Chemical contaminants (trace metals, persistent organic pollutants) in albacore tuna from western Indian and south-eastern Atlantic Oceans: Trophic influence and potential as tracers of populations *

Chouvelon Tiphaine 1,*, Brach-Papa Christophe 1,2, Auger Dominique 1, Bodin Nathalie 3, Bruzac Sandrine 1, Crochet Sylvette 1, Degroote Maxime 3, Hollanda Stephanie J. 4, Hubert Clarisse 1, Knoery Joel 1, Munsch Catherine 5, Puech Alexis 6, Rozuel Emmanuelle 1, Thomas Bastien 1, West Wendy 7, Bourjea Jerome 8, Nikolic Natacha 6,9

1 IFREMER, Unite Biogeochim & Ecotoxicol BE, LBCM, Rue Ile Yeu,BP 21105, F-44311 Nantes 03, France.
2 IFREMER, Unite Littoral, LER PAC, Zone portuaire Bregailon, BP 330, F-83507 La Seyne Sur Mer, France.
3 IRD, UMR MARine Biodivers Exploitat & Conservat MARBEC, Victoria, Seychelles.
4 SFA, Victoria, Mahe, Seychelles.
5 IFREMER, Unite Biogeochim & Ecotoxicol BE, LBCO, Rue Ile Yeu,Bp 21105, F-44311 Nantes 03, France.
6 IFREMER, DOI, Rue Jean Bertho,BP 60, F-97822 La Port, La Reunion, France.
7 Dept Agr Forestry & Fisheries, Private Bag X2, ZA-8012 Cape Town, South Africa.
8 IFREMER, UMR MARine Biodivers Exploitat & Conservat MARBEC, Ave Jean Monnet,BP 171, F-34203 Sete, France.
9 ARBRE, F-97460 St Paul, La Reunion, France.

* Corresponding author : Tiphaine Chouvelon, email address : tiphaine.chouvelon@ifremer.fr

* Funding sources: This work was conducted in the framework of the GERMON project “N°759/DMSOI/2013” funded by the European Fisheries Funds EU FEP 2013–2015 and IFREMER.

Abstract :

Albacore tuna (Thunnus alalunga) is a highly commercial fish species harvested in the world’s Oceans. Identifying the potential links between populations is one of the key tools that can improve the current management across fisheries areas. In addition to characterising populations’ contamination state, chemical compounds can help refine foraging areas, individual flows and populations’ structure, especially when combined with other intrinsic biogeochemical (trophic) markers such as carbon and nitrogen stable isotopes. This study investigated the bioaccumulation of seven selected trace metals – chromium, nickel, copper (Cu), zinc (Zn), cadmium (Cd), mercury (Hg) and lead – in the muscle of 443 albacore tunas, collected over two seasons and/or years in the western Indian Ocean (WIO: Reunion Island and Seychelles) and in the south-eastern Atlantic Ocean (SEAO: South Africa). The main factor
that explained metal concentration variability was the geographic origin of fish, rather than the size and the sex of individuals, or the season/year of sampling. The elements Cu, Zn, Cd and Hg indicated a segregation of the geographic groups most clearly. For similar sized-individuals, tunas from SEAO had significantly higher concentrations in Cu, Zn and Cd, but lower Hg concentrations than those from WIO. Information inferred from the analysis of trophic markers (δ13C, δ15N) and selected persistent organic pollutants, as well as information on stomach contents, corroborated the geographical differences obtained by trace metals. It also highlighted the influence of trophic ecology on metal bioaccumulation. Finally, this study evidenced the potential of metals and chemical contaminants in general as tracers, by segregating groups of individuals using different food webs or habitats, to better understand spatial connectivity at the population scale. Limited flows of individuals between the SEAO and the WIO are suggested. Albacore as predatory fish also provided some information on environmental and food web chemical contamination in the different study areas.

Graphical abstract

Highlights

► 443 albacore tunas were analysed for their muscle concentrations in trace metals. ► Cu, Zn, Cd and Hg were the elements that most segregated the different groups. ► Trophic markers and organic contaminants confirmed the segregation observed. ► Differences in trace metal bioaccumulation were linked to fish trophic ecology. ► Inorganic elements can trace populations exploiting different food webs.

Keywords: Top predator, Bioaccumulation, Inorganic elements, Organic contaminants, Stable isotopes, Intrinsic markers
1. Introduction

Trace metals are inorganic elements that are naturally present on Earth. They have been used over a long time due to their properties such as mechanical resistance, electric or thermic conductivity, or biocidal properties. Since the industrial age, their increasing use in human activities has led to continuous release and contamination of all environmental compartments. Thus, trace metals are currently released into the environment from both natural (e.g., volcanism) and anthropogenic sources (e.g., industrial, urban, or agricultural). They reach the ocean through river inputs and atmospheric depositions, the atmospheric pathway at times transporting trace metals very far from the emission source (Mason, 2013). Some trace metals are recognized to be essential for organisms and form the basis of biochemicals, such as enzymes. However, they perform optimally in a relatively low range of concentrations and become either deficient or toxic at very low or high concentrations (e.g., copper (Cu), zinc (Zn)). Alternatively, some elements have no known biological role and are recognized for their toxicity towards most organisms (e.g., cadmium (Cd), mercury (Hg), lead (Pb)), even at low concentrations (Mason, 2013). Taxa- and species-specific regulation mechanisms of metals have been described for both essential and non-essential elements, influencing their storage or elimination by organisms (Wang and Rainbow, 2010). Their transfer between biogeochemical compartments, their bioaccumulation in organisms and/or biomagnification in food webs finally depend on the speciation of elements, which determines their bioavailability in both abiotic (habitat) and biotic (food sources) environments of organisms (Neff, 2002; Rainbow, 2002). Contrary to trace metals, persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and dichlorodiphenyl-trichloroethane (DDT) are almost exclusively from anthropogenic origin. They are manufactured, and are used widely by commercial sectors such as industry and agriculture, which released them into the environment. POPs volatilize easily and can be transported through the atmosphere over wide distances, and deposited in areas far from their point of emission (Jones and de Voogt, 1999; Bogdal et al., 2013). Moreover, these chemicals or their metabolites have a strong persistence in ecosystems, and they are well documented to biomagnify in food webs and to be toxic for organisms (e.g., Verreault et al., 2008).

In aquatic organisms and more specifically in marine top predators such as marine mammals, seabirds or large pelagic fish, the trophic pathway represents the main pathway for the intake of both trace metals and POPs (e.g., Fisk et al., 2001; Wang, 2002; Mathews and Fisher, 2009). Individual trophic ecology can thus largely affect the contaminant concentrations measured in a given organism. This includes feeding area, trophic level, or the type of prey consumed ( Lahaye et al., 2005; Choy et al., 2009; Ramos et al., 2013; Teff er et al., 2014), some prey accumulating more contaminants than others, for instance (e.g., Bustamante et al., 1998; Pulster et al., 2005). Understanding the mechanisms leading to bioaccumulation of contaminants and/or interpreting contaminant concentrations measured in biota thus requires a good knowledge of the consumers’ feeding habits and ecology.
Over the last decades, stable isotope analysis (SIA) of carbon ($\delta^{13}$C) and nitrogen ($\delta^{15}$N) in biological tissues has largely developed to study the trophic ecology of marine organisms such as top predators (Kelly et al., 2000; Newsome et al., 2010). It effectively represents an alternative or complementary tool to the traditional methods of dietary studies such as the analysis of stomach contents. $\delta^{13}$C values are generally considered a conservative tracer of the primary producer at the base of the food web supporting consumers, and consequently a tracer of their foraging habitat (France, 1995; Hobson, 1999). Alternatively, $\delta^{15}$N values are generally used as a proxy of their trophic position (Post, 2002), although the interpretation of $\delta^{15}$N values should be food web-specific due to high variability in $\delta^{15}$N baseline values between ecosystems (Sherwood and Rose, 2005; Ménard et al., 2007; Chouvelon et al., 2012a).

More recently, the combined use of parameters (i.e. SIA, fatty acid profiles, chemical contaminants including metals and/or POPs, etc.) measured in consumers’ tissues as ecological tracers of marine predators’ trophic position, dietary preferences or foraging areas, has drastically increased (e.g., Fisk et al., 2002; Iverson et al., 2004; Lahaye et al., 2005; Krahn et al., 2007; Mendez-Fernandez et al., 2013, 2017; Cresson et al., 2015). Based on the assumption “I am what I eat”, such ecological tracers are used to encompass the inherent difficulty of direct at-sea observations for these species. When combined to other tools such as geolocation devices and tags, or biological data such as genetic and morphological data, they may also be helpful in unravelling top predators’ foraging strategies over time, spatial dynamics (migrations), or the use of different resources or habitats by the different populations of a given species (Ramos and González-Solis, 2012; Chouvelon et al., 2014; Cresson et al., 2015). To the best of our knowledge, such a combined approach has not yet been used in tunas, while these top predator fish represent an important commercially species harvested in the world’s Oceans.

The commercial catch of albacore tuna (*Thunnus alalunga*) is the highest globally among the temperate tuna species and has contributed around 6% by weight of global tuna catches over the last decade (FAO, 2016). The state and the assessment of albacore stocks vary geographically. The estimated stock assessment has long been considered over-exploited in the South Atlantic Ocean (SAO), and not over-exploited in the Indian Ocean (IO) (ICCAT, 2016; IOTC, 2016), although large uncertainties remain (Guan et al., 2016) due to limited and low-quality data. Moreover, this species has been poorly studied in the IO in comparison with other Oceans (Nikolic et al., 2016). In the Pacific and Atlantic Oceans, the migration of albacore tunas between hemispheres is considered negligible (Nakamura, 1969; Lewis, 1990; Arrizabalaga et al., 2004), influenced by global intra-ocean circulation (e.g., oceanic gyres) that drives the oceanography of the northern and southern hemispheres. Due to the absence of such structures in the IO, albacore has been managed as one unique stock in this region (Chen et al., 2005), distributed between 5°N and 45°S. Additionally, the tip of South Africa has long been considered an impenetrable barrier for marine animals (Briggs, 1974). However, several recent studies have demonstrated that gene flow occurs between the SAO and western Indian Ocean (WIO)
for a number of species, including large vertebrates such as the green turtle (Bourjea et al., 2007), the scalloped hammerhead sharks (Duncan et al., 2006), and the tropical bigeye tuna (Durand et al., 2005).

