransformation enzymes, or metal-binding 513 proteins that are able to remove the reactive oxygen species formed by molecular reactions 514 with toxic metals, or detoxification of metals by sequestering them in a non-bioavailable form 515 and/or by eliminating the metal, have been observed in hydrothermal vent fauna at 516 ecologically relevant metal concentrations at in situ temperature and hydrostatic pressure 517 [134, 135]. These responses represent an energetic commitment with potential 518 consequences for reproductive capacity and population survival [136]. However, 519 extrapolation from resistance in experimental exposures to resistance in the environment 520 remains challenging: ecological processes and interactions must be understood before 521 experiments in laboratories, micro- or meso-cosms can be related reliably to natural 522 conditions [137]. Further, the physical and chemical composition of the particle plume 523 generated by mineral extraction is likely to differ significantly from the hydrothermal vent fluid 524 and plume, as may the duration of exposure to the chemical mixtures presented by mineral 525 extraction processes, impeding inferences regarding potential resistance to toxicological 526 exposures among vent fauna.

527 The structure and functioning of benthic assemblages at vents, and to a lesser extent 528 at seamounts, are highly dependent on key foundation species [67, 138] and may guickly 529 collapse if the resistance of these species is exceeded. Large sessile suspension feeders, 530 common at inactive vents and on seamounts, also thrive in high particle loads, although they 531 may be sensitive to burial, distinct particle size and shapes, and toxic compounds [53, 139, 532 140]. As natural sedimentation rates are extremely low on abyssal plains, the abyssal fauna 533 are likely least tolerant to enhanced particle load and sedimentation. Although we expect that 534 such species are to some level resistant to mining plumes, current knowledge is insufficient 535 to predict the extent of resistance.

537

538 **3.2 Recovery after small-scale disturbance events**

539

540 **3.2.1 Hydrothermal vents**

541 Active vents

Active vents exhibit distinct biogeographic faunal patterns and natural background disturbance regimes, suggesting region-dependent recovery at slow- and fast-spreading centers. In the last three decades, faunal recovery following volcanic eruption events were documented after the 1993 and 1998 eruptions on the intermediate-spreading Juan de Fuca Ridge (JFR) on Co-Axial Segment and Axial Volcano [141, 142], and after the 1991 and 2006 eruptions on the fast-spreading 9°N vent field on the East Pacific Rise (EPR) [26, 143].

548 At Juan de Fuca, mean mega- and macrofaunal densities reached and even 549 exceeded pre-eruption values after 2 years (17% mean recovery after 1 year; 290% mean 550 recovery after 2 years) (Figure 4, Appendix A). Biomass showed a similar recovery response 551 (12% after 1 year; 102% after 2 years, Appendix A). Meio- and macrofauna abundances at 552 the EPR also recovered relatively quickly, with no significant differences in abundances 553 across all tubeworm sites relative to pre-eruption data [26]. Similarly, Wilcoxon tests revealed 554 no significant increase in mean percent recovery over years. Comparing meio- and 555 macrofauna recovery data across Juan de Fuca and the EPR revealed that macrofauna 556 densities recovered more quickly than meiofauna (p<0.01; Figure 5; Figure 6). At single vent 557 sites, such as at Tica at the EPR, recovery of abundance was slow, with mean macrofauna 558 abundance reaching only 11-24% and mean meiofauna abundance reaching 2-9% 1 to 4 559 years after eruption (Appendix A). However, abundance standard deviation was very high 560 both pre- and post-eruption at this site (Gollner et al. 2015; Figure 5). For example, 561 abundances at the Tica site varied significantly with 3125 \pm 1261 macrofauna and 2255 \pm 562 3455 meiofauna ind. per 64 cm² before the eruption, and with 342 \pm 209 macro- and 213 \pm 563 224 meiofauna ind. per 64 cm² four years after eruption. The natural high variability of 564 abundances ranging several orders of magnitude, combined with low quantitative sampling 565 (three samples per site and time), make it impossible to detect potential significant 566 differences pre- and post-eruption. More extensive sampling is needed to understand natural 567 variability at active vents.

Mean percent recovery of faunal diversity significantly increased from 1 to 2 years after eruption (p = 0.013), from 1 to 4 years (p = 0.013) after eruption, but not from 2 to 3 years (p > 0.05), 2 to 4 years (p > 0.05), or 3 to 4 years (p > 0.05) (see data Appendix A). Total mega- and macrofauna species richness at the Juan de Fuca vents reached 75% of the pre-disturbance species pool three years after the 1998 eruption [141], and 90% two years after the 1993 eruption [142]. At the EPR, total mega- and macrofauna species

574 richness reached 69% of pre-disturbance values 4.6 years after the 1991 eruption [143]. 575 After the EPR 2006 eruption, the recovery reached 55% for macrofauna and 48% for 576 meiofauna species after 4 years [26] (for data see Appendix A), with 39% of the macro- and 577 42% of meiofaunal species returned. In addition, several new species appeared in the 578 region, including some early colonizers that were dominant in the first post-eruption years 579 [26]. Species richness at Tica vent site reached 52% of pre-eruption values for macrofauna, 580 and 106% for meiofauna after 4 years (Appendix A). At this site and time, the physical-581 chemical parameters of vent fluids were comparable to values measured pre-eruption [26]. 582 The fast recovery of meiofauna at Tica site shows that distinct size classes (in this case 583 meiofauna) may recover more quickly than others. However, Wilcoxon rank tests revealed no 584 significant differences between meio- and macrofauna diversity recovery rates, and also no 585 differences between the EPR and JFR region (Figure 6). The observations at Tica site in 586 comparison to regional observations highlight that single sites may not capture regional 587 recovery; instead several vent sites need to be studied. Similar patterns of recovery were 588 observed using several diversity parameters (observed species richness, expected number 589 of species, Shannon's H', Pielou's J') (Appendix A). The variability of diversity values within 590 sites was not exceptionally high, with similar range pre- and post-eruption overall (Figure 5, 591 Appendix A).

- 592
- 593

Figure 4. Mean recovery (%) relative to pre-disturbance faunal density and diversity at active
hydrothermal vents. For data see Appendix A. EPR: East Pacific Rise. JFR: Juan de Fuca
Ridge.

- 599
- 600

Figure 5. Absolute numbers and standard deviation of density and diversity values measured
pre-disturbance (indicated as P) and after disturbance (in years) for meiofauna and
macrofauna at active hydrothermal vents. For data and metric see Appendix A. Circles:
mobile taxa. Triangle: sessile taxa. Square: mixed taxa (sessile and mobile).

Meiofauna & Macrofauna JR JR Meiofauna JR Macrofauna JR Macrofauna JR 0.012 EPR Meiofauna O.012 EPR Recovery: Size Class (Active vent) All fauna 0.005 Macrofauna 0.005 <td< th=""><th>Melofauna & Macrofauna JFR Melofauna FR Macrofauna JFR Macrofauna JFR 0.012 EPR Macrofauna JFR 0.012 EPR Macrofauna JFR 0.012 EPR Macrofauna JFR 0.012 EPR Macrofauna 0.012 Macrofauna 0.005 Macrofauna 0.005 Macrofauna 0.005 Macrofauna 0.005 Macrofauna 0.005 Macrofauna 0.012 Macrofauna 0.021 Macrofauna</th><th>Recovery: F</th><th>Region (Active vent)</th><th></th></td<>	Melofauna & Macrofauna JFR Melofauna FR Macrofauna JFR Macrofauna JFR 0.012 EPR Macrofauna JFR 0.012 EPR Macrofauna JFR 0.012 EPR Macrofauna JFR 0.012 EPR Macrofauna 0.012 Macrofauna 0.005 Macrofauna 0.005 Macrofauna 0.005 Macrofauna 0.005 Macrofauna 0.005 Macrofauna 0.012 Macrofauna 0.021 Macrofauna	Recovery: F	Region (Active vent)	
JR 0.0043 JR EPR JR EPR JR 0.012 PR JR 0.012 EPR Recovery: Size Class (Active vent) All fauna 0.005 Macrofauna 0.005 Macrofauna 0.005 Macrofauna Cegend diversity data one larger than the other not significant not data available	JR 0.0043 EPR JR EPR JR EPR JR 0.012 All fauna Macrofauna 0.005 Macrofauna 0.005 <tr< th=""><th>Mol</th><th>ofauna & Macrofauna</th><th></th></tr<>	Mol	ofauna & Macrofauna	
JR 0.0043 JR EPR JR 0.012 Recovery: Size Class (Active vent) Meiofauna 0.005 Macrofauna 0.021 Macrofauna Macrofauna Meiofauna 0.021 Macrofauna 0.02	JIR 0.0043 JFR EPR JFR 0.012 EPR Macrofauna JFR 0.012 EPR ecovery: Size Class (Active vent) All fauna 0.005 Macrofauna Macrofauna 0.005 Macrofauna 0.005 Macrofauna 0.005 Macrofauna 0.005 Macrofauna 0.005<			
JR Melofauna JR PR JR 0.012 FR Recovery: Size Class (Active vent) All fauna 0.005 Macrofauna 0.005 Macrofauna Cecovery: Size Class (Vent per/phery) All fauna Meiofauna 0.021 Macrofauna Veiofauna 0.021 Meiofauna 0.021 Macrofauna 0.021	JR Melofauna JR PR Macrofauna EPR JR 0.012 EPR ecovery: Size Class (Active vent) All fauna 0.005 Macrofauna 0.005 Macrofauna 0.001 Macrofauna 0.001 Macrofauna Macrofauna 0.001 Macrofauna Macrofauna 0.001 Macrofauna	JUL	0.0043	
IFR EPR JFR Macrofauna JFR 0.012 EPR Recovery: Size Class (Active vent) All fauna 0.005 Macrofauna 0.001 Macrofauna 0.002 Macrofauna	JR FR JR I O.012 EPR ecovery: Size Class (Active vent) All fauna Aeiofauna 0.005 Macrofauna 1 0.005 Macrofauna 1 0.005 Macrofauna 1 0.005 Macrofauna 1<		Melofauna	
JFR Macrofauna JFR 0.012 Recovery: Size Class (Active vent) All fauna Meiofauna 0.005 Macrofauna 0.021 Macrofauna 0.021 Macrofauna 0.021 Macrofauna	JR Macrofauna JR 0.012 EPR ecovery: Size Class (Active vent) All fauna Macrofauna 0.005 Macrofauna 0.005 Macrofauna 0.005 Macrofauna 0.005 Macrofauna 0.005 Macrofauna 0.005 Macrofauna ecovery: Size Class (Vent periphery) All fauna Macrofauna Macrofauna 0.021 Macrofauna Macrofauna 0.021 Macrofauna Macrofauna 0.021 Macrofauna Macrofauna 0.021 Macrofauna Macrofauna<	IFR	FPR	
JFR Macrofauna JFR 0.012 Recovery: Size Class (Active vent) All fauna Meiofauna 0.005 Macrofauna 0.001 Macrofauna 0.0021 Macrofauna <td< td=""><td>JR Macrofauna JR 0.012 ecovery: Size Class (Active vent) All fauna 0.005 Macrofauna 0.001 Macrofauna <td></td><td></td><td></td></td></td<>	JR Macrofauna JR 0.012 ecovery: Size Class (Active vent) All fauna 0.005 Macrofauna 0.001 Macrofauna <td></td> <td></td> <td></td>			
JFR 0.012 EPR Recovery: Size Class (Active vent) All fauna 0.005 Macrofauna Recovery: Size Class (Vent periphery) All fauna Meiofauna 0.021 Macrofauna Legend diversity data density diversity data density diversity data monot significant mot significant mot dat available	JFR 0.012 EPR ecovery: Size Class (Active vent) All fauna 0.005 Macrofauna 0.005 Macrofauna ecovery: Size Class (Vent periphery) All fauna Macrofauna Macrofauna Macrofauna Macrofauna Macrofauna Macrofauna Macrofauna Macrofauna Macrofauna Macrofauna Macrofauna Macrofauna Macrofauna		Macrofauna	
Recovery: Size Class (Active vent) All fauna Meiofauna 0.005 Macrofauna 0.005 Macrofauna 0.001 All fauna 0.0021 Macrofauna Macrofauna	ecovery: Size Class (Active vent) All fauna Aeiofauna a.0.005 Macrofauna ecovery: Size Class (Vent periphery) All fauna Aeiofauna Aeiofauna Aeiofauna Aeiofauna Aeiofauna Macrofauna Macrofauna Macrofauna Macrofauna Macrofauna Macrofauna Macrofauna Macrofauna Macrofauna Macrofauna Macrofauna Macrofauna Macrofauna	JFR	EPR	
Recovery: Size Class (Active vent) Meiofauna 0.005 Nacrofauna 0.005 Recovery: Size Class (Vent per/phery) All fauna 0.021 Meiofauna 0.021 Macrofauna 0.021 Macrofauna 0.021 Meiofauna 0.021 Macrofauna 0.021	ecovery: Size Class (Active vent) All fauna 0.005 Macrofauna ecovery: Size Class (Vent per/phery) All fauna Meiofauna 0.021 Macrofauna Macrofauna Mersity diversity data fensity density data in one larger than the other not significant in odata available		-0.012	
Recovery: Size Class (Active vent) Meiofauna 0.005 Macrofauna 0.005 Macrofauna 0.005 All fauna Meiofauna 0.021 Macrofauna Meiofauna 0.021 Macrofauna Meiofauna 0.021 Macrofauna 0.021 Macrofauna	ecovery: Size Class (Active vent) All fauna 0.005 Macrofauna 0.005 All fauna 0.001 All fauna 0.0021 Macrofauna 0.0021 Macrofauna 0.0021 Macrofauna 0.0021 Macrofauna			
All fauna Meiofauna 0.005 Recovery: Size Class (Vent periphery): All fauna Meiofauna 0.021 Macrofauna Macrofauna Macrofauna Macrofauna Meiofauna diversity diversity data density density data density data one larger than the other not significant no data available	All fauna All fauna 0.005 Macrofauna Recovery: Size Class (Vent per/phery): All fauna All fauna All fauna All fauna diversity ata diversity data density data density data density data density data one larger than the other not significant not significant no data available	Recovery: S	size Class (Active vent)	
Meiofauna 0.005 Macrofauna Recovery: Size Class (Vent periphery) All fauna 0.021 Macrofauna Macrofauna 1 diversity diversity data density density data one larger than the other not significant po data available	Ali fauna 0.005 Ali fauna 0.021 Macrofauna 0.021 Macrofauna 0.021 Macrofauna 0.021 Macrofauna		All fauna	
0.005 Recovery: Size Class (Vent periphery) All fauna Meiofauna Macrofauna Legend diversity diversity data density density data one larger than the other not significant po data available	0.005 ecovery: Size Class (Vent periphery) All fauna 10.021 Macrofauna Macrofauna Legend diversity diversity data density density data one larger than the other not significant no data available	Meiofauna	Macrofauna	
Recovery: Size Class (Vent periphery) All fauna Meiofauna 0.021 Macrofauna Macrofauna diversity diversity data density density data one larger than the other not significant po data available	ecovery: Size Class (Vent periphery) All fauna Neiofauna Macrofauna Macrofauna Legend diversity data density data density data one larger than the other not significant no data available		0.005	
Recovery: Size Class (Vent per/phery) All fauna Meiofauna 0.021 Macrofauna Macrofauna Legend diversity diversity data density density data one larger than the other not significant po data available	ecovery: Size Class (Vent periphery) All fauna All fauna 0.021 Macrofauna All fauna 0.021 Macrofauna All fauna Macrofauna All fauna Macrofauna Macrofauna			
All fauna Meiofauna Legend diversity diversity data density density data one larger than the other not significant po data available	All fauna Meiofauna D.021 Macrofauna Legend diversity data density density data one larger than the other not significant no data available	Recovery: S	Size Class (Vent periphery)	
Meiofauna Legend diversity diversity data density density data one larger than the other not significant pp data available	Meiofauna Meiofauna Macrofauna Legend diversity diversity data density density data one larger than the other not significant no data available		All fauna	
Legend Macrotauna diversity diversity data density density data one larger than the other not significant pp data available	Legend diversity diversity density density data one larger than the other not significant no data available	A destant and a destant	0.021	
Legend diversity diversity data density density data one larger than the other not significant pp data available	Legend diversity data density data density data one larger than the other not significant no data available	Meiorauna	Macrotauna	
Legend diversity diversity data density density data one larger than the other not significant pp data available	Legend diversity diversity data density density data one larger than the other not significant no data available			
diversity diversity data density density data one larger than the other not significant pp data available	diversity diversity data density density data one larger than the other not significant no data available	Legend		
density density data density density data one larger than the other not significant po data available	density density data density density data one larger than the other not significant no data available	all same the	discoutly, data	
density density data one larger than the other not significant po data available	density density data one larger than the other not significant no data available	urversity	uversity data	
not significant	one larger than the other not significant no data available	density	density data	
not significant	not significant no data available		one larger than the other	
po data available	no data available		not significant	
The second or remaind the			no data available	

610

Figure 6. Results of Wilcoxon rank sum tests for differences in mean recovery (%) relative to
pre-disturbance diversity and density between meio- and macrofauna at active vents at the
East Pacific Rise (EPR) and at the Juan de Fuca (JFR), and in the vent periphery (at EPR).
P-values are given for significant differences.

615

616 At the EPR and at the Juan de Fuca vents community succession patterns following major 617 disturbance events were attributed to species responses to changes in hydrothermal vent 618 fluid composition. Typically, vent fluid emissions were high following eruptions but declined 619 within few years. However, biological interactions and larval dispersal and recruitment also 620 played important roles in succession processes [26, 54, 138, 141, 143-145]. Interestingly, 621 post-eruption species (e.g. the limpet Ctenopelta porifera) originating from remote areas 622 invaded disturbed and undisturbed vent sites in the region [138]. As a consequence, large 623 scale mining may also indirectly influence community composition at neighboring non-mined 624 vent sites. Meiofauna succession at the EPR was consistent with dispersal potential. Species 625 with pelagic dispersal demonstrated rapid recovery (e.g. dirivultid copepods) [26, 146], 626 whereas species lacking pelagic dispersal stages (e.g. nematodes) demonstrated slow and 627 poor recovery [54]. Species that were highly abundant in the region and inhabited more than

one habitat pre-eruption (e.g. diverse vent-sites and the vent periphery) were typically more resilient and returned quickly after the eruption at the EPR [26]. Populations in the vent periphery and at sites where venting recently ceased, as well as at more distant exposed basalt areas, may represent potential source population locations for vent meiofauna recovery [26, 54]. Current observations of vent succession at 9[°]N on the EPR thus suggest complex recovery dynamics in metacommunities, with species differing in their ability to disperse and with successful colonizers outcompeting poor competitors.

635 There has not yet been a volcanic eruption documented on slow-spreading ridges, 636 resulting in an absence of empirical data. Long-term studies at the Logatechev site (MAR) 637 showed no major successional stages, but a decline in vesicomyid clams (probably due to a 638 land slide) and an increase in bathymodiolin mussels, gastropods, and shrimps occurred 639 over a 10 year period [147]. At Lucky Strike (MAR), a 14-year study revealed stable mussel 640 coverage [35]. Overall, the relatively low background disturbance regimes on slow-spreading 641 ridges suggest that recovery after natural and/or anthropogenic disturbances might be slower 642 than at fast-spreading ridges, but this remains conjecture. As with vents on fast-spreading 643 ridges, connectivity and colonization potential will also be essential for recovery processes at 644 slow-spreading ridges.

645 Colonization potential, and therefore recovery potential after disturbance events 646 (either natural or anthropogenic), can be described in the framework of population 647 connectivity [49, 148-152]. Genetic analyses have been performed on various vent meio-, 648 macro-, and megafaunal species (e.g. crustaceans, bivalves, gastropods, polychaetes) in 649 distinct geographical settings (e.g. on the MAR, the EPR, Eastern Lau Spreading Centre, 650 Kermadec back-arc basin and CIR) [153, 154]. Results suggest that gene flow and migration 651 capability between subpopulations is potentially high at both fast- and slow-spreading ridges 652 [48, 146, 155, 156]. A general pattern of high intrapopulation genetic diversity and expansive 653 population growth has emerged among various species from different vent sites [156-158]. 654 However, vent organisms studied genetically are typically highly abundant and have pelagic 655 dispersal. No study has yet analyzed patterns of genetic connectivity for vent species that 656 are less abundant and/or lack pelagic dispersal.

657 Underlying mechanisms of high connectivity (migration capability) across the studied 658 active vent species are not fully understood. Data on life history (i.e. reproduction, larval 659 behaviour, juvenile settlement cues) are currently scarce. Life history traits likely play an 660 important role, since they can allow long-term planktonic larval duration and/or rapid 661 population growth, and connectivity between invertebrate populations is often maintained by passive larval drift. However, passive larval drift is influenced by abiotic characteristics such 662 663 as plume height, or ocean currents [159]. The rate of exchange of individuals between vent 664 fields is likely also influenced by vent field frequency and distance between individual vent

sites since typically vent-restricted fauna need to migrate between isolated vent fields to
 ensure survival. Thus, exchange rates may be higher at closer proximity fast-spreading vent
 sites compared to more distantly spaced slow-spreading vent sites.

668 To conclude, recovery after natural volcanic eruptions at active hydrothermal vents at 669 fast-spreading centres is highly variable but can be relatively rapid. Vent communities at fast-670 spreading centres experience frequent volcanic eruptions (at the studied EPR location every 671 ~15 years [160]) and seem to be resilient and adapted to such natural disturbance events. 672 Abundance and biomass values reach pre-disturbance values within a few years. However, 673 very high variability is typically observed, pre- and post-eruption. Diversity values partly reach 674 pre-disturbance values within only a few years, but community composition often remains 675 different, following a sequence of faunal succession. Faunal responses differ among taxa 676 and life history traits. The drivers of vent community resilience are diverse and include 677 availability and composition of hydrothermal fluids as well as biotic controls such as species 678 specific factors of dispersal and connectivity and biotic interactions of competition and 679 predation.

680 However, recovery data were only available for two regions in the East-Pacific that 681 experience frequent volcanic eruptions. Distinct biogeographic faunal patterns, distinct vent 682 site distance and natural background disturbance regimes make it currently impossible to 683 predict recovery rates following volcanic eruptions in other regions, and especially at slow-684 spreading centres. Further, volcanic eruptions pave over areas which contrasts with the 685 scraping and excavating disturbances that will be imposed by mining machines. Eruptions 686 also do not lead to extensive sediment plumes, as are expected with mining. To what extent 687 changes in substratum surface area and generation of (potentially toxic) sediment plumes 688 may delay or may prevent recovery of vent communities (i.e. disruption of larval dispersal, 689 mortality of larvae, and success of larval settlement) is currently unknown.

690

691 *Inactive vents*

692 There is currently no data available for recovery at inactive vent sites. Megafauna typically 693 found at inactive vents includes sponges and cnidarians, such as corals [50-53]. Little is 694 known about the age, growth rates, biogeography, or connectivity patterns of inactive vent 695 megafauna. In general, such taxa are considered rather slow-growing and long-lived 696 (hundreds to thousands years) with slow recovery rates [77]. It is yet unclear whether 697 assemblages that thrive at inactive vents are overall partly similar to active vent fauna, are 698 similar to those inhabiting hard-substrate fauna on non-mineral rich grounds, or are unique 699 [17]. A recent study comparing megafaua from active and inactive chimneys off New Zealand 700 found that deposits support unique megafauna assemblages but that species partly overlap 701 [53]. Similarly, a study of a young inactive vent site and active vent sites at the EPR revealed

that these environments share some nematode species [54]. The finding of shared species at inactive and active vents suggests that they may provide potential source populations for each other after disturbance events [54]. Consequently, active and inactive sites in each region have to be studied to understand potential recovery after mining disturbance at active and/or inactive vents. Thus it has been suggested that both active and inactive features need to be included within a framework establishing protected areas to mitigate mining impacts at hydrothermal vents [154].

709

710 Vent periphery

711 Faunal recovery on basalt in the vent periphery has been studied once, following volcanic 712 eruption disturbances on the 9N EPR in 2006 [26]. One year post-eruption meio- and 713 macrofauna abundances were similar to pre-eruption abundances, but showed very high 714 variation [26]. Mean recovery of meio- and macrofaua abundances were >100% after one 715 year (Figure 7). Abundances varied highly with 21 ± 28 macrofauna and 113 ± 147 meiofauna ind. per 64 cm² before the eruption, and with 566 \pm 685 macro- and 1623 \pm 2599 meiofauna 716 717 ind. per 64 cm² four years after eruption (Figure 8; Appendix A). Wilcoxon rank tests revealed 718 no significant differences between meio- and macrofauna density recovery rates (Figure 6), 719 and there was no significant increase in percent recovery throughout the years.

