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A stochastic flow representation is considered with the Eulerian velocity decomposed between a smooth
large scale component and a rough small-scale turbulent component. The latter is specified as a random
field uncorrelated in time. Subsequently, the material derivative is modified and leads to a stochastic version
of the material derivative to include a drift correction, an inhomogeneous and anisotropic diffusion, and a
multiplicative noise. As derived, this stochastic transport exhibits a remarkable energy conservation prop-
erty for any realizations. As demonstrated, this pivotal operator further provides elegant means to derive
stochastic formulations of classical representations of geophysical flow dynamics.
Keywords: Stochastic flows; Uncertainty quantification; Ensemble forecasts; Upper ocean dynamics

1. Introduction

Despite the increasing power of computational resources and the availability of high quality
observations, a precise description of geophysical flows over their whole dynamical scales is
today completely beyond reach. Challenges appear as unlimited as the variety of dynamics
and boundary conditions with their broad range of spatial and temporal scales across the
globe. To face these challenges, numerous efforts are taking place to build an ever-increasing
quality, quantity, duration and integration of all observations, in situ and satellite. In parallel,
simulation capabilities largely improved, i.e., analysis can now be routinely carried out to
more precisely characterize the variability in the global ocean, at scales of ten to hundreds
of kilometers and one to hundreds of days. Yet, for these ocean models, the unresolved small
scales and associated fluxes are always accounted for by simple mathematical models, i.e.
parameterizations.

Although the development of more efficient sub-grid representations remains a very active
research area, the possible separation between relatively low-frequency, large scale patterns
and transient, small-scale fluctuations, strongly invites to consider stochastic representations
of the geophysical dynamics (e.g. Hasselmann 1976, Allen and Stainforth 2002, Penland 2003,
Berner et al. 2011, Franzke et al. 2015). As derived, such developments are meant to better
describe the system’s variability, especially including a mean drift , called “bolus” velocity
(Gent and McWilliams 1990) or skew-diffusion (Nakamura 2001, Vallis 2006) in oceanography,
and noise-induced velocity in climate sciences.

In that context, several different strategies have been proposed (Franzke et al. 2015). Among
them, techniques motivated by physics have been devised. Those schemes aim to overcome a
bad representation of the small scale forcing and of their interactions with the large scale pro-
cesses. Two of such schemes have been carried out at ECMWF. The first one, the stochastic
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perturbation of the physical tendencies – SPPT – (Buizza et al. 1999) implements a multi-
plicative random perturbation of parameterized physical tendencies. The random variables
involved are correlated in space and time, and their characteristics set from fine grid simu-
lations. The second one, the stochastic kinetic-energy backscatter – SKEB – (Shutts 2005)
introduces a perturbation of the stream function and potential temperature. This scheme is
based on earlier works on energy backscattering modelling through the introduction of ran-
dom variables (Mason and Thomson 1992). Numerous works showed a beneficial impact of
the injected randomness on weather and climate forecasts mean and variability (see Berner
et al. 2015, and references therein) or in oceanography (Brankart 2013, Mana and Zanna
2014). However, the amplitude of the perturbations to apply is difficult to specify. The non-
conservative and the variance-creating nature of those schemes is also problematic in that
prospect. A too large amplitude, while increasing significantly the ensemble spread, may lead
to unstable schemes for simulations that go beyond short-term forecast applications. A bal-
ance between the large-scale sub-grid diffusive tensor and the noise amplitude must thus be
found to stabilize the system.

Also based on a separation of the state variables between slow and fast components, a
mathematical framework – refereed to as MTV algorithms – has been proposed to derive
stochastic reduced-order dynamical systems for weather and climate modelling (Franzke et al.
2005, Franzke and Majda 2006, Majda et al. 1999, 2001, 2003). Considering a linear stochastic
equation to describe the fast modes, derivations have been rigorously studied (Gottwald and
Melbourne 2013, Melbourne and Stuart 2011, Pavliotis and Stuart 2008). As demonstrated,
the continuous fast dynamics converges in continuous time towards a Stratonovich noise,
leading to a diffusion term when expressed in a corresponding Ito stochastic integral form.