The question of connectivity between these two oceans for the albacore tuna is still pending. Indeed, a significant amount of juveniles of this species are caught each year in South African waters below 30°S, and in the WIO between 30°S and 40°S. Assessing the origin and the fate of these southern juveniles, and the potential links (gene flows, individual migrations, etc.) that may exist between the SAO and WIO stocks is a crucial issue for sustainable management of albacore tunas. In addition, trace element data on the albacore tuna remain scarce (e.g., Das et al., 2000 in the north Atlantic; Chen et al., 2014 and Hisamichi et al., 2010 in the north Pacific; Storelli et al., 2002 in the Mediterranean Sea), and more specifically in the study areas (e.g., Bodin et al., 2017).

In this general context, the main objectives of the present study were: 1) to characterise the contamination in several trace metals of albacore tunas caught in the WIO (Reunion Island and Seychelles) and in the south-eastern AO (SEAO; South Africa); 2) to determine the main factors influencing the bioaccumulation of the selected inorganic elements in tunas (e.g., effects of size, sex, season/year of sampling, geographic origin and food webs exploited); 3) to assess the potential of these trace metals as biogeochemical tracers of albacore tuna populations; 4) to evaluate the input of SIA (i.e. δ13C and δ15N values, as trophic markers) and organic contaminants (i.e. selected POP ratios, as additional chemical tracers) for discriminating fish populations (i.e. do they corroborate, complement, or contradict the information provided by trace metals?). In addition, this study provides general information on the contamination state of the food webs supporting tunas in the different study areas.

2. Materials and methods

2.1. Sampling

A total of 443 albacore tunas were collected from June 2013 to July 2014 by commercial fisheries in three distinct areas in the WIO and the SEAO: 128 were caught by semi-industrial drifting longliners around La Réunion Island (REU), 118 by tuna purse-seine fisheries operating in Seychelles waters (SEY), and finally 197 by tuna pole fisheries in waters of South Africa (SA) (Fig. 1). Depending on the area considered, sampling was performed over two seasons (S1: austral summer November-December, i.e. potential reproduction season of tunas; S2: austral winter April-July, i.e. potential feeding period or post-reproduction period; Nikolic et al. 2016), and/or years (Y1: 2013; Y2: 2014), in order to account for the variability of environmental conditions and for the different life history traits of albacore tuna. All fishes analysed in the present study were already dead by the time of sampling.

For each individual, the fork length (from the tip of the snout to the fork of the tail, FL in cm) was recorded as well as the sex. Finally, around 15g of white muscle (without skin) were taken from the
dorsal musculature of each fish (sampled behind the head under the dorsal spine). All samples were frozen at –20°C, freeze-dried and ground into a fine powder until further chemical analyses.

2.2. Trace metal analysis

Trace metal analysis was performed on all muscle samples of albacore tuna (N = 443). Total Hg analyses were carried out individually with an Advanced Mercury Analyser (ALTEC AMA 254), directly on subsamples (10–100 mg) of homogenised dry muscle tissue (untreated powder). For Hg determination, the metal is evaporated by progressive heating up to 800°C, then held under an oxygen atmosphere for 3 min, and finally amalgamated on a gold net. Afterwards, the net is heated to liberate the collected Hg, which is finally measured by atomic absorption spectrophotometry. Hg analyses were run according to a thorough quality control programme including the analysis of a certified reference material (CRM) IAEA-142 (mussel homogenate; International Atomic Energy Agency/IAEA).

For the analysis of the six other inorganic elements (Chromium (Cr), Nickel (Ni), Cu, Zn, Cd and Pb), subsamples (~200 mg) of homogenised dry muscle tissue were first digested with a mixture of 65% HNO₃, H₂O₂ and milli-Q quality water, kept for a few hours at room temperature, and heated at 85°C on a heating block for 6h. After the mineralization process, each sample was completed with a known quantity of internal standards and diluted to 50 ml with milli-Q quality water. Samples were re-diluted when necessary before analyses. Elemental analyses were finally carried out by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS; Thermo X-Series I) and included the analysis of the two CRMs: IAEA-407 (whole fish homogenate; IAEA) and DOLT-3 (dogfish liver; National Research Council Canada).

Analytical performance details for the seven trace metals are summarized in Table 1. Metal concentrations are expressed in mg.kg⁻¹ dry mass (dm).

2.3. Analysis of additional tracers

From the total number of muscle samples of albacore collected for trace metal analysis, 335 were selected for SIA (96 from REU, 63 from SEY and 176 from SA), and 86 for POP analysis (43 from REU and 43 from SA).

SIA was performed according to the methods of Bodin et al. (2009) and Sardenne et al. (2016). Briefly, around 2 g of dried and ground samples were treated by an Accelerated Solvent Extraction system with dichloromethane. δ¹³C and δ¹⁵N were analysed together on dried lipid-free samples using a Delta V Advantage isotope ratio mass spectrometer interfaced to a Flash EA 1112 elemental analyser (Thermo Scientific). Analytical precision for both δ¹³C and δ¹⁵N was <0.15% based on replicate measurements of internal laboratory standards (acetanilide and peptone, Thermo Scientific).
Details for POP analysis are found in Munschy et al. (2016). The concentrations and profiles of 18 PCB congeners (namely, the 6 indicators congeners CB-28; -52; -101; -138; -153; -180, and the 12 dioxin-like congeners -77; -81; -105; -114; -118; -123; -126; -156; -157; -167; -169; -189) were determined together with DDT compounds (namely, \(p,p'\)-DDT and \(o,p'\)-DDD, and its main degradation products \(o,p'\)-DDD, \(p,p'\)-DDD, and \(p,p'\)-DDE).

### 2.4. Data treatment

Statistics were only applied on trace metals for which almost 80% of individuals presented raw concentrations above the limits of quantification (LQ). These elements are further called “elements >LQ”, and Pb and Ni were thus excluded from data treatment and statistical analyses (Table 1). All figures and statistics were performed using the software R version 2.15.2 (R Development Core Team, 2012), except the map of sampling locations (Fig. 1) that was done using ArcGIS software (www.arcgis.com).

In the case of POPs, whose detailed results were recently published (Munschy et al., 2016), only three ratios were considered here for comparison with trace metals, due to their ability to trace potential contamination sources:

- **Sum DDTs/Sum PCBs**, where “Sum PCBs” corresponds to the sum of the concentrations of the 18 PCB congeners identified in albacore muscle samples, and “Sum DDTs” to the sum of the two parent DDT compounds and their three main metabolites. This ratio can generally distinguish the influence of sources from agricultural origin (when largely >1) vs. sources from industrial origin (Yogui et al., 2003; Lailson-Brito et al., 2011).

- **\(p,p'\)-DDT/\(p,p'\)-DDE**. This ratio can be used as a tracer of the residence time and degree of degradation of DDT in the environment, and consequently to distinguish new vs. old DDT sources (Suárez et al., 2013).

- **\(o,p'\)-DDT/\(p,p'\)-DDT**. This ratio can trace the DTT origin (close to the technical mixture (0.2–0.3), or not; Kalantzi et al., 2001).

#### 2.4.1 Classical statistics

First, mean values in body sizes (FL), trace metal concentrations, \(\delta^{15}\)N and \(\delta^{13}\)C values and POP ratios were submitted to parametric Student t-tests or non-parametric Mann-Whitney-Wilcoxon tests to assess i) differences between males and females (within a given season/year and in a given area), and ii) differences between seasons/years (in a given area). Differences between geographic areas were checked using Kruskal-Wallis tests (KW) followed by multiple comparison tests with Holm’s adjustment method, because data never satisfied parametric conditions. All of the mean comparison tests were applied on raw data as well as size-normalised data (i.e. normalised to a 95cm FL individual) to account for the high variability in fish sizes between areas (Table 2). The level of significance for statistical analyses was always set at \(\alpha = 0.05\).
2.4.2 Generalized modelling

To further estimate the effect of potentially confounding explanatory variables on the variability of trace metal concentrations (i.e. body size, trophic position (through δ¹⁵N), sex, season/year of sampling, and area), generalized modelling (considering each trace element separately) was applied using the mgcv package in R. Data effectively showed a marked departure from normality in most cases, preventing the application of multiple linear regressions.

Assuming potential migrations of fishes between areas and seasons and/or years, the two factors “area” and “season/year of sampling” were not considered separately in the models, as it could have been done in the case of true “nested data” (e.g., three areas considered, in which two seasons and/or years have been sampled). Indeed, with regard to potential flows of individuals between areas and seasons, S1 and S2 in the same area may be totally disconnected. The combination “Area/Season and/or Year of sampling” (Area/S-Y) was thus considered a single factor in the models, including 6 modalities: REU/S1, REU/S2, SEY/S2-Y1, SEY/S2-Y2, SA/S1 and SA/S2. FL (when considering size-related trends; N =443 individuals) or δ¹⁵N values (when considering trophic position-related trends; N =335) were treated as the continuous explanatory variable in the models, while Sex and Area/S-Y were treated as categorical explanatory variables and/or added as an interaction term (for Area/S-Y).

