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Abstract : 
 
Ocean margins are focal regions in terms of mercury (Hg) exchanges between the continent and the 
open sea. The aim of this paper is to describe the distribution and partition of Hg between the gaseous, 
dissolved and particulate phases in the waters of the Northwestern Mediterranean (NWM) margin, in 
order to assess the Hg sources and exchanges within the continuum between the continental shelf (Gulf 
of Lions) and the open sea (Northern Gyre). 

Mean (± standard deviation) of total Hg species (HgT) concentrations in unfiltered water samples were 
1.52 ± 1.00 pmol L-1 (n=36) in the inner shelf, 1.09 ± 0.15 pmol L-1 (n=30) along the slope, and 1.10 ± 
0.13 pmol L-1 (n=99) in the Northern Gyre. The dissolved phase (<0.45µm) average concentrations 
were 0.80 ± 0.47 pmol L-1 (n=37) in the inner shelf, 0.93 ± 0.20 pmol L-1 (n=4) along the slope and 0.84 
± 0.10 (n=20) pmol L-1 in the Northern Gyre. The particulate fraction of Hg decreased very strongly 
seaward from around 60% on the shelf to 10-25% above the Northern Gyre. Very low dissolved HgT 
concentrations occurred in the inner shelf water, consistent with the results of incubation experiments, 
which demonstrated that shelf water is very efficient in both production and release of dissolved 
gaseous Hg into the atmosphere. In the North Gyre waters column HgT presents a distribution pattern 
inverse to that of dissolved oxygen, and a slight Hg enrichment in the deep layer (Western 
Mediterranean Deep Water). 

The Hg from the open sea water is the largest Hg input to the Gulf of Lions (∼5.7 kmol yr-1), whereas 
inputs from the riverine source account for ∼3.4 kmol yr-1 and atmospheric deposition for less than 0.5 

kmol yr-1. The Hg accumulated in the sediments of the shelf is ∼4.5 kmol yr-1, including 0.6-1.7 kmol 

yr-1 in the Rhône prodelta sediments. The evasion to the atmosphere represents a Hg flux of ∼2.6 kmol 
yr-1. 
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Highlights 

► Distribution and fluxes of total Hg have been examined in the Gulf of Lions and North Gyre of the NW 
Mediterranean. ► Concentrations varied from 0.6 to 4.57 pmol L

-1
 on the inner shelf, and from 0.5 to 1.5 

pmol L
-1

 at open sea. ► Average Hg inputs to the Gulf are 5.7 kmol yr
-1

 from open sea, 3.2 kmol yr
-1

 
from rivers, and 0.5 kmol yr

-1
 from the atmosphere. ► In the open sea, Hg and dissolved oxygen 

distributions are inverse. 
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North Gyre waters column HgT presents a distribution pattern inverse to that of dissolved 

oxygen, and a slight Hg enrichment in the deep layer (Western Mediterranean Deep Water). 

The Hg from the open sea water is the largest Hg input to the Gulf of Lions (~5.7 kmol 

yr
-1

), whereas inputs from the riverine source account for ~3.4 kmol yr
-1

 and atmospheric 

deposition for less than 0.5 kmol yr
-1

. The Hg accumulated in the sediments of the shelf is ~4.5 

kmol yr
-1

, including 0.6-1.7 kmol yr
-1

 in the Rhône prodelta sediments. The evasion to the 

atmosphere represents a Hg flux of ~2.6 kmol yr
-1

. 

 

Key words: Mercury, Ocean margin, Coastal area, Mediterranean 

 

 

1. Introduction 

Mercury (Hg) is distributed in Earth’s biogeochemical system between three main reservoirs: the 

crust (5000 Mmol), the Ocean (1780 Mmol) and the atmosphere (28 Mmol) (Mason et al., 2012; 

UNEP, 2013). Terrestrial emissions release volatile Hg
0
 into the atmosphere and direct 

atmospheric deposition delivers Hg
II
 onto the ocean surface. Owing to fast redox reactions 

between Hg
0
 and Hg

II
, Hg is constantly exchanged between the ocean and the atmosphere 

(Fitzgerald et al., 2007; Mason et al., 2012). On the other hand, man-made activities have deeply 

modified the natural Hg cycle. According to Lamborg et al. (2015), the increase in anthropogenic 

atmospheric emissions, over the past two centuries, has led to doubling the oceanic Hg amount in 

the thermocline waters and tripling the Hg content of oceanic surface waters, compared to pre-

anthropogenic conditions. In this context, what is the role of ocean margins in the oceanic Hg 

cycle?  

Ocean margins are very important regions in terms of biogeochemical exchanges, 

involving organic matter and trace elements, between the continent and the open sea (Walsh, 
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1991; Wollast and Chou, 2001). An early global mass balance, constructed at the scale of the 

ocean margins, suggested that particulate Hg from rivers represents the largest single Hg flux but 

that direct atmospheric Hg deposition exceeds the dissolved Hg riverine inputs (Cossa et al., 

1996). According to a more recent review, the cycling of Hg in coastal marine systems should be 

comparable to that in the open ocean, but with enhanced concentrations of Hg species (Fitzgerald 

et al., 2007). Indeed, in addition to atmospheric deposition, riverine discharge and mobilization 

from sediments can significantly contribute to the Hg load in coastal waters (Coquery et al., 

1997; Choe and Gill, 2003; Whalin et al., 2007; Balcom et al., 2008; Muresan et al., 2008; 

Guédron et al., 2012; Noh et al., 2013). Other studies suggest that Hg removal processes may be 

boosted at the margins (Cossa et al., 1988; Gill and Fitzgerald, 1988; Cossa et al., 2004). 

Enhanced biological activity favors (i) scavenging removal, via Hg sorption on aggregating and 

settling biogenic particles, and (ii) atmospheric evasion, via microbiologically mediated Hg
II
 

reduction, and consequently play an important role in regulation surface water Hg concentrations 

near the slope and on the shelf. In spite of the scientific progress achieved during the past 

decades, the Hg biogeochemical coastal specificities and their influences on the global Hg 

cycling remain unassessed. More precisely, according to Mason et al. (2012), there is a need for 

high resolution water column profiles for Hg on continental margins, especially at upper slope 

stations, in order to understand the processes linking the biogeochemical cycling of Hg between 

coastal regions and the open ocean. 