720 Total regional macrofauna richness, primarily comprised of juvenile individuals of 721 typical vent species, had recovered to mean 64% of pre-disturbance levels four years after a 722 volcanic eruption (Figure 7). Meiofauna diversity recovered more slowly than macrofauna 723 diversity (p = 0.021). Total regional meiofauna richness reached only 28% of pre-eruption 724 values after four years [26]. Many meiofauna species, which were rare prior to the eruption, 725 had not returned. Thus, whilst mean richness recovery was 111% for the macrofauna, mean 726 richness recovery was only 48% for meiofauna after four years. Rare pre-eruption species at 727 individual sites were replaced by common species from the regional species pool. Other 728 diversity measures showed comparable responses. Meiofauna community composition in the 729 vent periphery changed significantly with time (e.g. dominant species one, two, and four 730 years after disturbance were the copepod Tisbe sp. nov. 1., the copepod Amphiascus sp. 1 731 (aff. Varians), and the ostracod Xylocythere vanharteni, respectively). Changes were similar 732 to the ones reported for active vent meiofauna and were related to meiofauna species 733 dispersal potential [26]. However, Wilcoxon tests showed that mean percent diversity 734 recovery remained similar in the vent periphery throughout the years (all p > 0.05), and 735 diversity did - in contrast to active vents - not increase with years, indicating slower recovery.

To conclude, recovery of meiofaunal vent peripheral communities is likely slower than communities at active vents. After four years, only 28% of meiofauna species of the predisturbance periphery species pool had returned to the EPR, whereas 42% of meiofauna

species of the pre-disturbance vent species pool had returned to the EPR at active vents after four years. In contrast, macrofauna recovery of the pre-disturbance species pool was similar at active vents and in vent peripheral communities. Macrofauna recovery of the predisturbance vent species pool at active vents varied between 75 % (Juan de Fuca, after 3 years), 69 % (EPR, after 4.6 years in 1996), and 42 % (EPR, after 4 years in 2009; not including new species), whereas macrofauna recovery of the pre-disturbance species pool in the vent periphery was 64%.

The discovery of a juvenile subset of typical vent species in the vent periphery suggests the interconnection of vent periphery and active vent communities. Little is known about connectivity and dispersal rates in typical peripheral meiofauna species, but nematode species lack specific planktonic dispersal stages and demonstrate limited dispersal potential since they are rarely observed in the pelagic. In contrast, typical vent meiofauna species such as dirivultid copepods disperse via abundant nauplii and copepodites in the pelagic and are known for their high genetic connectivity [26, 158].

The study on vent periphery recovery investigated only areas close to active sites or recent inactive vent sites (some meters), but there is no information available on recovery potential of more distant vent peripheral communities. Also, there is no information available on recovery potential of vent peripheral communities from slow-spreading areas that are disturbed by volcanic eruptions less frequently.

- 758
- 759

Figure 7. Mean recovery (%) relative to pre-disturbance faunal density and diversity in the
vent periphery. Circles: mobile taxa. Triangle: sessile taxa. Square: mixed taxa (sessile and
mobile).

Figure 8. Absolute numbers and standard deviation of density and diversity values measured
pre-disturbance (indicated as P) and after disturbance (in years) for meiofauna and
macrofauna in the vent periphery. For data and metric see Appendix A. Circles: mobile taxa.
Triangle: sessile taxa. Square: mixed taxa (sessile and mobile).

.

779 3.2.2 Seamounts

781 Fisheries currently impose a severe impact on seamounts, with global catches estimated at 782 ~3 million tonnes per year [77, 161-164]. Unfished seamounts have been observed to 783 support double the overall benthic biomass and species richness than fished seamounts 784 [165]. In particular cold-water corals and other sessile filter feeders, which provide habitat to 785 many other benthic organisms [166-168], are extremely susceptible to bottom trawling [169, 786 170] because they grow extremely slowly (few µm to ~1mm per year) and are long-lived 787 (decades and centuries to millennia) [77, 171, 172]. Knowledge on the coral cover necessary 788 to sustain stony coral communities (and associated species) is scarce. However, most 789 seamounts with high trawling impact have coral cover reduced to below 30-50% of the coral 790 cover estimated as necessary to maintain habitat viability [170].

Knowledge on recovery rates following the cessation of bottom trawling are rare, and the uniqueness of seamounts hampers a direct comparison of communities across seamounts to determine recovery rates (e.g. fished vs. unfished) because biological seamount communities experience different environmental conditions and may respond differently to physical disturbance. Thus, only seamounts with similar environmental conditions and in close vicinity can be considered eligible for comparison [173-175].

797 Althaus et al. [173] observed that mean megafauna density recovered to 33%, and 798 mean coral density to only 6% 5-10 years after trawling ceased (Figure 9, Appendix A). 799 However, there were large differences in recovery among taxa, ranging from <5% to up to 800 1100% for anthozoan taxa. Watson and Morato [175] observed 23% recovery in fish 801 densities 15 years after fisheries collapsed and fishing ceased. Williams et al. 2010 [174] 802 distinguished between recovery on hard substratum (coral and rock) and on unconsolidated 803 substratum (sand, gravel rubble). Mean megafauna density recovery was 36% after 5 years 804 and 111% after 10 years on hard substratum, and 167% after 5 years and 143% after 10 805 years on unconsolidated substratum. Similar to Althaus et al. [173], Williams et al. [169] 806 identified large variations among taxa (17% to 800% after 5 years, and 13% to 2600% after 807 10 years on hard substratum; 27% to 2840% after 5 years, and 17% to 1100% after 10 years 808 on unconsolidated substratum; see Appendix A). Standard deviation within taxa was usually 809 not very high (Figure 10, Appendix A), but for many data points replicates were not available. 810 Wilcoxon rank tests revealed no significant differences between mean mobile and sessile 811 megafaunal density recovery (Figure 11). Density recovery was faster on seamounts off 812 Australia than on seamounts off New Zealand when considering only one study, but was 813 faster on seamounts off New Zealand than on seamounts off Australia when considering two 814 studies (Figure 11). There was no significant increase in mean percent recovery throughout 815 the investigated years (all p > 0.05).

816Althaus et al. [173] reported mean megafauna species richness recovery of 32% after8175-10 years (Appendix A). Williams et al. [174] presented megafauna recovery data using

Simpson's diversity index that ranged from 129% after 5 years to 198% after 10 years on hard substratum, and from 30% after 5 years to 774% after 10 years on unconsolidated substratum. Wilcoxon rank tests revealed no significant differences between mobile and sessile megafaunal diversity recovery. Mean diversity recovery was greater on seamounts off New Zealand than on seamounts off Australia (Figure 11). However, no significant increase in mean diversity percent recovery was observed throughout the years (all p > 0.05).

824 To summarize, data on community recovery following bottom trawling are sparse and 825 available only for fauna large enough to be detected using image analysis. Recovery 826 processes in seamount megafauna show large variations depending on taxa and indicate 827 significant changes in community composition following disturbance. A few individual taxa 828 were found in very high abundance after trawling which may have resulted from resistance to 829 trawling impact or from protection in natural refuges inaccessible to trawls. Alternatively, 830 these highly abundant taxa may represent the early stage of succession after trawling impact 831 [174]. Overall, recovery to original (pre-disturbance) species richness and community 832 composition following fisheries is likely rather slow and is predicted to take decades to 833 centuries since many seamount taxa, especially climax species, are long-lived with slow 834 growth and are potentially geographically isolated [77]. In addition, many species live in 835 association with thickets of a key stone coral (such as Solenosmilia variabilis) that have been 836 built over millennia [174]. Data on recovery rates of such associated meio- and macrofauna 837 after trawling do not exist to our knowledge, but resilience may be low where fauna can only 838 live in association with a distinct slow-growing keystone species. Our understanding of 839 ecosystem recovery on seamounts is highly fragmentary and requires further investigation.

Impact by trawling fisheries is likely less destructive than mining. A trawl net may bounce along the seabed to some degree, so that the more flexible corals and some occasional individuals may be missed and escape damage. In the case of mining, the entire rock surface will be scraped away so the chance of avoiding removal is much slimmer. In addition, the influence of (potentially toxic) sediment plumes on larval dispersal, survival and settlement success is unknown. Faunal recovery and resilience after mining disturbance is therefore likely to be slower than recovery after trawling.

- 851 Figure 9. Mean recovery (%) relative to pre-disturbance megafaunal density and diversity at
- 852 seamounts. For data see Appendix A. Aust: Australia. NZ: New Zealand.
- 853
- 854

Figure 10. Absolute numbers and standard deviation of density and diversity values measured pre-disturbance (indicated as P) and after disturbance (in years) for megafauna at seamounts. For data and metric see Appendix A.

863

Figure 11. Results of Wilcoxon rank sum tests for differences in mean recovery (%) relative
to pre-disturbance diversity and density for megafauna at seamounts. P-values are given for
significant differences.

867

868

869 3.2.3 Nodule fields

870

Since 1970, 11 small-scale disturbance experiments have been conducted to study the
potential effects of nodule mining on the benthos (reviewed by [23]). During these
experiments, disturbance gear was towed over the seafloor, removing or burying nodules.
These experiments were performed in three regions: the Clarion-Clipperton Fracture Zone
(CCZ), Peru Basin, and Central Indian Ocean Basin (CIOB) [23].

876

877 Peru Basin

878 During the German "DISturbance and reCOLonization experiment" (DISCOL), a polymetallic 879 nodule area in the Peru Basin was artificially disturbed in 1989, using a plough harrow to 880 simulate manganese nodule extraction. The impact by the plough created a ~11 km² patch-

881 mosaic of disturbed tracks and adjacent sites disturbed indirectly by the sediment plume 882 suspended.

883 DISCOL results showed that megafauna densities were still diminished 7 years after 884 disturbance, with minimal recovery [176]. Density recovery was on average only 9% for 885 sessile megafauna, and 49% for the mobile megafauna (see Appendix A). After 26 years, 886 megafauna densities demonstrated high variability in recovery rates among taxa, ranging 887 from only 11% in Anthozoa to 167% in Holothuridea, and major changes in community 888 composition persisting (unpublished data by Purser et al., Appendix A, Figure 12, Figure 13). 889 In contrast, macrofauna density in sediments recovered more quickly, reaching mean 890 recovery of 85% after 7 years [177]. Mean density recovery rates differed among macrofauna 891 taxa, with several taxa reaching ~100% pre-disturbance conditions (polychaetes, 892 tanaidaceans, isopods, scaphopods, echinoids), whilst others showed lower recovery 893 ranging from 15-47% (cumaceans, bivalves, gastropods, ophiuroids) [177, 178] (Appendix A, 894 Figure 12). After 26 years, mean meiofauna densities had recovered to 90% (unpublished 895 data by Mevenkamp, Egho & Vanreusel, Appendix A). However, high variation in densities 896 was observed, particularly in impacted sites. Wilcoxon tests revealed a significant increase in 897 mean percent density recovery from 0.003 years to 0.5 years (p = 0.05), 3 years (p = 0.04), 7 898 years (p = 0.04), and 26 years (p = 0.05). No increase was detected not from 0.5 years to 3, 899 7 and 26 years (all p > 0.05), from 3 years to 7 and 26 years (all p > 0.05), and fro, 7 to 26 900 years (p > 0.05).

Diversity was studied in less detail during DISCOL, but diversity recovery was on average only 16% for sessile megafauna, and 33% for the mobile megafauna after 7 years [176]. In contrast, mean polychaete diversity had recovered to greater extent of ~80-99% [177, 179] (Appendix A). Diversity recovery after 26 years is currently under investigation. Wilcoxon tests showed no significant increase of mean diversity with years (p > 0.05).

906

907 **CCZ**

Total mean meiofauna, nematode, copepod and foraminifera densities recovered to predisturbance values within two to three years in the CCZ [180-182] (IOM-BIE & JET experiments). Mean macrofauna densities recovered to 93% after one year, with recovery rates ranging from 48% (amphipods) to 108% (polychaetes) [183] (BIE). Mean mobile megafauna densities reached 290% of pre-disturbance values after three years [184] (IOM-BIE) (Appendix A, Figure 12).

914 26 years after the OMCO disturbance experiment, mean total meiofauna densities 915 had recovered to 105% (Appendix A), but taxa responded differently with density recovery 916 ranging from 50% (tantulocarids) to 552% (kinorhynchs) [185] (Appendix A). Nematode 917 abundances were significantly lower 26 years after the disturbance [186] with mean

918 recovery of 73% (Appendix A). The number of meiofauna genera was higher post-919 disturbance (70 genera) than pre-disturbance (50 genera) [185], but nematode diversity 920 remained significantly lower than pre-disturbance with diversity recovery only 81-94% after 921 26 years [186]. Further, nematode community composition remained significantly different 26 922 years after disturbance [186]. After 37 years, epifauna remained almost absent, indicating 923 that recovery of epifauna is very slow [100].

In the CCZ no clear trend of an increase of mean density percent recovery with increasing years past disturbance could be observed. Typically, percent recovery was similar among years past disturbance (p >0.05), with a few exceptions (mean density recovery greater after 0.08 years (p = 0.03), 2 years (p < 0.01), 3 years (p < 0.01) and 26 years (p = 0.03) compared to after 0.04 years; mean density recovery greater after 3 years than compared to after 0.08 years (p = 0.03) and 1 year (p, 0.01)).

930

931 Indian Ocean

Almost four years after the INDEX disturbance, mean total meio- and macrofauna infauna
densities had recovered to ~100%. Recovery differed among taxa, ranging from 27%
(harpacticoids) to 290% (gastrotricha) for meiofauna taxa [28, 187, 188] (Appendix A, Figure
12). Mean percent density recovery was significantly greater 3.8 years after disturbance than
0.08 years after disturbance (p = 0.05).

937

938 Analyses of recovery in the Peru Basin, CCZ, and Indian Ocean

939 Analysis of available density and diversity datasets from the Peru Basin (DISCOL), from the 940 CCZ (JET, IOM-BIE, OMCO, BIE), and from the Indian Ocean (INDEX) reveals that absolute 941 recovery and percent density and diversity recovery varied greatly within and among taxa 942 (Figure 12, 13, 14). However, there was a trend across all samples with small and mobile 943 species recovering faster than large and sessile species (Figure 15). Jones et al. [23] 944 observed the same trend. Due to lack of information owing to low taxonomic resolution in 945 some of the original publications, we could not separate our analysis into sediment infauna 946 and nodule epifauna. However, sessile species typically require hard substrate.

Mean density recovery was faster for mobile meiofauna than for macrofauna and megafauna. In contrast, there was no difference between mean meio- and macrofauna diversity recovery (Figure 15). However, both meiofauna and macrofauna diversity recovered more quickly than megafauna diversity (Figure 15).

Mobile megafauna diversity showed faster recovery than sessile megafauna diversity (Figure 13, 15). The response of megafauna may reflect differences in feeding guilds: mobile species are typically detritus feeders or scavengers (such as ophiuroids, holothurians, polychaetes) whereas sessile species are typically filter-feeding (such as poriferans,

955 anthozoans, cnidarians). Mobile and sessile macrofauna taxa showed similar percent 956 recovery in density (diversity data were not available). Some mobile taxa such as peracarids 957 that are assumed to have limited capacity for dispersal due to brooding reproductive mode, 958 show recovery similar to sessile macrofaunal taxa, suggesting a role for reproductive 959 strategy in recovery potential. Thus low population connectivity in deep-sea species such as 960 polychaetes or isopods [87] implies slow recovery potential after disturbance.

961 To summarize, disturbance experiments designed to mimic polymetallic nodule 962 mining on abyssal plains have provided first insight into recovery processes after small-scale 963 disturbance events on abyssal plains with nodules. Analysis of faunal densities indicates that 964 mobile and smaller organisms tend to have greater recovery potential, sometimes reaching 965 or exceeding pre-disturbance levels following disturbance. However, in some cases 966 meiofauna density had not recovered even 26 years after disturbance [186]. Fewer diversity 967 data were available, and the taxonomic resolution of analyses varied considerably among 968 studies from species to order level. Further, different diversity parameters were used (e.g. 969 number of taxa, Shannon's H, Pielou's J') in different studies. Nonetheless, diversity recovery 970 appears greater for mobile and small organisms, although there were exceptions (e.g. 971 nematode diversity had not recovered after 26 years [186]). In all cases, there was high 972 variance in recovery rates among taxa, preventing prediction of a general pattern of recovery 973 or a sequence of successional stages at nodule fields. Despite this, it is clear that large 974 sessile fauna have very slow recovery after disturbance.

975 Changes in species abundances following small-scale test mining may be linked to 976 multiple factors. Some taxa have exceeded pre-disturbance density values, and may 977 represent opportunistic species [189]. Others showed slow or no recovery. Understanding 978 connectivity may be a key parameter for predicting recovery after large-scale disturbances 979 [87]. Further, substratum availability is essential for the nodule epifauna. Without hard-980 substratum (nodules), nodule epifauna are unlikely to recover. The response of some fauna 981 may be further linked to biotic controls. Increases in faunal densities after disturbance at 982 DISCOL and in the CCZ may be related to enhanced food (phytodetritus) inputs [176-178, 983 182, 184, 190]. There is a clear need to assess natural community variance over time and 984 spatial scale in order to be able to understand impacts of disturbance.

The scale of disturbance experiments was rather small in all cases (several m² to a few km²) in comparison to the disturbance scale anticipated for nodule mining activities (>100 km²). Our analyses revealed for example that mean megafauna densities recovered quicker after a smaller-scale disturbance in the CCZ (single track) than after a larger scale disturbance (a few km²) at DISCOL. The underlying reasons for this observation may be diverse (different taxa and regions were observed), but scale of disturbance may have influenced recovery. Mining of large areas could disrupt faunal connectivity and thus prolong

or impede recovery. In addition, the effect of (potentially toxic) sediment plumes on e.g. larval dispersal and recruitment is unknown. Faunal resilience to and recovery from mining-disturbance is likely to be slower than recovery after small-scale disturbance experiments.

Figure 12. Mean recovery (%) relative to pre-disturbance faunal density and diversity at nodule fields. For data see Appendix A. CIO: Central Indian Ocean. CCZ:Clarion Clipperton Fracture Zone. DISCOL: "DISturbance and reCOLonization experiment" in Peru Basin.

Figure 13. Mean recovery (%) relative to pre-disturbance faunal density and diversity at
nodule fields. For data see Appendix A. Circles: mobile taxa. Triangle: sessile taxa. Square:
mixed taxa (sessile and mobile).

- 1009
- 1010

Figure 14. Absolute numbers and standard deviation of density and diversity values
measured pre-disturbance (indicated as P) and after disturbance (in years) for meio-, macrand megafaun at nodule fields. For data and metric see Appendix A. Circles: mobile taxa.
Triangle: sessile taxa. Square: mixed taxa (sessile and mobile). CIO: Central Indian Ocean.
CCZ:Clarion Clipperton Fracture Zone. DISCOL: "DISturbance and reCOLonization
experiment" in Peru Basin.

1020

1021

Figure 15. Results of Wilcoxon rank sum tests for differences in mean recovery (%) relative to pre-disturbance diversity and density between meio- and macrofauna at nodule fields according to region, size class and mobility. CIO: Central Indian Ocean. CCZ:Clarion Clipperton Fracture Zone. DISCOL: "DISturbance and reCOLonization experiment" in Peru Basin. P-values are given for significant differences.

1028 1029

1030 **3.3 Reversibility after mineral mining impacts**

1031 In the context of the United Nations Convention on the Law of the Sea (UNCLOS), the 1032 International Seabed Authority (ISA) must ensure effective protection of the marine 1033 environment on behalf of humankind. In the international legal context this includes that 1034 "serious harm" must be avoided during deep-sea mining. However, the definition of "serious 1035 harm" is challenging in deep ecosystems, where lack of knowledge is the rule rather than the 1036 exception [191]. Mineral mining will modify or remove substrata that organisms inhabit, and 1037 sediment plumes will affect areas beyond mining sites. A key question is whether similar 1038 species or functional groups will recover in modified environments, or if disturbed areas will 1039 shift to altered or depauperate states. Whether processes are reversible and whether the 1040 deep sea system can return to pre-disturbance condition requires investigation [8] [6].

1041 To date, large-scale commercial mineral mining has not taken place. Nonetheless, we 1042 need to understand and predict resilience of communities to these disturbances in order to 1043 be able to define "serious harm" and to propose successful mitigation actions. To estimate 1044 reversibility, it has to be considered that the nature and scale of mining disturbance will be 1045 different to the above described recovery scenarios. Volcanic eruptions pave over areas of 1046 seabed in a single locality. A trawl net may bounce a little along the seabed so that not all 1047 fauna are entirely removed. Experiments that mimic nodule mining typically did not remove 1048 nodules but buried them, and the disturbed area was considerably smaller than expected for 1049 future mining scenarios. The spatial (at most a few km²) and temporal (typically independent 1050 events) scales of disturbances were in significantly more limited than those proposed for any 1051 mining activities, which may range from 100's to 1000's km² per nodule mining operation per year [106], from 10's to 100's km² for crust mining [109], and some hectares per polymetallic 1052 1053 sulphide mining operation [103]. The scale of mining operations will result in habitat 1054 fragmentation which may affect reversibility. Large continuous nodule fields will be 1055 fragmented into a system of smaller-sized nodule fields. Naturally patchily distributed active 1056 and inactive hydrothermal vents and seamounts will be further fragmented by large-scale 1057 mining.

Direct mining impacts will include mortality and removal of fauna living on mined substrata in all targeted ecosystems. Removal of nodules will cause habitat loss for hard substrata fauna on a geological time scale because nodules reform at rates of mm per million year. At hydrothermal vents and seamounts mineral rich rocks will be removed, leaving mineral-poor rocks which prevents thriving of species exclusively relying on mineral rich crusts. At nodule fields, fauna living in the sediments may be killed by sediment compression. Sediments below and adjacent to nodules will be compacted by vehicle tracks,

which may result in long-term changes in sediment porewater geochemistry [122]. Potentially toxic sediment plumes may affect areas beyond the directly mined locality [18-20]. To estimate the reversibility of mineral mining impacts, geological timescale of habitat/mineral reformation as well as biological timescale and mode of community recovery need to be considered.

- 1070
- 1071

1072 **3.3.1** Hydrothermal vents and polymetallic sulphides

1073 Active vents

1074 Reversibility of mineral mining impacts at active vents will depend on the frequency and 1075 scale of sulphide mining operations. Assuming that vent fluids do not change dramatically 1076 and that connectivity of species in not disrupted, recovery of active vent communities at fast-1077 spreading centres may occur within decades. However, large-scale mining may substantially 1078 diminish species populations and could hinder recolonisation by disrupting connectivity of 1079 source populations [11, 49]. The loss of foundation species may hinder the settlement of 1080 associated fauna, and may indicate a tipping point where resilience capacity is exceeded and 1081 the system transitions to a new state. Alternative states at active vents may be dominated by 1082 bacterial mats instead of rich faunal communities.

1083 The loss of topographic features such as black smokers may change settlement 1084 behavior, and thus diversity of fauna [192]. Typically, active black smokers can reform within 1085 several months or years at fast-spreading centres [110], but consequences of large scale 1086 mining on local fluid composition are not know. Sulphide mining at hydrothermal vents may 1087 cause local modification of vent fluid regimes (i.e. flow rates, distribution, chemistry) by 1088 clogging vent fluid channels [11], with severe consequences for active vent communities 1089 which depend on fluid regimes. Low-diversity communities are typically associated with high 1090 temperature venting (i.e. around black smokers), whereas higher diversity is linked to low-1091 temperature venting [27, 32]. Further, symbiotic foundation species such as tubeworms, 1092 snails, or mussels only thrive in specific vent regimes [32]. Therefore, modification of vent-1093 fluid regimes could cause local habitat loss or change community composition at active 1094 hydrothermal vents, as well as at sites that are not directly affected by mining [193].

1095 Set-aside areas are suggested as part of environmental management strategies to 1096 mitigate mining effects. Such areas should preserve biodiversity that may be lost at a mine 1097 site and should support connectivity among populations of vent organisms within the region. 1098 Set-aside areas must be suitably connected by the transport of larvae to ensure exchange of 1099 genetic material among remaining populations [49]. Ideally, set-aside areas provide source 1100 populations for the recovery of the mined site [49].

1102 Inactive vents and vent periphery

1103 The scarce knowledge on species diversity, role of functional groups, species distribution, 1104 connectivity, and settlement behaviour makes it impossible to estimate reversibility potential 1105 at inactive vents and in vent peripheral areas following mining disturbances. Primary 1106 considerations include permanent modification of topography, and change of mineral 1107 composition. Removal of polymetallic sulphide substratum at inactive vents cannot be 1108 reversed due to lack active hydrothermal fluids [16]. Habitat homogeneity (smoothing), or 1109 habitat heterogeneity (roughening) may increase during collection of mineral resources [16, 1110 194]. Substratum will be altered from mineral-rich to mineral-poor rock at inactive vent sites. 1111 Yet it is not known to what extent, if at all, species will be able to settle and grow in such 1112 modified environments. That inactive vents and vent periphery areas harbour unique 1113 communities but also share several species with active vent areas [53, 54, 59] highlights the 1114 importance of including hydrothermally active and inactive areas within networks of protected 1115 areas [53].