Generalized Additive Models (GAMs), representing flexible non-parametric generalizations of (multiple) linear regressions, were first tested. They can capture and model both linear and complex non-linear relationships (Zuur, 2012), and as such they are said to be “data-driven” methods. GAMs were fitted on raw concentrations, with a Gamma distribution and a log link function. Applying GAMs on log-transformed concentrations directly (with a Gaussian distribution and an identity link function) substantially improved the models, as it is generally the case when dealing with contaminant data such as trace metals (e.g., Pierce et al., 2008; Mendez-Fernandez et al., 2013; Chouvelon et al., 2014). However, as the modelled trends with FL or δ¹⁵N appeared to be linear, Generalized Linear Models (GLMs) were finally applied. As in the case of GAMs, GLMs were first fitted on raw concentrations with a Gamma distribution and a log link function. However, Gaussian GLMs on log-transformed concentrations with an identity link function also gave slightly better results and were thus kept.

Differences between sexes were tested in the first models, but since there was no effect for most of the trace metals and conditions (see also boxplots and classical statistics; Fig. 2), we removed the factor Sex from the final GLMs. The general forms of the models performed for each trace metal were thus:


Results (fitted values) of the models were plotted on observed (log-transformed) data. Final models parameters (estimates, p-values, etc.) are given in supplementary material (Appendix A and Table A.1). For each model, we retained the variables that improved the relative goodness of fit in the GLM (most parsimonious model) based on the Akaike Information Criterion (AIC). When the AIC
was not significantly different between the last two nested models, the simplest model was preferred (Zuur et al., 2007). Finally, a model validation was systematically applied by checking normality and homogeneity in model residuals, with no violation of independence (Zuur et al., 2007; Zuur, 2012). Models not complying with all of these assumptions were not presented (i.e. for Cd). The percentage of total deviance explained (DE) by each final model was calculated as follows: 

\[
\text{Explained deviance} = ((\text{Null model deviance} - \text{final model residual deviance})/\text{Null model deviance}) \times 100
\]

with the null model that only contained the intercept terms (Mendez-Fernandez et al., 2013).

2.4.3 Multivariate analyses

Different principal component analyses (PCAs) were performed to: i) identify relationships among the different types of chemical components analysed and included in the different PCAs (trace metals, and/or trophic markers (δ^{13}C, δ^{15}N), and POP ratios); ii) apprehend global profiles of contamination of the different groups of individuals analysed (i.e. contaminants considered together, and not separately as in previous data treatment). Moreover, these PCAs assessed of the potential of individual variables and/or of the combination of variables to trace the different groups of individuals. As such, the PCA 1 included all individuals for which trace metals were analysed (N=443); the PCA 2 included individuals for which both trace metals and trophic markers (δ^{13}C and δ^{15}N values) were analysed (N=335); and the PCA 3 included individuals analysed for trace metals and POP ratios (N=86). All PCAs were based on correlation matrices and normalised data for each variable included (i.e. data centred and divided by the standard deviation).

Finally, to further evaluate the potential of trace metals and/or their combination with trophic markers (i.e. larger datasets, and datasets including the three areas) in discriminating individuals from different geographic origin, discriminant analyses (DAs) were performed. DAs were also performed on datasets that included only the two close areas, REU and SEY in the WIO, to evaluate how they discriminate. As for PCAs, DAs used normalised data. Correlation coefficients between the discriminant functions and each of the original variables included in DAs – also called canonical correlation coefficients (ccc) – were used to assess the relative importance of each variable for the discrimination of individuals along the axes (Zuur et al., 2007).

3. Results

Characteristics of the albacore tunas considered in this study and the mean trace metal concentrations (± standard deviation) measured in the muscle are given in Table 2. 100% of individuals from REU and 88% from SEY had FL ≥90 cm (min–max: 90–113 cm and 82–108 cm for REU and SEY, respectively), and females were significantly smaller than males (p <0.001 for both REU/S1 and REU/S2; p=0.022 and p =0.001 for SEY/S1-Y1 and SEY/S2-Y2, respectively). Individuals from SA (min–max: 74–118 cm FL) were smaller on average than those from REU and SEY (Table 2), with
most of the individuals having FL <90 cm (72% of individuals) and the majority of the fish with
FL ≥90 cm that were captured in S2 (Table 2). No significant size difference between sexes was found
for SA individuals (p = 0.608 and p = 0.798 for SA/S1 and SA/S2, respectively).
Overall, Cr individual concentrations varied between 0.32 mg.kg⁻¹ dm and 0.74 mg.kg⁻¹ dm (min–
max), while the range of values was <0.03–0.28 mg.kg⁻¹ dm for Ni (i.e. <LQ–0.28 mg.kg⁻¹ dm), 0.38–
3.67 mg.kg⁻¹ dm for Cu, and 6.7–77.5 mg.kg⁻¹ dm for Zn. For non-essential elements, concentrations
varied between <0.05 mg.kg⁻¹ dm and 1.55 mg.kg⁻¹ dm for Cd, 0.386–4.665 mg.kg⁻¹ dm for Hg, and
<0.05–0.29 mg.kg⁻¹ dm for Pb (Table 2).

3.1. Differences in trace elements between sexes, seasons/years, and areas

Among the five elements analysed >LQ, with the raw data considered, significant differences between
sexes were only observed in one case for Zn (with females on average presenting slightly higher
values than males in REU/S2) and in some cases for Hg (slightly higher concentrations measured in
males than in females in REU/S2, SEY/S2-Y2, SA/S1). Some differences were also observed for Cr
(with females presenting slightly higher values than males) when FL-normalised data were used
(Table 2; Fig. 2). Differences between seasons/years of sampling were more often significant than
between sexes and were very similar whether raw or FL-normalised data were used, although no
general pattern appeared. Indeed in REU, there was no significant difference between seasons for Hg,
but significantly lower concentrations in Cr, Cu, Zn and Cd were found in individuals from S1 than in
individuals from S2. In SEY, significantly lower concentrations in Cr and Hg, associated with slightly
higher concentrations in Cu, Zn and Cd were found in individuals captured the first year (S2-Y1)
relative to those captured at the second year (S2-Y2). Finally in SA, significantly higher
concentrations in Cu, Zn and Cd, along with significantly lower concentrations in Cr and Hg were
measured in individuals from S1 compared with individuals from S2 (Table 2; Fig. 2). Concerning
geographical differences, for all elements except Cr, the significant differences observed also remained
similar whether raw or FL-normalised data were considered. Trace metal concentrations measured in
individuals from the three areas were always significantly different in Cu, Zn and Hg, in line with the
order of concentrations: SA > REU > SEY for Cu and Zn; and REU > SEY > SA for Hg. For Cd,
mean concentrations differed significantly only between individuals captured in the WIO and those
captured in the SEAO (i.e. similar and lower concentrations on average in REU and SEY vs. SA). Cr
showed no significant difference between areas when considering raw data, while the order of
concentrations was SA > REU > SEY when considering size-normalised data (Table 2; Fig. 2).
Finally, although statistical tests could not be applied due to a large number of individuals below LQ
for Ni and Pb, slightly higher Ni concentrations were observed in individuals from SA (Table 2). In
fact, despite the low concentrations observed, most individuals from SA presented Ni concentrations
>LQ, while this element was poorly detected in the muscle of individuals from REU and SEY.
Considering the five trace elements in a single analysis, the PCA 1 corroborated the low influence of sex in explaining metal concentrations variability, while the sampling season and/or sampling year (especially for SA individuals), as well as the geographic origin, were much more significant factors. As such, the first two axes of the PCA 1 explained 70.1% of the variability observed in the dataset. The elements Cu, Zn, Cd and Hg (in the order), and Cr to some extent (i.e. for SA individuals), contributed the most to the cluster of individuals belonging to different groups, and consequently, to the dispersion of individuals captured in the different areas and/or sampled at different seasons/years (Fig. 3). With the five trace metals >LQ included, the DAs 1 and 2 further evidenced the significance of Cu, Zn, Cd and Hg (in that order) in clearly classifying individuals into the three areas. Cu also appeared to be a significant discriminant element between individuals from REU vs. SEY (Table 3).

3.2. Size (FL)- and δ¹⁵Ν-related trends

In the final GLMs performed, the total deviance explained (DE) in log-transformed metal concentration variability was quite high, ranging between 45.9% (for δ¹⁵Ν-related trends in Hg variability) and 84.3% (for FL-related trends in Cu variability). The AIC scores were systematically lower in models performed with FL as single continuous explanatory variable than in those with δ¹⁵Ν (details in Appendix A and Table A.1).