Here, we address the questions of the abundance, distribution, partitioning, sources and 

exchanges of Hg in the water masses continuum between the continent and the open sea at the 

Northwestern Mediterranean (NWM) margin. A companion paper addresses methylated mercury 

species dynamics in the same area (Cossa et al., 2017). 
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2. Study area 

The Northwestern Mediterranean is characterized by the presence of a large continental shelf 

and the associated slope, both constituting the Gulf of Lions (Fig. 1). The water circulation in 

the Gulf of Lions is influenced in the South by the Northern Current, which is a part of a 

current system going from the Tyrrhenian Sea up to the Alboran Sea via the Ligurian Sea 

(Millot and Tapier-Letage, 2005). This Northern Current flows as a major vein along the 

upper part of the continental slope and partially on the shelf (Fig. 1). Intrusions of the 

Northern Current on the Gulf of Lions shelf occur at different locations and in any season 

either as a separate vein of the main Northern Current or as a part of the main Northern 

Current core impinging on the shelf (Estournel et al., 2003; Petrenko et al., 2005). The North 

Gyre and the Gulf of Lions have contrasting hydrological and biological properties. The 

North Gyre is a typical oligotrophic open Mediterranean environment experiencing strong 

winter mixing of the surface and intermediate water masses, whereas the Gulf of Lions 

constitutes one of the few mesotrophic coastal regions within the Mediterranean Sea (Morel 

and André, 1991), largely influenced by the Rhône River freshwater inputs. 

The Gulf of Lions covers a surface of ~12 x 10
3
 km

2
 (Durrieu de Madron et al., 2003) 

and receives riverine inputs mainly from the Rhône River, which alone drains a watershed of 

10
5
 km

2
 with respective mean annual liquid and solid discharges of 1750 m

3
 s

-1
 and 2-20 x 

10
12

 g yr
-1

 (Pont et al., 2002, Gairoard et al., 2012, Eyrolle et al., 2012, Launay, 2014). 

Materials present in the Gulf of Lions waters originate from allochthonous sources (rivers and 

atmosphere) and from autochthonous sources (bed erosion and planktonic production). The 

Rhône River is the major freshwater input to the western Mediterranean and its waters 
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undergo three main processes before being diluted in the Gulf of Lions water masses. First, 

freshwater is rapidly mixed with seawater within a few kilometers between Barcarin and the 

prodelta area (Fig. 1). Secondly, the Rhône River plume is driven on the shelf by variable 

continental winds (the northerly Mistral and southwesterly Tramontane, and southeasterly-

easterly Marin) and the cyclonic Northern Current (Fig. S1). The plume is periodically broken 

due to wind direction changes, engendering “Low Salinity Water” lenses drifting on the shelf 

as described by Naudin et al. (1997). Low Salinity Water lenses are a few kilometers in 

diameter and 10 to 50 m thick (Naudin et al., 1997; Diaz et al., 2008). Depending on 

meteorological conditions and on the density gradient induced by the freshwater-seawater 

mixing processes, Low Salinity Water lenses can accumulate along the coast or be transported 

towards the slope. Interestingly, these Low Salinity Water structures allow continuation of 

estuarine processes outside the Rhône delta area (Naudin et al., 1997). Thirdly, below the 

Rhône River plume, the dense riverine particles settle abruptly, generating large sediment 

accumulation in the prodelta area up to several dozens of centimeters per year in the proximal 

delta (~ 20 m water depth; Charmasson et al. (1998), Radakovitch et al. (1999), Maillet et al. 

(2006) and Cathalot et al. (2010). Finer riverine material is exported farther on the Gulf of 

Lions shelf, undergoing a westward net transport through sedimentation/resuspension 

processes generated by infrequent easterly wind storm events (Durrieu de Madron et al., 2008; 

Ulses et al., 2008a; Guizien, 2009; Marion et al., 2010; Bourrin et al., 2015). These easterly 

storms induce downwelling at the southwestern end of the Gulf of Lions, especially in the 

Cap de Creus canyon (Palanques et al., 2006; 2009; Ulses et al, 2008a; Martin et al., 2013), 

and a massive export of shelf water and resuspended particulate matter to the upper slope. 

Furthermore, dense water, formed during winter along the coastline of the Gulf of Lions under 
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the cooling effect of the Mistral and Tramontane winds (Fig. S1), also descends and exports 

fine sediments principally at the southern end of the shelf (Bourrin et al., 2008; Canals et al., 

2006). These events, which may merge and concern thousands km
3
 of waters (Ulses et al., 

2008a, 2008b), may coincide with the peak of the primary production on the shelf (Conan et 

al., 1998), probably enhancing the vertical transport of plankton-associated metals such as Hg. 

Dense water masses formed on the shelf usually reach 500 m depth but they can reach depth 

larger than 2000 m and contribute to the deep water formation of the western Mediterranean 

basin (Canals et al., 2006; Durrieu de Madron et al., 2013). Dense water formation during 

winter is also known to result from open-sea convection, which mixes surface Atlantic water 

(AW) with Levantine Intermediate water (LIW) within the North Gyre. This mixing may 

concern the entire water column and trigger strong currents during the spreading phase of the 

newly-formed Western Mediterranean Deep Water (WMDW) that can resuspend deep 

sediment and generate thick bottom nepheloid layers (Stabholz et al., 2013; Puig et al., 2013). 

Thus, linkages between the physical mechanisms, planktonic production, and resuspension of 

sediments lead to the transport of dissolved and particulate matter, including Hg, from the 

shelf to the slope/rise and abyssal plain.  

 

3. Material and methods 

3.1. Sampling 

The water samples have been collected (i) in the Rhône River and at its mouth, (ii) on the 

Gulf of Lions shelf, (iii) on the continental slope, and (iiii) in the North Gyre (Fig. 1), in order 

to document the seasonal variations of HgT and the behavior (partitioning) of Hg species 

during the freshwater/seawater mixing along the continuum including the Rhône River plume, 
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drifting Low Salinity Water on the shelf as well as the water column above the continental 

slope/rise (including the Cap de Creus canyon, Fig. 1) and in the North Gyre.  

3.1.1. Atmospheric deposition 

Thirteen rain events were collected for HgT determinations between April 2009 and January 

2010 at a coastal site (La Seyne-sur-Mer, 43°.06.350’N; 5°53.117’E, Fig.1), located at the 

eastern end of the Gulf of Lions. The samples were transferred into acid-washed 125 mL 

Teflon (FEP) bottles and acidified without filtration (0.4 % v/v HCl, SupraPur, Merck
®
) just 

after the water collection. The rain collecting device (PP040, MTX
®
) was located 15 m above 

sea level. Details of the sampling are given by Castelle (2010). At the same site, 28 aerosol 

samples were collected on cellulose acetate membranes (0.22 µm) from July 2009 to March 

2010. Each sample represents one week of pumping at a pumping rate of 14 L min
-1

. Total 

gaseous Hg concentrations in the atmosphere were monitored at the same time (Marusczak et 

al., 2015). 