As well, stochastic superparametrization assumes a scale separation (Grooms and Majda
2013, 2014). The point approximation and Reynolds decompositions replace homogenization
techniques. As for MTV methods, the small-scale evolution law is linearized and corrected
with the introduction of noise and damping terms. The second order moments of the solu-
tion are then known analytically and can feed the sub-grid tensors expression of the mean
deterministic large-scale evolution law. For such developments, the direct use of the Reynolds
decomposition implicitly assumes that small-scale components are differentiable. This theoret-
ically prevents the use of Langevin type equations for the small-scale evolution. Furthermore,
in such a derivation, each scalar evolution law involves a different sub-grid tensor. Similarly
to the definition of eddy viscosity and diffusivity models for Large-Eddy simulation, the noise
expression of most stochastic fluid dynamic models are hardly inferred from physics. So, in-
stantaneous diffusion and randomness may not be consistently related; even though some
careful parametrizations of stationary energy fluxes couple them (Grooms and Majda 2013,
Sapsis and Majda 2013a, Grooms and Majda 2014, Sapsis and Majda 2013b).

To overcome these difficulties, we propose to dwell on a different strategy. As previously
initiated (Mémin 2014), the large-scale dynamics is not prescribed from a deterministic rep-
resentation of the system’s dynamics. Instead, a random variable, referred to as location
uncertainty, is added to the Lagrangian expression of the flow. The resulting Eulerian ex-
pression then provides stochastic extensions of the material derivative and of the Reynolds
transport theorem. An explicit expression of a noise-induced drift is further obtained. As also
derived, a sub-grid stress tensor, describing the small-scale action on the large scales, does
not resort to the usual Boussinesq eddy viscosity assumption, and further, consistently ap-
pears throughout all the conservation equations of the system. Moreover, the advection by the
unresolved velocity acts as a random forcing. As such, this framework provides a direct way
to link the resulting material transport and the underlying dynamics. The well-posedness of
these equations has been studied by Mikulevicius and Rozovskii (2004) and Flandoli (2011).
Recently, Holm (2015) derived similar evolution laws from the inviscid and adiabatic frame-
work of Lagrangian mechanics. Compared to models under location uncertainty, the stochastic
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transport of scalars is identical. However, the momentum evolution of Holm (2015) involves an
additional term which imposes the helicity conservation but may increase the kinetic energy.

Starting with the description of the transport under location uncertainty (section 2), de-
velopments are then carried out to explore this stochastic framework for different classical
geophysical dynamical models (section 3).

2. Transport under location uncertainty

2.1. A 2-scale random advection-diffusion description

As often stated, ocean and atmospheric dynamics can be assumed to be split into two contri-
butions with very distinct correlation times. This assumption can especially hold for the top
layer of the ocean. For example, the larger ocean geostrophic component generally varies on
much slower time scales than motions at smaller spatial scales. From an observational per-
spective, current generation satellite altimeter instruments are capable of resolving only the
largest eddy scales, and the measurements can depend sensitively on the local kinetic energy
spectrum of the unresolved flow (Poje et al. 2010, Keating et al. 2011). Satellite observations
of the upper-ocean velocity field at higher resolution can also be obtained (e.g. Chapron et al.
2005) but are certainly too sparse and possibly noisy.

Accordingly, without loss of generality, observations of an instantaneous Eulerian velocity
field are likely coarse-grained in time, and can be interpreted under a 2-scale framework.
As such, the instantaneous Eulerian velocity is decomposed between a well resolved smooth
component, denoted w, continuous in time, and a rough small-scale one, rapidly decorrelat-
ing in time. This badly-resolved contribution, expressed as σḂ, is then assumed Gaussian,
correlated in space, but uncorrelated in time. This contribution can be inhomogeneous and
anisotropic in space. Due to the irregularity of the flow, the transport of a conserved quantity,
Θ, by the whole velocity, defined as

Θ(Xt+∆t, t+ ∆t) = Θ(Xt, t) (1)

corresponds to a random mapping. In this setup the large-scale velocity possibly depends
on the past history of the small-scale component. This latter being white in time, the two
components are uncorrelated. Hence, the above conservation shall lead to a classical advection-
diffusion evolution, with the introduction of an inhomogeneous and anisotropic diffusion co-
efficient matrix, a, solely defined by the one-point one-time covariance of the unresolved
displacement per unit of time:

a =
E {σdBt (σdBt)

T}
dt

. (2)