Considering final models with FL, the effect of the factor Area/S-Y was always highly significant. The effect of size (FL) was significant for Cr and Cu only (p =0.010 and p <0.001 respectively), despite a low p-value also observed for Hg (p =0.075). The interaction term (i.e. model assuming that the form of the relationship between (log-transformed) concentrations and FL can be different between modalities of the factor Area/S-Y) was significant for Cr and Hg only (p-values <0.05). Overall, GLMs results indicated i) variable trends for Cr (i.e. decreasing or increasing concentrations with increasing size of individuals), depending on the modality of the factor Area/S-Y; ii) a trend to decreasing Cu concentrations with increasing size of individuals; iii) no clear size-related trends for Zn and Cd, although no model complying with model validation could be kept for Cd; and iv) a slight trend to enhanced Hg bioaccumulation with increasing FL, especially for the modalities of the factor Area/S-Y with a large size range (Fig. 4). GLMs also revealed that for similar-sized individuals, SA individuals had significantly higher (log-transformed) concentrations in Cu and Zn than those from REU and SEY. For similar-sized individuals, those sampled in S2 in SA also had significantly higher Cr concentrations than all other individuals (Fig. 4; Appendix A and Table A.1). For similar-sized individuals sampled in REU, those captured in S2 had higher Cu and Zn concentrations than those sampled in S1, and had also higher Cu and Zn concentrations than individuals from SEY. Finally, there was no significant difference between individuals from S2-Y1 and S2-Y2 individuals in SEY (Fig. 4).
3.3. Stable isotope values and POP ratios

δ\(^{13}\)C values varied between -18.50‰ and -16.30‰, while the range in δ\(^{15}\)N values was 10.71–15.11‰ (Table 4). Concerning δ\(^{13}\)C values, a significant difference between sexes (all p-values <0.05) was observed in REU only but for both sampling seasons, with males presenting on average higher values than females. Significant differences between seasons/years of sampling were found within the three areas considered (all p-values <0.01), with individuals sampled at S2 (or S2-Y2 for SEY) having higher δ\(^{13}\)C values. No difference in δ\(^{13}\)C was found between individuals from REU and SA, while SEY individuals presented slightly lower δ\(^{13}\)C values. For δ\(^{15}\)N values, there was generally no significant difference between sexes and seasons/years of sampling. As in the case of metallic contamination, the spatial influence was more important. δ\(^{15}\)N values significantly differed between individuals captured in the WIO and those caught in the SEAO (i.e., similar and lower concentrations on average in REU and SEY, vs. SA). Finally, within each group of individuals considered, no correlation was found between isotope values and size of individuals (results not shown).

POP ratios were investigated in selected individuals from REU and SA sampled in S1 (Table 4). No differences were found between sexes in SA individuals. In REU, the “Sum DDTs/Sum PCBs” and the “p,p’-DDT/p,p’-DDE” ratios were significantly lower in males than in females, while no sexual difference was observed for the “o,p’-DDT/p,p’-DDT” ratio. Similarly to metal contamination, significant differences between geographic areas were evidenced. Individuals from REU presented significantly lower values of the “p,p’-DDT/p,p’-DDE” ratio and higher values of the “o,p’-DDT/p,p’-DDT” ratio, although no spatial difference was found for the “Sum DDTs/Sum PCBs” ratio.

Finally, the PCAs 2 and 3 (including the five trace metals >LQ, and the trophic markers or POPs) confirmed the results from PCA 1 in terms of clustering of individuals belonging to different groups. As such, in all PCAs performed, individuals from SA clearly segregated from individuals from REU and SEY, and seasonal differences among individuals from SA were further evidenced in PCA 2 (including trophic markers). The variability explained by the first two axes of the PCAs 2 and 3 (63.0 and 65.7%, respectively) was in the same order of PCA 1. Lastly, the DAs 3 and 4 (including trace metals + trophic markers) emphasized the highly significant contribution of δ\(^{15}\)N values in
discriminating individuals from the three different areas (i.e. increasing the percentage of well-classified individuals for each area), along with the significant contribution of Cu, Zn, Cd and Hg (Table 3).

4. Discussion

4.1. Fish size differences between areas

Albacore has an estimated length at 50% maturity (L50) of around 90 cm FL in all Oceans, apart from the Mediterranean Sea where estimates are smaller (Juan-Jordá et al., 2016). More recently in the WIO, the L50 of female albacores was estimated at 85.3 ± 0.7 cm FL (mean ± standard error; Dhurmeea et al., 2016). In REU and SEY, almost all individuals had FL ≥90cm and were thus mature individuals. In both areas, the significant difference in fish sizes between adult males and females (with females being significantly smaller than males) was consistent with the documented sexual dimorphism in this tuna species (e.g., Karazulak et al., 2011; Dhurmeea et al., 2016). Alternatively, although some fish sampled in SA were FL ≥90 cm (especially during S2), most individuals from this area were immature, probably explaining the absence of significant size difference between sexes in SA. More generally, further consideration of size (FL) in statistical analyses and interpretation of trace metal concentrations was therefore crucial, to avoid potential masking of other important factors in contamination differences (e.g., the geographic factor).

4.2. General trends in trace metal concentrations and confrontation to health guidelines

Overall, Ni and Pb concentrations were very low in all individuals analysed (mostly <LQ), while concentrations in Cr, Cu, Zn, Cd and Hg were more variable between areas (see below). For the three non-essential elements Cd, Hg and Pb, the European Commission (EC) fixed the following safety concentrations in tuna flesh (in wet mass, wm): 0.10 mg.kg⁻¹ wm for Cd, 1.00 mg.kg⁻¹ wm for Hg, and 0.30 mg.kg⁻¹ wm for Pb (EC, 2006). Considering 70% moisture content in tuna flesh (Kojadinovic et al., 2006; Munschky et al., 2016), this corresponds to maximum safety concentrations of 0.33 mg.kg⁻¹ in dry mass (dm) for Cd, 3.33 mg.kg⁻¹ dm for Hg, and 1.00 mg.kg⁻¹ dm for Pb. These limits are indicated in Fig. 2 for Cd and Hg. Pb concentrations measured in all tunas from the present study were far below EC health guidelines. For Cd, 67 (34%) on the 197 individuals sampled in SA (both males and females and mostly from S1) displayed concentrations above the EC guidelines. Seven individuals (nearly 6%) of the 118 sampled in SEY also had Cd concentrations above the guidelines, while none of the individuals from REU were of a similar concern. Finally for Hg, only six individuals of the 443 analysed, that were of a larger size class collected in REU and SA, presented concentrations slightly above the safety limits.
Hence globally, trace metal concentrations measured in the present study were in the same order of magnitude, or even in the low range of contamination concentrations by metallic elements compared to those reported in the literature for large pelagic fish such as tuna species worldwide, including albacore (e.g., Storelli et al., 2002, 2005; Kojadinovic et al., 2006, 2007; Choy et al., 2009; Chen et al., 2014; Ruelas-Inzunza et al., 2014; Bodin et al. 2017; and associated references). Similar observations were made in the case of POPs (Munschy et al., 2016), emphasizing a global low impact of anthropogenic contaminants in albacore tuna in the study areas.

4.3. Significant factors affecting trace metal bioaccumulation

Categorical factors explaining the variability in trace metal concentrations showed the following order of influence: sex < season/year of sampling < geographic area. The influence of the continuous factors FL (fish size) and δ15N was intermediate, depending on the element considered. The low effect of sex for most of the elements likely suggests poor elimination of trace metals during reproduction, contrary to organic contaminants for which this phenomena has been widely documented in adult females in particular (e.g., Jones and de Voogt, 1999; Bodiguel et al., 2009; Munschy et al., 2016). This may be nuanced in the case of Hg, for which differences between sexes were more often significant, although differences in Hg concentrations between males and females may be also due to sexual differences in the trophic ecology (e.g., type of prey, trophic level). However, potential sexual differences in trophic ecology were not supported by stable isotope values (i.e. no sexual differences revealed in δ15N values; Table 4), though different prey compositions can lead to similar isotopic signatures in a predator’s tissues (Bearhop et al., 2004).

Within each ecosystem and especially those where fish with a large size range could be collected, Hg was the only element for which a trend to higher Hg concentrations with increasing size was found, while the trend was generally inverse or null for the other elements. The influence of the age of organisms (for which individual size may be generally considered a proxy) on Hg bioaccumulation in muscle is effectively a well-documented phenomenon. This is due to the very low elimination of this metal over time once it is linked to sulphydryl groups of muscular proteins (Wang and Wong, 2003). The influence of individual trophic position (here regarded through δ15N values within a specific ecosystem) – which generally increases with age, size and body mass in fish – was also expected, because of the known biomagnification of Hg in food webs (Gray, 2002; Chen et al., 2008). Alternatively, for the other trace metals, there is still no consensus on a potential increase in the concentrations observed with size or trophic level of organisms, nor biomagnification in food webs; although some authors reported such phenomenon in tuna species (Ruelas-Inzunza et al., 2014) and in particular cases in both marine and freshwater food webs (Wang, 2002, Croteau et al., 2005; Cheung et Wang, 2008). On the contrary, the present results (such as those for Cu) rather suggest a dilution of muscle metal burden with individual growth, and/or that the concentrations measured and the
variability observed are more probably due to differences in the trophic ecology of individuals or populations. In all analyses performed, the significance of geographic origin for explaining variability in metal concentrations was effectively the highest, and notably once the effect of size had been taken into account. Due to the large predominance of the trophic pathway for the intake of metallic contaminants in marine organisms (Wang, 2002) and in top predators in particular, geographic differences in tuna trace metal concentrations are therefore most likely due to differences in the different types of prey and/or food webs exploited.