3.1.2. Rhône River monitoring 

Rhône River Hg monitoring was performed at Arles (Sta. SORA, Fig. 1) during two 

monitoring periods: (i) a period of low waters from March, 2009 to June, 2010, with only one 

moderate flood event (~3000 m
3
 s

-1
 on December the 2nd), and (ii) during the flooding period 

of October-November 2008 (up to 3580 m
3
 s

-1
). Freshwater samples were collected twice a 

month at Station SORA by pumping through polyethylene tubing using an all-Teflon (PFA) 

double-bellows pump (10-LPM, ASTI
®
). Samples were collected in acid washed 2L Teflon 

(FEP) bottles then filtered through hydrophilic Teflon membranes (LCR, Millipore
®
) with a 

porosity of 0.45 µm. Membranes were stored at -18°C in polycarbonate Petri dishes and the 
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filtrates were acidified (0.4 % v/v HCl, SupraPur, Merck
®
) and stored in acid washed 500mL 

Teflon (FEP) bottles. 

3.1.3. Rhône delta mixing zone 

Brackish water samples were collected on 16
th
 and 17

th
 October 2008 between Barcarin 

(Rhône River) and the sea using a rubber boat (Fig.1; the precise locations of the stations are 

indicatedi Table S1). The samples were collected, directly (by glove-covered hands) into acid 

washed 2L Teflon (FEP) bottles, filtered and stored as described in the previous section.  

3.1.4. BIOPRHOFI cruise 

During the BIOPROHFI cruise (14
th
 – 27

th
 May 2006), two types of water masses were sampled: 

(i) the productive shelf water and (ii) the mesotrophic slope water. In the first case, two Low 

Salinity Water lenses, originating from the Rhône River plume, were successively tracked 

using a Lagrangian sampling protocol: lens “1” between May 14
th 

and 18
th
, corresponding to 

stations S1 to S68 and lens “2” between the 19
th
 and 26

th
, corresponding to stations S88 to 

S220 (Fig. S2). In the lenses, the 0-50 m layer was systematically sampled; the height of the 

water column varied between 60 and 100 m during the drifting. For the second type, two deep 

casts (0-900 m) were performed on May the 26
th 

at the slope foot (Stas. S221 and S230, Fig. 

S2); their coordinates are given in Table S1. 

3.1.5. CASCADE cruise 

During the CASCADE cruise (1
st
 – 23

th
 March 2011), water was collected (i) on the inner shelf 

from the Rhône prodelta to the south-western end of the Gulf of Lions (Stas. A to D), (ii) at 

the head of Cap de Creus canyon (Stas. E and X), and (iii) by means of thirteen deep casts on 

the shelf edge (Stas. L-01 and M-12), the slope foot (Stas. L-03 and M-10) and within the 
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North Gyre (Stas. Antarès, S2400, L-05-08-10-12 and M-03-05-08). Stations at the head of 

the Cap de Creus canyon and within the North Gyre water column were sampled during a 

storm-induced downwelling event and a convective event, respectively (Fig. 1). Two to 

twelve water depths were sampled for each cast, depending on the height of the water column. 

Sampling station locations are given in Figure 1 and their coordinates in table S1.  

3.2. Sample treatment 

The nomenclature used in the following text, i.e. XUNF, XF and XP refer to the unfiltered, 

“dissolved” (< 0.45 µm) and particulate fractions, respectively (with X being a distinct Hg 

species), whereas HgT refers to total Hg (including all methylated and inorganic species). 

 The samples from the 0-50 m layer of the shelf water masses (BIOPRHOFI cruise) were 

collected by pumping with an all-Teflon (PFA) double-bellows pneumatic pump (10-

2PMPFD-1, ASTI®) through polyethylene tubing, directly into a Class 100 clean container, 

with the consequence that the seawater was never in contact with the atmosphere of the ship. 

All the plastic wares were previously acid-cleaned according to ultraclean sample handling 

protocols (e.g., Cossa et al. 2003). Discrete water samples were collected in 2L Teflon (FEP) 

bottles inside the container, where filtrations were then performed on sub-samples using acid 

washed polycarbonate membranes (0.45 µm, Nuclepore
®
). Filtrates were collected in Teflon 

(FEP) bottles and acidified with HCl (0.4 %, v/v, Suprapur, Merck
®
) for HgTF analyses. 

Samples for dissolved gaseous Hg (DGM) analyses were collected in a 1L Teflon bottle (FEP) 

according to the traditional method used for dissolved oxygen determination in order to avoid 

gas evasion during the collection (Hood et al. 2010). Deep-water samples (> 50 m) were 

collected during the BIOPRHOFI and CASCADE cruises by rosette-mounted 5L bottles (1010X-
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Niskin, General Oceanics
®
) equipped with a CTD probe. These samples were not filtered and 

analyzed only for HgTUNF. Dissolved gaseous Hg and HgT were determined on board. 

3.3. Chemical analyses 

3.3.1. Total mercury 

Total Hg in filtered and unfiltered samples were measured on board within a few minutes 

after sampling. In order to access all the Hg chemical species present in the sample, the 

release of Hg from its ligands was achieved by a BrCl solution (0.1 mL of a 0.2 M solution is 

added to a 100 mL sample), and then the Hg
II

i was reduced to Hg
0
 with an acidic SnCl2 

solution (0.2 mL of a 1 M solution is added to a 100 mL sample). This technique, now known 

as the US-EPA standard method N° 1631, derives from the original Bloom and Crecelius 

(1983) method and has been described in detail by several authors (e.g., Gill and Fitzgerald, 

1988; Horvat et al., 1991; Mason and Fitzgerald, 1993). The Hg
0
 vapor generated by the 

reduction is amalgamated on a gold (Au) trap, then released by heating into an Atomic 

Fluorescence Spectrometer (2500, Tekran
®

). The detection limit (DL) was 0.1 pmol L
-1 

and 

the reproducibility varied according to the concentration level between 5 and 15 % (Cossa et 

al. 2003). The accuracy of HgT measurements was tested using the ORMS-3 certified 

reference material (CRM) from the National Research Council of Canada. Our measurements 

were always within the confidence limits given for the CRM (12.6  1.1 pg mL
-1

; http://inms-

ienm.nrc-cnrc.gc.ca/calserv/crm_files_f/ORMS-3_f.pdf). 

3.3.2. Dissolved gaseous mercury 

For analysis of DGM, 300 mL of sample was purged during 30 min with ultra-high purity 

nitrogen previously stripped of Hg
0
 by passage through Au traps, at a flow rate of 300 L min

-
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1
, corresponding to a calculated extraction rate of 78 % (results were corrected for this yield). 