The inhomogeneous structure of the small-scale variance motions shall create inhomogeneous
spreading rates. More agitated fluid parcels spread faster than those over quiescent regions.
Overall, the latter can be seen as “attracting” the large-scale gradients. This effect leads to
invoke a drift correction, anti-correlated with the variance gradient, or, in a multi-dimensional
point of view, anti-correlated with the covariance matrix divergence. Accordingly, the random
advection under a 2-scale description can be expected to be expressed as

∂tΘ + w? · ∇Θ︸ ︷︷ ︸
Corrected advection

=∇ ·
(

1
2a∇Θ

)︸ ︷︷ ︸
Diffusion

− σḂ · ∇Θ︸ ︷︷ ︸
Random forcing

, (3)

with a modified velocity given by

w? = w − 1
2(∇ · a)T + σ(∇·σ)T . (4)

We note the conserved quantity is diffused by the small-scale random velocity. The random
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forcing expresses the advection by the unresolved velocity σḂ = σdBt/dt, and continuously
backscatters random energy to the system. Because of this white-noise forcing term, the
Eulerian conservation equation (3) (that will be formally expressed in the following sections)
intrinsically concerns a random non-differentiable tracer. Finally, the conserved quantity is also
advected by an “effective” velocity, w?, taking into account the possible spatial variation of
the small-scale velocity variance, as well as the possible divergence of this velocity component.

Considering the unresolved velocity and this effective drift, w?, divergent-free, we shall see
that this 2-scale development establishes an exact balance between the amount of diffusion
and the random forcing. Subsequently, essential properties related to energy conservation and
mean/variance tracer evolution directly result from this balance.

2.2. Uncertainty formalism

In a Lagrangian stochastic form, the infinitesimal displacement associated with a particle
trajectory Xt is

dXt = w(Xt, t)dt+ σ(Xt, t)dBt. (5)

Formally, this is defined over the fluid domain, Ω, from a d-dimensional Brownian function
Bt. Such a function can be interpreted as a white noise process in space and a Brownian
process in time1. The time derivative of the Brownian function, in a distribution sense, is
denoted σḂ = σdBt/dt, and is a white noise distribution. The spatial correlations of the
flow uncertainty are specified through the diffusion operator σ(., t), defined for any vectorial
function, f , through the matrix kernel σ̆(., ., t):

σ(x, t)f
4
=

∫
Ω
σ̆(x, z, t)f(z, t)dz. (6)

This quantity is assumed to have a finite norm2 and to have a null boundary condition on the
domain frontier3. The resulting d-dimensional random field, σ(x, t)dBt, is a centered vectorial
Gaussian function, correlated in space and uncorrelated in time with covariance tensor

Cov(x,y, t, t′)
4
= E

{
(σ(x, t)dBt)

(
σ(y, t′)dBt′

)
T
}
, (7)

=

∫
Ω
σ̆(x, z, t)σ̆T (y, z, t)dz δ(t− t′)dt. (8)

For sake of thoroughness, the uncertainty random field has a (mean) bounded norm4:

E‖
∫ t

0 σdBt′‖2L2(Ω) < ∞ for any bounded time t 6 T < ∞. Hereafter, the diagonal of the

covariance tensor, a, will be referred to as the variance tensor:

a(x, t)δ(t− t′)dt = Cov(x,x, t, t′).

By definition, it is a symmetric positive definite matrix at all spatial points, x. This quantity,
also denoted σσT , corresponds to the time derivative of the so-called quadratic variation
process:

σσT 4= a = ∂t

〈∫ t

0
σdBs,

(∫ t

0
σdBr

)T〉
.

1Formally it is a cylindrical Id-Wiener process (see Da Prato and Zabczyk (1992) and Prévôt and Röckner (2007) for
more information on infinite dimensional Wiener process and cylindrical Id-Wiener process).
2More precisely, the operator σ is assumed to be Hilbert-Schmidt.
3Note that periodic boundary conditions can also be envisaged.
4 This norm is finite since σ is Hilbert-Schmidt, ensuring the boundness of the trace of operator Q – defined by the kernel

(x,y) 7→ σ(x, t)σT (y, t) –, and ∀t 6 T <∞, E‖
∫ t
0 σdBt′‖2L2(Ω)

=
∫ t
0

∫
Ω ‖σ̆(•,z)‖2

L2(Ω)
dzdt′ =

∫ t
0 ‖σ‖

2
HS,L2(Ω)

dt′ =∫ t
0 tr(Q)dt′ <∞, where the index HS refers to the Hilbert-Schmidt norm.
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with 〈f, g〉 to stand for the quadratic cross-variation process of f and g (see Appendix A).
Given this strictly defined flow, the corresponding material derivative expression of a given

quantity can be introduced.