As a direct comparison, concentrations of several trace metals in different tissues were reported for the yellowfin tuna *T. albacares* in the WIO area, with higher muscle Hg concentrations found in individuals from Reunion Island relative to those captured in the Mozambique Channel for similar-sized individuals (Kojadinovic et al., 2006, 2007). Yellowfin tunas from Reunion Island also showed slightly higher Cu and Zn muscle concentrations relative to those captured southern in the Mozambique Channel, while concentrations in Cd were similar. Kojadinovic et al. (2007) then linked the spatial differences observed to the main prey consumed by tunas in the different zones. Indeed, in the case of Hg, mesopelagic prey species were found to present enhanced Hg bioaccumulation in various ecosystems, in comparison to epipelagic species (Monteiro et al., 1996; Choy et al., 2009; Chouvelon et al., 2012b). Moreover, most fish and piscivorous species mainly accumulate Hg under its organic form methyl-Hg (Bloom, 1992; Cossa et al., 2012), which is the most stable form, the most bioavailable and thus the most bioaccumulable form of Hg by organisms (Fitzgerald et al., 2007). The proportion of methyl-Hg relative to total-Hg in other types of organisms and prey (e.g., crustaceans, cephalopod molluscs, bivalve molluscs, or lower trophic level organisms in general) was shown to be less important and/or more variable (e.g., Claisse et al., 2001; Bustamante et al., 2006; Cossa et al., 2012). As a consequence, piscivorous predators may be more exposed to Hg than predators feeding on other prey types. A recent study reported a positive correlation between the frequency of occurrence of fish prey in the diet of dolphinfish, tunas and sharks, and the mean Hg concentrations measured in the muscle of these predators (Teffer et al., 2014). The diet and feeding habits of tunas from the present study indicated a higher consumption of fish prey (reconstituted prey weight) for individuals captured in SEY (i.e. relative to those from REU and SA; Nikolic et al., 2015; M. Potier and N. Bodin, personal communication). The mean size of prey (notably fish prey) was also found to be larger (i.e. prey of potentially higher trophic level) for individuals from REU and SEY than those from SA. Lastly, juvenile tunas were reported to be gregarious and found more in surface than adult tunas, the latter presenting more individual behaviours and being generally found deeper (e.g., Domokos et al., 2007, Cosgrove et al., 2014; reviewed in Nikolic et al., 2016), potentially feeding more on deeper prey species presenting higher Hg burdens. All this information may therefore explain the order of concentrations found for Hg, i.e. REU (fish diet important but not exclusive, prey size important and deeper behaviour reported by Nikolic et al., 2015) > SEY (almost exclusively fish diet and prey size important, but surface behaviour reported) >> SA (fish diet important but not exclusive, lower prey
size and surface behaviour reported). Furthermore, tunas from SA were shown to ingest greater proportions of both crustaceans and cephalopods relative to tunas from other areas, although cephalopod prey were also significant in terms of occurrence and reconstituted prey weight in the diet of REU tunas (Nikolic et al., 2015; M. Potier and N. Bodin, personal communication). This may account for the significantly higher Cu and Cd concentrations found in individuals from SA, regardless of the size of fish. Indeed, Cu is one constituent of crustaceans’ respiratory pigment (hemocyanin), as it is the case for some molluscs such as cephalopods (Eisler, 2010). Crustacean and cephalopod prey therefore accumulate Cu in relatively high proportions in their tissues (e.g. Amiard et al., 1980; Miramand and Bentley, 1992; Eisler, 2010) and may contribute to the intake of Cu by their predators. Similarly, invertebrate prey species such as crustaceans or cephalopods exhibit higher Cd concentrations relative to fish (Amiard et al., 1980; Cossa and Lassus, 1989; Lahaye et al., 2005), and cephalopods (notably oceanic species) were proved to be a main vector of Cd for predators such as marine mammals (Caurant and Amiard-Triquet 1995; Bustamante et al., 1998; Lahaye et al., 2005). Finally, in addition to seasonal and/or geographical differences in the trophic ecology of individuals to explain the tuna concentrations observed, potential differences i) in trace metal environmental (abiotic) concentrations, or ii) in the bioavailability of elements at the base of the different food webs exploited, may constitute supplemental factors leading to the observations made. For instance, REU and SEY beyond to the same biogeographic province (following Oliver and Irwin, 2008), are more oligotrophic areas compared with SA (Longhurst, 1998; Sherman and Hempel, 2008), and oligotrophic conditions in the Mediterranean Sea were supposed to enhance the bioavailability of Hg (through methylation by bacteria) (Heimbürgler et al., 2010). This may also contribute to the higher Hg concentrations observed in REU and SEY tunas relative to SA. Determination of trace metal concentrations in water and low trophic level organisms (i.e. plankton) would enable testing of this hypothesis, especially as abiotic and low trophic level chemical composition would directly affect the concentrations that can be found in the different prey species consumed in the different areas, and in predators. Indeed, in the case of Cr for instance, higher inputs and environmental concentrations in SA marine waters may be expected, because SA has been recognized for a long time and at the worldwide level a major reservoir for chromite mining (i.e. main ore from which industrially produced Cr comes from; Chiffoleau, 1994).

4.4. Relationships with trophic markers and POP patterns

The results obtained for the other potential tracers (stable isotope and POP tracers) were consistent with trace metals. As such, δ^{15}N values clearly segregated individuals captured in the WIO (REU and SEY) from those collected in SA. For δ^{13}C values, the greater significance of seasonal/year differences than the geographic factor may be linked to shorter-term variations in C sources or baseline δ^{13}C values (reflected in higher trophic levels) than for contaminants. Several factors, linked to the season, may effectively induce variations in δ^{13}C values of particulate organic matter (POM) or of primary
producers directly, including: i) temperature (influencing carbon isotopic fractionation in phytoplankton, e.g., Fontugne and Duplessy, 1981; Goericke and Fry, 1994; Rau et al., 1997); ii) partial pressure and molecular CO₂ concentration in ambient waters (Rau et al., 1997); iii) phytoplankton cell size, cell surface area/volume or cell geometry (Popp et al., 1998); iv) POM and/or phytoplankton composition (Darnaude et al., 2004; Harmelin-Vivien et al., 2008), with diatoms presenting higher δ¹³C values than other phytoplankton groups such as dinoflagellates (Fry and Wainwright, 1991). Furthermore, the temporal integration of C and N stables isotopes in biological tissues may differ slightly from those of trace metals. Animals can exhibit variable integration time of C and N signals from their food during tissue biosynthesis (Martínez del Rio et al., 2009), depending on species or on individual physiology. For trace metals, several factors can also affect the muscle bioaccumulation of contaminants observed in situ by organisms (Luoma and Rainbow, 2005), depending for instance on organisms’ regulation mechanisms for the different contaminants. Trace metal concentrations in the muscle are generally thought to be less variable and/or reflect metal exposure on the relatively long term, i.e. order of several weeks or months, in comparison with tissues such as liver or kidneys that probably reflect contamination more immediately following contaminant incorporation, and/or metal storage at more variable temporal scales (i.e. detoxification organs, involving metallothionein proteins; Reinfelder et al., 1998; Wang and Rainbow, 2010). The muscle burden in some metals might thus reflect longer-term exposure than the seasonal scale, for instance. However, estimating metal kinetics (both accumulation and elimination) in the tissues of in situ organisms remains very complex. Indeed, experimental studies have shown that in fish for instance, it strongly depends on species, on metals, and on their potential interactions, on the exposure dose and on the exposure pathway (dissolved vs. trophic), etc. Moreover, experimental studies are generally performed on small species and/or juvenile individuals, on a single species at time or during relatively short periods of time, and sometimes results are contradictory (e.g., Kargin and Çoğun, 1999; Kim et al., 2004; Kraemer et al., 2005; Łuszczyk-Trojnar et al., 2013). This makes very difficult to extrapolate to top predators or long-lived species such as the tunas analysed here. Despite these potential artefacts, trophic markers and more specifically δ¹⁵N values provided supplemental evidence that great spatial variations occur in δ¹⁵N values at the base of different food webs (along with δ¹³C values), and that δ¹⁵N cannot be used independently as a proxy of the trophic positions of organisms unless the data are compared within a given environment (Jennings and Warr 2003; Ménard et al., 2007; Chouvelon et al., 2012a; Pethybridge et al., 2015). Moreover, δ¹⁵N values measured in consumers may indicate different trophic functioning at the base of food webs (e.g., oligotrophy vs. mesotrophy; low vs. high primary production; etc.). As for δ¹³C values, differences in baseline δ¹⁵N values occur naturally (Montoya, 2007). They are intimately linked to processes occurring at the dissolved inorganic nitrogen (DIN) level, or to POM and/or phytoplankton composition, which reflect in higher trophic levels. Some of these processes lead to higher δ¹⁵N values, including: i) when DIN demand is higher than the supply of nutrients in a particular area (i.e.
high primary production/bloom events), primary producers may be faced with a $^{15}$N-enriched N source (e.g., “recycled” or ammonium-enriched, especially if it comes from higher trophic levels), which is then reflected in the local food chain (Montoya, 2007); ii) when most of the organic matter is dissolved in particular environments, microbial food webs are predominantly supported (Biddanda et al., 2001) and microbial processing or remineralization of organic matter at the base of food webs usually results in higher $\delta^{15}$N values (Jennings and Warr, 2003; MacKenzie et al., 2014). Alternatively, other processes can lead to lower $\delta^{15}$N values measured, including the fixation of atmospheric N$_2$ by diazotrophic organisms (e.g., cyanobacteria) in offshore or oligotrophic waters, which lower the $\delta^{15}$N values of the residual NO$_3^-$ pool available for primary producers in these areas (Montoya, 2007) and result in low $\delta^{15}$N values in consumers. As such, SIA results of the present study highlighted the higher primary productivity in SA waters (i.e. higher $\delta^{15}$N values measured in tunas from this ecosystem subject to the Benguela and Agulhas currents), while REU and SEY, located in the Indian South Subtropical Gyre province, face more oligotrophic conditions (i.e. lower $\delta^{15}$N values measured in tunas from these areas) (Longhurst, 1998; Oliver and Irwin, 2008; Sherman and Hempel, 2008).

Therefore, in addition to complement the information given by trace metals (i.e. segregation between the different groups of tunas), SIA in tuna muscle appeared powerful in providing information on local biogeochemistry (C and N sources), including trophic functioning at the base of food webs. Recently in the southwest Pacific Ocean, Pethybridge et al. (2015) similarly reported a latitudinal gradient of $\delta^{15}$N values in albacore tuna, and linked this gradient to nutrient cycling dynamics and oceanographic features in both oceans (i.e. lower $\delta^{15}$N values in environments with more oligotrophic conditions).