Volatilized Hg species were trapped and concentrated on an Au trap, subsequently desorbed 

by thermo-desorption and quantified by gas-phase AFS. Dissolved gaseous Hg net production 

kinetics were evaluated by incubating unfiltered water samples in an incubator located on the 

deck of the vessel exposed to sunlight radiations under temperature control achieved by 

continuously pumping sea-surface water through the incubator using a through-flow system. 

These ex-situ incubations were performed in batch experiments during 2 to 12 h periods in the 

absence of light (FEP Teflon bottles, wrapped in aluminium foil) and in the presence of light 

(unwrapped FEP Teflon bottles). The two series of experiments allowed to identify the part of 

photoreduction in the DGM net production and to estimate the DGM production. Transparent 

FEP Teflon bottles absorbed only 2.5 % of total incident radiation according to Amyot et al. 

(1997). Net DGM production was estimated without taking into account the possible re-

oxidation of Hg
0
. 

3.3.3. Phosphorus 

Soluble reactive phosphorus (SRP) was determined in seawater with an auto-analyzer using 

the standard molybdate blue method (Murphy and Riley, 1962) as detailed in the protocol by 

Aminot and Kérouel (2007). Particulate phosphorus (PP) determination used the same 

colorimetric method but after magnesium nitrate oxidation (Ormaza-Gonzalez and Statham, 

1996). 

 

4. RESULTS 

4.1. Rain and aerosol 
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Total Hg concentrations in rain water (bulk precipitation) varied from 10 to 80 pmol L
-1

, with 

a mean of 31 ± 22 pmol L
-1

 (n = 13). This range is similar to those published for other coastal 

areas of the Northern hemisphere (e.g., Hammerschmidt et al., 2007; Marusczak et al., 2011; 

Weiss-Penzias et al., 2012). The average HgT concentration calculated here for the period 

2009-2010, is more than 2 times lower than that calculated for the 40 rain events sampled 

between January 2002 and May 2003 in a coastal site of Corsica (Northwestern 

Mediterranean), namely 70 ± 100 pmol L
-1

 (Cossa and Coquery, 2005). Total Hg 

concentrations in the 28 aerosol samples varied between 0.1 and 35.0 nmol g
-1

 with a mean of 

6.9 ± 6.7 nmol g
-1

. Dissolved gaseous Hg was not measured in rain samples. 

4.2. Rhône River and its plume 

During the low flow period of the Rhône River, HgTF and HgTP concentrations varied in the 

picomolar range (Table 1). Mercury was predominantly (95%) associated with suspended 

particles and its solid-solution partition (KdHg) was controlled by the one of organic carbon 

(Fig. 2, insert). On the other hand, HgTP depicted a negative relationship with water discharge 

(Fig. 2). The variation of dissolved Hg concentrations (HgTF) during the mixing of Rhône 

freshwater with Gulf of Lions saltwater, between the Barcarin site and the prodelta area, is 

illustrated in Figure 3a. Concentrations of HgTF varied from 0.6 to 4.2 pmol L
-1

, and tended to 

be higher in freshwater than in marine water samples (HgTF vs Salinity, p < 0.1). The HgTF 

concentrations in Low Salinity Water lenses (1-50 m) drifting on the shelf were in a similar 

range (0.6-3.5 pmol L
-1

, Table 2, Fig. 3b). Their mean concentration (1.57 pmol L
-1

) was 36 % 

lower (t-test, p< 0.01) than the HgTF mean concentration in the Rhône River (2.45 pmol L
-1

). 

Within the water lenses, HgTF temporal variations were roughly synchronal with the sampling 

depth, with a sinusoidal-type shap in lense 1 (Fig. S3). In the lenses, total Hg was equally 
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distributed between the dissolved and particulates phases, with an average HgTF/HgTP ratio of 

0.49. 

Dissolved gaseous Hg concentrations were measured at 5 m depth during 18 hours-long 

time series (20
th

 and 21
rst

 May) and on three vertical profiles within the Low Salinity Water 

lenses (Fig. S4). Along the DGM profiles, the concentrations varied from 0.02 to 0.45 pmol L
-

1
, averaging 0.09 ± 0.11 pmol L

-1
 (n = 37), whereas for the time series they varied from 0.04 

to 0.33 pmol L
-1

, averaging 0.13 ± 0.09 pmol L
-1

 (n = 10). These ranges are similar to those 

reported by other authors for the Mediterranean Sea and other parts of the world ocean (e.g., 

Mason et al., 1998; Laurier et al., 2003; Andersson et al., 2006; Wängberg et al., 2008). 

Vertical DGM profiles showed a downward increase in concentrations from surface to 50 m at 

station S88 and S95; while a surface maximum was superimposed to this tendency at S108 

(Fig. S4). The time series measurements produced the classical pattern of low DGM values 

during the night and higher levels during the day (insert, Fig. S4). Ex-situ incubation 

experiments showed clearly higher DGM production when exposed to sun light (0.021-0.058 

pmol L
-1 

h
-1

) compared to DGM production in the dark (0.006-0.032 pmol L
-1 

h
-1

). 

Normalized to HgT, reduction rates were 1.3-4.5 % h
-1

 and 0.7-3.4 % h
-1

 for light and dark 

conditions, respectively. 

4.3. Shelf and slope 

The inner shelf (Stas. A-08, B-08, C-08 and D-09, 0-100 m bottom depth) and slope edge 

(Stas. E-06, L-01 and M-12, 100-300 m bottom depth) water columns were explored in March 

2011 (CASCADE cruise). On the shelf, average concentrations HgTUNF and HgTF were 1.52 ± 

1.00 (n = 36), and 0.80 ± 0.47 (n = 37) pmol L
-1

 , respectively (Fig. 4a). The dissolved HgT 

contributed roughly 58 % of HgTUNF (Table 3), yielding an average HgTF/HgTP ratio of 1.11. 
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Concentrations were highest along the A transect, i.e. the nearest to the Rhône River prodelta, 

especially at surface in the brackish water plume (Table 3, Fig. 4a). Elsewhere, vertical HgT 

profiles (Fig. 4a) were relatively uniformous whatever the depth for both filtered and 

unfiltered samples. Interesting to note are the very low concentrations (< 1 pmol L
-1

) of HgTF 

on the inner shelf, especially at Stas. B, C and D (Table 3). Figure 4b shows the time 

variations observed at the head of Cap de Creus canyon (Sta. X) during the monitored eastern 

storm event. Conversely to the shelf profiles, we observed a significant increase of HgTUNF 

toward the bottom for Sta. X (Fig. 4b), a feature likely linked to shelf sediment resuspension 

and downslope export occurring during the storm.  