1116

1117 **3.3.2 Seamounts**

Habitat structure on seamounts will be changed by removal of upper centimeters of crust, 1118 1119 and functional groups such as 100- or 1000-year old corals and their associated fauna will be 1120 removed, potentially resulting in slow (century-scale) recovery [77]. Loss of crusts may 1121 hinder colonization of substratum specific seamount species or prohibit recovery [50, 192, 1122 195]. Changes in topographic features may affect settlement behaviour [192] and thus 1123 diversity of fauna in the long term. Cumulative effects may be especially severe around 1124 seamounts. Many seamounts are subject to fisheries impacts, and shifting ocean 1125 temperatures, oxygenation, and acidification may adversely affect distant source populations 1126 and thus may hinder recovery [12].

1127 In addition, seamount faunas vary even at local (km) spatial scales [72, 73, 78]. 1128 Variation in community composition and diversity has been related to depth and seabed 1129 structure (e.g. relief, substrate type, presence of bio-constructors), as well as current regimes 1130 and distance to source populations, amongst others factors [50, 67, 73]. Connectivity among 1131 seamount populations reveals contrasting patterns among species. Some seamount species 1132 are distributed across large geographic distances (e.g. some corals [67, 196, 197]; fish [198]; 1133 harpacticoid copepods [199]), whereas other coral and fish species have much more 1134 restricted distributions [200-202]. Several studies highlight high uniqueness in seamount 1135 fauna [203], but these may simply reflect low sampling effort [67]. There is evidence that 1136 connectivity is directly linked to life history patterns [204]; many seamount fauna appear to 1137 have non-planktotrophic larvae implying restricted dispersal potential [67, 173, 205]. 1138 However, there is contrasting evidence that wide geographic distributions exist in putatively

poor dispersers [199, 206]. McClain et al. [207] revealed that more than 70% of species in the megafaunal assemblages on a North Pacific seamount were cosmopolitan. The inconsistency of these results may reflect the complex interplay of several ecological and evolutionary processes shaping seamount systems, or may be linked to the paucity of genetic studies on seamount species [206].

Biogeography and connectivity of fauna, as well as abiotic characteristics that influence seamount fauna composition need to be understood and considered in any mining mitigation concept. Recovery will be slow at seamounts and modifications made by mining may be too great to allow for return to pre-disturbance community composition and abundance. Spatial management employing a systematic method to identify Ecologically or Biologically Significant Areas (EBSA criteria) for protection may help to mitigate mining effects [208].

- 1151
- 1152

1153 **3.3.3 Nodule fields**

Removal of nodules will be associated with local loss of nodule-specific fauna. Fauna relying 1154 1155 on nodules as a hard substratum may remain absent until the substratum recovers, i.e. for 1156 millions of years. Species ranges and source/sink dynamics of the nodule-inhabiting fauna 1157 are unknown and it is unclear whether populations can survive in unaffected refugia. Any 1158 refugia should harbour similar nodule density as mined sites, since epifaunal densities and 1159 nodule coverage are linked. Nodule dense areas harbour more than two times higher 1160 epifaunal densities, and corals are essentially absent in nodule-free areas [100]. It is 1161 currently unknown whether species are endemic to nodules or whether adjacent seamount 1162 crusts host partly the same species as nodules. Future studies should explore whether 1163 adjacent seamounts host potential source populations capable of recolonising impacted 1164 habitats [209] or capable of maintaining connectivity among undisturbed areas. The potential 1165 responses of communities to mitigation and restoration actions, such as deployment of 1166 artifical nodules, are currently unknown.

1167 Sediment-dwelling fauna in mined nodule areas may also experience density decreases below a critical threshold. Sediments will be compacted by vehicle tracks, which 1168 1169 may result in changes in sediment porewater geochemistry. The organic-rich upper sediment 1170 layer, which is a food source for most sediment feeders, will be removed by the collector 1171 and/or re-suspended. The sediment that redeposits from the plume in the immediate vicinity 1172 of the collector may have an average composition of the topmost 10-25 cm of the sediment 1173 and thus will have an altered chemical composition relative to the pre-disturbance sediment 1174 [122]. Some long-term disturbance experiments reported that sediment-dwelling fauna had 1175 not recovered after almost 30 years, potentially because organisms were unable to penetrate

compacted sediments [186]. However, other studies demonstrated density recovery potential for some sediment fauna. Nonetheless, nodules grow in areas with low sedimentation rates (<20 mm per thousand years) [122] and it will therefore take at least several decades to millennia for sediment layers to recover. Despite this, it remains difficult to estimate whether sediment compaction and/or extraction of upper sediment layers will affect density and or diversity of sediment infauna over an extended timescale (decades to centuries), or whether recovery to the pre-disturbance state is possible.

1183

1184 **3.3.4 Areas adjacent to mining sites**

1185 Enhanced sedimentation caused by mining-generated sediment plumes in areas surrounding 1186 mining sites may harm suspension and deposit feeders, causing depletion of functional 1187 groups and shifts in community composition [210]. On abyssal plains, sedimentation will 1188 modify grain size composition, which can change community composition [211]. Potentially 1189 toxic plumes will impose additional stress on organisms and may eventually become lethal 1190 [136]. Decreasing effective population size, loss of subpopulations, and/or loss of populations 1191 in mined areas may hinder population exchange and diminish genetic diversity in areas 1192 surrounding mining sites [49]. Fauna may be able to resist these stressors partly or may be 1193 able to recover from stressors. However, it is not yet possible to estimate the effect of these 1194 cumulative effects, or predict whether they will result in irreversibility of changes, causing 1195 altered ecosystem states in areas surrounding mining.

1196

1197 **4. Conclusion**

1198 Resilience – the ability of a system to maintain structure and function, in the face of 1199 internal change and external disturbances – is a complex interplay of different processes, 1200 including the resistance of species and communities to alterations, their recovery potential 1201 following disturbance events, and the potential reversibility of ecosystem changes.

The capacity for populations of deep-sea species to stay essentially unchanged despite stress and disturbances (resistance *sensu* [111]) associated with deep-sea mining remains uncertain. Our review on resistance revealed that species may be to some level resistant to (potentially toxic) mining plumes or electromagnetic radiation, but current knowledge is insufficient to predict the extent of resistance.

We performed meta-analyses on post-disturbance population density and diversity mean percent recovery, after disturbances most similar to mining: volcanic eruptions at vents, fisheries on seamounts, and experiments designed to mimic nodule mining on abyssal plains. Communities can recover to some extent after mining-related disturbance events since mean percent recovery density and diversity values are above cero (Figure 16). Mean recovery was highly variable in distinct ecosystems and among benthic taxa and variability

among samples was often very high. In addition, as stated by Jones et al. [23], many past
recovery studies have limitations that reduce their effectiveness in determining responses.
Our results can show some potential large scale trends, but current knowledge is far from
showing the complete picture.

At active vents, an increase in diversity percent recovery was observed with increasing time past disturbance. Communities at active hydrothermal vents at frequently naturally-disturbed fast-spreading ridges can recover after such punctual natural disturbance events and follow a sequence of succession, related to abiotic (e.g. hydrothermal fluid regime) and biotic (e.g. larval dispersal, predation, competition) factors. We lack data on recovery potential from communities along slow-spreading ridges with long volcanic eruption intervals, but suggest that fauna at those communities may recover (much) more slowly.

1224 Knowledge on recovery from communities at inactive vents is lacking. In the vent 1225 periphery no significant increase of diversity with increasing time past disturbance was 1226 detected. In general, recovery is expected to be slower compared to active vents since 1227 climax species typically have longer life times (decades to centuries) and a higher proportion 1228 of rare species is present at inactive vents and in the vent periphery.

Recovery of keystone species from seamounts is typically slow. Some species, that may have survived seamount fisheries trawling or that present the early stages of succession after disturbance were highly abundant after 5 to 10 years but other pre-disturbance keystone species such as century old stony corals showed very little sign of recovery. Metaanalyses revealed no significant increase of mean percent density or diversity recovery with increasing time past disturbance, pointing to overall slow recovery processes.

Similarly, sessile megafauna associated with nodules showed very slow recovery after disturbance, whilst small and mobile taxa recovered or exceeded pre-disturbance densities after a few years. Meta-analyses of mean percent recovery revealed that small animals typically recover faster than large animals, and that mobile animals typically recover faster than sessile species. These results are in accordance with Jones et al. [23]. Larger spatial scale impacts at DISCOL may have prolonged faunal recovery in comparison to smaller spatial scale impacts in the CCZ.

1242 There are no data available on reversibility after mining impacts, because large-scale 1243 mining has not yet been carried out. Nodule-mining is expected to have large-scale and long-1244 term impacts, particularly on the resident nodule-encrusting and crevice fauna, and abyssal 1245 plains may shift to altered or depauperate states through removal of and change in substrata. 1246 Similarly, local modification of fluid sources at active vents may result in loss or change of 1247 chemosynthetic communities in exploited areas. Local extinction of keystone species, or loss 1248 of mineral-specific faunas, may cause long-term or even permanent shifts in community 1249 composition at vents and seamounts.

Figure 16. Mean recovery (%) relative to pre-disturbance faunal density and diversity at seamounts, active vents, vent periphery, and nodule fields. No recovery data were available for inactive vents. For data see Appendix A.

1256

1257 There are significant knowledge gaps with implications for understanding faunal 1258 recovery and resilience patterns following mining impacts (Table 1). Lack of knowledge 1259 concerns scales of mining operations, faunal recovery processes after large-scale 1260 disturbances, spatial and temporal influences on faunal community composition. Cumulative 1261 impacts may lead to unexpected ecosystem changes and need to be investigated [11]. 1262 Cumulative impacts refer to the interaction of several mining operations within a given area, 1263 but also to additional non-mining related natural and human impacts such as volcanic 1264 eruptions (vents), fishing (seamounts), and changes in physical and geochemical ocean 1265 parameters (e.g. temperature, pH, O₂). In addition, potential community responses to 1266 mitigation and restoration actions are currently unknown. Substantial community shifts, 1267 including the loss of species, may persist over geological timescales at directly mined sites 1268 due to habitat loss (mineral removal). Therefore, spatial environmental management to 1269 detect and establish set-asides, protected areas of similar seafloor habitat as to be mined 1270 areas, may be especially important to mitigate species loss and maintain regional biodiversity 1271 [212]. Future research needs to substantially increase baseline knowledge: effective 1272 environmental management of deep-sea mining is dependent on data identifying the extent 1273 of resistance to and capacity to recover from extractive activities in deep-sea benthic 1274 communities.

- 1275
- 1276

Table 1. Short summary of main knowledge gaps and problem that currently hinder a precise
prediction of resilience of benthic deep-sea fauna to mining activities, and potential solutions
to diminish knowledge gaps.

1281

1277

1282

1283 Acknowledgments

1284 The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under the MIDAS project, grant 1285 1286 agreement n° 603418. We thank S. Frickenhaus for helping to write the R script. AC is 1287 supported by Program Investigador (IF/00029/2014/CP1230/CT0002) from FCT. DC is 1288 supported the post-doctoral scholarship (SFRH/BPD/110278/2015) from FCT. MC and AS-V acknowledge the Spanish RTD project NUREIEV (ref. CTM2013-44598-R) funded by the 1289 1290 Ministry of Economy and Competitiveness, and grant 2014 SGR 1068 to CRG Marine 1291 Geosciences funded by Generalitat de Catalunya autonomous government. The research 1292 leading to these results also received funding from the European Union Horizon 2020 1293 research and innovation programme under grant agreement 689518 (MERCES). This study 1294 also had the support of Fundação para a Ciência e Tecnologia (FCT), through the strategic 1295 project UID/MAR/04292/2013 granted to MARE. The SO239 & SO242 cruises and 1296 accompanying work was funded by the German Ministry of Research (BMBF, grant no. 1297 03F0707A-G) through the project Mining Impact of the Joint Programming Initiative Healthy 1298 and Productive Seas and Oceans. We thank two anonymous reviewers for their very 1299 constructive comments and suggestions.

- 1300
- 1301
- 1302

1303 **7. References**

1304

1305	1.	Cumming, G.S., Olsson, P., Chapin, F.S., Holling, C.S., Resilience, experimentation,
1306		and scale mismatches in social-ecological landscapes. Landscape ecology, 2012.

- Holling, C.S., *Resilience and stability of ecological systems*. Annu. Rev. Ecol. Syst.,
 1973. 4: p. 1-23.
- 13093.Walker, B., Holling, C.S., Carpenter, S.R., Kinzig, A., Resilience, adaptability and1310transformability in social–ecological systems. Ecology and Society, 2004. 9(2): p.1311http://www.ecologyandsociety.org/vol9/iss2/art5/.

Levin, S.A., *Fragile Dominion: Complexity and the Commons Reading*, ed. Perseus.
 1999, Massachusetts: Perseus.

13145.Levin, S.A., Lubchenco, J., Resilience, Robustness, and Marine Ecosystem-based1315Management. BioScience, 2008. 58: p. 27-32.

1316	6.	Palumbi, S.R., McLeod, K.L., Gruenbaum, D., Ecosystems in Action: Lessons from
1317		Marine Ecology about Recovery, Resistance, and Reversibilty. BioScience, 2008.
1318		58 (1): p. 33-42.
1319	7.	Gunderson, L.H., Ecological resilience-in theory and application. Annual review of
1320		ecology and systematics, 2000(425-439).
1321	8.	Lotze, H.K., Coll, M., Magera, A.M., Ward-Paige, C., Airoldi, L., Recovery of marine
1322		animal populations and ecosystems. TREE, 2011. 26(11): p. 595-605.
1323	9.	Lees, K., Pitois, S., Scott, C., Frid, C., Mackinson, S., Characterizing regime shifts in
1324		the marine environment. Fish and fisheries, 2006. 7(2): p. 104-127.
1325	10.	Suding, K.N., Gross, K.L., Houseman, G.R., Alternative states and positive feedbacks
1326		in restoration ecology. Trends in Ecology & Evolution, 2004. 19(1): p. 46-53.
1327	11.	Van Dover, C.L., Impacts of anthropogenic disturbances at deep-sea hydrothermal
1328		vent ecosystems: A review. Marine Environmental Research, 2014. 102: p. 59-72.
1329	12.	Ramirez-Llodra, E., Tyler, P.A., Baker, M.C., Bergstad, O.A., Clark, M.R., Escobar,
1330		E., Levin, L.A., Menot, L., Rowden, A.A., Smith, C.R., Van Dover, C.L., Man and
1331		the Last Great Wilderness: Human Impact on the Deep Sea. Plos one, 2011. 6(7): p.
1332		e22588.
1333	13.	Oebius, H.U., Becker, H.J., Rolinski, S., Jankowski, J.A., Parametrization and
1334		evaluation of marine environmental impacts produced by deep-sea manganese nodule
1335		mining Deep Sea Research Part II: Topical Studies in Oceanography 2001. 48(17-
1336		18): p. 3453-3467.
1337	14.	Glover, A.G., Smith, C.R., The deep-sea floor ecosystem: current status and prospects
1338		of anthropogenic change by the year 2025. Environmental Conservation, 2003. 30 (3):
1339		p. 219-241.
1340	15.	Leduc, D., Rowden, A.A., Torres, L.G., Nodder, S.D., Pallentin, A., Distribution of
1341		macro-infaunal communities in phosphorite nodule deposits on Chatham Rise.
1342		Southwest Pacific: Implications for management of seabed mining. Deep Sea Research
1343		Part I. 2015. 99 : p. 105-118.
1344	16.	Boschen, R.E., Rowden, A.A., Clark, M.R., Gardner, J.P.A., <i>Mining of deep-sea</i>
1345		seafloor massive sulfides: A review of the deposits, their benthic communities, impacts
1346		from mining, regulatory frameworks and managment strategies. Ocean & Coastal
1347		Managment, 2013, 84 : p. 54-67.
1348	17.	Van Dover, C.L., Mining seafloor massive sulphides and biodiversity: what is at risk?
1349		Journal of Marine Science, 2011, 68(2) : p. 341-348.
1350	18.	SPC. Deep Sea Minerals: Sea-Floor Massive Sulphides, a physical, biological.
1351	10.	environmental and technical review ed E Baker Beaudoin Y Vol 1A 2013
1352		Secretariat of the Pacific Community
1353	19	SPC Deep Sea Minerals: Manganese Nodules a physical biological environmental
1354	17.	and technical review ed E Baker Beaudoin Y Vol 1B 2013: Secretariat of the
1355		Pacific Community
1356	20	SPC Deep Sea Minerals: Cobalt-rich ferromanganese crusts a physical biological
1357	20.	environmental and technical review ed E B Baker Y Vol 1C 2013: Secretariat of
1358		the Pacific Community
1359	21	Clark M Smith S Environmental Management Considerations in Deep Sea
1360	21.	Minerals: Manganese Nodules a physical biological environmental and technical
1361		review S o t P Community Editor 2013 p 27-41
1362	22	Hornik K R ISBN 3-900051-08-9 2009: n http://CRAN R-project.org/doc/FAO/R-
1363		FAO html
1364	23	Iones DOB Kaiser S Sweetman AK Smith C R Menot I. Vink A et al
1365	20.	Biological responses to disturbance from simulated deen-sea polymetallic nodule
1366		<i>mining</i> , PLoS ONE, 2017, 12 (2): p. e0171750.
		0 ····································

1367	24.	Correa, C.A., Mendoza, M.E., Etter, A., Pe´rez Salicrup, D.R., Habitat connectivity
1368		in biodiversity conservation: A review of recent studies and applications. Progress in
1369		Physical Geography 2016. 40 (1): p. 7-37.
1370	25.	Ólafsson, E., Do macrofauna structure meiofauna assemblages in marine soft-
1371		bottoms? Vie Milieu, 2003. 53(4): p. 249-265.
1372	26.	Gollner, S., Govenar, B., Martinez Arbizu, P., Mills, S., Le Bris, N., Weinbauer, M.,
1373		Shank, T.M., Bright, M., Differences in recovery between deep-sea hydrothermal vent
1374		and vent-proximate communities after a volcanic eruption. Deep-Sea Research I,
1375		2015. 106 : p. 167-182.
1376	27.	Gollner, S., Govenar, B., Fisher, C.R., Bright, M., Size matters at deep-sea
1377		hydrothermal vents: different diversity and habitat fidelity patterns of meio- and
1378		macrofauna. Marine Ecology Progress Series, 2015. 520: p. 57-66.
1379	28.	Ingole, B.S., Ansari, Z.A., Rathod, V., Rodrigues, N., Response of deep-sea
1380		macrobenthos to a small-scale environmental disturbance. Deep Sea Research Part II:
1381		Topical Studies in Oceanography, 2001, 48 (16); p. 3401-3410.
1382	29.	Wilcoxon, F., <i>Individual comparisons by ranking methods</i> , Biometrics Bulletin, 1945.
1383		1: p. 80-83.
1384	30.	Benjamini, Y., Hochberg, Y., Controlling the false discovery rate: a practical and
1385		powerful approach to multiple testing. Journal of the Royal Statistical Society Series
1386		B, 1995. 57 : p. 289-300.
1387	31.	Von Damm, K.L., Evolution of the hydrothermal system at East Pacific Rise 9°50'N:
1388		geochemical evidence for changes in the upper oceanic crust. American Geophysical
1389		Union, 2004. 10.1029 : p. 1-20.
1390	32.	Fisher, C.R., Takai, K., Le Bris, N., Hydrothermal vent ecosystems. Oceanography,
1391		2007. 20 (1): p. 14-23.
1392	33.	Von Damm, K.L., Controls on the chemistry and temporal variability of seafloor
1393		hydrothermal fluids, in Seafloor Hydrothermal Systems: Physical, Chemical,
1394		Biological and Geological Interactions, S.E. Humphris, Zierenberg, R.A.,
1395		Mullineaux, L.S., Thomson, R.E., Editor. 1995, American Geophysical Union:
1396		Washington, DC.
1397	34.	Klose, J., Polz, M.F., Wagner, M., Schimak, M.P., Gollner, S., Bright, M.,
1398		Endosymbionts escape dead hydrothermal vent tubeworms to enrich the free-living
1399		population. PNAS, 2015: p. 1-6.
1400	35.	Cuvelier, D., Sarrazin, J., Colaço, A., Copley, J., Glover, A., Tyler, P., Serrão Santos,
1401		R., Desbruyères, D., Community dynamics over 14 years at the Eiffel Tower
1402		hydrothermal edifice on the Mid-Atlantic Ridge. Limnology and Oceanography, 2011.
1403		56 : p. 1624-1640.
1404	36.	Van Dover, C.L., The ecology of hydrothermal vents. 2000, Princeton New Jersey:
1405		Princeton University Press. 424.
1406	37.	Childress, J.J., Fisher, C.R., The biology of hydrothermal vent animals: physiology,
1407		biochemistry and autotrophic symbiosis. Oceanogr. Mar. Biol. Annu. Rev., 1992. 30:
1408		p. 337-441.
1409	38.	Rinke, C., Lee, R.W., Pathways, activities an dthermal stability of anaerobic and
1410		aerobic enzymes in thermophilic vent paralvinellid worms. Marine Ecology Progress
1411		Series, 2009. 382 : p. 99-112.
1412	39.	Bates, A.E., Lee, R.W., Tunnicliffe, V., Lamare, M.D., Deep-sea hydrothermal vent
1413		animals seek cool fluids in a highly variable thermal environment. Nature
1414		Communications, 2010. 1 (14).
1415	40.	Grassle, J.F., Hydrothermal Vent Animals: Distribution and Biology. Science, 1985.
1416		229 (4715): p. 713-717.

1417 1418	41.	Moalic, Y., Desbruyeres, D., Duarte, C.M., Rozenfeld, A.F., Bachraty, C., Arnaud- Haond, S., <i>Biogeography revisted with network theory: retracting the history of</i>
1419		hydrothermal vent communities. Systematic Biology, 2012. 61(1): p. 127-137.
1420	42.	Tunnicliffe, V., The nature and origin of the modern hydrothermal vent fauna.
1421		PALAIOS, 1992. 7: p. 338-350.
1422	43.	Copley, J.T.P., Flint, H.C., Ferrero, T.J., Van Dover, C.L., Diversity of meiofauna and
1423		free-living nematodes in hydrothermal vent mussel beds on the northern and southern
1424		East Pacific Rise. Journal of the Marine Biological Association of the United
1425		Kingdom, 2007. 87(5) : p. 1141-1152.
1426	44.	Cuvelier, D., Beesau, J., Ivanenko, V.N., Zeppilli, D., Sarradin, P-M, Sarrazin, J, First
1427		insights into macro-and meiofaunal colonisation patterns on paired wood/slate
1428		substrata at Atlantic deep-sea hydrothermal vents. Deep-Sea Research I. 2014. 87: p.
1429		70-81 2014.
1430	45.	Plum, C., Pradillon, F., Fujiwara, Y., Sarrazin, J., Copepod colonization of organic
1431		and inorganic substrata at a deep-sea hydrothermal vent site on the Mid-Atlantic
1432		<i>Ridge</i> . Deep Sea Research II. 2017. 137: p.335-348.
1433	46.	Gollner, S., Riemer, B., Martinez Arbizu, P., Le Bris, N., Bright, M., Diversity of
1434	101	Meiofauna from the 9u50'N East Pacific Rise across a Gradient of Hydrothermal
1435		Fluid Emissions PLoS ONE 5(8): e12321, 2010
1436	47	Mullineaux L.S. Adams D.K. Mills S.W. Beaulieu S.E. Larvae from afar
1437	.,.	colonize deen-sea hydrothermal vents after a ctastrophic eruption PNAS 2010
1438		107(17) n 7829-7834
1439	48	Breusing C Johnson S B Tunnicliffe V Vrijenhoek B C Populations structure
1440	40.	and connectivity in Indo-Pacific deen-sea mussels of the Bathymodiolus
1441		sentendierum complex Conservation genetics 2015 16 : p. 1415-1430
1442	<u>4</u> 9	Boschen R.F. Collins P.C. Tunnicliffe V. Carlsson I. Gardner, I.P.A. Lowe I.
1///2	чу.	McCrone A Metayas A Sinniger F Swaddling A A primer for use of genetic
1443		tools in selecting and testing the suitability of set-aside sites protected from deen-sea
1445		seafloor massive sulfide mining activities Ocean & Coastal Management 2016 122:
1445		n 37-48
1440 1/1/7	50	P. 57-40. Boschen R.F. Rowden A.A. Clark M.R. Barton S. I. Pallentin A. Gardner, I.P.A.
1//8	50.	Magabathic assemblage structure on three New Zealand segmounts: implications
1//0		for seafloor massive sulfide mining. Marine Ecology Progress Series 2015 523: p. 1-
1449		1/
1450	51	14. Galkin S.V. Magafauna associated with hydrothermal vents in the Manus Back-Arc
1452	51.	Basin (Bismarck Sea) Marine Geology 1907 142: p 197-206
1452	52	Levin I A Baco A R Bowden D A Colaco A Cordes E E Cunha M R
1455	52.	Demonoulos A W I Gobin I Grune B M Le I Metavas A Nethurn A N
1454		Bouse GW Thurber A B Tunnicliffe V Van Dover C I Vanreusel A
1455		Watling I Hydrothermal Vents and Methane Seens: Rethinking the Sphere of
1450		Influence Front Mar Sci 2016: p. 3:72
1457	53	Reschen P.E. et al. Scaffoor massive sulfide denosite support unique magafaunal
1450	55.	Boschen, K.E., et al., Seafloor massive suijide deposits support unique megajuunai
1459		Environmental Desearch 2016 115: p. 78.88
1400	54	Colliner S. Miliutine M. Bright M. Nematode succession at deep see hydrothermal
1401	54.	Gonner, S., Winjutina, W., Birgin, W., Wematode succession at deep-sed hydroinermal
1402		Dives Evol 2012 13: p. 240 271
1403 1767	55	Dives Evul, 2013. 13. p. 349-3/1. Louin I. A. Mondozo, C. E. Konotshielt, T. Loo, D. Manushauthan and it
1404 1 <i>145</i>	<i>33</i> .	Levin, L.A., Mendoza, G.F., Konouchick, I., Lee, K., <i>Macrobenthos community</i>
140J 1466		situcture and trophic realitonships within active and inactive Pacific hydrothermal
1400		<i>seuments</i> . Deep-sea Research II, 2009. 30 . p. 1052-1048.