The POP patterns further supported the spatial segregation of tunas between REU and SA (i.e. between the WIO and the SEAO). Higher PCB and DDT concentrations in tunas from SA in comparison with REU were previously reported by Munschey et al. (2016), and were attributed to higher dietary inputs and higher total lipid content in SA. In the present study, the POP tracers also provided complementary information on potential differences in the sources of contamination across the different areas. For instance, the “$o,p'$-DDT/$p,p'$-DDT” ratio (commonly used to determine the DTT origins) showed significant different mean values (0.30 in REU vs. 0.17 in SA, Table 4), although both were close to those characterising the technical mixture (0.2–0.3, Kalantzi et al., 2001). Similarly, a significant difference in the “$p,p'$-DDT/$p,p'$-DDE” ratio was found between individuals from these two areas. This ratio is generally used to trace the resident time and degree of degradation of $p,p'$-DDT (Suárez et al., 2013). Despite the differences observed, the values of this ratio (i.e. <0.5) indicate old DDT inputs in both areas (Suárez et al., 2013). Alternatively, the “Sum DDTs/Sum PCBs” ratio, used to distinguish the influence of sources from agricultural origin (when >1) vs. sources from industrial origin (Lailson-Brito et al., 2011), exhibited high values in both areas. Therefore, it highlighted the important agricultural use of DDT (in comparison with industrial sources) in the southern hemisphere, including both REU and SA, while DDT has been banned for several years or even decades in northern countries.
4.5. Conclusions and further work perspectives

Our results demonstrated that inorganic elements, when considered in isolation, are quite efficient in discriminating individuals from different geographic origins. However, the coupling with trophic markers (SIA) and with information derived from stomach contents analysis (e.g., Nikolic et al., 2015) appeared essential for explaining the metal contamination profiles observed, and for distinguishing more clearly the different populations exploiting different food webs. Information derived from POP analyses were also very complementary, including the ratios used in the present study and the detailed contamination results reported previously by Munsch et al. (2016). It strengthened the metal results by supporting the spatial segregation of tunas observed between the WIO and the SEAO as well, by evidencing the influence of the trophic ecology on the contamination observed (i.e. different food webs exploited by the tuna populations), and it also provided substantial information on the potential sources of contamination (i.e. agricultural vs. industrial sources) in the study areas. When using and interpreting biogeochemical tracers, since different prey compositions in the diet can lead to similar isotopic signatures or contaminant concentrations in a predator’s tissues (e.g. Bearhop et al., 2004), one must effectively keep in mind that only differences are really informative.

The investigation of metal isotope ratios would be useful to understand the origin and the sources of metal contamination (e.g., Cu or Hg isotopes; El Azzi et al., 2013; Perrot et al., 2010). Other interesting perspectives would include further work on environmental matrices (e.g., speciation of metals in the water) and on lower trophic level organisms in the different areas, to thoroughly understand the processes of metal transfer leading to the differences observed in top predators. Additionally, apprehending the mechanisms of metal regulation by the different fish populations, through the analysis of metallothioneins in detoxification organs and/or through the analysis of genetic markers of metallothioneins, would also be of interest. Finally, the analysis of emerging contaminants could help to define more comprehensive or exhaustive chemical contamination profiles, although this study demonstrated that classically and historically monitored contaminants are already very informative.

Our results are also important in a fisheries management perspective, through the assessment of the potential links (gene flows, individuals migrations, etc.) between Atlantic and Indian Oceans stocks, managed by different Regional Fisheries Management Organisations. Indeed, one of the key issues to improve the management of albacore tuna is a better understanding of the spatial dynamics and population connectivity. At the integration time scale represented by this study of metal bioaccumulation and additional trophic and chemical tracers in tuna muscle, the differences observed suggested limited flows of individuals between the SEAO and the WIO. In the near future, further coupling of this information derived from chemical/ecological tracers with genetic data should help refine management units and stocks of albacore tunas in the southern hemisphere, and more specifically in the Indian and Atlantic Oceans.
Acknowledgments

This work was conducted in the framework of the GERMON project “N°759/DMSOI/2013” funded by the European Fisheries Funds EU FEP 2013-2015 and IFREMER. JB and NN were head and scientific leader of the project, respectively. The authors want to thank all partners from the GERMON project for their implication in the collection, dissection and preparation of the fish samples: Melissa Meyer, Janine Cunningham and Kenneth Baloyi (DAFF); Chris Heinecken (CAPFISH); Louw Hoffman (Stellenbosch University); Sean Walker (Breakwater Products); Evgeny Romanov, Emilie Richard and Loïc Le Foulgoc (CAPRUN – HYDRO REUNION); Emmanuel Jouen (CIRAD); Jean Turquet (ARVAM); Emilie Augustin, Alex Tirant, Jimmy Esparon, Emmanuel Chassot, Alain Damiano and Cindy Assan (IRD/SFA); François Rossi, Gary Algae, Patricia and Francis (Indian Ocean Tuna Ltd); the fishermen from the longliner MANOHAL and REUNIPECHE; the firm IEMANJA that operated the longliners; Laurence Maurel (Kart’Eau) for her help on QGIS and ArcGIS; the staff from the IFREMER/BE/LBCO laboratory for POP analyses (Karine Héas-Moisan, Nathalie Olivier, Nadège Bely, Charles Pollono); and finally, all the staff from IFREMER Délegation Océan Indien (notably Franck Bruchon, Magali Duval, David Roos, Hugues Evano, Ludovic Hoarau, Yoann Aumond, Edouard Collin).

References


European hake (*Merluccius merluccius*, L.) from the Gulf of Lions (N.W. Mediterranean). Sci Total Environ 408: 304-311


IOTC (2016) Report of the sixth Session of the IOTC working party on temperate tunas. IOTC–2016–WPTmT06–R[E]., Indian Ocean Tuna Commission, Shanghai, China


Pethybridge HR, Young JW, Kuhnert PM, Farley JH (2015) Using stable isotopes of albacore tuna and predictive models to characterize bioregions and examine ecological change in the SW Pacific Ocean. Prog Oceanogr 134: 293-303


Sherwood GD, Rose GA (2005) Stable isotope analysis of some representative fish and invertebrates of the Newfoundland and Labrador continental shelf food web. Estuar Coast Shelf S 63: 537-549


Table 1: Results obtained for the certified reference materials (CRMs) used for trace metal analyses. Values are means ± standard deviation, in mg kg⁻¹ dry mass (dm). The number of replicates for each CRM was 37 for Hg, and 18 for the other trace metals. Certified values are in italics. The recovery rate (in %), the limit of quantification (LQ, in mg kg⁻¹ dm) and the percentage of individuals below the LQ (on the 443 analysed) are also indicated.

<table>
<thead>
<tr>
<th>Trace metal</th>
<th>Certified value</th>
<th>Measured value</th>
<th>Recovery rate</th>
<th>Certified value</th>
<th>Measured value</th>
<th>Recovery rate</th>
<th>LQ</th>
<th>% of individuals &lt;LQ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IAEA-407</td>
<td></td>
<td></td>
<td>IAEA-142</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>0.73 ± 0.06</td>
<td>0.76 ± 0.05</td>
<td>104</td>
<td>3.5*</td>
<td>2.5 ± 0.3</td>
<td>71</td>
<td>0.03</td>
<td>0</td>
</tr>
<tr>
<td>Ni</td>
<td>0.60 ± 0.05</td>
<td>0.57 ± 0.27</td>
<td>95</td>
<td>2.72 ± 0.35</td>
<td>2.34 ± 0.32</td>
<td>86</td>
<td>0.03</td>
<td>81</td>
</tr>
<tr>
<td>Cu</td>
<td>3.28 ± 0.08</td>
<td>3.00 ± 0.07</td>
<td>92</td>
<td>31.2 ± 1.0</td>
<td>30.8 ± 0.6</td>
<td>99</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>Zn</td>
<td>67.1 ± 0.8</td>
<td>66.5 ± 1.2</td>
<td>99</td>
<td>86.6 ± 2.4</td>
<td>90.3 ± 1.4</td>
<td>104</td>
<td>2.5</td>
<td>0</td>
</tr>
<tr>
<td>Cd</td>
<td>0.189 ± 0.004</td>
<td>0.179 ± 0.009</td>
<td>95</td>
<td>19.4 ± 0.6</td>
<td>19.2 ± 0.3</td>
<td>99</td>
<td>0.05</td>
<td>21</td>
</tr>
<tr>
<td>Pb</td>
<td>0.12 ± 0.02</td>
<td>0.11 ± 0.03</td>
<td>92</td>
<td>0.319 ± 0.045</td>
<td>0.377 ± 0.191</td>
<td>118</td>
<td>0.05</td>
<td>98</td>
</tr>
<tr>
<td>Hg</td>
<td>0.126 ± 0.007</td>
<td>0.124 ± 0.002</td>
<td>98</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.015</td>
<td>0</td>
</tr>
</tbody>
</table>

* Value only given for information on the certificate.
Table 2: Fish body size (fork length, FL, in cm) and trace metal concentrations (in mg.kg$^{-1}$ dry mass) measured in the muscle of albacore tunas (N=443 individuals) collected in 2013-2014 in the western Indian Ocean and in the south-eastern Atlantic Ocean. Values are means ± standard deviation. Italic values are those per season and/or year of sampling, and bold values are those per geographic area.