At the base of the continental slope (Stas. S-230, L-03 and M-10), concentrations of 

HgTUNF ranged from 0.78 to 1.53 pmol L
-1

 with no clear differences between the two cruises 

(Fig. S5). With the exception of two high values at the surface, HgTUNF was significantly 

(p<0.05) higher below than above 100 m depth, suggesting removal in upper layer and 

regeneration below. The few DGM concentrations (n=6) measuredin surface water from the 

slope ranged from 0.05 to 0.09 pmol L
-1

 and never exceeded 12% of the respective HgTUNF. 

4.4. North Gyre 

Temperature and salinity transects are illustrated in Figure 5. The main oceanographical 

feature was the presence of a high-temperature high-salinity layer between 200 and 500 m 

depth corresponding to LIW, i.e. a water mass from the Eastern Mediterranean Basin. The 

measured HgTUNF concentrations varied from 0.53 to 1.45 pmol L
-1

, averaging 1.11 ± 0.13 

pmol L
-1

 (n = 96). This concentration range is similar to those measured in 2004 in the 

Northwestern Mediterranean (Cossa and Coquery, 2005). Figure 5 illustrates the spatial 

distributions of HgTUNF along the South-North and West-East transects in the North Gyre 
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water column. Maximum and minimum HgTUNF concentrations occurred within the 

uppermost 100 m, whereas below 500 m depth, the concentrations were rather uniformous 

with an average of 1.12 ± 0.06 pmol L
-1

 (n = 67). Interestingly, dissolved oxygen and HgTUNF 

distributions showed opposite patterns, especially when stratification of the water column was 

well established. In fact, the high HgTUNF values coincided with low dissolved oxygen levels, 

which develop within the high salinity LIW, due to water stratification, (Fig. 5). Two profiles 

(L-05 and L-10) were also analyzed for total dissolved Hg (HgTF). Particulate Hg (HgTP) 

concentrations were calculated as the difference between HgTUNF and HgTF (Table S2). The 

dissolved HgT fraction constituted 74 to 91 % of the HgTUNF, with lowest HgTF 

concentrations occurring in the uppermost 100 m (Fig. 6). As a corollary, HgTP/HgTF ratios 

were generally between 0.1 and 0.35, but reached 0.45 at the surface.  

Only one profile of DGM was performed in the North Gyre (Sta. S2400), with 

concentrations ranging from 0.05 to 0.14 pmol L
-1

 between the surface and 500 m depth. 

Between 500 m and 2500 m depth, the obtained values were being relatively constant, with a 

mean of 0.14 ± 0.04 pmol L
-1

 (n=4). This overall distribution was similar to that reported for 

the NWM (Ferrarra et al., 2003).  

 

5. DISCUSSION 

5.1. Sources and sinks of Hg on the shelf 

5.1.1. The open sea source 

The Northern Current is the main water supplier for the Gulf of Lions. The horizontal 

flux across the shelf-open sea boundary has been estimated to vary at different periods of 
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the year between 0.07 and 0.35 x 10
6
 m

3
 s

-1
 (Durrieu de Madron et al., 2003). The same 

authors also estimate that the shelf-slope water exchange represents ~10 % of the along-

slope transport, namely 0.2 x 10
6
 m

3
 s

-1
. The chemical characteristics of seawater entering 

the shelf are well represented in the 0-100 m water layer at Sta. Antarès (Fig. 1), where 

HgTUNF mean concentration is 0.92 ± 0.07 pmol L
-1

 (n = 3). Based on these data, the 

estimated mean flux of Hg entering the shelf area via the Northern Current, mainly as 

dissolved species, is 5.7 ± 0.43 kmol yr
-1

. The comparison with other Hg fluxes (see 

below) clearly suggests that the open sea is the main Hg source for the Gulf of Lions. 

Similar conclusions have been drawn for other coastal areas, including the Gulf of Main 

and the Gulf of Mexico (e.g., Sunderland et al., 2012; Harris et al., 2012). 

5.1.2. Gross and net river inputs 

Riverine Hg inputs mainly derive from the Rhône River solid discharges. Other Gulf of 

Lions rivers account for less than 15% of the total riverine particulate inputs (Gairoard et 

al., 2012). Concentrations of HgTP tended to decrease with increasing Rhône River 

discharge during the 2009-2010 monitoring period, which was characterized by the 

absence of large flooding events (Fig. 2). This type of relationship between Hg and water 

discharge has commonly been observed in rivers under various hydrological regimes 

(e.g., Coquery et al., 1997; Quémerais et al., 1999) and was attributed to seasonal changes 

in the nature of the particles carried in freshwater. For example, HgTP is correlated with 

the chlorophyll content of the particles in the Loire River (Coquery et al., 1997), 

suggesting Hg enrichment in the phytoplankton. In the Rhône River, Hg partitioning is 

governed by organic carbon distribution (Fig. 2, insert) and phytoplankton is abundant 
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during low summer discharge, whereas minerals (usually less enriched in Hg) dominate 

during floods due to erosion and bed resuspension, (Harmelin-Vivien et al., 2010).  

The gross fluxes of Hg exported by the Rhône River are estimated to be 0.13 kmol 

yr
-1

 for the dissolved and 2.7 kmol yr
-1

 for the particulate phases (see SI 1 for calculation 

details). According to Gairoard et al. (2012), the Rhône River contributes 85 % of the 

total riverine freshwater and 83 % of the total riverine particle discharge to the Gulf of 

Lions. Thus, if we hypothesize that other riverine outputs into the Gulf of Lions have Hg 

compositions similar to that of the Rhône River, the total Hg input from riverine sources 

to the Gulf of Lions water can be estimated at 0.15 and 3.2 kmol yr
-1

 for the dissolved 

and particulate phases, respectively. There seems to be a clear temporal trend of riverine 

inputs to the NWM, as our calculated dissolved HgT flux value (0.15 kmol yr
-1

) is more 

than 3 times lower than a previous flux estimate based on the 1994-1995 monitoring 

period (Cossa and Coquery, 2005) and more than 10 times lower than the estimate 

proposed at the end of the eighties (Cossa and Martin, 1991). This time-trend is supported 

by the vertical distribution patterns of HgT concentrations recorded in sediments from the 

Rhône prodelta (Cossa et al., this issue) or in the Pierre Blanche Lagoon (Elbaz-Poulichet 

et al., 2011), which all show decreasing Hg concentrations since the 1960s. It should be 

noted that this calculation did not take into account the submarine groundwater discharge 

to the Gulf of Lions, estimated to be 2-30% of the Rhône River runoff (Ollivier et al., 

2008), which may be a non-negligible, yet not quantified, Hg source for the coastal water 

bodies (e.g., Laurier et al., 2007). For comparison purpose, it is interesting to note that the 

annual Hg inputs from the waste water treatment plant of the City of Marseille (850 000 
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inhabitants) have been approximated to be 0.016 kmol, with 75% in the particulate phase 

(Jany and Zebraki, 2012). 