1467	56.	Tempera, F., Atchoi, E., Amorim, J. Gomes-Pereira, Gonçalves, J., Atlantic Area
1468		Marine Habitats. Adding new Macaronesian habitat types from the Azores to the
1469		EUNIS Habitat Classification., in MeshAtlantic, IMAR/DOP-UAc, T.R.N. 4/2013,
1470		Editor. 2013: Horta. p. 126pp.
1471	57.	Colaço, A., Desbruyères, D., Comtet, T., Allayse, AM., Ecology of the Menez Gwen
1472		hydrothermal field (Mid-Atlantic Ridge/Azores Triple Junction). Cahiers de Biologie
1473		Marine, 1998. 39 (3-4): p. 237-240.
1474	58.	Collins, P.C., Kennedy, R., Van Dover, C.L., A biological survey method applied to
1475		seafloor massive sulphides (SMS) with contagiously distributed hydrothermal-vent
1476		<i>fauna</i> , Marine Ecology Progress Series, 2012, 452 p. 89-107.
1477	59.	Sen, A., Kim, S., Miller, A. J., Hovey, K. J., 3, Hourdez, S., Luther, G.W., Fisher,
1478		C.R., Peripheral communities of the Eastern Lau Spreading Center and Valu Fa
1479		Ridge: community composition, temporal change and comparison to near-vent
1480		communities. Marine Ecology. 2016.
1481	60.	Marsh, L., Copley, J.T., Huvenne, V.A.L. Linse, K., Reid, W.D.K., Rogers, A.D., et
1482	001	al. Microdistribution of Faunal Assemblages at Deep-Sea Hydrothermal Vents in the
1483		Southern Ocean. PLoS ONE. 2012. 7(10): p. e48348.
1484	61.	Hein, J.R., Cobalt-rich ferromanganese crusts: global distribution, composition.
1485	011	origin and research activities. International Seabed Authority. Technical Study. 2.
1486		2002: p. 36-89.
1487	62.	Hein, J.R., Petersen, S., The Geology of Cobalt–rich Ferromanganese Crusts, in
1488		Deep Sea Minerals: Cobalt-rich Ferromanganese Crusts: A physical, biological,
1489		environmental, and technical review. E. Baker, Beaudoin, Y., Editor, 2013, Secretariat
1490		of the Pacific Communit. p. 7-14.
1491	63.	Kim, S.S., Wessel, P., New global seamount census from altimetry-derived gravity
1492		data Geophysical Journal International, 2011. 186: p. 615-631.
1493	64.	Harris, P.T., Macmillan-Lawler, M., Rupp, J., Baker, E.K., Geomorphology of the
1494		oceans. Marine Geology, 2014. 352: p. 4-24.
1495	65.	Yesson, C., Clark, M.R., Taylor, M., Rogers, A.D., The global distribution of
1496		seamounts based on 30-second bathymetry data. Deep Sea Research Part I, 2011.
1497		58 (4): p. 442-453.
1498	66.	Pitcher, T.J., Morato, T., Hart, P.J., Clark, M.R., Haggan, N., Santos, R.S., Seamounts:
1499		ecology, fisheries & conservation. John Wiley & Sons, 2007.
1500	67.	Clark, M.R., Rowden, A.A., Schlacher, T., Williams, A., Consalvey, M., Stocks, K.I.,
1501		Rogers, A.D., O'Hara, T.D., White, M., Shank, T.M., Hall-Spencer, J.M., The
1502		Ecology of Seamounts: Structure, Function, and Human Impacts. Annu. Rev. Marine.
1503		Sci., 2010. 2 : p. 253-278.
1504	68.	Genin, A., Dayton, P.K., Lonsdale, P.F., Spiess, F.N., Corals on seamount peaks
1505		provide evidence of current acceleration over deep-sea topography. Nature 1986. 322:
1506		p. 59-61.
1507	69.	Morato, T., Hoyle, S.D., Allain, V., Nicol, S.J., Seamounts are hotspots of pelagic
1508		biodiversity in the open ocean Proceedings of the National Academy of Sciences of
1509		the United States of America, 2010. 107: p. 9707-9711.
1510	70.	Rowden, A.A., Dower, J. F., Schlacher, T. A., Consalvey, M., Clark, M. R.,
1511		Paradigms in seamount ecology: fact, fiction and future Marine Ecology, 2010. 31:
1512		p. 226-241.
1513	71.	Clark, M., Kelley, C., Baco, A., Rowden, A Fauna of Cobalt-Rich Ferromanganese
1514		Crust Seamounts. Technical Study No. 8, ed. I.S. Authority. 2011.
1515	72.	O'Hara, T.D., Tittensor, D.P., , Environmental drivers of ophiuroid species richness
1516		on seamounts. Marine Ecology, 2010. 31(1): p. 26-38.

1517	73.	Schlacher, T.A., Baco, A.R., Rowden, A.A., O'Hara, T.D., Clark, M.R., Kelley, C.,
1518		Dower, J.F., Seamount benthos in a cobalt-rich crust region of the central Pacific:
1519		conservation challenges for future seabed mining. Diversity and distributions 2014.
1520		20 (5): p. 491-502.
1521	74.	Grigg, R.W., Malahoff, A., Chave, E.H., Landahl, J., Seamount benthic ecology and
1522		potential environmental impact from managese crust mining in Hawaii., in
1523		Seamounts, islands, and atolls, B.H. Keating, Fryer P., Batiza, R., Boehlert, G.W.,
1524		Editor, 1987: Geophysical Monograph, p. 379–390.
1525	75.	George, K.H., Faunistic research on metazoan meiofauna from seamounts - a review.
1526		Meiofauna Marina, 2013, 20 : p. 1-32.
1527	76.	Zeppilli, D., Bongiorni, L., Serrão Santos, R., Vanreusel, A., Changes in Nematode
1528	/ 01	Communities in Different Physiographic Sites of the Condor Seamount (North-East
1529		Atlantic Ocean) and Adjacent Sediments, PLoS ONE, 2014, 9(12): p. e115601
1530	77	Clark M R Althaus F Schlacher T Williams A Bowden D Rowden A A The
1530	,,,	impacts of deen-sea fisheries on henthic communities: a review ICES Journal of
1532		Marine Science 2016 73: n 51-69
1532	78	Clark M.R. Schlacher T.A. Rowden A.A. Stocks K.I. Consalvey M. Science
1534	70.	priorities for segmounts: Research links to conservation and management Plos One
1535		$7 \cdot a^{2} 2232$) Plos One 2012 7 · n e20232
1536	79	Morgan NB Cairns S Reiswig H Baco A R Renthic megafaunal community
1530	1).	structure of cobalt_rich manganese crusts on Necker Ridge Deen See Research Part I:
1538		Oceanographic Research Papers 2015 104: p. 92-105
1530	80	ISA A geological model of polymetallic podules in the Clarion Clipperton Fracture
1540	80.	Zon International Saabad Authority Tachnical Study No. 6 Kingston Jamaica 2010:
1540		2011. International Seabed Authority Technical Study No. 0. Kingston, Jamaica, 2010.
1541	Q 1	p. 75. Mawas K. Magallán I.M. Digard A. Bühlamann C. Kuhn T. Nöthan K. Kastan
1542	01.	S The impact of depositional and biogeochemical processes on small scale
1545		S., The impact of depositional and diogeochemical processes on small scale
1544		Pos 2014 101: p 125 141
1545	87	Nes, 2014. 171 . p. 125–141. Müller DI Hertmann M Succe E The chemical antironment of pologie
1540	02.	Mullel, F.J., Harmanni, M., Suess, E., The chemical environment of petagic
1547		Environment Nodula Formation and Mining Aspects D Holbook Friedrich G yon
1540		Stackelberg II. Editor 1088 Enke Verleg: Stuttgert p. 70.00
1550	02	Stackenberg, U., Euror. 1988, Einke Verlag. Stuttgart. p. 70-90.
1550	o <i>3</i> .	Kunn, T.A.C.p., Low-temperature fluta circulation at seamounts and hydrothermal
1551		pits: near flow regime, impact on biogeochemical processes and its potential influence
1552		on the occurrence and composition of manganese notaties in the NE Pacific. SO2407
1555	04	FLUM Cruise Report, BGR, Hannover. 2015: p. 185.
1554	84.	Aleynik, D., Inali, M., Dale, A., Vink, A., <i>Modelling Adyssal Currents Intensified by</i>
1555		Mesoscale Eddy in the Tropical Pacific with application to Plumes Generated by
1550	05	Deep Sea Mining. in prep.
1557	85.	Hein, J.K., Koschinsky, A., Deep-Ocean Ferromanganese Crust and Noaules., in
1558		Earth Systems and Environmental Sciences, Treatise on Geochemistry 2nd Edition, H.
1559	96	Holland, Turekian, K., Editor. 2013, Elsevier: Amsterdam. p. 273-291.
1560	86.	Ramirez-Llodra, E., Brandt, A., Danovaro, R., De Mol, B., Escobar, E., German, C.
1561		R., Levin, L. A., Martinez Arbizu, P., Menot, L., Buhl-Mortensen, P.,
1562		Narayanaswamy, B. E., Smith, C. R., Tittensor, D. P., Tyler, P. A., Vanreusel, A.,
1563		veccnione, M., Deep, diverse and definitely different: unique attributes of the world's
1564	07	largest ecosystem. Biogeosciences, 2010. 7: p. 2851-2899.
1565	87.	Janssen, A., Kaiser, S., Meißner, K., Brenke, N., Menot, L., Martinez Arbizu, P., A
1566		Reverse Laxonomic Approach to Assess Macrofaunal Distribution Patterns in Abyssal
1567		Pacific Polymetallic Nodule Fields. Plos one, 2015. 10(2): p. e0117790.