<table>
<thead>
<tr>
<th>Area; Season and/or Year of sampling; Sex</th>
<th>N</th>
<th>FL</th>
<th>Cr</th>
<th>Ni *</th>
<th>Cu</th>
<th>Zn</th>
<th>Cd</th>
<th>Hg</th>
<th>Pb *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reunion Island (REU)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Season 1 (Nov-Dec 2013)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td>64</td>
<td>104 ± 4</td>
<td>0.51 ± 0.06</td>
<td>0.02 ± 0.02</td>
<td>0.71 ± 0.15</td>
<td>11.2 ± 2.2</td>
<td>0.06 ± 0.02</td>
<td>1.773 ± 0.677</td>
<td>0.01 ± 0.01</td>
</tr>
<tr>
<td>Males</td>
<td>33</td>
<td>107 ± 3</td>
<td>0.50 ± 0.07</td>
<td>0.02 ± 0.02</td>
<td>0.69 ± 0.13</td>
<td>11.5 ± 2.2</td>
<td>0.06 ± 0.02</td>
<td>1.821 ± 0.725</td>
<td>0.01 ± 0.01</td>
</tr>
<tr>
<td>Season 2 (May-July 2014)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td>64</td>
<td>101 ± 5</td>
<td>0.54 ± 0.05</td>
<td>0.01 ± 0.00</td>
<td>0.98 ± 0.14</td>
<td>17.7 ± 8.7</td>
<td>0.08 ± 0.03</td>
<td>1.644 ± 0.574</td>
<td>0.01 ± 0.04</td>
</tr>
<tr>
<td>Males</td>
<td>32</td>
<td>99 ± 4</td>
<td>0.54 ± 0.05</td>
<td>0.00 ± 0.00</td>
<td>0.96 ± 0.15</td>
<td>20.0 ± 11.6</td>
<td>0.07 ± 0.02</td>
<td>1.405 ± 0.392</td>
<td>0.00 ± 0.00</td>
</tr>
<tr>
<td>Seychelles (SEY)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Season 2-Year 1 (June-July 2013)</td>
<td>50</td>
<td>96 ± 5</td>
<td>0.50 ± 0.04</td>
<td>0.01 ± 0.01</td>
<td>0.67 ± 0.14</td>
<td>12.3 ± 2.2</td>
<td>0.16 ± 0.22</td>
<td>1.310 ± 0.306</td>
<td>0.01 ± 0.00</td>
</tr>
<tr>
<td>Females</td>
<td>20</td>
<td>95 ± 4</td>
<td>0.51 ± 0.05</td>
<td>0.01 ± 0.01</td>
<td>0.64 ± 0.12</td>
<td>12.5 ± 2.0</td>
<td>0.15 ± 0.13</td>
<td>1.302 ± 0.220</td>
<td>0.01 ± 0.00</td>
</tr>
<tr>
<td>Males</td>
<td>30</td>
<td>98 ± 5</td>
<td>0.50 ± 0.03</td>
<td>0.01 ± 0.01</td>
<td>0.68 ± 0.15</td>
<td>12.2 ± 3.4</td>
<td>0.17 ± 0.27</td>
<td>1.316 ± 0.356</td>
<td>0.01 ± 0.01</td>
</tr>
<tr>
<td>Season 2-Year 2 (April 2014)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td>68</td>
<td>96 ± 5</td>
<td>0.53 ± 0.03</td>
<td>0.01 ± 0.01</td>
<td>0.62 ± 0.09</td>
<td>10.6 ± 1.0</td>
<td>0.04 ± 0.01</td>
<td>1.471 ± 0.457</td>
<td>0.00 ± 0.00</td>
</tr>
<tr>
<td>Males</td>
<td>36</td>
<td>94 ± 5</td>
<td>0.53 ± 0.03</td>
<td>0.01 ± 0.01</td>
<td>0.61 ± 0.10</td>
<td>10.7 ± 1.1</td>
<td>0.04 ± 0.01</td>
<td>1.364 ± 0.427</td>
<td>0.00 ± 0.00</td>
</tr>
<tr>
<td>South Africa (SA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Season 1 (Nov-Dec 2013)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td>98</td>
<td>83 ± 4</td>
<td>0.46 ± 0.04</td>
<td>0.04 ± 0.04</td>
<td>1.69 ± 0.43</td>
<td>26.4 ± 9.5</td>
<td>0.37 ± 0.25</td>
<td>0.795 ± 0.151</td>
<td>0.01 ± 0.02</td>
</tr>
<tr>
<td>Males</td>
<td>50</td>
<td>83 ± 4</td>
<td>0.46 ± 0.04</td>
<td>0.04 ± 0.04</td>
<td>1.70 ± 0.42</td>
<td>25.0 ± 7.7</td>
<td>0.37 ± 0.26</td>
<td>0.759 ± 0.143</td>
<td>0.01 ± 0.02</td>
</tr>
<tr>
<td>Season 2 (April-May 2014)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td>99</td>
<td>90 ± 9</td>
<td>0.59 ± 0.05</td>
<td>0.04 ± 0.04</td>
<td>1.42 ± 0.25</td>
<td>20.2 ± 5.4</td>
<td>0.30 ± 0.26</td>
<td>1.120 ± 0.562</td>
<td>0.02 ± 0.02</td>
</tr>
<tr>
<td>Males</td>
<td>51</td>
<td>90 ± 9</td>
<td>0.60 ± 0.05</td>
<td>0.04 ± 0.05</td>
<td>1.44 ± 0.23</td>
<td>20.8 ± 6.8</td>
<td>0.30 ± 0.22</td>
<td>1.093 ± 0.444</td>
<td>0.01 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>91 ± 10</td>
<td>0.59 ± 0.05</td>
<td>0.03 ± 0.02</td>
<td>1.40 ± 0.27</td>
<td>19.5 ± 3.4</td>
<td>0.30 ± 0.30</td>
<td>1.150 ± 0.669</td>
<td>0.02 ± 0.02</td>
</tr>
</tbody>
</table>

* Values only given for information, due the high percentage of individuals below the limit of quantification for Ni and Pb (see section 2.4 and Table 1).
Table 3: Results for the discriminant analyses (DAs) applied to evaluate the potential of trace metals and/or their combination with trophic markers (δ\(^{13}\)C and δ\(^{15}\)N values) in discriminating albacore tunas from different geographic areas. The correlation coefficients between the discriminant functions and each of the original variables (trace metal or isotope value) included in DAs – also called « canonical correlation coefficients » (ccc) – are given, and help assess the relative importance of each variable for the discrimination of individuals along the axes. The coefficients of linear discriminants for axis 1 and/or 2 – also called « standardised discrimination coefficients » (sdc) – are given as well, and can be used for reconstructing equations of the DAs (Zuur et al., 2007). Variables with ccc>0.50 (absolute value) are in bold.

<table>
<thead>
<tr>
<th>DA 1: 5 trace metals; 3 areas (N=443)</th>
<th>% of well-classified individuals for each area</th>
<th>Order of importance of variables (ccc; sdc) for discrimination along the first axis of DA</th>
<th>Order of importance of variables (ccc; sdc) for discrimination along the second axis of DA</th>
</tr>
</thead>
<tbody>
<tr>
<td>REU = 69%</td>
<td>Cu (0.98; 1.49) &gt; Zn (0.72; 0.16) &gt; Cd (0.65; 0.10) &gt; Hg (−0.57; −0.32) &gt; Cr (0.05; 0.17)</td>
<td>Hg (0.71; 1.00) &gt; Cd (−0.30; −0.65) &gt; Zn (0.17; 0.20) &gt; Cu (0.14; 0.87) &gt; Cr (0.10; 0.02)</td>
<td></td>
</tr>
<tr>
<td>SEY = 83%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA = 93%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DA 2: 5 trace metals; 2 areas (N=246)</th>
<th>% of well-classified individuals for each area</th>
<th>Order of importance of variables (ccc; sdc) for discrimination along the first axis of DA</th>
</tr>
</thead>
<tbody>
<tr>
<td>REU = 73%</td>
<td>Cu (−0.86; −1.14) &gt; Zn (−0.46; −0.04) &gt; Hg (−0.45; −0.45) &gt; Cd (0.18; 0.44) &gt; Cr (−0.12; 0.09)</td>
<td></td>
</tr>
<tr>
<td>SEY = 89%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DA 3: 5 trace metals + δ(^{13})C + δ(^{15})N; 3 areas (N=335)</th>
<th>% of well-classified individuals for each area</th>
<th>Order of importance of variables (ccc; sdc) for discrimination along the first axis of DA</th>
<th>Order of importance of variables (ccc; sdc) for discrimination along the second axis of DA</th>
</tr>
</thead>
<tbody>
<tr>
<td>REU = 84%</td>
<td>δ(^{13})N (0.92; 1.57) &gt; Cu (0.86; 0.74) &gt; Zn (0.68; 0.16) &gt; Hg (−0.56; −0.33) &gt; Cd (0.54; −0.01) &gt; δ(^{15})C (−0.15; −0.38) &gt; Cr (0.06; 0.14)</td>
<td>Hg (0.44; 0.78) &gt; δ(^{13})C (−0.37; −0.39) &gt; Cu (0.31; 1.21) &gt; Zn (0.24; 0.15) &gt; δ(^{15})N (−0.17; −0.56) &gt; Cd (0.13; −0.49) &gt; Cr (0.07; 0.21)</td>
<td></td>
</tr>
<tr>
<td>SEY = 60%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA = 100%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DA 4: 5 trace metals+ δ(^{13})C + δ(^{15})N; 2 areas (N=159)</th>
<th>% of well-classified individuals for each area</th>
<th>Order of importance of variables (ccc; sdc) for discrimination along the first axis of DA</th>
</tr>
</thead>
<tbody>
<tr>
<td>REU = 83%</td>
<td>Cu (−0.63; −0.80) &gt; Hg (−0.44; −0.56) &gt; δ(^{13})C (0.38; 0.59) &gt; δ(^{15})N (0.35; 0.39) &gt; Zn (−0.35; −0.25) &gt; Cd (0.26; 0.45) &gt; Cr (−0.08; 0.07)</td>
<td></td>
</tr>
<tr>
<td>SEY = 78%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Variables with ccc>0.50 (absolute value) are in bold.
Table 4: Values for additional tracers considered and measured on a subsample of individuals analysed for trace elements: trophic markers ($\delta^{13}$C, $\delta^{15}$N, in ‰) and ratios of persistent organic pollutants (POPs). Values are mean ± standard deviation in the muscle tissue. N = number of individuals. Italic values are those per season and/or year of sampling, and bold values are those per geographic area.