2.3. Material derivative

To derive the expression of the material derivative DtΘ
4
= (d (Θ (Xt, t)))|Xt=x

, also quoted as

the Ito-Wentzell derivative or generalized Ito derivative in a stochastic flow context (Kunita
1990, theorem 3.2.2), let us introduce an operator, hereafter referred to as the stochastic
transport operator:

DtΘ
4
= dtΘ︸︷︷︸

4
= Θ(x,t+dt)−Θ(x,t)

Time increment

+ (w?dt+ σdBt) · ∇Θ︸ ︷︷ ︸
Advection

−∇ ·
(

1
2a∇Θ

)︸ ︷︷ ︸
Diffusion

dt. (9)

This operator corresponds to a strict formulation of (3). More specifically, it involves a time
increment term dtΘ instead of a partial time derivative as Θ is non differentiable. Contrary
to the material derivative, the transport operator has an explicit expression (equation (9)).
However, the material derivative is explicitly related to the transport operator (see proof in
Appendix B)

DtΘ = f1dt+ hT

1dBt,

DtΘ = f2dt+ hT

2dBt

}
⇐⇒

{
f2 = f1 + tr

(
(σT∇)hT

1

)
,

h1 = h2.
(10)

Note, the material derivative, Dt, has a clear physical meaning but no explicit expression
whereas the explicit expression of the transport operator offers elegant means to derive stochas-
tic Eulerian evolution laws. Most often both operators coincide and can interchangeably be
used. As a matter of fact, in most cases, we deal with null Brownian function h1 in (10).
This corresponds, for instance, either to the transport of a scalar DtΘ = 0 or to the conserva-
tion of an extensive property

(∫
V(t) q

)
when the unresolved velocity component is solenoidal

(∇·σdBt = 0), which leads, as we will see it, to Dtq = −∇·w∗qdt ((28)). In such a case, it is
straightforward to infer from the system (10), that Dt and Dt coincide. For this precise case,
those operators lead to

DtΘ(Xt, t) = DtΘ(Xt, t) = d (Θ(Xt, t)) = f1(Xt, t)dt. (11)

Going back to the Eulerian space, the classical calculus rules apply to operator Dt, e.g. the
product rule

Dt(fg)(x, t) = (Dtf g + f Dtg) (x, t), (12)

and the chain rule

Dt
(
ϕ ◦ f

)
(x, t) = Dtf(x, t)(ϕ′ ◦ f)(x, t). (13)

Given these properties, an expression for the stochastic advection of a scalar quantity can be
derived.

2.4. Scalar advection

The advection of a scalar Θ thus reads

DtΘ = DtΘ = 0. (14)

To analyze this stochastic transport equation, let us first consider that the effective drift and
the unresolved velocity are both divergence-free. As shown later, these conditions ensure an
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isochoric stochastic flow (see (31)). With these conditions, the stochastic transport equation
exhibits remarkable conservation properties.

2.4.1. Energy conservation

From (9-14) and Ito lemma, the scalar energy evolution is given by

d

∫
Ω

1
2Θ

2 =

∫
Ω

(
ΘdtΘ + 1

2dt〈Θ,Θ〉
)
, (15)

= −
∫
Ω

1
2 (w∗dt+ σdBt) · ∇

(
Θ2
)

+

∫
Ω
Θ∇ ·

(
1
2a∇Θ

)
dt︸ ︷︷ ︸

Loss by diffusion

+

∫
Ω

1
2 (∇Θ)T a∇Θdt︸ ︷︷ ︸

Energy intake from noise

. (16)

For suitable boundary conditions, the two last terms cancel out after integration by part.
The diffused energy is thus exactly compensated by the energy brought by the noise. With
divergent-free conditions for w? and σ, another integration by part gives

d

∫
Ω

1
2Θ

2 =

∫
Ω

1
2∇ · (w

∗dt+ σdBt)Θ
2 = 0. (17)