 Sheader, M., 2002. Polychaete species diversity in the central Pacific abyss: local and regional patterns, and relationships with productivity. Marine Ecology Progress Series, 2002. 240: p. 157-170. Wang, C.S., Liao, L., Xu, H. X., Xu, X. W., Xu, M., Zhu, I. Z., Bacterial Diversity in the Sediment from Polymetallic Nodule Fields of the Clarion-Clipperton Fracture Zone. Journal of Microbiology, 2010. 48: p. 573-585. Peterson, G., Allen, C.R., Holling, C.S., Ecological resilience, biodiversity, and scale. Ecosystems, 1998. J: p.6-18. Janssen, A., Kaiser, S., Meißner, K., Brenke, N., Menot, L., Martínez Arbizu, P. , A Reverse Taxonomic Approach to Assess Macrofaunal Distribution Patterns in Abyssal Pacific Polymetallic Nodule Fields. PLoS ONE 2015. 10(2): p. e0117790. Paterson, G.I.J., Menot, L., Colaço, A. Glover, A.G., Gollner, S., Kaiser, S., Gebruk, A.V., Janssen, A., Silva, M. C. A., Janssen, F., Sahling, H., Felden, J., Martinez, P.A., J. Biogeography and connectivity in deep-sea habitats with mineral resource potential-gap analysis. MIDAS Deliverable 4.2., 2015: p. 45. Miljutin, D.M., Gunnar, G., Miljutina, M., Mokievsky, V.O., Fonseca-Genevois, V., Esteves, A.M., The state of knowledge on deep-sea nematode taxonomy: how many valid species are known down there? Marine Biodiversity 2010. 40: p. 143-159. Miljutina, M.A., Mijutin, D.M., Mahatma, R., Galéron, J., Miljutina, M.A., Miljutin, D.M., Mahatma, R., Galéron, J., Chuman, J., Marine Biodiversity, 2010. 40(1): p. 1-15. Yeillette, J., Juniper, S.K., Gooday, A.J., Sarazin, J., Influence of surface texture and microhabitat heterogeneiry in structuring nodule faunal communities. Deep Sea Research 1993. 34: p. 419-423. Veillette, J., Sarazin, J., Gooday, A.J., Sarazin, J., Influence of surface texture and microhabitat heterogeneiry in structuring nodule faunal communities. Deep Sea Research 1994. Veillette, J., Sarazin, J., Gooday,	1568 1569	88.	Glover, A.G., Smith, C.R., Paterson, G.L.J., Wilson, G.D.F., Hawkins, L., Sheader, M., Glover, A.G., Smith, C.R., Paterson, G.L.J., Wilson, G.D.F., Hawkins, L. and
 regional patterns, and relationships with productivity. Marine Ecology Progress Series, 2002. 240: p. 157-170. Wang, c.S., Liao, L., Xu, H. X., Xu, X. W., Xu, M., Zhu, I. Z., Bacterial Diversity in the Sediment from Polymetallic Nodule Fields of the Clarion-Clipperton Fracture Zone. Journal of Microbiology. 2010. 48: p. 573-585. Peterson, G., Allen, C.R., Holling, C.S., Ecological resilience, biodiversity, and scale. Ecosystems, 1998. 1: p.6-18. Peterson, G., Allen, C.R., Holling, C.S., Ecological resilience, biodiversity, and scale. Ecosystems, 1998. 1: p.6-18. Janssen, A., Kaiser, S., Meither, K., Brenke, N., Menot, L., Martínez, Arbizu, P., A Reverse Taxonomic Approach to Assess Macrofannal Distribution Patterns in Abyssal Pacific Polymetallic Nodule Fields. PLoS ONE 2015. 10(2): p. 60117790. Paterson, G.L.J., Menot, L., Colaço, A. Glover, A.G., Gollner, S., Kaiser, S., Gebruk, A.V., Janssen, A., Silva, M. C. A., Janssen, F., Sahling, H., Felden, J., Martinez, P.A., Biogeography and connectivity in deep-sea habitats with mineral resource potential- gap analysis. MIDAS Deliverable 4.2., 2015: p. 45. Miljutin, D.M., Gunnar, G., Miljutina, M., Mokievsky, V.O., Fonseca-Genevois, V., Hily and species are known down there? Marine Biodiversity 2010. 40: p. 143–159. Miljutina, M.A., Miljutin, D.M., Mahatma, R., Galéron, J., Miljutina, M.A., Miljutin, D.M., Mahama, R. and Galéron, J., 2010. Deep-sea nematode assemblages of the Clarion-Clipperton Nodule Province (Tropical North-Eastern Pacific). Marine Biodiversity, 2010. 40(1): p. 1-15. Thiel, H., Schriever, G., Bussau, C., Borowski, C., Manganese nodule crevice fauna. Deep-Sea Research, 1993. 34: p. 419-423. Veillette, J., Juniper, S.K., Gooday, A. J., Sartzin, J., Lafluence of surface texture and microhabitat heterogeneity in structuring nodule faunal communities. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p.	1570		Sheader, M., 2002. Polychaete species diversity in the central Pacific abyss: local and
 Series, 2002. 240: p. 157-170. Series, 2002. 240: p. 157-170. Wang, c.S., Liao, L., Xu, H. X., Xu, X. W., Xu, M., Zhu, I. Z., Bacterial Diversity in the Sediment from Polymetallic Nodule Fields of the Clarion-Clipperton Fracture Zone. Journal of Microbiology. 2010. 48: p. 573-585. Peterson, G., Allen, C.R., Holling, C.S., Ecological resilience, biodiversity, and scale. Ecosystems, 1998. 1: p. 6-18. Janssen, A., Kaiser, S., Meißner, K., Brenke, N., Menot, L., Martínez Arbizu, P. A Reverse Taxonomic Approach to Assess Macrofaunal Distribution Patterns in Abyssal Pacific Polymetallic Nodule Fields, PLoS ONE 2015. 10(2): p. 60117790. Paterson, G.J.J., Menot, L., Colaço, A. Glover, A.G., Gollner, S., Kaiser, S., Gebruk, A.V., Janssen, A., Saliva, M. C. A., Janssen, F., Sahling, H., Felden, J., Martinez, P.A., Biogeography and connectivity in deep-sea habitats with mineral resource potential-gap analysis. MIDAS Deliverable 4.2., 2015: p. 45. Miljutin, D.M., Gunnar, G., Miljutina, M., Mokievsky, V.O., Fonseca-Genevois, V., Esteves, A.M., The state of knowledge on deep-sea nematode taxonomy: how many valid species are known down there? Marine Biodiversity 2010. 40: p. 143-159. Miljutin, M.A., Miljutin, D.M., Maharma, R., Galéron, J., Miljutina, M.A., Miljutin, D.M., Maharma, R., Galéron, J., 2010. Deep-sea nematode assemblages of the Clarion-Clipperton Nodule Province (Tropical North-Eastern Pacific). Marine Biodiversity, 2010. 40(1): p. 1-15. Thiel, H., Schriever, G., Bussau, C., Borowski, C., Manganese nodule crevice fauna. Deep-Sea Research, 1993. 34: p. 419-423. Veillette, J., Juniper, S.K., Gooday, A.J., Sarrazin, J., Influence of surface texture and microhabitat heterogeneity in structuring nodule faunal communities. Deep Sea Research 1997. Veillette, J., Sarrazin, J., Gooday, A.J., Galéron, J., Caprais, J. C., Vangriesheim, A., et al., Juniper, S.K., Grentomaganese nodule faunal in th	1571		regional patterns, and relationships with productivity. Marine Ecology Progress
 89. Wang, C.S., Liao, L., Xu, H. X., Xu, X. W., Xu, M., Zhu, I. Z., Bacterial Diversity in the Sediment from Polymetallic Nodule Fields of the Clarion-Clipperton Fracture Zone. Journal of Microbiology, 2010. 48: p. 573-585. 90. Peterson, G., Allen, C.R., Holling, C.S., Ecological resilience, biodiversity, and scale. Ecosystems, 1998. 1: p.6-18. 11. Janssen, A., Kaiser, S., Meißner, K., Brenke, N., Menot, L., Martínez Arbizu, P., A <i>Reverse Taxonomic Approach to Assess Macrofaunal Distribution Patterns in Abyssal</i> <i>Pacific Polymetallic Nodule Fields</i>. PLoS ONE 2015. 10(2): p. 60117790. 12. Paterson, G.J.J., Menot, L., Colaço, A., Glover, A.G., Gollner, S., Kaiser, S., Gebruk, A.V., Janssen, A., Silva, M. C. A., Janssen, F., Sahling, H., Felden, J., Martinez, P.A., <i>Biogeography and connectivity in deep-sea habitats with mineral resource potential- gap analysis</i>. MIDAS Deliverable 4.2, 2015: p. 45. 93. Miljutin, D.M., Gunnar, G., Miljutina, M., Mokievsky, V.O., Fonseca-Genevois, V., Esteves, A.M., <i>The state of knowledge on deep-sea nematode taxonomy: how many valid species are known down there? Marine Biodiversity 2010.</i> 40: p. 143–159. 94. Miljutina, M.A., Miljutin, D.M., Mahatma, R., Galéron, J., <i>Miljutina, M.A., Miljutin, D.M., Mahatma, R. and Galéron, J., 2010. Deep-sea nematode assemblages of the Clarion-Clipperton Nodule Province (Tropical North-Eastern Pacific). Marine Biodiversity, 2010. 40(1): p. 1-15.</i> 95. Thiel, H., Schriever, G., Bussau, C., Borowski, C., Manganese nodule crevice fauna. Deep-Sea Research, 1993. 34: p. 419-423. 96. Veillette, J., Juniper, S.K., Gooday, A.J., Sarrazin, J., Influence of surface texture and microhabita htercogeneity in structuring nodule faunal communities. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1936-1943. 97. Veillette, J., Sarrazin, J., Gooday, A.J., Galéron, J., Caprais, J. C., Vangriesheinn, A., et al., Juniper, S.K.,	1572		Series. 2002. 240 : n. 157-170.
 the Sediment from Polymetallic Nodule Fields of the Clarion-Clipperton Fracture Zone. Journal of Microbiology, 2010. 48: p. 573-585. Peterson, G., Allen, C. R., Holling, C.S., Ecological resilience, biodiversity, and scale. Ecosystems, 1998. 1: p. 6-18. Janssen, A., Kaiser, S., Meißner, K., Brenke, N., Menot, L., Martínez, Arbizu, P., A Reverse Taxononic Approach to Assess Macrofaunal Distribution Patterns in Abyssal Pacific Polymetallic Nodule Fields. PLoS ONE 2015. 10(2): p. e0117790. Paterson, G.L.J., Menot, L., Colaço, A. Glover, A.G., Gollner, S., Kaiser, S., Gebruk, A. V., Janssen, A., Silva, M. C. A., Janssen, F., Sahling, H., Felden, J., Martínez, P.A., Biogeography and connectivity in deep-sea habitats with mineral resource potential- gap analysis. MIDAS Deliverable 4.2., 2015: p. 45. Miljutin, D.M., Gunnar, G., Miljutina, M., Mokievsky, V.O., Fonseca-Genevois, V., Esteves, A.M., The state of knowledge on deep-sea nematode taxonomy: how many valid species are known down there? Marine Biodiversity 2010. 40: p. 143-159. Miljutina, M.A., Miljutin, D.M., Mahatma, R., Galéron, J., Miljutina, M.A., Miljutin, D.M., Mahatma, R. and Galéron, J., 2010. Deep-sea nematode assemblages of the Claroin-Clipperton Nodule Province (Tropical North-Eastern Pacific). Marine Biodiversity, 2010. 40(1): p. 1-15. Thiel, H., Schriever, G., Bussau, C., Borowski, C., Manganese nodule crevice fauna. Deep-Sea Research, 1993. 34; p. 419-423. Veillette, J., Juniper, S.K., Gooday, A.J., Sarrazin, J., Influence of surface texture and microhabitat heterogeneity in structuring nodule fauna in the Tropical North Pacific Ocean: Species richness, faunal cover and spatial distribution. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1936-1943. Veillette, J., Sarrazin, J., Gooday, A.J., Galéron, J., Caprais, J. C., Vangriesheim, A., et al., Juniper, S. K., Ferromanganese nodule fauna in the Tropical No	1573	89	Wang c S. Liao L. Xu H X. Xu X W. Xu M. Zhu 1 Z. <i>Bacterial Diversity in</i>
 Zore, Journal of Microbiology, 2010. 48: p. 573-585. Peterson, G., Allen, C.R., Holling, C.S., Ecological resilience, biodiversity, and scale. Ecosystems, 1998. 1: p6-18. Janssen, A., Kaiser, S., Meißner, K., Brenke, N., Menot, L., Martínez Arbizu, P. , A Reverse Taxonomic Approach to Assess Macrofaunal Distribution Patterns in Abyssal Pacific Pohymetallic Nodule Fields, PLoS ONE 2015. 10(2): p. e0117790. Paterson, G.L.J., Menot, L., Colaço, A. Glover, A.G., Gollner, S., Kaiser, S., Gebruk, A.V., Janssen, A., Silva, M. C. A., Janssen, F., Sahling, H., Felden, J., Martinez, P.A., Biogeography and connectivity in deep-sea habitats with mineral resource potential-gap analysis. MIDAS Deliverable 4.2., 2015; p. 45. Miljutin, D.M., Gunnar, G., Miljutina, M., Mokievsky, V.O., Fonseca-Genevois, V., Esteves, A.M., The stue of knowledge on deep-sea nematode taxonomy: how many valid species are known down there? Marine Biodiversity 2010. 40; p. 143–159. Miljutina, M.A., Miljutin, D.M., Mahatma, R., Galéron, J., Miljutin, M.A., Miljutin, D.M., Mahatma, R. and Galéron, J., 2010. Deep-sea nematode assemblages of the Clarion-Clipperton Nodule Province (Tropical North-Eastern Pacific). Marine Biodiversity, 2010. 40(1): p. 1-15. Thiel, H., Schriever, G., Bussau, C., Borowski, C., Manganese nodule crevice fauna. Deep-Sea Research, 1993. 34: p. 419-423. Veillette, J., Juniper, S.K., Gooday, A.J., Sarrazin, J., Influence of surface texture and microhabitat heterogeneity in structuring nodule faunal communities. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1936-1943. Veillette, J., Juniper, S.K., Ferromanganese nodule fauna in the Topical North Pacific Oceam: Species richness, faunal cover and spatial distribution. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1936-1943. Wullineaux, L.S., Organisms living on manganese nodules and crusts: distributi	1574	07.	the Sediment from Polymetallic Nodule Fields of the Clarion-Clipperton Fracture
 Peterson, G., Allen, C.R., Holling, C.S., <i>Ecological resilience, biodiversity, and scale</i>. Ecosystems, 1998. 1: p.6-18. Janssen, A., Kaiser, S., Meißner, K., Brenke, N., Menot, L., Martínez Arbizu, P., <i>A</i> <i>Reverse Taxonomic Approach to Assess Macrofaunal Distribution Patterns in Abyssal</i> <i>Pacific Polymetallic Nodule Fields</i>. PLoS ONE 2015. 10(2): p. e0117790. Paterson, G., J.J., Menot, L., Colaço, A. Glover, A.G., Gollner, S., Kaiser, S., Gebruk, A.V., Janssen, A., Silva, M. C. A., Janssen, F., Sahling, H., Felden, J., Martinez, P.A., <i>Biogeography and connectivity in deep-sea habitats with mineral resource potential- gap analysis</i>. MIDAS Deliverable 4.2., 2015; p. 45. Miljutin, D.M., Gunnar, G., Miljutina, M., Mckievsky, V.O., Fonseca-Genevois, V., Esteves, A.M., <i>The state of knowledge on deep-sea nematode taxonomy: how many</i> <i>valid species are known down there?</i> Marine Biodiversity 2010. 40: p. 143–159. Miljutina, M.A., Miljutin, D.M., Mahatma, R., Galéron, J., <i>Miljutina, M.A., Miljutin,</i> <i>D.M., Mahatma, R. and Galéron, J., 2010. Deep-sea nematode assemblages of the</i> <i>Clarion-Clipperton Nodule Province (Tropical North-Eastern Pacific).</i> Marine Biodiversity, 2010. 40(1): p. 1-15. Thiel, H., Schriever, G., Bussau, C., Borowski, C., <i>Manganese nodule crevice fauna</i>. Deep-Sea Research, 1993. 34: p. 419-423. Veillette, J., Juniper, S.K., Gooday, A.J., Sarrazin, J., <i>Influence of surface texture and</i> <i>microhabitat heterogeneity in structuring nodule faunal communities</i>. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1936-1943. Veillette, J., Sarrazin, J., Gooday, A.J., Galéron, J., Caprais, J.C., Vangriesheim, A., et al., Juniper, S. K., <i>Ferromanganese nodule fauna in the Tropical North Pacific</i> <i>Oceam: Species richness, faunal cover and spatial distribution</i>. Deep Sea Research Part I: Oceanographic Research Papers, 2015. 54(11): p. 1936-1943. Veillette, J., Sarrazin,	1575		Zone Journal of Microbiology 2010 48: p 573-585
 Forman, 1998. 1: p. 6-18. Janssen, A., Kaiser, S., Meißner, K., Brenke, N., Menot, L., Martinez Arbizu, P., A Reverse Taxonomic Approach to Assess Macrofaunal Distribution Patterns in Abyssal Pacific Polymetallic Nodule Fields. PLoS ONE 2015. 10(2): p. 60117790. Paterson, G.L.J., Menot, L., Colaço, A. Glover, A.G., Gollner, S., Kaiser, S., Gebruk, A.V., Janssen, A., Silva, M. C. A., Janssen, F., Sahling, H., Felden, J., Martinez, P.A., Biogeography and connectivity in deep-sea habitats with mineral resource potential- gap analysis. MIDAS Deliverable 4.2., 2015: p. 45. Miljutin, D.M., Gunnar, G., Miljutina, M., Mokievsky, V.O., Fonseca-Genevois, V., Esteves, A.M., <i>The state of knowledge on deep-sea nematode taxonomy: how many valid species are known down there?</i> Marine Biodiversity 2010. 40: p. 143–159. Miljutina, M.A., Miljutin, D.M., Mahatma, R., Galéron, J., <i>Miljutina, M.A., Miljutin, D.M., Mahatma, R. and Galéron, J., 2010. Deep-sea nematode assemblages of the Clarion-Clipperton Nodule Province (Tropical North-Eastern Pacific). Marine Biodiversity, 2010. 40(1): p. 1-15.</i> Thiel, H., Schriever, G., Bussau, C., Borowski, C., Manganese nodule crevice fauna. Deep-Sea Research, 1993. 34: p. 419-423. Veillette, J., Juniper, S. K., Gooday, A. J., Garazin, J., Influence of surface texture and microhabitat heterogeneity in structuring nodule faunal communities. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1936-1943. Veillette, J., Sarazin, J., Gooday, A. J., Galéron, J., Cayrais, J. C., Vangriesheim, A., et al., Juniper, S. K., <i>Ferromanganese nodule faunal in the Tropical North Pacific Ocean: Species richness, faunal cover and spatial distribution.</i> Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1936-1943. Mullineaux, L.S., <i>Organisms living on manganese nodules and crusts: distribution and abundance at three North Pacific sites.</i> deep-Sea Resear	1576	90	Peterson G Allen C R Holling C S <i>Ecological resilience biodiversity and scale</i>
 Janssen, A., Kaiser, S., Meißner, K., Brenke, N., Menot, L., Martínez Arbizu, P., A <i>Reverse Taxonomic Approach to Assess Macrofaunal Distribution Patterns in Abyssal</i> <i>Pacific Polymetallic Nodule Fields</i>. PLoS ONE 2015. 10(2): p. e0117790. Paterson, G.L.J., Menot, L., Colaço, A. Glover, A.G., Gollner, S., Kaiser, S., Gebruk, A.V., Janssen, A., Silva, M. C. A., Janssen, F., Sahling, H., Felden, J., Martinez, P.A., <i>Biogeography and connectivity in deep-sea habitats with mineral resource potential- gap analysis</i>. MIDAS Deliverable 4.2., 2015: p. 45. Miljutin, D.M., Gunnar, G., Miljutina, M., Mokievsky, V.O., Fonseca-Genevois, V., Esteves, A.M., <i>The state of knowledge on deep-sea nematode assemblages of the</i> <i>Clarion Clipperton Nodule Province (Tropical North-Eastern Pacific)</i>. Marine Biodiversity 2010. 40(1): p. 1-15. Miljutina, M.A., Miljutin, D.M., Mahatma, R., Galéron, J., <i>Miljutina, M.A., Miljutin,</i> <i>D.M., Mahatma, R. and Galéron, J., 2010. Deep-sea nematode assemblages of the</i> <i>Clarion-Clipperton Nodule Province (Tropical North-Eastern Pacific)</i>. Marine Biodiversity, 2010. 40(1): p. 1-15. Thiel, H., Schriever, G., Bussau, C., Borowski, C., <i>Manganese nodule crevice fauna</i>. Deep-Sea Research, 1993. 34: p. 419-423. Veillette, J., Juniper, S.K., Gooday, A.J., Sarrazin, J., <i>Influence of surface texture and</i> <i>microhabitai heterogeneity in structuring nodule faunal communities</i>. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1936-1943. Veillette, J., Sarrazin, J., Gooday, A.J., Galéron, J., Caprais, J. C., Vangriesheim, A., et al., Juniper, S. K., <i>Ferromanganese nodule faunal communities</i>. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1912-1935. Mullineaux, L.S., <i>Organisms living on manganese nodules and crusts: distribution</i> <i>and abundance at three North Pacific sites</i>. deep-Sea Research, 1987. 34(2): p. 165- 184. Gooday, A.	1577	20.	Fcosystems 1998 1. n 6-18
 Reverse Taxononic Approach to Assess Macrofaunal Distribution Patterns in Abysad Pacific Polymetallic Nodule Fields, PLoS ONE 2015. 10(2): p. 60117790. Paterson, G.L.J., Menot, L., Colaço, A. Glover, A.G., Gollner, S., Kaiser, S., Gebruk, A.V., Janssen, A., Silva, M. C. A., Janssen, F., Sahling, H., Felden, J., Martinez, P.A., Biogeography and connectivity in deep-sea habitats with mineral resource potential- gap analysis. MIDAS Deliverable 4.2., 2015; p. 45. Miljutin, D.M., Gumar, G., Miljutina, M., Mokievsky, V.O., Fonseca-Genevois, V., Esteves, A.M., The state of knowledge on deep-sea nematode taxonomy: how many valid species are known down there? Marine Biodiversity 2010. 40: p. 143–159. Miljutin, D.M., Gumar, G., Miljutina, M., Mokievsky, V.O., Hiljutin, M.A., Miljutin, D.M., Mahatma, R. and Galéron, J., 2010. Deep-sea nematode assemblages of the Clarion-Clipperton Nodule Province (Tropical North-Eastern Pacific). Marine Biodiversity, 2010. 40(1): p. 1-15. Thiel, H., Schriever, G., Bussau, C., Borowski, C., Manganese nodule crevice fauna. Deep-Sea Research, 1993. 34: p. 419-423. Veillette, J., Juniper, S.K., Gooday, A.J., Sarrazin, J., Influence of surface texture and microhabita heterogeneity in structuring nodule faunal communities. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1936-1943. Veillette, J., Sarrazin, J., Gooday, A. J., Galéron, J., Caprais, J. C., Vangriesheim, A., et al., Juniper, S. K., Ferromanganese nodule fauna in the Tropical North Pacific Ocean: Species richness, faunal cover and spatial distribution. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1912-1935. Mullineaux, L.S., Organisms living on manganese nodules and crusts: distribution and abundance at three North Pacific sites. deep-Sea Research, 1987. 34(2): p. 165- 184. Gooday, A. J., Goineau, A. and Voltski, I., Abyssal foraminifera attached to polymetallic no	1578	91	Janssen A Kaiser S Meißner K Brenke N Menot I. Martínez Arhizu P A
 Pactific Polymetallic Nodule Fields. PLoS ONE 2015. 10(2): p. e0117790. Paterson, G.L.J., Menot, L., Colaço, A. Glover, A.G., Gollner, S., Kaiser, S., Gebruk, A.V., Janssen, A., Silva, M. C. A., Janssen, F., Sahling, H., Felden, J., Martinez, P.A., <i>Biogeography and connectivity in deep-sea habitats with mineral resource potential- gap analysis.</i> MIDAS Deliverable 4.2., 2015: p. 45. Miljutin, D.M., Gunnar, G., Miljutina, M., Mokievsky, V.O., Fonseca-Genevois, V., Esteves, A.M., <i>The state of knowledge on deep-sea nematode taxonomy: how many valid species are known down there?</i> Marine Biodiversity 2010. 40: p. 143–159. Miljutina, M.A., Miljutin, D.M., Mahatma, R., Galéron, J., <i>Miljutina, M.A., Miljutin, D.M., Mahatma, R. and Galéron, J., 2010. Deep-sea nematode assemblages of the Clarion-Clipperton Nodule Province (Tropical North-Eastern Pacific). Marine Biodiversity, 2010. 40(1): p. 1-15.</i> Thiel, H., Schriever, G., Bussau, C., Borowski, C., <i>Manganese nodule crevice fauna</i>. Deep-Sea Research, 1993. 34: p. 419-423. Veillette, J., Juniper, S.K., Gooday, A.J., Sarrazin, J., <i>Influence of surface texture and microhabitat heterogeneity in structuring nodule faunal communities</i>. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1936-1943. Veillette, J., Serrazin, J., Gooday, A.J., Galéron, J., Caprais, J. C., Vangriesheim, A., et al., Juniper, S. K., <i>Ferromanganese nodule faunal contrustics: distribution and abundance at three North Pacific sites</i>. deep-Sea Research, 1987. 34(2): p. 165- 184. Mullineaux, L.S., <i>Organisms living on manganese nodules and crusts: distribution and abundance at three North Pacific sites</i>. deep-Sea Research, 1987. 34(2): p. 165- 184. Uougolinsky, B.K., Margolis, S.V., Duley, W.C., <i>Biogenic influence on growth of manganese nodules</i>. J Sediment Petrol 1977. 47: p. 428-445. Mullineaux, L.S., <i>Organisms living on manganese nodules and crust</i>	1579	<i>)</i> 1.	Reverse Taxonomic Approach to Assess Macrofaunal Distribution Patterns in Abyssal
 Paterson, G.L.J., Menot, L., Colaço, A. Glover, A.G., Gollner, S., Kaiser, S., Gebruk, A.V., Janssen, A., Silva, M. C. A., Janssen, F., Sahling, H., Felden, J., Martinez, P.A., <i>Biogeography and connectivity in deep-sea habitats with mineral resource potential- gap analysis.</i> MIDAS Deliverable 4.2., 2015: p. 45. Miljutin, D.M., Gunnar, G., Miljutina, M., Mokievsky, V.O., Fonseca-Genevois, V., Esteves, A.M., <i>The state of knowledge on deep-sea nematode taxonomy: how many valid species are known down there?</i> Marine Biodiversity 2010. 40: p. 143–159. Miljutina, M.A., Miljutin, D.M., Mahatma, R., Galéron, J., <i>Miljutina, M.A., Miljutin, D.M., Mahatma, R. and Galéron, J., 2010. Deep-sea nematode assemblages of the Clarion-Clipperton Nodule Province (Tropical North-Eastern Pacific). Marine Biodiversity, 2010. 40(1): p. 1-15.</i> Thiel, H., Schriever, G., Bussau, C., Borowski, C., <i>Manganese nodule crevice fauna.</i> Deep-Sea Research, 1993. 34: p. 419-423, Veillette, J., Juniper, S.K., Gooday, A.J., Sarrazin, J., <i>Influence of surface texture and microhabitat heterogeneity in structuring nodule faunal communities.</i> Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1936-1943. Veillette, J., Sarrazin, J., Gooday, A.J., Galéron, J., Caprais, J. C., Vangriesheim, A., et al., Juniper, S.K., <i>Ferromanganese nodule faunal tornasis. distribution and abundance at three North Pacific sites.</i> deep-Sea Research, 1987. 34(2): p. 165- 184. Buogolinsky, B.K., Margolis, S.V., Dudley, W.C., <i>Biogenic influence on growth of manganese nodules.</i>, J Sediment Petrol 1977. 47: p. 428-445. Gooday, A.J., Goineau, A. and Voltski, I., <i>Abyssal foraminifer attached to polymetallic nodules from the eastern Clarion Clipperton Fracture Zone: a preliminary description and comparison with North Atlantic dropstone assemblages Marine Biodiversity, 2015. 45(3): p. 391-412.</i> Wandow, A.J., Goineau, A. and Voltski, I., <i>A</i>	1580		Pacific Polymetallic Nodule Fields PL oS ONE 2015 10(2): n e0117790
 Yakison, G.B.S., Mikov, M. C. K., Janssen, F., Sahling, H., Felden, J., Martinez, P.A., Biogeography and connectivity in deep-sea habitats with mineral resource potential- gap analysis. MIDAS Deliverable 4.2., 2015; p. 45. Miljutin, D.M., Gunnar, G., Miljutina, M., Mokievsky, V.O., Fonseca-Genevois, V., Esteves, A.M., <i>The state of knowledge on deep-sea nematode taxonomy: how many</i> valid species are known down there? Marine Biodiversity 2010. 40; p. 143–159. Miljutina, M.A., Miljutin, D.M., Mahatma, R., Galéron, J., <i>Miljutina, M.A., Miljutin, D.M., Mahatma, R. and Galéron, J., 2010. Deep-sea nematode assemblages of the</i> <i>Clarion-Clipperton Nodule Province (Tropical North-Eastern Pacific).</i> Marine Biodiversity, 2010. 40(1): p. 1-15. Thiel, H., Schriever, G., Bussau, C., Borowski, C., Manganese nodule crevice fauna. Deep-Sea Research, 1993. 34: p. 419-423. Veillette, J., Juniper, S.K., Gooday, A.J., Sarrazin, J.,, <i>Influence of surface texture and</i> microhabitat heterogeneity in structuring nodule faunal communities. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1936-1943. Veillette, J., Sarrazin, J., Gooday, A.J., Galéron, J., Caprais, J. C., Vangriesheim, A., et al., Juniper, S. K., <i>Ferromanganese nodule fauna in the Tropical North Pacific</i> <i>Ocean: Species richness, faunal cover and spatial distribution.</i> Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1921-1935. Mullineaux, L.S., <i>Organisms living on manganese nodules and crusts: distribution</i> <i>and abundance at three North Pacific sites.</i> deep-Sea Research, 1987. 34(2): p. 165- 184. Uvancusel, A., Hilario, A., Ribeiro, P.A., Menot, L. and Arbizu, P.M., <i>Threatened by</i> <i>mining, polymetallic nodules are required to preserve abyssal epifauna.</i> Scientific reports, 2016. 6: p. p.26808. Goday, A.J., Goineau, A. and Voltski, I., <i>Abyssal foraminifera attached to</i> <i>polymetallic nodules from the east</i>	1581	92	Paterson GLI Menot I Colaco A Glover A G Gollner S Kaiser S Gebruk
 Biogeography and evan, Pit C. P., Subsch, P., Maining, H., Pidanser, J., Maining, M., Mainer, J. P., Mainsch, P., Stark, S. Biogeography and evan, Pit C. P., Subsch, P. & & Subsch, P. & S	1582)2.	ΔV Janssen Δ Silva M C Δ Janssen E Sabling H Felden I Martinez P Δ
 Bogeography and competitivity meters set meters set and set in the resource potential- gap analysis. MIDAS Deliverable 4.2., 2015; p. 45. 93. Miljutin, D.M., Gunnar, G., Miljutina. M., Mokievsky, V.O., Fonseca-Genevois, V., Esteves, A.M., The state of knowledge on deep-sea nematode taxonomy: how many valid species are known down there? Marine Biodiversity 2010. 40: p. 143–159. 94. Miljutina, M.A., Miljutin, D.M., Mahatma, R., Galéron, J., <i>Miljutina, M.A., Miljutin, D.M., Mahatma, R. and Galéron, J., 2010. Deep-sea nematode assemblages of the Clarion-Clipperton Nodule Province (Tropical North-Eastern Pacific).</i> Marine Biodiversity, 2010. 40(1): p. 1-15. 95. Thiel, H., Schriever, G., Bussau, C., Borowski, C., Manganese nodule crevice fauna. Deep-Sea Research, 1993. 34: p. 419-423. 96. Veillette, J., Juniper, S.K., Gooday, A.J., Sarrazin, J., Influence of surface texture and microhabitat heterogeneity in structuring nodule faunal communities. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1936-1943. 97. Veillette, J., Sarrazin, J., Gooday, A. J., Galéron, J., Caprais, J. C., Vangriesheim, A., et al., Juniper, S. K. , Ferromanganese nodule fauna in the Tropical North Pacific Ocean: Species richness, faunal cover and spatial distribution. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1912-1935. 180 98. Mullineaux, L.S., Organisms living on manganese nodules and crusts: distribution and abundance at three North Pacific sites. deep-Sea Research, 1987. 34(2): p. 165- 184. 100. Vanreusel, A., Hilario, A., Ribeiro, P.A., Menot, L. and Arbizu, P.M., Threatened by mining, polymetallic nodules are required to preserve abysal epifauna Scientific reports, 2016. 6: p. p.26808. 101. Gooday, A.J., Goineau, A. and Voltski, I., Abyssal foraminifera attached to polymetallic nodules from the eastern Clarion Clipperton Fracture Zone: a prelimitary description and comparison with North At	1583		Riogeography and connectivity in deen see habitats with mineral resource notential
 gap analysis, MiD/K Schweizer, K. (1997), 42. gap analysis, MiD/K Schweizer, K. (1997), 42. gap analysis, MiD/K Schweizer, K. (1997), 43. gap analysis, MiD/K Schweizer, K. (1997), 44. gap analysis, MiD/K Schweizer, G. (1997), 44. gap analysis, Gap and Gap	1584		an analysis MIDAS Deliverable 4.2 2015: p. 45
 Josephan, J., Wang, G., Mijutha, M., Molevsky, V.J., Olsecarolovols, V., Esteves, A.M., The state of knowledge on deep-sea mematode taxonomy: how many valid species are known down there? Marine Biodiversity 2010. 40: p. 143–159. Miljutina, M.A., Miljutin, D.M., Mahatma, R., Galéron, J., Miljutina, M.A., Miljutin, D.M., Kondy, A.J., Sarrazin, J., Influence of surface texture and microhabitat heterogeneity in structuring nodule faunal communities. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1936-1943. Veillette, J., Juniper, S.K., Gooday, A.J., Galéron, J., Caprais, J. C., Vangriesheim, A., et al., Juniper, S. K., <i>Ferromanganese nodule fauna in the Tropical North Pacific Ocean: Species richness, faunal cover and spatial distribution</i>. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1912-1935. Mullineaux, L.S., Organisms living on manganese nodules and crusts: distribution and abundance at three North Pacific sites. deep-Sea Research, 1987. 34(2): p. 165-184. Dugolinsky, B.K., Margolis, S.V., Dudley, W.C., Biogenic influence on growth of manganese nodules. J Sediment Petrol 1977. 47: p. 428-445. Varneusel, A., Hilario, A., Ribeiro, P.A., Menot, L. and Arbizu, P.M., Threatened by mining, polymetallic nodules are required to preserve abysal epifauna. Scientific reports, 2016. 6: p. p.26808. Gooday, A.J., Goineau, A. and Voltski, I., Abyssal foraminifera attached to polymetallic nodules from the eastern Clarion Clipperton Fracture Zone: a preliminary description and comparison with North Atlant	1585	03	Miliutin D.M. Gunnar G. Miliutina M. Mokievsky V.O. Fonseca-Genevois V
 Listeves, A.M., The state of knowledge on deep-sed membrane database and y valid species are known down there? Marine Biodiversity 2010. 40: p. 143–159. Miljutina, M.A., Miljutin, D.M., Mahatma, R., Galéron, J., <i>Miljutina, M.A., Miljutin, D.M., Mahatma, R. and Galéron, J., 2010. Deep-sea nematode assemblages of the Clarion-Clipperton Nodule Province (Tropical North-Eastern Pacific).</i> Marine Biodiversity, 2010. 40(1): p. 1-15. Thiel, H., Schriever, G., Bussau, C., Borowski, C., <i>Manganese nodule crevice fauna.</i> Deep-Sea Research, 1993. 34: p. 419-423. Veillette, J., Juniper, S.K., Gooday, A.J., Sarrazin, J., <i>Influence of surface texture and microhabitat heterogeneity in structuring nodule faunal communities.</i> Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1936-1943. Veillette, J., Sarrazin, J., Gooday, A. J., Galéron, J., Caprais, J. C., Vangriesheim, A., et al., Juniper, S. K. , <i>Ferromanganese nodule fauna in the Tropical North Pacific Ocean: Species richness, faunal cover and spatial distribution.</i> Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1912-1935. Mullineaux, L.S., <i>Organisms living on manganese nodules and crusts: distribution and abundance at three North Pacific sites.</i> deep-Sea Research, 1987. 34(2): p. 165-184. Dugolinsky, B.K., Margolis, S.V., Dudley, W.C., <i>Biogenic influence on growth of manganese nodules.</i> J Sediment Petrol 1977. 47: p. 428-445. Vanreusel, A., Hilario, A., Ribeiro, P.A., Menot, L. and Arbizu, P.M., <i>Threatened by mining, polymetallic nodules from the eastern Clarion Clipperton Fracture Zone: a preliminary description and comparison with North Atlantic dropstone assemblages.</i> Marine Biodiversity. 2015. 45(3): p. 391-412. Weaver, P., <i>Biodiversity implications of deep-sea mining activities.</i>, Secretariat of the Convention on Biological Diversity. 2016. p. 70. VanDover, C.L., Aronson, J., Pendleton, L., Smith, S., Arnaud-Haond, S., More	1586	<i>JJ</i> .	Esteves A M. The state of knowledge on deep see nematode taxonomy: how many
 94. Miljutina, M.A., Miljutin, D.M., Mahatma, R., Galéron, J., Marine Biodiversity, 2010. 40(1): p. 1-15. 95. Thiel, H., Schriever, G., Bussau, C., Borowski, C., Manganese nodule crevice fauna. Deep-Sea Research, 1993. 34: p. 419-423. 96. Veillette, J., Juniper, S.K., Gooday, A.J., Sarrazin, J., Influence of surface texture and microhabitat heterogeneity in structuring nodule faunal communities. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1936-1943. 97. Veillette, J., Sarrazin, J., Gooday, A. J., Galéron, J., Caprais, J. C., Vangriesheim, A., et al., Juniper, S. K., <i>Ferromanganese nodule faunal in the Tropical North Pacific Ocean: Species richness, faunal cover and spatial distribution</i>. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1912-1935. 98. Mullineaux, L.S., Organisms living on manganese nodules and crusts: distribution and abundance at three North Pacific sites. deep-Sea Research, 1987. 34(2): p. 165-184. 99. Dugolinsky, B.K., Margolis, S.V., Dudley, W.C., Biogenic influence on growth of manganese nodules. J Sediment Petrol 1977. 47: p. 428-445. 100. Vanreusel, A., Hilario, A., Ribeiro, P.A., Menot, L. and Arbizu, P.M., Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Scientific reports, 2016. 6: p. p.26808. 101. Gooday, A.J., Goineau, A. and Voltski, I., Abyssal foraminifera attached to polymetallic nodules from the eastern Clarion Clipperton Fracture Zone: a preliminary description and comparison with North Atlantic dropstone assem	1587		uside species are known down there? Marine Biodiversity 2010 40 : p. 143–150
 Miljulia, M.A., Miljulii, D.M., Maladia, K., Caledon, A., Miljulia, M.A., Miljuli, D.M., Mahatma, R. and Galéron, J., 2010. Deep-sea nematode assemblages of the Clarion-Clipperton Nodule Province (Tropical North-Eastern Pacific). Marine Biodiversity, 2010. 40(1): p. 1-15. Thiel, H., Schriever, G., Bussau, C., Borowski, C., Manganese nodule crevice fauna. Deep-Sea Research, 1993. 34: p. 419-423. Veillette, J., Juniper, S.K., Gooday, A.J., Sarrazin, J., Influence of surface texture and microhabitat heterogeneity in structuring nodule faunal communities. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1936-1943. Veillette, J., Sarrazin, J., Gooday, A. J., Galéron, J., Caprais, J. C., Vangriesheim, A., et al., Juniper, S. K., Ferromanganese nodule fauna in the Tropical North Pacific Ocean: Species richness, faunal cover and spatial distribution. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1912-1935. Mullineaux, L.S., Organisms living on manganese nodules and crusts: distribution and abundance at three North Pacific sites. deep-Sea Research, 1987. 34(2): p. 165- 184. Dugolinsky, B.K., Margolis, S.V., Dudley, W.C., Biogenic influence on growth of manganese nodules. J Sediment Petrol 1977. 47: p. 428-445. Vanreusel, A., Hilario, A., Ribeiro, P.A., Menot, L. and Arbizu, P.M., Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna Scientific reports, 2016. 6: p. p. 26808. Gooday, A.J., Goineau, A. and Voltski, I., Abyssal foraminifera attached to polymetallic nodules from the eastern Clarion Clipperton Fracture Zone: a preliminary description and comparison with North Atlantic dropstone assemblages Marine Biodiversity, 2015. 45(3): p. 391-412. Weaver, P., Biodiversity implications of deep-sea mining activities. , Secretariat of the Convention on Biological Diversity. 2016. p. 70. VanDover, C.L., Aronso	1588	0/	Miliuting M A Miliutin D M Mahatma P Galáron I Miliuting M A Miliutin
 <i>Clarion-Clipperton Nodule Province (Tropical North-Eastern Pacific)</i>. Marine Biodiversity, 2010. 40(1): p. 1-15. Thiel, H., Schriever, G., Bussau, C., Borowski, C., <i>Manganese nodule crevice fauna</i>. Deep-Sea Research, 1993. 34: p. 419-423. Veillette, J., Juniper, S.K., Gooday, A.J., Sarrazin, J., <i>Influence of surface texture and microhabitat heterogeneity in structuring nodule faunal communities</i>. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1936-1943. Veillette, J., Sarrazin, J., Gooday, A. J., Galéron, J., Caprais, J. C., Vangriesheim, A., et al., Juniper, S. K. , <i>Ferromanganese nodule fauna in the Tropical North Pacific Ocean: Species richness, faunal cover and spatial distribution</i>. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1912-1935. Mullineaux, L.S., <i>Organisms living on manganese nodules and crusts: distribution and abundance at three North Pacific sites</i>. deep-Sea Research, 1987. 34(2): p. 165-184. Dugolinsky, B.K., Margolis, S.V., Dudley, W.C., <i>Biogenic influence on growth of manganese nodules</i>. J Sediment Petrol 1977. 47: p. 428-445. Vanreusel, A., Hilario, A., Ribeiro, P.A., Menot, L. and Arbizu, P.M., <i>Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna</i>. Scientific reports, 2016. 6: p. p.26808. Goday, A.J., Goineau, A. and Voltski, I., <i>Abyssal foraminifera attached to polymetallic nodules from the eastern Clarion Clipperton Fracture Zone: a preliminary description and comparison with North Atlantic dropstone assemblages Marine Biodiversity implications of deep-sea mining activities. , Secretariat of the Convention on Biological Diversity. 2016. p. 70.</i> VanDover, C.L., Aronson, J., Pendleton, L., Smith, S., Arnaud-Haond, S., Moreno-Mateos, D., Barbier, E., Billett, D., Bowers, K., Danovaro, R., Edwards, A., Kellert, S., Moratom, T., Pollard, E., Rogers, A., Warner, R., 	1580	<i>9</i> 4 .	D M Mahatma P and Caláron I 2010 Deep sea nomatodo assemblação of the
 Biodiversity, 2010. 40(1): p. 1-15. 95. Thiel, H., Schriever, G., Bussau, C., Borowski, C., Manganese nodule crevice fauna. Deep-Sea Research, 1993. 34: p. 419-423, 96. Veillette, J., Juniper, S.K., Gooday, A.J., Sarrazin, J.,, Influence of surface texture and microhabitat heterogeneity in structuring nodule faunal communities. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1936-1943. 97. Veillette, J., Sarrazin, J., Gooday, A. J., Galéron, J., Caprais, J. C., Vangriesheim, A., et al., Juniper, S. K., Ferromanganese nodule fauna in the Tropical North Pacific Ocean: Species richness, faunal cover and spatial distribution. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1912-1935. 98. Mullineaux, L.S., Organisms living on manganese nodules and crusts: distribution and abundance at three North Pacific sites. deep-Sea Research, 1987. 34(2): p. 165- 184. 99. Dugolinsky, B.K., Margolis, S.V., Dudley, W.C., Biogenic influence on growth of manganese nodules. J Sediment Petrol 1977. 47: p. 428-445. 100. Vanreusel, A., Hilario, A., Ribeiro, P.A., Menot, L. and Arbizu, P.M., Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna Scientific reports, 2016. 6: p. p. 26808. 101. Gooday, A.J., Goineau, A. and Voltski, I., Abyssal foraminifera attached to polymetallic nodules from the eastern Clarion Clipperton Fracture Zone: a preliminary description and comparison with North Atlantic dropstone assemblages Marine Biodiversity implications of deep-sea mining activities. , Secretariat of the Convention on Biological Diversity. 2016. p. 70. 103. VanDover, C.L., Aronson, J., Pendleton, L., Smith, S., Arnaud-Haond, S., Moreno- Mateos, D., Barbier, E., Billett, D., Bowers, K., Danovaro, R., Edwards, A., Kellert, S., Moratom, T., Pollard, E., Rogers, A., Warner, R., Ecological restorationithedeensea: Desidertat. Marine Policy 2014 : p. 98-106 	1500		Clarion Clipporton Nodula Province (Tropical North Eastern Pacific) Morino
 1951 Thiel, H., Schriever, G., Bussau, C., Borowski, C., Manganese nodule crevice fauna. 1952 Deep-Sea Research, 1993. 34: p. 419-423. 1954 96. Veillette, J., Juniper, S.K., Gooday, A.J., Sarrazin, J.,, Influence of surface texture and 1955 microhabitat heterogeneity in structuring nodule faunal communities. Deep Sea 1956 Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1936-1943. 197 97. Veillette, J., Sarrazin, J., Gooday, A. J., Galéron, J., Caprais, J. C., Vangriesheim, A., 197 et al., Juniper, S. K., Ferromanganese nodule fauna in the Tropical North Pacific Ocean: Species richness, faunal cover and spatial distribution. Deep Sea Research 1960 Part I: Oceanographic Research Papers, 2007. 54(11): p. 1912-1935. 198. Mullineaux, L.S., Organisms living on manganese nodules and crusts: distribution 197 and abundance at three North Pacific sites. deep-Sea Research, 1987. 34(2): p. 165- 184. 199. Dugolinsky, B.K., Margolis, S.V., Dudley, W.C., Biogenic influence on growth of 1965 manganese nodules J Sediment Petrol 1977. 47: p. 428-445. 100. Vanreusel, A., Hilario, A., Ribeiro, P.A., Menot, L. and Arbizu, P.M., Threatened by 1967 mining, polymetallic nodules are required to preserve abyssal epifauna Scientific 197 reports, 2016. 6: p. 9.26808. 101. Gooday, A.J., Goineau, A. and Voltski, I., Abyssal foraminifera attached to 198 polymetallic nodules from the eastern Clarion Clipperton Fracture Zone: a 1981 preliminary description and comparison with North Atlantic dropstone assemblages 1981 Marine Biodiversity implications of deep-sea mining activities. , Secretariat of the 1992 Convention on Biological Diversity. 2016. p. 70. 103. VanDover, C.L., Aronson, J., Pendleton, L., Smith, S., Arnaud-Haond, S., Moreno- 1916 Mateos, D., Barbier, E., Billett, D., Bowers, K., Danovaro, R., Edwards, A., Kellert, 1917 S., Moratom, T., Pollard, E., Rogers, A., Warner, R., Ecological 1993 restarting thedeensea: Desiderata. Marine Polic	1501		Biodiversity 2010 40 (1): p. 1.15
 Jier, H., Schnever, O., Dussal, C., Diowski, C., Manganese house crevice jainal. Deep-Sea Research, 1993. 34: p. 419-423. Veillette, J., Juniper, S.K., Gooday, A.J., Sarrazin, J., <i>Influence of surface texture and</i> <i>microhabitat heterogeneity in structuring nodule faunal communities</i>. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1936-1943. Veillette, J., Sarrazin, J., Gooday, A. J., Galéron, J., Caprais, J. C., Vangriesheim, A., et al., Juniper, S. K. , <i>Ferromanganese nodule fauna in the Tropical North Pacific</i> <i>Ocean: Species richness, faunal cover and spatial distribution</i>. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1912-1935. Mullineaux, L.S., <i>Organisms living on manganese nodules and crusts: distribution</i> <i>and abundance at three North Pacific sites</i>. deep-Sea Research, 1987. 34(2): p. 165- 184. Bugolinsky, B.K., Margolis, S.V., Dudley, W.C. , <i>Biogenic influence on growth of</i> <i>manganese nodules</i>. J Sediment Petrol 1977. 47: p. 428-445. Varreusel, A., Hilario, A., Ribeiro, P.A., Menot, L. and Arbizu, P.M., <i>Threatened by</i> <i>mining, polymetallic nodules are required to preserve abyssal epifauna</i>. Scientific reports, 2016. 6: p. p.26808. Gooday, A.J., Goineau, A. and Voltski, I., <i>Abyssal foraminifera attached to</i> <i>polymetallic nodules from the eastern Clarion Clipperton Fracture Zone: a</i> <i>preliminary description and comparison with North Atlantic dropstone assemblages</i> Marine Biodiversity, 2015. 45(3): p. 391-412. WanDover, C.L., Aronson, J., Pendleton, L., Smith, S., Arnaud-Haond, S., Moreno- Mateos, D., Barbier, E., Billett, D., Bowers, K., Danovaro, R., Edwards, A., Kellert, S., Moratom, T., Pollard, E., Rogers, A., Warner, R., <i>Ecological</i> <i>restorationinhedeensea:Desiderata</i>. Marine Policy 2014: p. 98-106 	1502	05	Thiel H. Schriever G. Bussey C. Borowski C. Managanasa nodula cravica fauna
 Deep-Sea Research, 1993. 34, p. 419-423. 96. Veillette, J., Juniper, S.K., Gooday, A.J., Sarrazin, J.,, <i>Influence of surface texture and</i> <i>microhabitat heterogeneity in structuring nodule faunal communities</i>. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1936-1943. 97. Veillette, J., Sarrazin, J., Gooday, A. J., Galéron, J., Caprais, J. C., Vangriesheim, A., et al., Juniper, S. K. , <i>Ferromanganese nodule fauna in the Tropical North Pacific</i> <i>Ocean: Species richness, faunal cover and spatial distribution</i>. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1912-1935. 98. Mullineaux, L.S., <i>Organisms living on manganese nodules and crusts: distribution</i> <i>and abundance at three North Pacific sites</i>. deep-Sea Research, 1987. 34(2): p. 165- 184. 99. Dugolinsky, B.K., Margolis, S.V., Dudley, W.C. , <i>Biogenic influence on growth of</i> <i>manganese nodules</i>. J Sediment Petrol 1977. 47: p. 428-445. 100. Vanreusel, A., Hilario, A., Ribeiro, P.A., Menot, L. and Arbizu, P.M., <i>Threatened by</i> <i>mining, polymetallic nodules are required to preserve abyssal epifauna</i>. Scientific reports, 2016. 6: p. p.26808. 101. Gooday, A.J., Goineau, A. and Voltski, I., <i>Abyssal foraminifera attached to</i> <i>polymetallic nodules from the eastern Clarion Clipperton Fracture Zone: a</i> <i>preliminary description and comparison with North Atlantic dropstone assemblages</i> 102. Weaver, P., <i>Biodiversity implications of deep-sea mining activities</i>. , Secretariat of the Convention on Biological Diversity. 2016. p. 70. 103. VanDover, C.L., Aronson, J., Pendleton, L., Smith, S., Arnaud-Haond, S., Moreno- Mateos, D., Barbier, E., Billett, D., Bowers, K., Danovaro, R., Edwards, A., Kellert, S., Moratom, T., Pollard, E., Rogers, A., Warner, R., <i>Ecological</i> <i>restorationinhedeepsea:Desiderata</i>. Marine Policy 2014: p. 98-106 	1502	<i>JJ</i> .	Deen See Persearch 1003 34: n 410 423
 Venteue, J., Junper, S.R., Gooday, A.J., Saltadin, J., Influence of surface texture and microhabitat heterogeneity in structuring nodule faunal communities. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1936-1943. Yeillette, J., Sarrazin, J., Gooday, A. J., Galéron, J., Caprais, J. C., Vangriesheim, A., et al., Juniper, S. K., <i>Ferromanganese nodule fauna in the Tropical North Pacific Ocean: Species richness, faunal cover and spatial distribution</i>. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1912-1935. Mullineaux, L.S., Organisms living on manganese nodules and crusts: distribution and abundance at three North Pacific sites. deep-Sea Research, 1987. 34(2): p. 165- 184. Dugolinsky, B.K., Margolis, S.V., Dudley, W.C., <i>Biogenic influence on growth of manganese nodules</i>. J Sediment Petrol 1977. 47: p. 428-445. Vanreusel, A., Hilario, A., Ribeiro, P.A., Menot, L. and Arbizu, P.M., <i>Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna</i>. Scientific reports, 2016. 6: p. p.26808. Goday, A.J., Goineau, A. and Voltski, I., <i>Abyssal foraminifera attached to polymetallic nodules from the eastern Clarion Clipperton Fracture Zone: a preliminary description and comparison with North Atlantic dropstone assemblages Marine Biodiversity, 2015. 45(3): p. 391-412.</i> WanDover, C.L., Aronson, J., Pendleton, L., Smith, S., Arnaud-Haond, S., Moreno- Mateos, D., Barbier, E., Billett, D., Bowers, K., Danovaro, R., Edwards, A., Kellert, S., Moratom, T., Pollard, E., Rogers, A., Warner, R., <i>Ecological restorationinthedeensea: Desiderata</i>. Marine Policy. 2014: p. 98-106 	150/	96	Veillette I Juniper S.K. Gooday A.I. Sarrazin I. Influence of surface texture and
 <i>Interonational neurogenenty in structuring holanic journal community.</i> Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1936-1943. Yeillette, J., Sarrazin, J., Gooday, A. J., Galéron, J., Caprais, J. C., Vangriesheim, A., et al., Juniper, S. K., <i>Ferromanganese nodule fauna in the Tropical North Pacific Ocean: Species richness, faunal cover and spatial distribution</i>. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1912-1935. Mullineaux, L.S., <i>Organisms living on manganese nodules and crusts: distribution and abundance at three North Pacific sites.</i> deep-Sea Research, 1987. 34(2): p. 165-184. Dugolinsky, B.K., Margolis, S.V., Dudley, W.C., <i>Biogenic influence on growth of manganese nodules.</i> J Sediment Petrol 1977. 47: p. 428-445. Vanreusel, A., Hilario, A., Ribeiro, P.A., Menot, L. and Arbizu, P.M., <i>Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna.</i> Scientific reports, 2016. 6: p. p.26808. Goday, A.J., Goineau, A. and Voltski, I., <i>Abyssal foraminifera attached to polymetallic nodules from the eastern Clarion Clipperton Fracture Zone: a preliminary description and comparison with North Atlantic dropstone assemblages.</i> Marine Biodiversity implications of deep-sea mining activities. , Secretariat of the Convention on Biological Diversity. 2016. p. 70. VanDover, C.L., Aronson, J., Pendleton, L., Smith, S., Arnaud-Haond, S., Moreno-Mateos, D., Barbier, E., Billett, D., Bowers, K., Danovaro, R., Edwards, A., Kellert, S., Moratom, T., Pollard, E., Rogers, A., Warner, R., <i>Ecological restorationinthedeensea.</i> 20:4: p. 98-106 	1505	90.	wierehabitat haterogeneity in structuring nodule found communities. Doop Soo
 Nessaich Faith, Occanographic Research Papers, 2007. 54(11), p. 1930-1943. Veillette, J., Sarrazin, J., Gooday, A. J., Galéron, J., Caprais, J. C., Vangriesheim, A., et al., Juniper, S. K., <i>Ferromanganese nodule fauna in the Tropical North Pacific Ocean: Species richness, faunal cover and spatial distribution</i>. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1912-1935. Mullineaux, L.S., <i>Organisms living on manganese nodules and crusts: distribution and abundance at three North Pacific sites.</i> deep-Sea Research, 1987. 34(2): p. 165-184. Dugolinsky, B.K., Margolis, S.V., Dudley, W.C., <i>Biogenic influence on growth of manganese nodules.</i> J Sediment Petrol 1977. 47: p. 428-445. Vanreusel, A., Hilario, A., Ribeiro, P.A., Menot, L. and Arbizu, P.M., <i>Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna.</i> Scientific reports, 2016. 6: p. p.26808. Goday, A.J., Goineau, A. and Voltski, I., <i>Abyssal foraminifera attached to polymetallic nodules from the eastern Clarion Clipperton Fracture Zone: a preliminary description and comparison with North Atlantic dropstone assemblages.</i> Marine Biodiversity implications of deep-sea mining activities. , Secretariat of the Convention on Biological Diversity 2016. p. 70. VanDover, C.L., Aronson, J., Pendleton, L., Smith, S., Arnaud-Haond, S., Moreno-Mateos, D., Barbier, E., Billett, D., Bowers, K., Danovaro, R., Edwards, A., Kellert, S., Moratom, T., Pollard, E., Rogers, A., Warner, R., <i>Ecological restorationinthedeensea.Desiderata.</i> Marine Policy 2014: p. 98-106 	1595		Research Part I: Oceanographic Research Papers 2007 54(11): p. 1036-1043
 venetic, J., Santahi, J., Gooday, A. J., Galdelon, J., Capitals, J. C., Valgrestelin, A., et al., Juniper, S. K., <i>Ferromangaese nodule fauna in the Tropical North Pacific</i> <i>Ocean: Species richness, faunal cover and spatial distribution</i>. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1912-1935. Mullineaux, L.S., <i>Organisms living on manganese nodules and crusts: distribution</i> <i>and abundance at three North Pacific sites</i>. deep-Sea Research, 1987. 34(2): p. 165- 184. 99. Dugolinsky, B.K., Margolis, S.V., Dudley, W.C., <i>Biogenic influence on growth of</i> <i>manganese nodules</i>. J Sediment Petrol 1977. 47: p. 428-445. 100. Vanreusel, A., Hilario, A., Ribeiro, P.A., Menot, L. and Arbizu, P.M., <i>Threatened by</i> <i>mining, polymetallic nodules are required to preserve abyssal epifauna</i>. Scientific reports, 2016. 6: p. p.26808. 101. Gooday, A.J., Goineau, A. and Voltski, I., <i>Abyssal foraminifera attached to</i> <i>polymetallic nodules from the eastern Clarion Clipperton Fracture Zone: a</i> <i>preliminary description and comparison with North Atlantic dropstone assemblages</i> 102. Weaver, P., <i>Biodiversity implications of deep-sea mining activities</i>. , Secretariat of the Convention on Biological Diversity. 2016. p. 70. 103. VanDover, C.L., Aronson, J., Pendleton, L., Smith, S., Arnaud-Haond, S., Moreno- Mateos, D., Barbier, E., Billett, D., Bowers, K., Danovaro, R., Edwards, A., Kellert, S., Moratom, T., Pollard, E., Rogers, A., Warner, R., <i>Ecological</i> <i>restorationinthedeepsea: Desiderata</i>. Marine Policy. 2014: p. 98-106 	1507	07	Veillette I Sarrazin I Gooday A I Galáron I Canrais I C Vangriashaim A
 1556 Cet al., Junper, S. K. , <i>Performanganese nodule jauna in the Tropical North Pacific</i> Ocean: Species richness, faunal cover and spatial distribution. Deep Sea Research Part I: Oceanographic Research Papers, 2007. 54(11): p. 1912-1935. 1601 98. Mullineaux, L.S., Organisms living on manganese nodules and crusts: distribution and abundance at three North Pacific sites. deep-Sea Research, 1987. 34(2): p. 165- 1603 184. 1604 99. Dugolinsky, B.K., Margolis, S.V., Dudley, W.C., Biogenic influence on growth of 1605 manganese nodules. J Sediment Petrol 1977. 47: p. 428-445. 1606 100. Vanreusel, A., Hilario, A., Ribeiro, P.A., Menot, L. and Arbizu, P.M., Threatened by 1607 mining, polymetallic nodules are required to preserve abyssal epifauna. Scientific 1608 reports, 2016. 6: p. p.26808. 1609 101. Gooday, A.J., Goineau, A. and Voltski, I., Abyssal foraminifera attached to 1610 polymetallic nodules from the eastern Clarion Clipperton Fracture Zone: a 1611 preliminary description and comparison with North Atlantic dropstone assemblages 1612 Meaver, P., Biodiversity implications of deep-sea mining activities. , Secretariat of the 1614 Convention on Biological Diversity. 2016. p. 70. 1615 103. VanDover, C.L., Aronson, J., Pendleton, L., Smith, S., Arnaud-Haond, S., Moreno- 1616 Mateos, D., Barbier, E., Billett, D., Bowers, K., Danovaro, R., Edwards, A., Kellert, S., Moratom, T., Pollard, E., Rogers, A., Warner, R., Ecological 	1508	91.	et al Juniper S K Farromanaganase nodule fauna in the Tropical North Pacific
 Part I: Oceano graphic Research Papers, 2007. 54(11): p. 1912-1935. Mullineaux, L.S., Organisms living on manganese nodules and crusts: distribution and abundance at three North Pacific sites. deep-Sea Research, 1987. 34(2): p. 165- 184. Dugolinsky, B.K., Margolis, S.V., Dudley, W.C., Biogenic influence on growth of manganese nodules. J Sediment Petrol 1977. 47: p. 428-445. Vanreusel, A., Hilario, A., Ribeiro, P.A., Menot, L. and Arbizu, P.M., Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Scientific reports, 2016. 6: p. p.26808. Gooday, A.J., Goineau, A. and Voltski, I., Abyssal foraminifera attached to polymetallic nodules from the eastern Clarion Clipperton Fracture Zone: a preliminary description and comparison with North Atlantic dropstone assemblages Marine Biodiversity, 2015. 45(3): p. 391-412. Weaver, P., Biodiversity implications of deep-sea mining activities. , Secretariat of the Convention on Biological Diversity. 2016. p. 70. VanDover, C.L., Aronson, J., Pendleton, L., Smith, S., Arnaud-Haond, S., Moreno- Mateos, D., Barbier, E., Billett, D., Bowers, K., Danovaro, R., Edwards, A., Kellert, S., Moratom, T., Pollard, E., Rogers, A., Warner, R., Ecological 	1500		Ocaan: Spacies richness faund cover and spatial distribution Deep See Peseerch
 Part I. Oceanographic Research Papers, 2007. 54(11). p. 1912-1935. Mullineaux, L.S., Organisms living on manganese nodules and crusts: distribution and abundance at three North Pacific sites. deep-Sea Research, 1987. 34(2): p. 165- 184. 99. Dugolinsky, B.K., Margolis, S.V., Dudley, W.C., Biogenic influence on growth of manganese nodules. J Sediment Petrol 1977. 47: p. 428-445. 100. Vanreusel, A., Hilario, A., Ribeiro, P.A., Menot, L. and Arbizu, P.M., Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Scientific reports, 2016. 6: p. p.26808. 101. Gooday, A.J., Goineau, A. and Voltski, I., Abyssal foraminifera attached to polymetallic nodules from the eastern Clarion Clipperton Fracture Zone: a preliminary description and comparison with North Atlantic dropstone assemblages Marine Biodiversity, 2015. 45(3): p. 391-412. 102. Weaver, P., Biodiversity implications of deep-sea mining activities. , Secretariat of the Convention on Biological Diversity. 2016. p. 70. 103. VanDover, C.L., Aronson, J., Pendleton, L., Smith, S., Arnaud-Haond, S., Moreno- Mateos, D., Barbier, E., Billett, D., Bowers, K., Danovaro, R., Edwards, A., Kellert, S., Moratom, T., Pollard, E., Rogers, A., Warner, R., Ecological restorationinthedeepsea: Desiderata. Marine Policy 2014: p. 98-106 	1600		Dert I: Oceanographic Descarch Denors 2007 54(11): p. 1012 1025
 Multileaux, E.S., Organisms tiving on manganese notates and crusts. aistroaution and abundance at three North Pacific sites. deep-Sea Research, 1987. 34(2): p. 165- 184. 99. Dugolinsky, B.K., Margolis, S.V., Dudley, W.C., Biogenic influence on growth of manganese nodules. J Sediment Petrol 1977. 47: p. 428-445. 100. Vanreusel, A., Hilario, A., Ribeiro, P.A., Menot, L. and Arbizu, P.M., Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Scientific reports, 2016. 6: p. p.26808. 101. Gooday, A.J., Goineau, A. and Voltski, I., Abyssal foraminifera attached to polymetallic nodules from the eastern Clarion Clipperton Fracture Zone: a preliminary description and comparison with North Atlantic dropstone assemblages Marine Biodiversity, 2015. 45(3): p. 391-412. 102. Weaver, P., Biodiversity implications of deep-sea mining activities. , Secretariat of the Convention on Biological Diversity. 2016. p. 70. 103. VanDover, C.L., Aronson, J., Pendleton, L., Smith, S., Arnaud-Haond, S., Moreno- Mateos, D., Barbier, E., Billett, D., Bowers, K., Danovaro, R., Edwards, A., Kellert, S., Moratom, T., Pollard, E., Rogers, A., Warner, R., Ecological restorationinthedeensea: Desiderata. Marine Policy. 2014: p. 98-106 	1601	08	Mullineaux I. S. Organisms living on managenese nodules and crusts: distribution
 1602 <i>and abindance at three Norm Facilit sites</i>. deep-sea Research, 1987. 34(2), p. 163- 1603 184. 1604 99. Dugolinsky, B.K., Margolis, S.V., Dudley, W.C., <i>Biogenic influence on growth of</i> 1605 <i>manganese nodules</i>. J Sediment Petrol 1977. 47: p. 428-445. 1606 100. Vanreusel, A., Hilario, A., Ribeiro, P.A., Menot, L. and Arbizu, P.M., <i>Threatened by</i> 1607 <i>mining, polymetallic nodules are required to preserve abyssal epifauna</i>. Scientific 1608 reports, 2016. 6: p. p.26808. 1609 101. Gooday, A.J., Goineau, A. and Voltski, I., <i>Abyssal foraminifera attached to</i> 1610 <i>polymetallic nodules from the eastern Clarion Clipperton Fracture Zone: a</i> 1611 <i>preliminary description and comparison with North Atlantic dropstone assemblages</i> 1613 102. Weaver, P., <i>Biodiversity implications of deep-sea mining activities</i>. , Secretariat of the 1614 Convention on Biological Diversity. 2016. p. 70. 1615 103. VanDover, C.L., Aronson, J., Pendleton, L., Smith, S., Arnaud-Haond, S., Moreno- 1616 Mateos, D., Barbier, E., Billett, D., Bowers, K., Danovaro, R., Edwards, A., Kellert, 1617 S., Moratom, T., Pollard, E., Rogers, A., Warner, R., <i>Ecological</i> 1618 <i>restorationinthedeepsea: Desiderata</i>. Marine Policy. 2014: p. 98-106 	1602	90.	and abundance at three North Pacific sites deep See Poseerch 1087 34(2): p 165
 1603 164. 99. Dugolinsky, B.K., Margolis, S.V., Dudley, W.C., <i>Biogenic influence on growth of manganese nodules</i>. J Sediment Petrol 1977. 47: p. 428-445. 1606 100. Vanreusel, A., Hilario, A., Ribeiro, P.A., Menot, L. and Arbizu, P.M., <i>Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna</i>. Scientific reports, 2016. 6: p. p.26808. 1609 101. Gooday, A.J., Goineau, A. and Voltski, I., <i>Abyssal foraminifera attached to polymetallic nodules from the eastern Clarion Clipperton Fracture Zone: a preliminary description and comparison with North Atlantic dropstone assemblages.</i>. 1613 102. Weaver, P., <i>Biodiversity implications of deep-sea mining activities</i>. Secretariat of the Convention on Biological Diversity. 2016. p. 70. 1615 103. VanDover, C.L., Aronson, J., Pendleton, L., Smith, S., Arnaud-Haond, S., Moreno-Mateos, D., Barbier, E., Billett, D., Bowers, K., Danovaro, R., Edwards, A., Kellert, S., Moratom, T., Pollard, E., Rogers, A., Warner, R., <i>Ecological restorationinthedeepsea:Desiderata</i>. Marine Policy 2014: p. 98-106 	1602		184
 Bugonnsky, B.K., Margons, S. V., Dudiey, W.C., <i>Biogenic influence on growin of manganese nodules</i>. J Sediment Petrol 1977. 47: p. 428-445. 100. Vanreusel, A., Hilario, A., Ribeiro, P.A., Menot, L. and Arbizu, P.M., <i>Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna</i>. Scientific reports, 2016. 6: p. p.26808. 101. Gooday, A.J., Goineau, A. and Voltski, I., <i>Abyssal foraminifera attached to polymetallic nodules from the eastern Clarion Clipperton Fracture Zone: a preliminary description and comparison with North Atlantic dropstone assemblages.</i>. 102. Weaver, P., <i>Biodiversity implications of deep-sea mining activities</i>. Secretariat of the Convention on Biological Diversity. 2016. p. 70. 103. VanDover, C.L., Aronson, J., Pendleton, L., Smith, S., Arnaud-Haond, S., Moreno-Mateos, D., Barbier, E., Billett, D., Bowers, K., Danovaro, R., Edwards, A., Kellert, S., Moratom, T., Pollard, E., Rogers, A., Warner, R., <i>Ecological restorationinthedeepsea:Desiderata</i>. Marine Policy. 2014: p. 98-106 	1604	00	Dugolinsky RK Margolis SV Dudley WC Riogenic influence on growth of
 1005 manganese notaties:	1605	<i>))</i> .	managnasa nodulas I Sediment Petrol 1077 17 : p. 428 445
 valiedsel, A., Infano, A., Kloeno, T.A., Menot, E. and Anorzu, T.M., Infedience by mining, polymetallic nodules are required to preserve abyssal epifauna. Scientific reports, 2016. 6: p. p.26808. Gooday, A.J., Goineau, A. and Voltski, I., Abyssal foraminifera attached to polymetallic nodules from the eastern Clarion Clipperton Fracture Zone: a preliminary description and comparison with North Atlantic dropstone assemblages. Marine Biodiversity, 2015. 45(3): p. 391-412. Weaver, P., Biodiversity implications of deep-sea mining activities. Secretariat of the Convention on Biological Diversity. 2016. p. 70. VanDover, C.L., Aronson, J., Pendleton, L., Smith, S., Arnaud-Haond, S., Moreno- Mateos, D., Barbier, E., Billett, D., Bowers, K., Danovaro, R., Edwards, A., Kellert, S., Moratom, T., Pollard, E., Rogers, A., Warner, R., Ecological restorationinthedeepsea:Desiderata. Marine Policy. 2014: p. 98-106 	1606	100	Vanreusel A Hilario A Dibairo DA Manot L and Arbizu DM Threatened by
 <i>mining, polymetatile notaties are required to preserve abystat epijatina.</i> . Scientific reports, 2016. 6: p. p.26808. 101. Gooday, A.J., Goineau, A. and Voltski, I., <i>Abyssal foraminifera attached to</i> <i>polymetallic nodules from the eastern Clarion Clipperton Fracture Zone: a</i> <i>preliminary description and comparison with North Atlantic dropstone assemblages.</i> . Marine Biodiversity, 2015. 45(3): p. 391-412. 102. Weaver, P., <i>Biodiversity implications of deep-sea mining activities.</i> , Secretariat of the Convention on Biological Diversity. 2016. p. 70. 103. VanDover, C.L., Aronson, J., Pendleton, L., Smith, S., Arnaud-Haond, S., Moreno- Mateos, D., Barbier, E., Billett, D., Bowers, K., Danovaro, R., Edwards, A., Kellert, S., Moratom, T., Pollard, E., Rogers, A., Warner, R., <i>Ecological</i> <i>restorationinthedeepsea: Desiderata</i>. Marine Policy. 2014: p. 98-106 	1607	100.	mining, polymetallic nodules are required to preserve abyssal enifquing. Scientific
 1006 101. Gooday, A.J., Goineau, A. and Voltski, I., <i>Abyssal foraminifera attached to</i> 101. Gooday, A.J., Goineau, A. and Voltski, I., <i>Abyssal foraminifera attached to</i> 101. <i>polymetallic nodules from the eastern Clarion Clipperton Fracture Zone: a</i> 101. <i>preliminary description and comparison with North Atlantic dropstone assemblages.</i>. 102. Marine Biodiversity, 2015. 45(3): p. 391-412. 103. Weaver, P., <i>Biodiversity implications of deep-sea mining activities.</i>, Secretariat of the 104. Convention on Biological Diversity. 2016. p. 70. 105. 106. VanDover, C.L., Aronson, J., Pendleton, L., Smith, S., Arnaud-Haond, S., Moreno- 106. Mateos, D., Barbier, E., Billett, D., Bowers, K., Danovaro, R., Edwards, A., Kellert, 107. S., Moratom, T., Pollard, E., Rogers, A., Warner, R., <i>Ecological</i> 108. <i>restorationinthedeepsea:Desiderata</i>. Marine Policy. 2014: p. 98-106 	1608		reports 2016 6: p. p. 26808
 1610 For the coordination of the convertion of the convention on Biological Diversity. 2016. p. 70. 1613 103. VanDover, C.L., Aronson, J., Pendleton, L., Smith, S., Arnaud-Haond, S., Moreno- Mateos, D., Barbier, E., Billett, D., Bowers, K., Danovaro, R., Edwards, A., Kellert, S., Moratom, T., Pollard, E., Rogers, A., Warner, R., <i>Ecological restorationinthedeepsea:Desiderata</i>. Marine Policy. 2014: p. 98-106 	1600	101	Gooday A L Goineau A and Voltski L Abyssal for aminifer a attached to
 polymetatic hoaties from the eastern Clarton Cupperton Fracture Zone. d preliminary description and comparison with North Atlantic dropstone assemblages Marine Biodiversity, 2015. 45(3): p. 391-412. 102. Weaver, P., Biodiversity implications of deep-sea mining activities. , Secretariat of the Convention on Biological Diversity. 2016. p. 70. 103. VanDover, C.L., Aronson, J., Pendleton, L., Smith, S., Arnaud-Haond, S., Moreno- Mateos, D., Barbier, E., Billett, D., Bowers, K., Danovaro, R., Edwards, A., Kellert, S., Moratom, T., Pollard, E., Rogers, A., Warner, R., Ecological restorationinthedeepsea: Desiderata. Marine Policy. 2014: p. 98-106 	1610	101.	nolymetallia nodulas from the astern Clarion Clipperton Fracture Zone: a
 1611 <i>Differential y description and comparison with Norm Atlantic dropsione assemblages.</i> . 1612 Marine Biodiversity, 2015. 45(3): p. 391-412. 1613 102. Weaver, P., <i>Biodiversity implications of deep-sea mining activities.</i> , Secretariat of the Convention on Biological Diversity. 2016. p. 70. 1615 103. VanDover, C.L., Aronson, J., Pendleton, L., Smith, S., Arnaud-Haond, S., Moreno- 1616 Mateos, D., Barbier, E., Billett, D., Bowers, K., Danovaro, R., Edwards, A., Kellert, 1617 S., Moratom, T., Pollard, E., Rogers, A., Warner, R., <i>Ecological restorationinthedeepsea:Desiderata</i>. Marine Policy. 2014: p. 98-106 	1611		polymetatic houses from the easiern Clarion Cupperion Fracture Zone. a
 Marine Biodiversity, 2013. 43(3), p. 391-412. 102. Weaver, P., <i>Biodiversity implications of deep-sea mining activities</i>. , Secretariat of the Convention on Biological Diversity. 2016. p. 70. 103. VanDover, C.L., Aronson, J., Pendleton, L., Smith, S., Arnaud-Haond, S., Moreno- Mateos, D., Barbier, E., Billett, D., Bowers, K., Danovaro, R., Edwards, A., Kellert, S., Moratom, T., Pollard, E., Rogers, A., Warner, R., <i>Ecological</i> <i>restorationinthedeepsea:Desiderata</i>. Marine Policy. 2014: p. 98-106 	1612		Marine Biodiversity 2015 45 (3): p. 301 412
 1613 162. Weaver, F., <i>Bioarversity implications of deep-sed mining activities</i>., Secretariat of the 1614 Convention on Biological Diversity. 2016. p. 70. 1615 103. VanDover, C.L., Aronson, J., Pendleton, L., Smith, S., Arnaud-Haond, S., Moreno- 1616 Mateos, D., Barbier, E., Billett, D., Bowers, K., Danovaro, R., Edwards, A., Kellert, 1617 S., Moratom, T., Pollard, E., Rogers, A., Warner, R., <i>Ecological</i> 1618 restorationinthedeepsea: Desiderata. Marine Policy. 2014: p. 98-106 	1612	102	Weaver D. Biodiversity implications of deep sea mining activities. Secretariat of the
 1614 Convention on Biological Diversity. 2010. p. 70. 1615 103. VanDover, C.L., Aronson, J., Pendleton, L., Smith, S., Arnaud-Haond, S., Moreno- 1616 Mateos, D., Barbier, E., Billett, D., Bowers, K., Danovaro, R., Edwards, A., Kellert, 1617 S., Moratom, T., Pollard, E., Rogers, A., Warner, R., <i>Ecological</i> 1618 restorationinthedeepsea: Desiderata. Marine Policy. 2014: p. 98-106. 	1614	102.	Convention on Biological Diversity 2016 p. 70
 Mateos, D., Barbier, E., Billett, D., Bowers, K., Danovaro, R., Edwards, A., Kellert, S., Moratom, T., Pollard, E., Rogers, A., Warner, R., <i>Ecological</i> <i>restorationinthedeepsea:Desiderata</i>. Marine Policy. 2014: p. 98-106. 	1615	103	VanDover C I Aronson I Pendleton I Smith S Arnaud-Haond S Morano
 1617 S., Moratom, T., Pollard, E., Rogers, A., Warner, R., <i>Ecological</i> 1618 restorationinthedeepsea: Desiderata. Marine Policy. 2014: p. 98-106 	1616	105.	Mateos D Barbier F Billett D Bowers K Danovaro P Edwards A Kallert
1618 restorationinthedeepsea: Desiderata. Marine Policy. 2014: p. 98-106	1617		S Moratom T Pollard E Rogers A Warner R <i>Feological</i>
	1618		restorationinthedeepsea: Desiderata. Marine Policy. 2014: p. 98-106.