The distribution pattern of HgTF versus salinity during the freshwater-seawater mixing 

(Fig. 3) shows highly variable concentrations at low salinities, but fails to evoke any departure 

from a conservative mixing pattern, similarly with the behaviour of most other trace elements 

studied in the water of the Rhône Delta (Elbaz-Poulichet et al., 1996). The estuarine water 

escapes the mouth of the Rhône River as a turbid desalted plume that is advected, as Low 

Salinity Water lenses, along the Gulf of Lions shelf and the upper slope (Naudin et al., 1997). 

The Low Salinity Water lesnses constitute quite isolated water masses, in which the average 

HgTF concentrations were 36 % lower (t-test, p< 0.01) than the HgTF mean concentration in 

the Rhône River waters, 49 % higher (t-test, p< 0.01) than the HgTF mean concentration 

calculated for the entire Gulf of Lions shelf water, but not significantly different (t-test, p< 

0.01) from that in the prodeltaic zone (Sta. A) (Table 3). However, the Hg distribution in the 

Low Salinity Water lenses does not support any removal or mobilization of dissolved HgT 

(Fig. 3b, Fig. S3). Based on HgT partition and behavior during the estuarine mixing, 

occurring in the plume and in the Low Salinity Water lenses, the gross Rhône River dissolved 

Hg flux can be considered as similar to the net input flux into the Northwestern 

Mediterranean. Bearing in mind dissolved Hg species are readily available for uptake by 

phytoplankton, it is interesting to note from an ecological point of view that, within the Gulf 

of Lions shelf, the dissolved HgT flux from riverine source represents only 2.6 % of the HgT 

flux derived from the marine source. 

5.1.3. Export and accumulation on the shelf 

The fate of particulate Hg in the Rhône River plume and on the shelf, depends on the type of 
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suspended material involved. Generally, in rivers, the coarser particles have lower Hg 

concentrations (e.g., Guédron et al., 2012). Coarse material settles down near the Rhône River 

mouth, mostly at 4-5 m depth (Maillet et al, 2006; Marion et al, 2010; Pruski et al, 2015). 

Conversely, Hg-rich particles are likely present in the Rhône plume and within its well 

described, associated benthic nepheloid layer (Naudin and Cauwet, 1997; Durrieu de Madron 

et al., 2000; Many et al., 2016). The plume is transported together with the Low Salinity 

Water lenses, whereas the nepheloid layer progressively builds a seaward-drifting muddy 

sediment layer (Marion et al., 2010). Based on the burial efficiency of riverine particles in the 

sediment prodelta, varying from 20 to 54% under various hydrological regimes (Noël, 1996; 

Maillet et al., 2006; Dufois, 2008; Lansard, 2005; Pastor et al., 2011; Dufois et al., 2014), the 

estimated quantity of Hg currently buried in the prodelta sediments is in the range 0.64-1.73 

kmol yr
-1

. The westward HgP export on the Gulf of Lions shelf results from 

sedimentation/resuspension processes primarily related to eastern storms (Ulses et al., 2008b; 

Marion et al, 2010; Dufois et al, 2014), and from dispersion within the benthic nepheloid layer 

(Lansard et al, 2006). This material eventually reaches the head of the Cap de Creus canyon at 

the southwestern end of the Gulf of Lions, from where it may be exported to the slope during 

dense shelf water cascading or downwellings induced by storms events. For example, the 3-

days storm that occurred during the CASCADE cruise, on 12-15 March 2011, was recorded at 

Sta. X at the head of Cap de Creus canyon (Fig. 1). Based on present results and an estimated 

downwelling mass flux of 0.4 x 10
12

 g (Bourrin et al., 2015; Dumas et al., 2014), the amount 

of Hg exported this way during the recorded event was 0.2 kmol. On the other hand, the Hg 

associated with suspended material escaping the shelf represents around 0.32 kmol yr
-1

 or 10 

% of the Rhône River inputs, according to the sedimentary budget established by Dufois et al. 
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(2014) and Hg concentrations determined here. Accordingly, our results suggest that one 

downwelling event, such as the one recorded in March 2011, can account for a large 

proportion (i.e., 62%) of the annual particulate Hg exported seawards from the Gulf of Lions.  

The Hg accumulated in the sediments of the shelf can be roughly estimated to be ~4.5 

kmol yr
-1

, based on a mean sediment accumulation of ~0.1 g cm
-2

 yr
-1

 (Durrieu de Madron et 

al., 2000) and a mean Hg concentration in the surface shelf sediment of ~0.375 nmol g
-1

 

(unpublish results). 

5.1.4. Atmosphere/water exchanges 

Based on a mean Hg concentration in rain of 31 pmol L
-1

, a precipitation average of 332 mm 

yr
-1

 (Lebeaupin Brossier et al., 2012) and a surface area of 12 x 10
3
 km

2 
(Durrieu de Madron 

et al., 2003), the mean atmospheric wet Hg input to the Gulf of Lions is ~0.12 kmol yr
-1

. 

According to Vincent et al. (2016), the aerosol deposition fluxes for 1-year measurements 

ranged from 0.9 to 7.4 g m
−2

 yr
−1

 from North to South of the Western Mediterranean. We 

chose the median value to calculate the Hg dry deposition on the Gulf of Lions. Using a mean 

Hg concentration in aerosols of 6.9 nmol g
-1

, the mean atmospheric dry input of Hg to the 

Gulf of Lions is ~0.33 kmol a
-1

, which is almost 3-times higher than the total wet deposition. 

According to Zagar et al. (2013) modelling Hg deposition onto the entire Mediterranean Sea, 

with MECAWEx model, gave also a dry to wet ratio greater than 1. More recent modelling 

gives a ratio close to 1 (Gencarelli et al., 2015). 

Photoreduction and biologically mediated reduction appear to be the most likely DGM 

sources for the shelf water (Fig. S4). A photoreduction mechanism, as described by Amyot et 

al. (1997), is supported by the occurrence of a clear DGM maximum during the day-light 

period (see insert in Fig. S4). From incubation experiments we calculated DGM production 
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rates from 16 to 58 fmol L
-1

 h
-1

 in light and from 6 to 35 fmol L
-1

 h
-1

 in dark conditions. A 2-

fold increase of reduction under light conditions, compared to dark conditions, clearly 

suggests that photochemistry (at least) equals biologically mediated reduction (Fig. S6), as 

already suggested for coastal water masses in other areas of the global ocean (e.g., Amyot et 

al., 1997; Fitzgerald and Lamborg, 2005). In fact, our results clearly suggest that in the 

present experimental conditions photochemistry (at least) equalled biologically mediated 

reduction.  