The energy is thus conserved for all scalar random realizations. The expectation of the energy
– the energy (ensemble) mean – is therefore also conserved. Moreover, from the decomposition
Θ = E(Θ) +

(
Θ − E(Θ)

)
into the mean and the random anomaly component, we obtain a

partition of this constant energy mean:

0 =
d

dt
E‖Θ‖2L2(Ω) =

d

dt
‖E(Θ)‖2L2(Ω) +

d

dt

∫
Ω
V ar(Θ). (18)

A decrease of the mean energy – the energy of the (ensemble) mean – is always associated with
an (ensemble) variance increase. Similar energy mean budgets have recently been discussed by
several authors. Majda (2015) refers to this energy mean as the statistical energy. The author
derives the evolution law of this energy by adding the evolution equations of the mean energy
and of the integrated variance, whereas our energy budget is obtained by evaluating the mean
of the evolution law of the total energy, ‖Θ‖2L2(Ω). However, Majda (2015) does not specify

the random forcing. This is why the latter does not a priori balance the turbulent diffusion.
Farrell and Ioannou (2014) also studied the energy mean of stochastic fluid dynamics systems
especially under quasi-linear approximations and with an additive Gaussian forcing.

By the chain rule, all the tracer moments are also conserved:

DtΘp = p Θp−1DtΘ = 0. (19)

Yet, the energy of statistical moments are in general not conserved, as detailed in the following
section.

2.4.2. Mean and variance fields of a passive scalar

Consider now that the expectation corresponds to a conditional expectation given the ef-
fective drift. This applies to passive scalar transport for which the drift does not depend
on the tracer. Terms in dBt have zero-mean, and the mean passive scalar evolution can be
immediately derived taking the conditional expectation of the stochastic transport:

∂tE(Θ) +w? · ∇E(Θ)︸ ︷︷ ︸
Advection

=∇ ·
(

1
2a∇E(Θ)

)︸ ︷︷ ︸
Diffusion

. (20)

Since w∗ is divergent-free, it has no influence on the energy budget. The mean field energy
decreases with time due to diffusion. As for the variance, its evolution equation, derived in
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Appendix C, reads

∂tV ar(Θ) +w? · ∇V ar(Θ)︸ ︷︷ ︸
Advection

=∇ ·
(

1
2a∇V ar(Θ)

)︸ ︷︷ ︸
Diffusion

+ (∇E(Θ))T a∇E(Θ)︸ ︷︷ ︸
Variance intake

. (21)

This is also an advection-diffusion equation, with an additional source term. Integrating this
equation on the whole domain, with the divergent-free condition, and considering the diver-
gence form of the first right-hand term, we obtain

d

dt

∫
Ω
V ar(Θ) =

∫
Ω

(∇E(Θ))T a∇E(Θ) > 0. (22)

It shows that the stochastic transport of a passive scalar creates variance. The dissipation that
occurs in the mean-field energy equation is exactly compensated by a variance increase. This
mechanism is very relevant for ensemble-based simulations. The uncertainty modeling directly
incorporates a large-scale dissipating sub-grid tensor, and further encompasses a variance
increase mechanism to balance the total energy dissipation. Such a mechanism is absent
in ensemble-based data assimilation development (Berner et al. 2011, Gottwald and Harlim
2013, Snyder et al. 2015). An artificial inflation of the ensemble variance is usually required
in consequence to avoid filter divergence (Anderson and Anderson 1999).

2.4.3. Active tracers

For the more general case of an active tracer, the velocity depends on the tracer distribution,
additional energy transfers occurs between the mean and the random tracer components (Sap-
sis 2013, Sapsis and Majda 2013a,b, Ueckermann et al. 2013, Majda 2015). Though a complete
analytical description is involved, these energy transfers are mainly due to the nonlinearity
of the flow dynamics, and are hence more familiar. The models under location uncertainty
involve both types of interactions: the “usual” nonlinear interactions and the random energy
transfers previously described. As such, these two energy fluxes analyzes are complementary.
In deterministic turbulent dynamics with random initial conditions, energy is drained from
the mean tracer toward several modes (e.g. Fourier modes) of the tracer random compo-
nent, and is backscattered from other modes. The energy fluxes toward (from) random modes
increases (decreases) the variance. In the case of the deterministic Navier-Stokes equations,
Sapsis (2013) analytically expressed the integrated variance. The molecular or turbulent diffu-
sion decreases the variance whereas the mean velocity may increases or decreases the random
energy, by triad interactions. The modes receiving energy become unstable, whereas those
giving energy are over-stabilized (Sapsis and Majda 2013a). In ensemble data assimilation of
large-scale geophysical flows, the solution is defined by a manifold sampled by a small ensem-
ble of realizations. Those stabilizations and destabilizations are the reason for the alignment
of ensembles along unstable directions (Trevisan and Uboldi 2004, Ng et al. 2011). It can
lead to filter divergence (Gottwald and Harlim 2013, Bocquet et al. 2016). In the absence
of any modes truncation, the nonlinear interactions redistribute the energy between those
modes. Otherwise, the missing energy fluxes can be parametrized with additional random
terms (Sapsis and Majda 2013a,b).