1619 1620	104.	Systems, C., Environmental Impact Statement generated for Nautilus Solwara 1 Project. 2008: p. 50.
1621	105.	Lehmkoester, J., World Ocean Review 3: Marine Resources – Opportunities and
1622	1001	Risks 2014 Hamburg Germany: maribus GmbH 165
1623	106	Wedding I M Reiter S M Smith C R Gierde K M Kittinger I M Friedlander
1624	100.	A M Gaines S D Clark M R Thurnherr A M Hardy S M Crowder L B
1621		Managing mining of the deep seabed Contracts are being granted but protections are
1625		langing Science 2015 340 (6244): p. 144-145
1620	107	Smith C.P. Levin I. A. Koslow A. Tyler P.A. Glover A.G. Vhe near future of
1627	107.	the deep see floor coordinations in A quatic coordinations than do and clobal prospects
1620		NVC Dolumin Editor 2008 Combridge University Drosse New York n 224
1629	100	N. V.C. Folulini, Eulioi. 2008, Calibridge University Fless. New Tork. p. 554.
1621	108.	Madulelia, P., Blekke, H., Cherkashov, G., Rovere, M., <i>Exploration of polymetatic</i>
1031		Movine Dalies, 2016, 70 , p. 101, 107
1032	100	Marine Policy, 2010. /0: p. 101-107.
1633	109.	Hein, J.R., Conrad, T.A., Dunnam, R.E., Seamount characteristics and mine-site
1634		model applied to exploration and mining lease block selection for cobalt-rich
1635	110	ferromanganese crusts. Marine Georesources & Geotechnology, 2009. 27: p. 160-176.
1636	110.	Nautilus Minerals, N.L., Environmental Impact Statement: Solwara I Project, Volume
1637		<i>A, Main Report.</i> 2008: p. 226.
1638	111.	Grimm, V., Wissel, C., Babel, or the ecological stability discussion: an inventory of
1639		<i>terminology and a guide for avoiding confusion.</i> Oecologia, 1997. 109 : p. 323-334.
1640	112.	Aguilar de Soto, N., Kight, C., Physiological effects of noise on aqautic animals, in
1641		Stressors in the Marine Environment, M. Solan, Whiteley, N.M., Editor. 2016, Oxford
1642		University Press: Oxford. p. 135-158.
1643	113.	Stanley, J.A., Jeffs, A.G., Ecological impacts of anthropogenic underwater noise, in
1644		Stressors in the Marine Environment, M. Solan, Whiteley, N.M., Editor. 2016,
1645		Oxford University Press: Oxford. p. 282-297.
1646	114.	Burritt, D.J., Lamare, M.D., The cellular respones of marine algae and invertebrates
1647		to ultraviolet radiation, alone and in combination with other common abiotic
1648		stressors, in Stressors in the Marine Environment, M. Solan, Whiteley, N.M., Editor.
1649		2016, Oxford University Press: Oxford. p. 117-134.
1650	115.	Moreau, S., Vidussi, F., Ferreyra, G., Mostajir, B., Ecological impacts of ultraviolet-B
1651		radiation on marine ecosystems, in Stressors in the Marine Environment, M. Solan,
1652		Whiteley, N.M., Editor. 2016, Oxford University Press: Oxford. p. 261-281.
1653	116.	Van Dover, C.L., Szuts, E.Z., Chamberlain, S.C., Cann, J.R., A novel eye in 'eyeless'
1654		shrimp from the hydrothermal vents of the Mid-Atlantic Ridge. Nature, 1989. 337: p.
1655		458-460.
1656	117.	Chamberlain, S., Vision in hydrothermal vent shrimp Philosophical Transactions of
1657		the Royal Society B: Biological Sciences, 355 (1401), 1151-1154 DOI:
1658		10.1098/rstb.2000.0657. Philosophical Transactions of the Royal Society B:
1659		Biological Sciences, 2000, 355 (1401); p. 1151-1154.
1660	118	Copley, J.T.P., Jorgensen, P.B.K., Sohn, R.A., Assessment of decadal-scale
1661	1101	ecological change at a deep Mid-Atlantic hydrothermal vent and reproductive time-
1662		series in the shrimp Rimicaris exoculata Journal of the Marine Biological Association
1663		of the United Kingdom 2007 87 : n 859-867
1664	119	Herring PI Light and life in the sea" Cambridge University Press Cambridge
1665	11).	1990 Cambridge: Cambridge University Press
1666	120	Atkins MS Teske AP and Anderson OR A Survey of Flagellate Diversity at
1667	120.	Four Deen-Sea Hydrothermal Vents in the Eastern Daoifie Ocean Using Structural
1669		and Molecular Approaches Journal of Eukaryotic Microbiology 2000 47(4): 2
1660		and molecular Approaches Journal of Eukaryotic Microbiology, 2000. $47(4)$: p. $100 411$
1009		400-411.