<table>
<thead>
<tr>
<th>Area; Season and/or Year of sampling; Sex</th>
<th>N</th>
<th>$\delta^{13}$C $\pm$ SD</th>
<th>$\delta^{15}$N $\pm$ SD</th>
<th>N</th>
<th>Sum DDTs / Sum PCBs $b$</th>
<th>p,p’ DDT / p,p’ DDE $c$</th>
<th>o,p’ DDT / p,p’ DDT $d$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reunion Island (REU) Season 1 (Nov-Dec 2013)</td>
<td>96</td>
<td>$-17.42 \pm 0.33$</td>
<td>$12.06 \pm 0.56$</td>
<td>49</td>
<td>$-17.54 \pm 0.34$ $12.01 \pm 0.58$</td>
<td>$2.83 \pm 1.11$</td>
<td>$0.26 \pm 0.14$</td>
</tr>
<tr>
<td>Females</td>
<td>24</td>
<td>$-17.74 \pm 0.32$</td>
<td>$11.96 \pm 0.63$</td>
<td>21</td>
<td>$3.44 \pm 1.05$</td>
<td>$0.35 \pm 0.13$</td>
<td>$0.28 \pm 0.09$</td>
</tr>
<tr>
<td>Males</td>
<td>25</td>
<td>$-17.35 \pm 0.23$</td>
<td>$12.07 \pm 0.54$</td>
<td>22</td>
<td>$2.25 \pm 0.83$</td>
<td>$0.17 \pm 0.09$</td>
<td>$0.34 \pm 0.09$</td>
</tr>
<tr>
<td>Season 2 (May-July 2014)</td>
<td>47</td>
<td>$-17.30 \pm 0.27$</td>
<td>$12.11 \pm 0.55$</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Females</td>
<td>23</td>
<td>$-17.38 \pm 0.26$</td>
<td>$12.02 \pm 0.50$</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Males</td>
<td>24</td>
<td>$-17.22 \pm 0.27$</td>
<td>$12.20 \pm 0.59$</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Seychelles (SEY) Season 2-Year 1 (June-July 2013)</td>
<td>63</td>
<td>$-17.26 \pm 0.27$</td>
<td>$12.31 \pm 0.43$</td>
<td>26</td>
<td>$-17.40 \pm 0.33$</td>
<td>$12.47 \pm 0.44$</td>
<td>—</td>
</tr>
<tr>
<td>Females</td>
<td>11</td>
<td>$-17.44 \pm 0.38$</td>
<td>$12.37 \pm 0.58$</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Males</td>
<td>15</td>
<td>$-17.37 \pm 0.29$</td>
<td>$12.54 \pm 0.30$</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Season 2-Year 2 (April 2014)</td>
<td>37</td>
<td>$-17.16 \pm 0.17$</td>
<td>$12.20 \pm 0.39$</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Females</td>
<td>24</td>
<td>$-17.18 \pm 0.18$</td>
<td>$12.18 \pm 0.41$</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Males</td>
<td>13</td>
<td>$-17.14 \pm 0.16$</td>
<td>$12.24 \pm 0.35$</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>South Africa (SA) Season 1 (Nov-Dec 2013)</td>
<td>176</td>
<td>$-17.47 \pm 0.43$</td>
<td>$13.80 \pm 0.53$</td>
<td>78</td>
<td>$-17.62 \pm 0.41$</td>
<td>$13.65 \pm 0.50$</td>
<td>$3.02 \pm 0.66$</td>
</tr>
<tr>
<td>Females</td>
<td>43</td>
<td>$-17.59 \pm 0.44$</td>
<td>$13.67 \pm 0.53$</td>
<td>22</td>
<td>$3.18 \pm 0.80$</td>
<td>$0.40 \pm 0.07$</td>
<td>$0.17 \pm 0.02$</td>
</tr>
<tr>
<td>Males</td>
<td>35</td>
<td>$-17.65 \pm 0.38$</td>
<td>$13.63 \pm 0.46$</td>
<td>21</td>
<td>$2.85 \pm 0.44$</td>
<td>$0.40 \pm 0.07$</td>
<td>$0.16 \pm 0.02$</td>
</tr>
<tr>
<td>Season 2 (April-May 2014)</td>
<td>98</td>
<td>$-17.34 \pm 0.40$</td>
<td>$13.92 \pm 0.53$</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Females</td>
<td>51</td>
<td>$-17.38 \pm 0.40$</td>
<td>$13.89 \pm 0.54$</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Males</td>
<td>47</td>
<td>$-17.30 \pm 0.39$</td>
<td>$13.96 \pm 0.52$</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

$^a$ N=335 and 86 in total, for trophic markers and POPs respectively.

$^b$ “Sum PCBs/Sum DDTs” ratio: can generally distinguish the influence of sources from agricultural origin (when largely >1) vs. sources from industrial origin (Yogui et al., 2003; Lailson-Brito et al., 2011).
“p,p’-DDT/p,p’-DDE” ratio: can trace the residence time and degree of degradation of DDT in the environment, and consequently distinguish new vs. old DDT sources (Suárez et al., 2013).

“o,p’-DDT/p,p’-DDT” ratio: can trace the DDT origin (close to the technical mixture (0.2–0.3), or not; Kalantzi et al., 2001).
Caption to figures:

Figure 1: Map of tuna sampling in different areas in the western Indian Ocean and in the south-eastern Atlantic Ocean, and over two seasons and/or years between June 2013 and July 2014. REU =Reunion Island; SEY =Seychelles; SA =South Africa. Light colours correspond to a sampling over Season 1 (for REU and SA) or Season 2-Year 1 (for SEY), and dark colours to a sampling over Season 2 (for REU and SA) or Season 2-Year 2 (for SEY). Main regional currents (from Schott et al., 2009) are also indicated: SECC =South Equatorial Counter Current; NEMC =Northeast Madagascar Current; SEMC =South Equatorial Madagascar Current; SC =Somali Current; SG =Southern Gyre; AC =Agulhas Current; AR =Agulhas Current Retroflexion; BC =Benguela Current. "Sample size" indicates the number of individuals collected in each area.

Figure 2: Boxplots of raw and size-normalised (to a 95cm-individual) trace metal concentrations measured in the study tunas (N =443), excluding the elements Ni and Pb for which most of values were under limits of quantification (see section 2.4). The box width is function of the number of individuals in each group considered. The box length represents the interquartile, the bar length represents the range, and the horizontal lines in bold are median values. A same letter indicates that areas are not significantly different (results of the post-hoc multiple comparison test with Holm adjustment method, after Kruskal-Wallis test). Following Student t-tests or Mann-Whitney-Wilcoxon tests performed, stars indicate significant differences between sexes (in a given season and/or year, and in a given area), or significant differences between seasons/years of sampling in a given area (with * p <0.05; ** p <0.01; *** p <0.001). For the non-essential elements Cd and Hg, the maximum safety concentration limits (EC, 2006) are also indicated in red dashed lines, considering average 70% moisture content in tuna flesh. F =Females; M =Males; S1 =Season 1; S2 =Season 2; S2-Y1 =Season 2-Year 1; S2-Y2 =Season 2-Year 2.

Figure 3: Projection of variables and individuals on the first two components resulting from the principal component analyses (PCAs) 1–3 performed (PCA 1: including only the 5 trace metals above limits of quantification; PCA 2: 5 trace metals + trophic markers δ¹³C and δ¹⁵N; PCA 3: 5 trace metals + POP ratios). For each PCA, the top figure corresponds to the correlation biplot showing the distribution of variables. For a given variable, the length of the line shows how well it is represented by the 2-dimensional approximation, and reflects its contribution to the first two principal components (horizontal axis: principal component 1; vertical axis: principal component 2; and the variability explained by each axis is given). Variables pointing in the same direction display a high positive correlation; variables pointing in the opposite direction have a high negative correlation; and variables with an angle of 90° have a small correlation close to 0. For each PCA, the middle figure corresponds to the projection of individuals on the correlation biplot, with a grouping of individuals by sex. The bottom figure finally corresponds to the projection of individuals on the correlation biplot as well, but with a grouping of individuals by area and season and/or year of sampling. N =number of individuals included in each PCA; F =Females; M =Males; S1 =Season 1; S2 =Season 2; S2-Y1 =Season 2-Year 1; S2-Y2 =Season 2-Year 2; REU =Reunion Island; SEY =Seychelles; SA =South Africa.

Figure 4: Relationships between muscle log-transformed metal concentrations and body size (FL; left panel) or δ¹⁵N values (right panel) in the study tunas (N =443 when FL considered; N =335 when δ¹⁵N). Results from the GLM models (lines) are plotted on observed data (models fitted to individual log-transformed metal concentrations to identify size-related or diet δ¹⁵N-related trends, and the confounding effect of sex, season/year and area of sampling for explaining trace metal concentrations variability). As the factor Area/Season-Year of sampling (Area/S-Y) was always significant in the final GLMs, one line per modality of the factor Area/S-Y is presented. S1 =Season 1; S2 =Season 2; S2-Y1 =Season 2-Year 1; S2-Y2 =Season 2-Year 2. When the interaction term was not significant, lines are parallel. Results for models that did not comply with necessary assumptions are not presented (i.e. for Cd).
Figure 1
Figure 2
Figure 3
Figure 4

Size (FL)-related relationships

Cr

Cu

Zn

Cd

Hg

δ¹⁵N-related relationships

Cr

Cu

Zn

Cd

Hg