To further describe the energy exchanges involved in the dynamics under location uncer-
tainty of active tracers, we introduce the decomposition Θ = Θ̃ +Θ′ in terms of a slow com-
ponent Θ̃ and a highly oscillating component Θ′. The first one is time-differentiable whereas
the second is only continuous with respect to time. Both components are random. This de-
composition, the so-called semi-martingale decomposition, is unique (Kunita 1990). For each
component, the following coupled system of transport equations is

∂tΘ̃ +w? · ∇Θ =∇ ·
(

1
2a∇Θ

)
, (23)

dtΘ
′ + σdBt · ∇Θ = 0. (24)
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At the initial time, the first component is deterministic (given the initial conditions) and
the second one is zero. The large-scale component becomes random through the oscillating
component, which is characterized by a gradually increasing energy along time:

E‖Θ′‖2L2(Ω) = E
∫
Ω
〈Θ′, Θ′〉 = E

∫ t

0

∫
Ω

(∇Θ)T a∇Θ dt > 0. (25)

Note, the expectation is taken with respect to the law of the Brownian path. The energy mean
of the non-differentiable component Θ′ is the mean of the energy intake provided by the noise
(16). The same amount of energy mean is removed from the system by the diffusion (16).
Once diffused, this energy is fed back to the small-scale tracer Θ′, the white noise velocity
acting here as an energy bridge. Such an energy redistribution is a main issue in sub-grid
modeling. Indeed, as explained above, large-scale flow simulations often miss to capture the
energy fluxes between the mean and the random components but also the energy redistribution
from the unstable modes to the stable modes. Note that, even though the two components
are orthogonal as functions of time (in a precise sense), they are not, in general, as functions

of space:
∫
Ω Θ̃Θ

′ 6= 0. In particular, it can be shown that those two components are indeed
anti-correlated when the tracer is passive.

2.4.4. The homogeneous case and the Kraichnan model

A divergent-free isotropic random field for the small-scale velocity component corresponds
to the Kraichnan model (Kraichnan 1968, 1994, Gawedzky and Kupiainen 1995, Majda and
Kramer 1999). The variance tensor, a, becomes a constant diagonal matrix 1

d tr(a)Id, where
d stands for the dimension of the spatial domain Ω. The tracer evolution now involves a
Laplacian diffusion

dtΘ +
(
wdt+ σdBt

)
· ∇Θ =

tr(a)

2d
∆Θdt. (26)

Additionally, the original Kraichnan model considers a small molecular diffusion, ν, and
an external Gaussian forcing, fdB′t, defined as an homogeneous random field uncorrelated in
time and independent of the velocity component σḂ (Gawedzky and Kupiainen 1995). In our
framework, the Kraichnan model, which does not involve any large-scale drift term, reads

dtΘ + σdBt · ∇Θ =

(
ν +

tr(a)

2d

)
∆Θdt+ fdB′t. (27)

As compared to the original model, this derivation directly identifies the eddy diffusivity
contribution, only implicitly termed in the Kraichnan model (Gawedzky and Kupiainen 1995,
Majda and Kramer 1999). This usual formulation corresponds to the Stratonovich notation.
The Ito calculus further offers means to infer the evolution of the tracer moments, (20) and
(21). The proposed development introduces an additional non-linearity throughw and possible
non-uniform turbulence conditions.

2.5. Transport of extensive properties

Hereafter, all fundamental conservation laws are formulated for extensive properties.