1670 1671	121.	Costa, K.M., McManus, J.F., Boulahanis, B., Carbotte, S.M., Winckler, G., Huybers, P.J., Langmuir, C.H., <i>Sedimentation, stratigraphy and physical properties of</i>
16/2	100	sediment on the Juan de Fuca Ridge Marine Geology, 2016. 380: p. 163-173.
16/3	122.	Petersen, S., Kratschell, A., Augustin, N., Jamieson, J., Hein, J.R. and Hannington,
1674		M.D., News from the seabed–Geological characteristics and resource potential of
1675		deep-sea mineral resources. Marine Policy, 2016. 70: p. 175-187.
1676	123.	Cordes, E.E., Jones, D.O., Schlacher, T.A., Amon, D.J., Bernardino, A.F., Brooke, S.,
1677		Carney, R., DeLeo, D.M., Dunlop, K.M., Escobar-Briones, E.G., Gates, A.R., Génio,
1678		L., Gobin, J., Henry, LA., Herrera, S., Hoyt, S., Joye, S., Kark, S., Mestre, N.C.,
1679		Metaxas, A., Pfeifer, S., Sink, K., Sweetman, A.K., Witte, U.F., Environmental
1680		impacts of the deep-water oil and gas industry: a reivew to guide management
1681		strategies. Frontiers in Environmental Science, 2016. 4: p. 58.
1682	124.	Schaaning, M.T., Trannum, H.C., Øxnevad, S., Carroll, J., Blake, T., Effects of drill
1683		cuttings on biogeochemical fluxes and macrobenthos of marine sediments. Journal of
1684		Experimental Marine Biology and Ecology 2008. 361 : p. 49-57.
1685	125.	Netto, S.A., Gallucci, F., Fonseca, G., Deep-sea meiofauna response to synthetic-
1686		based drilling mud discharge off SE Brazil. Deep-Sea Research II, 2009. 56: p. 41-49.
1687	126.	Breuer, E., Stevenson, A.G., Howe, J.A., Carroll, J., Shimmield, G.B., Drill cutting
1688		accumulations in the Northern and Central North Sea: a review of environmental
1689		interactions and chemical fate. Marine Pollution Bulletin, 2004. 48: p. 12-25.
1690	127.	Holdway, D.A., The acute and chronic effects of wastes associated with offshore oil
1691		and gas production on temperature and tropical marine ecological processes. Marine
1692		Pollution Bulletin, 2002. 44: p. 185-203.
1693	128.	Santos, M.F.L., Lana, P.C., Silva, J., Fachel, J.G., Pulgati, F.H., Effects of non-
1694		aqueous fluids cuttings discharge from exploratory drilling activities on the deep-sea
1695		macrobenthic communities. deep Sea Research II, 2009. 56: p. 32-40.
1696	129.	Trannum, H.C., Nilsson, H.C., Schaaning, M.T., Øxnevad, S., Effects of
1697		sedimentation from water-based drill cuttings and natural sediment on benthic
1698		macrofaunal community structure and ecosystem processes. Journal of Experimental
1699		Marine Biology and Ecology, 2010. 383: p. 111-121.
1700	130.	Simpson, S.L., Spadaro, D.A., Bioavailability and Chronic Toxicity of Metal Sulfide
1701		Minerals to Benthic Marine Invertebrates: Implications for Deep Sea Exploration,
1702		Mining and Tailings Disposal. Environ. Sci. Technol., 2016. 50(7): p. 4061–4070.
1703	131.	Mestre, N.C., Calado, R., Soares, A.M.V.M., Exploitation of deep-sea resources: the
1704		urgent need to understand the role of high pressure in the toxicity of chemical
1705		pollutants to deep-sea organisms. Environmental Pollution, 2014. 185: p. 369-371.
1706	132.	Knight, R., Roberts, S., Initial results of batch reactor experiments to determine
1707		sulphide oxidation rates and trace metal release under seafloor conditions. Applied
1708		Earth Science, 2016. 125: p. 88-89.
1709	133.	McLusky, D.S., Bryant, V., Campbell, R., The effects of temperature and salinity on
1710		the toxicity of heavy metals to marine and estuarine invertebrates. Oceanography &
1711		Marine Biology: An Annual Review, 1986, 24 : p. 481-520.
1712	134.	Auguste, M., Mestre, N.C., Rocha, T.L., Cardoso, C., Cueff-Gauchard, V., Le Bloa,
1713		S., Cambon-Bonavita, M.A., Shillito, B., Zbinden, M., Ravaux, J., Bebianno, M.J.,
1714		Development of an ecotoxicological protocol for the deep-sea fauna using the
1715		hvdrothermal vent shrimp Rimicaris exoculata. Aquatic Toxicology. 2016. 175 : p.
1716		277-285.
1717	135.	Company, R., Serafim, A., Cosson, R., Camus, L., Shillito, B., Fiala-Medioni
1718		A.,Bebianno, M.J., The effect of cadmium on antioxidant responses and the
1719		susceptibility to oxidative stress in the hydrothermal vent mussel Bathymodiolus
1720		azoricus Marine Biology, 2006. 148: p. 817-825.