From our measurements and using an empirical gas exchange model (Wanninkhof, 

1992), — with a piston velocity of 5 m day
-1

, a total gaseous Hg concentration in the 

atmosphere of 11 ± 3 pmol m
-3

 (Marusczack et al., 2015) and a mean DGM concentration in 

seawater of ~150 pmol m
-3

 — we calculate a Hg evasion rate from surface waters to the 

atmosphere of 0.6 nmol m
-2

 d
-1

. This estimate is in the high range of the values calculated by 

Andersson et al. (2006) for the entire Mediterranean (0.2-0.6 nmol m
-2

 d
-1

). Applying these 

values to the Gulf of Lions shelf area (12 x 10
3
 km

2
) gives an annual evasional Hg flux to the 

atmosphere of ~2.6 kmol yr
-1

, which is equivalent to almost one half of the Hg inputs from 

marine sources to the Gulf of Lions (5.7 kmol yr
-1

). This atmospheric evasion flux 

consistently accounts for the low concentrations of dissolved Hg (< 1 pmol L
-1

) found in the 

shelf water at the stations B, C and D (Fig. 4). Thus, the shelf clearly is an area of intense Hg 

evasion to the atmosphere. 

5.2. Mercury enrichment in the WMDW 

The North Gyre waters are separated from coastal waters by the Northern Current, which 

continuously flows along the slope (Fig. 1). Water bodies in the North Gyre normally 

consist of WMDW underlying LIW and AW. During the first days of the CASCADE cruise 
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(encompassing Stas. L-05, L-08 and S2400), the water column in the North Gyre was still 

rather well mixed following a strong storm with northerly wind directions, and WMDW 

occupied the convection region (Fig 5). Then, the water column rapidly restratified due to 

the advection of surrounding LIW and AW over the convective region as observed for 

Stas. Antares, L-10, L-12, M-01, M-03, M-05, M-08, and the WMDW was confined to 

depths greater than 1000 m.  Based on the measurements in the samples from all depths 

sampled in the well-mixed water column and those in the samples collected deeper than 

1000 m for the stratified water columns, we obtained an average HgTUNF concentration of 

1.11 ± 0.06 pmol L
-1

 (n = 60). This value is slightly but significantly higher (t-test, 

p<0.01) than the average HgTUNF concentration in the LIW, which is 1.01 ± 0.08 pmol L
-

1
 (n = 18) according to Cossa and Coquery (2005). Recent measurements performed in 

AW collected west of the Gibraltar Strait (35° 30.82’ N; 09° 09.21’ W) provided HgTUNF 

concentrations varying from 0.2 and 0.3 pmol L
-1

 (n=4) between the surface and 200 m 

depth, i.e. in the the water entering into the Mediterranean (Knoery et al., 2013). These 

low HgTUNF concentrations in the AW mixed layer are likely due to both Hg evasion to 

the atmosphere and Hg scavenging by biological pumping in the stratified North Atlantic 

waters.  

Thus, considering the HgTUNF concentration levels in AW and LIW, there is an 

important addition of Hg within the Northwestern Mediterranean to reach the 

concentrations observed in the WMDW. According to a simulation approach, applied to 

the 2012-2013 period, half of the dense water is formed from the transformation of LIW 

and former dense water, and half from AW (Waldman et al., 2016). However, formation 

of WMDW is annually variable and the proportions of LIW and AW in the WMDW at 
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the time of our cruise are unknown. Thus, we conservatively estimate HgTUNF enrichment 

of WMDW relative to conservative mixing of LIW and AW as ≤0.1 pmol L
-1

. A simple 

calculation can be done for estimating the Hg flux needed to increase the North Gyre 

water column HgTUNF concentration by 0.1 pmol L
-1

: For a 2000 m deep water column 

the corresponding amount of Hg is 0.2 µmol m
-2

. Considering a water residence time of 

20 years in the Western Mediterranean basin (Béthoux et al., 2005), the minimum annual 

flux should be 10 nmol m
-2

 yr
-1

. Mercury deposition from the atmosphere, diffusion from 

sediments and continental shelf advection are candidate sources for this addition.  

A bulk atmospheric wet deposition of 10.3 nmol HgT m
-2

 yr
-1

 was calculated from 

the mean concentration in rain (31 pmol L
-1

) and a precipitation average of 332 mm yr
-1

 

over the Northwestern Mediterranean Sea (Lebeaupin Brossier et al., 2012). Accordingly, 

the required flux for the estimatedHgTUNF enrichment in WMDW is equivalent to the 

entire wet deposition or to one third of the total Hg atmospheric deposition calculated in 

the previous section 5.1.4.  

Addition of Hg from a sediment source would be consistent with findings by Ogrinc et 

al. (2007), who proposed a potential Hg diffusive flux from the Northwestern Mediterranean 

sediment to the overlying water column in the same order of magnitude (18 nmol m
-2

 yr
-1

). 

However, a diffusive flux of dissolved Hg is unlikely, since the uppermost layers of the 

continental rise and abyssal plain sediments in the North Gyre of the Northwestern 

Mediterranean are known to be oxic down to several cm below the sediment-water interface 

(Buscail et al, 1997). In fact, Hg diffusion out of the sediment has never been demonstrated 

for such oxic environments, where oxyhydroxides are thought to act as a trap for diffusing 

species at the benthic interface (e.g., Bothner et al., 1980; Gobeil and Cossa, 1993; Feyte et 
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al., 2010). However, deep convection, such as the one occurring in winter 2011, is known to 

cause resuspension of deep-sea sediments, followed by vertical mixing in the whole water 

column (Stabholz et al., 2013; Puig et al., 2013), making a sedimentary source plausible. In 

the absence of any quantitative evaluation of such resuspension processes on the annual scale, 

the resulting Hg release to the water column remains unknown.  

Mercury advection from the shelf could also contribute to the WMDW Hg enrichment. 