1721 1722	136.	Sokolova, I.M., Frederich, M., Bagwe, R., Lannig, G., Sukhotin, A.A., <i>Energy</i> homeostasis as an integrative tool for assessing limits of environmental stress
1723		tolerance in aquatic invertebrates. Marine Environmental Research, 2012. 79: p. 1-15.
1724	137.	Mayer-Pinto, M., Underwood, A.J., Tolhurst, T., Coleman, R.A., Effects of metals on
1725		aquatic assemblages: What do we really know? Journal of Experimental Marine
1726		Biology and Ecology 2010. 391 : p. 1-9.
1727	138.	Mullineaux, L.S., Le Bris, N., Mills, S.W., Henri, P., Bayer, S.R., Secrist, R.G., Siu,
1728		N., Detecting the influence of initial pioneers on succession at deep-sea vents. Plos
1729		one, 2012. 7(12) : p. e50015.
1730	139.	Fisher, C.R., Hsing, PY., Kaiser, C.L., Yoerger, D.R., Roberts, H.H., et al., Footprint
1731		of Deepwater Horizon blowout impact to deep-water coral communities. Proceedings
1732		of the National Academy of Sciences 2014. 111 : p. 11744-11749.
1733	140.	Larsson, A.I., van Oevelen, D., Purser, A., Thomsen, L., Tolerance to long-term
1734		exposure of suspended benthic sediments and drill cuttings in the cold-water coral
1735		Lophelia pertusa. Marine Pollution Bulletin, 2013, 70; p. 176-188.
1736	141.	Marcus, J., Tunnicliffe, V., Butterfield, D.A., Post-eruption succession of macrofaunal
1737		communities at diffuse flow hydrothermal vents on Axial Volcano. Juan de Fuca
1738		Ridge, Northeast Pacific, Deep-Sea Research II, 2009, 56: p. 1586-1598.
1739	142.	Tunnicliffe, V., Embley, R. W., Holden, J. F., Butterfield, D. A., Massoth, G. J., and
1740		Juniper, S. K. Biological colonization of new hydrothermal vents following an
1741		eruption on Juan de Fuca Ridge. Deep-Sea Research I. 1997. 44: p. 1627–1644.
1742	143.	Shank, T.M., Fornari, D.J., Von Damm, K.L., Haymon, R.M., Lutz, R.A., Temporal
1743		and spatial patterns of biological community development at nascent deep-sea
1744		hydrothermal vents (9°50 N. East Pacific Rise). Deep-Sea Research Part II. 1998. 45:
1745		p. 465-515.
1746	144.	Mullineaux, L.S., Peterson, C.H., Micheli, F., Mills, S.W., Successional mechanism
1747		varies along a gradient in hydrothermal fluid flux at deep-sea vents. Ecological
1748		Monographs, 2003. 73(4) : p. 523 - 542.
1749	145.	Mullineaux, L.S., Micheli, F., Peterson C.H., Lenihan, H.S., Markus, L., Imprint of
1750		past environmental regimes on structure and succession of a deep-sea hydrothermal
1751		vent community. Oecologia, 2009. 161(2): p.387-400
1752	146.	Gollner, S., Fontaneto, D., Martinez Arbizu, P., Molecular taxonomy confirms
1753		morphological classification of deep-sea hydrothermal vent copepods (Dirivultidae)
1754		and suggests broad physiological tolerance of species and frequent dispersal along
1755		<i>ridges</i> . Marine Biology, 2011. 158 : p. 221-231.
1756	147.	Gebruk, A., Fabri, MC., Briand, P., Desbruyères, D., Community dynamics over a
1757		decadal scale at Logatchev, 14°45'N, Mid-Atlantic Ridge. Cahiers de Biologie
1758		Marine, 2010. 51 : p. 383-388.
1759	148.	Excoffier, L., Dupanloup, I., Huerta-Sanchez, E., Sousa, V.C., Foll, M., Robust
1760		demographic inference from genomic and SNP data. PLoS genetics, 2013.
1761		9 (e1003905).
1762	149.	Laurent, S., Pfeifer, S.P., Settles, M.L., Hunter, S.S., Hardwick, K.M., Ormond, L.,
1763		Sousa, V.C., Jensen. J.D., Rosenblum, E.B., The population genomics of rapid
1764		adaptation: disentangling signatures of selection and demography in white sands
1765		<i>lizards</i> ,. Molecular ecology, 2016. 25 : p. 306-323.
1766	150.	Sousa, V., Hey, J., Understanding the origin of species with genome-scale data:
1767		modelling gene flow. Nature reviews Genetic, 2013. 14: p. 404-414.
1768	151.	Loewe, W.H., Allendorf, F.W., What can genetics tell us about population
1769		connectivity? Molecular ecology, 2010. 19: p. 3038-3051.

1770 1771 1772	152.	Baco, A.R., Etter, R.J., Ribeiro, P.A., von der Heyden, S., Beerli, P., Kinlan, B.P., <i>A</i> synthesis of genetic connectivity in deep-sea fauna and implications for marine reserve design. Molecular Ecology. 2016. 25 (14): p. 3276-3298
1772	152	Vrijenbook P.C. Canatia diversity and connectivity of deep see hydrothermal yent
1774	155.	weten on ulations Molecular ecology 2010 10 : p. 4201 4411
1//4	154	metapopulations. Molecular ecology, 2010. 19. p. 4591–4411.
1776	154.	Boschen, K.E., Rowden, A.A., Clark, M.R., Gardner, J.P.A., Limitations in the use of
1//6		archived vent mussel samples to assess genetic connectivity among Seafloor Massive
1///		Sulfide deposits: a case study with implications for environmental management.
1//8		Frontiers in Marine Science 2(105). [doi: 10.3389/fmars.2015.00105], 2016. 2(105).
1779	155.	Teixeira, S., Cambon-Bonavita, MA. Serra o, E.A., Desbruyeres, D., Arnaud-Haond,
1780		S., Recent population expansion and connectivity in the hydrothermal shrimp
1781		<i>Rimicaris exoculata along the Mid-Atlantic Ridge</i> . Journal of Biogeography, 2010: p.
1782		1-11.
1783	156.	Beedessee, G., Watanabe, H., Ogura, T., Nemoto, S., Yahagi, T., Nakagawa, S.,
1784		Nakamura, K., Takai, K., Koonjul, M., Marie, D.E.P, High Connectivity of Animal
1785		Populations in Deep-Sea Hydrothermal Vent Fields in the Central Indian Ridge
1786		Relevant to Its Geological Setting. Plos one, 2013. 8(12): p. e81570.
1787	157.	Teixeira, S., Serra ^o , E.A., Arnaud-Haond, S., Panmixia in a Fragmented and
1788		Unstable Environment: The Hydrothermal Shrimp Rimicaris exoculata Disperses
1789		Extensively along the Mid-Atlantic Ridge. PLoS ONE 2012. 7(6): p. e38521.
1790	158.	Gollner, S., Stuckas, H., Kihara, T.C., Laurent, S., Kodami, S., Martinez Arbizu, P.,
1791		Mitochondrial DNA analyses indicate high diversity, expansive population growth and
1792		high genetic connectivity of vent copepods (Dirivultidae) across different oceans PLoS
1793		ONE, 2016. 11 (10): p. e0163776.
1794	159.	Hilário, A., Metaxas, A., Gaudron, S.M., Howell, K.L., Mercier, A., Mestre, N.C.,
1795		Ross, R.E., Thurnherr, A.M., Young, C., Estimating dispersal distance in the deep
1796		sea: challenges and applications to marine reserves. Frontiers in Marine Science,
1797		2015. 2 (6): p. 1-14.
1798	160.	Tolstov, M., Cowen, J.P., Baker, E.T., Fornari, D.J., Rubin, K.H., Shank, T.M.,
1799		Waldhauser, F., Bohnenstiehl, D.R., Forsyth, D.W., Holmes, R.C., Love, B., Perfit,
1800		M.R., 8 Weekly, R.T., Soule, S.A., Glazer, B., A sea-floor spreading event captured by
1801		<i>seismometers</i> . Science, 2006, 314 ; p. 1920-1922.
1802	161	Watson R. Morato T. Exploitation patterns in seamount fisheries: a preliminary
1803	1011	analysis in Seamounts: Biodiversity and Fisheries. T. Morato, Pauly D. Editor
1804		2004: Fisheries Centre Research Report 12(5)
1805	162	Clark MR Deen-sea seamount fisheries: A review of global status and future
1806	102.	prospects Latin American Journal of Aquatic Research 2009 37 (3): p 501-512
1807	163	Norse F A Brooke S Cheung WWI Clark MR Ekeland I Froese R
1808	105.	Gierde K M Haedrich R I Hennell S S Morato T Morgan I F Pauly D
1800		Sumaila P Watson R Sustainability of deep sea fisheries Marine Policy 2012
1810		36 (2): p. 307-320
1010	164	JU (2). p. 507-520. Ditabar T I Clark M P. Morata T. Watson P. Sagmount fisheries: Do they have a
1011	104.	future? Occomposition provide a statistic future? Occomposition of the statistic future?
1012	165	Debarts C.M. Deen imaget, the riging tell of fishing in the deen son Trends in
1013	105.	Evolution 2002 17(5): n 242 245
1014	166	Ecology & Evolution, 2002. 17(5): p. 242-245.
1815	100.	Bannon, S., Hamel, JF., Warenam, V.E., Mercler, A., <i>Deep cola-water corals as</i>
1017	177	nurseries jor jish iarvae. Front Ecol Environ, 2012. 10(7): p. 351-356.
1010	10/.	D Ongma, G., Maiorano, P., Sion, L., Giove, A., Capezzuto, F., Carlucci, R., Tursi,
1818		A., Effects of aeep-water coral banks on the abundance and size structure of the
1819		megajauna in the Meatterranean Sea. Deep-Sea Kesearch Part II, 2010. 57: p. 397-
1820		411.

- 1821 168. Pham, C.K., Vandeperre, F., Menezes, G., Porteiro, F., Isidro, F., Morato, T., *The*1822 *importance of deep-sea vulnerable marine ecosystems for demersal fish in the Azores.*1823 Deep-Sea Research I 2015. 96(80-88).
- 1824 169. Kaiser, M.J., Clarke, K.R., Hinz, H., Austen, M.C.V., Somerfield, P.J., Karakassis, I.,
 1825 *Global analysis of response and recovery of benthic biota to fishing.* marine Ecology
 1826 Progress Series, 2006. **311**: p. 1-14.
- 1827170.Clark, M.R., Tittensor, D. P. , An index to assess the risk to stony corals from bottom1828trawling on seamounts. Marine Ecology 2010. **31**: p. 200-211.
- 1829 171. Roark, E.B., Guilderson, T.P., Dunbar, R.B., Ingram, B.L., *Radiocarbon-based ages*1830 *and growth rates of Hawaiian deep-sea corals.* . marine Ecology Progress Series,
 1831 2006. **327**: p. 1-14.
- 1832 172. Fallon, S.J., Threser, R.E., Adkins, J., Age and growth of the cold-water scleractinian
 1833 Solenosmilia variabilis and its reef on SW Pacific seamounts. Coral Reefs, 2014. 33:
 1834 p. 31-38.
- 1835 173. Althaus, F., Williams, A., Schlacher, T.A., Kloser, R.J., Green, M.A., Barker, B.A.,
 1836 Bax, N.J., Brodie, P., Schlacher-Hoenlinger, M.A., *Althaus, F., Williams, A.,*1837 Schlacher, T.A., Kloser, R.J., Green, M.A., Barker, B.A., Bax, N.J., Brodie, P. and
 1838 Schlacher-Hoenlinger, M.A., 2009. Impacts of bottom trawling on deep-coral
 1839 ecosystems of seamounts are long-lasting. Marine Ecology Progress Series, 2009.
 1840 397: p. 279-294.
- 1841 174. Williams, A., Schlacher, T.A, Rowden, A.A., Althaus, F., Clark, M.R., Bowden, D.A.,
 1842 Stewart, R., Bax, N.J., Consalvey, M., Kloser, R.J., Seamount megabenthic
 1843 assemblages fail to recover from trawling impacts. Marine Ecology, 2010. 31: p. 1831844 199.
- 1845
 175. Watson, R., Morato, T., *Exploitation patterns in seamount fisheries: a prelimary*1846
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847
 1847</li
- 1848
 176. Bluhm, H., *Re-establishment of an abyssal megabenthic community after experimental physical disturbance of the seafloor*. Deep-Sea Research II, 2001. 48: p. 3841-3868.
- 1850 177. Borowski, C., *Physically disturbed deep-sea macrofauna in the Peru Basin, southeast*1851 *Pacific, revisited 7 years after the experimental impact.* Deep-Sea Research II, 2001.
 1852 48: p. 3809-3839.
- 1853 178. Borowski, C., Thiel, H., , *Deep-sea macrofaunal impacts of a large-scale physical*1854 *disturbance experiment in the Southeast Pacific.* . Deep-Sea Research Part II: Topical
 1855 Studies in Oceanography, 1998. 45: p. 55-81.
- 1856 179. Vopel, K., Thiel, H., *Abyssal nematode assemblages in physically disturbed and*1857 *adjacent sites of the eastern equatorial Pacific.* Deep-Sea Research part II, 2001. 48:
 1858 p. 3795-3808.
- 1859 180. Kitazato, H., Okamoto, T., , *Responses of foraminiferal distribution in JET* 1860 *preliminary results*. Proceedings of International Symposium on Environmental
 1861 Studies for Deep-Sea Mining, Tokyo, Japan, November 20-21, 1997: p. 317-320.
- 1861 Studies for Deep-Sea Winnig, Tokyo, sapar, November 20-21, 1997. p. 517-520.
 1862 181. Shirayama, Y., Fukushima, T., *Responses of a meiobenthos community to rapid*1863 *resedimentation*. Proceedings of International Symposium on Environmental Studies
- 1864 for Deep-Sea Mining, Tokyo, Japan, November 20-21, 1997: p. 1187-196.
 1865 182. Radziejewska, T., *Responses of deep-sea meiobenthic communities to sediment*1866 *disturbance simulating effects of polymetallic nodule mining*. International Review of
 1867 Hydrobiology, 2002. 87(4): p. 457-477.
- 1868 183. Trueblood, D.D., Ozturgut, E., , *The Benthic Impact Experiment: A Study of the*1869 *Ecological Impacts of Deep Seabed Mining on Abyssal Benthic Communities.*.
 1870 Seventh (1997) International Offshore and Polar Engineering Conference.

1871 1872		International Society of Offshore and Polar Engineers, Honolulu, USA, May 25-30
1873	184	Radziejewska T. Stovanova V. Abyssal epibenthic megafauna of the Clarion-
1874	101.	Clipperton area (NF Pacific): changes in time and space versus anthropogenic
1875		environmental disturbance Oceanological Studies Gdansk 2000 29 (2): p 83-101
1876	185	Mahatma R Meiofauna Communities of the Pacific Nodule Province: Abundance
1877	105.	Diversity and Community Structure 2009 Carl yon Ossietzky Universitaet
1878		Oldenburg n 142
1879	186	Miliutin D.M. Miliutina M.A. Martinez Arbizu P. Galeron I. Deen-sea nematode
1880	100.	assemblage has not recovered 26 years after experimental mining of polymetallic
1881		nodulas (Clarion Clipperton Fracture Zone, Tropical Fastern Pacific) Deep See
1887		Pasarch I 2011 58 p. 885, 807
1002	197	Ingola P.S. Angari 7 A. Dathod V. Podriguos N. Pasnonsa of Maiofauna to
1005	10/.	Ingole, B.S., Alisali, Z.A., Kalilou, V., Kouligues, N., Response of Metojuuna to
1004		Immediate Beninic Disturbance in the Central Indian Ocean Basin Matthe
1003	100	Georesources & Georeciniology, 2000. 16(5): p. 205-272.
1880	188.	Ingole, B.S., Pavitnran, S., Ansari, Z.A., <i>Restoration of aeep-sea macrofauna after</i>
1887		simulated benthic disturbance in the Central Indian Basin. Marine Georesources &
1888	100	Geotechnology, 2005. 23(4): p. 267-288.
1889	189.	Norkko, A., Rosenberg, R., Thrush, S.F., Whitlatch, R.B., Scale- and intensity-
1890		dependent disturbance determines the magnitude of opportunistic response. J Exp Mar
1891	100	Biol Ecol, 2006. 330 (1): p. 195-207.
1892	190.	Ahnert, A., Schriever, G., Response of abyssal Copepoda Harpacticoida (Crustacea)
1893		and other meiobenthos to an artificial disturbance and its bearing on future mining
1894	101	for polymetallic nodules. Deep-Sea Research Part II, 2001. 48: p. 17-18.
1895	191.	Levin, L.A., Mengerink, K., Gjerde, K.M., Rowden, A.A., Van Dover, C.L., Clark,
1896		M.R., Ramirez-Llodra, E, Currie, B., Smith, C.R., Satoi, K.N., Galloi, N., Sweetman,
1897		A.K., Lily, H., Armstrong, C.W., Brider, J., Defining "serious harm" to the marine
1898		environment in the context of deepseabed mining. Marine Policy, 2016. 74: p. 245–
1899		259.
1900	192.	Mullineaux, L.S., Butman, C.A., Recruitment of encrusting benthic invertebrates in
1901		boundary-layer flows: A deep-water experiment on Cross Seamount. Limnology and
1902		Oceanography, 1990. 35 (2): p. 409-423.
1903	193.	Nakajima, R., Yamamoto, H., Kawagucci, S., Takaya, Y., Nozaki, T., Chen, C., et al.,
1904		Post Drilling Changes in Seabed Landscape and Megabenthos in a Deep-Sea
1905		Hydrothermal System, the Iheya North Field, Okinawa Trough. PLoS ONE, 2015.
1906		10 (4): p. e0123095.
1907	194.	Fukushima, T., Okamatsu, A., , Current issues in seafloor massive sulfide mining
1908		development., in The Twentieth International Offshore and Polar Engineering
1909		Conference, ISOPE, Editor. 2010.
1910	195.	Schlacher, T.A., Baco, A.R., Rowden, A.A., O'Hara, T.D., Clark, M.R., Kellet, C.,
1911		Dower, J.F., Seamount benthos in a cobalt-rich crust region of the central Pacific:
1912		conservation challenges for future seabed mining. Diversity and Distributions, 2013:
1913		p. 1-12.
1914	196.	Miller, K., Williams, A., Rowden, A.A., Knowles, C., Dunshea, G., , Conflicting
1915		estimates of connectivity among deep-sea coral populations Marine Ecology, 2010.
1916		31 : p. 144-157.
1917	197.	Smith, P.J., McVeagh, S.M., Mingoia, J.T., France, S.C., Mitochondrial DNA
1918		sequence variation in deep-sea bamboo coral (Keratoisidinae) species in the
1919		southwest and northwest Pacific Ocean. Marine Biology, 2004. 144: p. 253-261.

1920	198.	Smith, P.J., McMillan, P.J., Bull, B., McVeagh, S., Gaffney, P.M., Chow, S., Genetic
1921		and meristic variation in black and smooth oreos in the New Zealand EEZ. New
1922		Zealand Journal of Marine and Freshwater Research 2002. 36(4): p. 737-750.
1923	199.	Packmor, J.F., Mueller, F., George, K.H., Oceanic islands and seamounts as staging
1924		posts for Copepoda Harpacticoida (Crustacea) - Shallow-water Paramesochridae
1925		Lang, 1944 from the North-East Atlantic Ocean, including the (re-)description of
1926		three species and one subspecies from the Madeiran Archipelago. Progress in
1927		Oceanography 2015. 131: p. 59-81.
1928	200.	Baco, A.R., Shank, T.M., Population genetic structure of the Hawaiian precious coral
1929		Corallium lauuense (Octocorallia: Coralliidae) using microsatellites., in
1930		ColdwaterCorals and Ecosystems, A. Freiwald, Roberts, J.M., Editor. 2005, Springer-
1931		Verlag, Berlin, Heidelberg. p. 663–678
1932	201.	Smolenski, A.J., Ovenden, J.R., White, R.W.G., Evidence of stock separation in
1933		Southern Hemisphere (Hoplostethus atlanticus, Trachichyidae) from restriction-
1934		enzyme analysis of mitochondrial DNA. Marine Biology, 1993. 116: p. 219-230.
1935	202.	Stockley, B.M., Menezes, G., Pinho, M.R., Rogers, A.D., Genetic population
1936		structure of the black-spot sea bream (Pagellus bogaraveo) from the NE Atlantic
1937		Marine Biology, 2005. 146 : p. 793-804.
1938	203.	Richer de Forges, B., Koslow, J.A., Poore, G.C.B., Richer de Forges, B., J.A. Koslow,
1939		and G.C.B. Poore. 2000. Diversity and endemism of the benthic seamount fauna in the
1940		southwest Pacific. Nature, 2000. 405: p. 944-947.
1941	204.	Samadi, S., Bottan, L., Macpherson, E., De Forges, B.R., Boisselier, M.C., Seamount
1942		endemism questioned by the geographic distribution and population genetic structure
1943		of marine invertebrates. Marine Biology, 2006. 149(6): p. 1463-1475.
1944	205.	Parker, T., Tunnicliffe, V., Dispersal strategies of the biota on an oceanic seamount:
1945		<i>implications for ecology and biogeography.</i> The Biological Bulletin, 1994. 187 (3): p.
1946		336-345.
1947	206.	Shank, T.M., Seamounts: deep-ocean laboratories of faunal connectivity, evolution,
1948		and endemism. Oceanography, 2010. 23(1): p. 108-122.
1949	207.	McClain, C.R., Lundsten, L., Ream, M., Barry, J., De Vogelaere, A., Endemicity,
1950		biogeography, composition and community structure on a Northeast Pacific
1951		seamount. PLoS ONE, 2009. 4(1): p. e4141.
1952	208.	Clark, M.R., Rowden, A.A., Schlacher, T.A., Guinotte, J., Dunstan, P.K., Williams,
1953		A., O'Hara, T.D., Watling, L., Niklitschek, E., Tsuchida, S., <i>Identifying Ecologically</i>
1954		or Biologically Significant Areas (EBSA): A systematic method and its application to
1955		seamounts in the South Pacific Ocean. Ocean & Coastal Management 2014. 91: p. 65-
1956		79.
1957	209.	Singh, R., Miljutin, D.M., Vanreusel, A., Radziejewska, T., Miljutina, M.M.,
1958		Tchesunov, A., Bussau, C., Galtsova, V., Martinez Arbizu, P., Nematode communities
1959		inhabiting the soft deep-sea sediment in polymetallic nodule fields: do they differ from
1960		those in the nodule-free abyssal areas? Marine Biology Research, 2016. 12(4).
1961	210.	Fukushima, T., Shirayama, Y., Kuboki, E., The Characteristics of Deep-Sea Epifaunal
1962		Megabenthos Community Two Years After an Artificial Rapid Deposition Event. Publ
1963		Seto Mar Biol Lab, 2000. 39(1) : p. 17-27.
1964	211.	Blake, J.A., Maciolek, N.J., Ota, A.Y., Williams, I.P., Long-term benthic infaunal
1965		monitoring at a deep-ocean dredged material disposal site off Northern California.
1966		Deep-Sea Research II, 2009. 56: p. 1775-1803.
1967	212.	Swaddling, A., Environmental Management Considerations for Deep Sea Mining.
1968		Mining, 2016(March 4).
1969		

Knowledge gap	Problem	Potential Solution
Mining operations	Unknown spatial and temporal scale and nature of mining operations	Provide expected scales and conditions of mining operations
Sediment plumes	Unknown scale of sediment plume (particle size, toxicity, dispersion, temperature)	Provide expected scales and conditions of sediment plumes
Recovery processes	Observed recovery patterns are from small-scale disturbance studies and different areas	Perform test-mining to investigate effects
Lack of methodological standardization	Lack hinders intercalibration of data sets even within same regions	Develop detailed standardized sampling protocols (sample number, size, area, timeframe)
Lack of samples from parts of license areas	Impedes estimation of how representative existing data are	Standardized sampling in license areas
Lack of samples from potential protected areas	Impedes whether recolonization can take place from designated preservation areas	Standardized sampling in potential protected areas
Faunal variability across spatial and temporal scales	Difficulty to define pre-disturbance conditions and monitor change	Standardized sampling before and after (test) mining, obtain long-term datasets
Undescribed species/lack of genetic data	Hinders comparison between data sets and evaluation of species range sizes	Describe species including genetic codes (material deposits)
Biogeography and endemicity of fauna	Areas that may host source populations are often unknown	Study biogeography and endemicity (also outside areas of mining interest)
Limited taxon sampling	Biased data on biogeography, connectivity and recovery potential	Study species of different sizes and life traits
Reproductive biology and settlement cues	Larvae and adults likely respond different to stress and disturbance	Study biology of species
Resistance of deep-sea species to toxicity	Resistance of deep-sea species to toxic plumes may not be estimated based on shallow-water species	Study effects of toxicity on deep-sea species and shallow-water species to determine suitability of shallow-water taxa as ecotoxicological proxies for deep-sea taxa
Cumulative effects	Cumulative effects may reduce resilience and may act synergistically	Consider cumulative effects