Although there is no signal in the HgT vertical profiles supporting the idea of a large 

continental shelf Hg advection within the North Gyre (Fig. 5), the HgTUNF mean 

concentration in the deep profiles near the foot of the slope calculated from 2006 data (1.29 ± 

0.17 pmol L
-1

; n = 27; Fig. S5) is significantly higher (t-test; p<0.01) than the average 

WMDW HgTUNF concentration (1.11 ± 0.06 pmol L
-1

, n = 60). However, advection from the 

shelf would not affect the dissolved phase, since the lowest HgTF concentrations occur on the 

shelf (Stas. B, C and D, Fig. 4a) and HgTUNF distributions at the edge of the shelf point to the 

presence of substantial amounts of particulate HgT, especially near the bottom of the water 

column during the monitored stormy downwelling period (Sta. X, Fig. 4b). According to our 

calculation (see section 5.1.3), the amount of Hg advected from the shelf to the North Gyre 

deep waters, during the March 2011 downwelling event, was ~0.2 kmol, i.e., ~60% of the 

particulate Hg escaping the shelf each year. Atmosphere, deep-sediment resuspension and 

shelf are, thus, the most probable sources of the Hg enrichment in the WMDW. However, 

more research is needed to solve that issue. Whatever the Hg-enrichment source is, the 

WMDW, which is advected westward through the Gibraltar Strait, constitutes a Hg source for 

the North Atlantic Ocean.  
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Figure Captions 

Figure 1. Study site in the Northwestern Mediterranean, with main circulation patterns. 

Stations location during CASCADE cruise (March 2011). Station coordinates are given in the 

Table S1. 

Figure 2. Particulate Hg (HgTP) versus Rhône River water discharge at station SORA (Arles). 

Relationship between solid-solution partitions of HgT and organic carbon (C) expressed on 

the basis of their partition coefficients (Kd = conc in solid / concentration in solution, L kg
-

1
). 

Figure 3. Mercury in the freshwater-seawater mixing. Dissolved total Hg (HgTF) versus 

salinity in (a) the estuarine mixing zone, (b) the Low Salinity Water lenses (LSW) drifting 

on the shelf.  

Figure 4. Total Hg (HgT) vertical profiles in the water of the shelf and the continental slope 

of the Gulf of Lions. The UNF and F subscribes refer to unfiltered and filtered samples. (a) 

Shelf stations, (b) station X on the slope at the head of the Cap de Creus canyon, points 

associated with an asterisk refer to a time series recorded during the downwelling of shelf 

water. 

Figure 5. Transect of potential temperature, salinity, dissolved oxygen and total Hg (HgTUNF) 

in the North Gyre water column. M-transect and L-transect refer to North-South and West-

East sections, respectively (see Figure 1 and Table S1 for station localizations). 

Figure 6. Mercury partition in the Northern Gyre. Vertical profiles of total Hg (HgT) at Stas. 

L-05 and L-10 in the North Gyre water column. F and P subscribes refer to dissolved and 

particulate phases, respectively. 
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Tables 

 

Table 1. A statistical summary of the concentrations in dissolved (HgF < 0.45µm) and 

particulate (HgP > 0.45µm) HgT measured in the waters of the Rhône River at Arles (Sta. 

SORA). HgT values measured in 1994-1995 are from Cossa and Coquery (2005). SD: 

standard deviation; n: number of samples. 

 

 

 

Table 2. Low Salinity Waters drifting (Lenses 1 and 2) on the shelf and slope waters 

(Sta. S230) (BIOPRHOFI cruise, see figure S2 for Sta. locations). A statistical summary of 

HgT measurements: average ± standard deviation (number of samples) and range (Min. – 

Max.).  

 HgTF (pmol L
-1

) HgTP (nmol g
-1

) 

 Period March 2009 – June 2010 (this study) 

Average ± SD (n) 

Min. – Max. 

2.45 ± 2.05 (24) 

0.40 – 9.25 

0.85 ± 0.45 (27) 

0.20 – 2.15 

 Period June 1994 – June 1995 (Cossa and Coquery, 2005) 

Average ± SD (n) 

Min. – Max. 

5.30 ± 2.95 (24) 

1.40 – 16.50 

2.40 ± 2.00 (24) 

0.40 – 7.50 

 
HgT (pmol L

-1
) 

Low Salinity Waters (1-50 m layer; 

bottom ≤120 m) Filtered samples 

(<0.4µm) 

1.57 ± 0.74 (84)        0.61 – 3.50 

Slope Waters (< 100 m layer; bottom 

at 1386 m), unfiltered samples      
1.22 ± 0.13 (3)        0.98 – 1.35 

Slope Waters (100-900 m layer; 

bottom at 1386 m), unfiltered 
samples      

1.41 ± 0.06 (4)        1.33 – 1.48 
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Table 3. (CASCADE cruise). Summary statistics for HgTUNF, HgTF (<0.4µm) concentrations 

in Gulf of Lions shelf, slope and North Gyre water samples. Average ± Standard deviation 

(number of samples) and range (Min. – Max.). Station locations are indicated in Figure 1 

and coordinates are given in Table S1. (*) Station X, located at the head of Cap de Creus 

canyon, was monitored during a storm event.  

Station (water 
layer sampled) 

HgTF (pmol L
-1

) HgTUNF (pmol L
-1

) HgTF/HgTUNF (%) 

Inner shelf (bottom <100 m) 

A (1-90 m) 1.20 ± 0.89 (7) 

0.73 – 3.20 

2.04 ± 1.11 (7)  

1.27 – 4.47 

56 ± 12 (7) 

42 – 72 

B (1-90 m) 0.65 ± 0.13 (10) 

0.49 – 0.88 

1.17 ± 0.29 (10) 

0.78 – 1.61 

57 ± 14 (10) 

43 – 89 

C (1-90 m) 0.64 ± 0.26 (11) 

0.43 – 1.38 

1.40 ± 1.08 (10) 

0.58 – 4.20 

53 ± 21 (10) 

16 – 87 

D (1-90 m) 0.83 ± 0.29 (9) 

0.66 – 1.58 

1.61 ± 1.23 (9) 

0.92 – 3.80 

64 ± 19 (9) 

24 - 82 

A/B/C/D (1-90m) 0.80 ± 0.47 (37) 

0.43 – 3.20 

1.52 ± 1.00 (36) 

0.58 – 4.47 

58 ± 17 (36) 

16 – 89 

Slope edge and head of the Cap de Creus canyon (bottom at 100-300 m) 

E (2-290 m) 0.55 ± 0.01 (2) 

0.54 – 0.56 

0.99 ± 0.52 (20) 

0.58 – 2.94 

69 ± 7 (2) 

64 – 73 

X*(10-290 m) 1.11 ± 0.50 (7) 

1.05 – 1.16 

1.83 ± 0.66 (28) 

1.00 – 2.83 

63 ± 12 (7) 

45 - 80 

L-01 (5-250 m) – 

– 

1.07 ± 0.10 (6) 

1.00 - 1.26 

– 

– 

M-12 (10-130 m) 1.09 ± 0.20 (4) 

0.85 – 1.33 

1.02 ± 0.12 (4) 

0.93 – 1.14 

91 ± 11 (4) 

78 – 86 
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Fig. 2 
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Fig. 5 
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Fig. 6 
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