2.5.1. Stochastic Reynolds transport theorem

Similar to the deterministic case, the stochastic Reynolds transport theorem shall describe
the time differential of a scalar function, q(x, t), within a material volume, V(t), transported
by the random flow (5):

d

∫
V(t)

q =

∫
V(t)

[
Dtq +∇ · (w?dt + σdBt) q + d

〈∫ t

0
Dt′q,

∫ t

0
∇·σdBt′

〉]
. (28)
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This expression, rigorously derived in Appendix D, was first introduced in a slightly different
version by Mémin (2014). In most cases, the unresolved velocity component, σḂ, is divergence-
free and, the source of variations of the extensive property

∫
V(t) q is time-differentiable, i.e.

with a differential of the form d
∫
V(t) q = Fdt. In such a case, for an arbitrary volume, the

transport theorem takes the form Dtq = fdt, and according to equation (10) the material
derivative can be replaced by the stochastic transport operator, Dtq, to provide an intrinsic
expression of this stochastic transport theorem.

2.5.2. Jacobian

Taking q = 1 characterizes the volume variations through the flow Jacobian, J :∫
V(t0)

d(J(Xt(x0), t))dx0 = d

∫
V(t)
dx, (29a)

=

∫
V(t)
∇ · (w?dt+ σdBt) (x, t) dx, (29b)

=

∫
V(t0)

[
J∇ · (w?dt+ σdBt)

]
(Xt(x0), t) dx0. (29c)

Valid for an arbitrary initial volume V(t0), it leads to a familiar form for the Lagrangian flow
Jacobian evolution law:

DtJ− J∇ · (w?dt + σdBt) = 0. (30)

2.5.3. Incompressibility condition

The Jacobian evolution (30) ensures a necessary and sufficient condition for the isochoric
nature of the stochastic flow:

∇ · σ = 0 and ∇ ·w∗ = 0. (31)

If the large-scale flow component, w, is solenoidal, this reduces to:

∇ · σ = 0 and ∇ ·w =∇ · (∇ · a)T = 0. (32)

Note that for an isotropic unresolved velocity, the last condition is naturally satisfied, as this
unresolved velocity component is associated with a constant variance tensor, a.

2.6. Summary

An additional Gaussian and time-uncorrelated velocity modifies the expression of the mate-
rial derivative. In most cases, the resulting stochastic transport operator, Dt, coincides with
the material derivative, Dt. Yet, possible differences between Dt and Dt have simple analytic
expressions. This stochastic transport operator leads to an Eulerian expression of the tracer
transport. As obtained, the tracer is forced by a multiplicative noise and mixed by an inho-
mogeneous and anisotropic diffusion. Moreover, the advection drift is possibly modified with
a correction term related to the spatial variation of the small-scale velocity variance. The
random forcing, the dissipation and the effective drift correction are all linked. Accordingly,
the energy is conserved for each realization, as the tracer energy dissipated by the diffusion
term is exactly compensated by the energy associated with the random velocity forcing. For a
passive tracer, the evolution laws for the mean and variance precise these energy exchanges.
The unresolved velocity transfers energy from the mean part of the tracer to its random part.
For an active tracer, this velocity component bears energy from the whole tracer field to its
random non-differentiable component.
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3. Stochastic versions of geophysical flow models

The stochastic version of the Reynolds transport theorem provides us the flow Jacobian evo-
lution law, as well as the rate of change expression of any scalar quantity within a material
volume. Together with the fundamental conservation laws of classical mechanics, it provides
us a powerful tool to derive in a systematic way stochastic flow models. Thanks to the bridge
between the material derivative and the stochastic transport operator, this derivation closely
follows the usual deterministic derivations.

All along the following development, the small-scale random flow component will be assume
incompressible, i.e. associated with a divergence-free diffusion tensor:

∇ · σ = 0. (33)

This assumption remains realistic for the geophysical models considered in this study, and does
not prevent the resolved velocity component (and therefore the whole field) to be compressible.

3.1. Mass conservation

Mass conservation for arbitrary volumes rules the stochastic transport of the fluid density,
denoted ρ:

Dtρ+ ρ∇ ·w∗dt = 0. (34)

A suggested in 2.5.1, the material derivative, Dt, is now replaced by Dt, defined by Eq. (9).
Indeed, the mass variation is zero and thus time-continuous, and the stochastic operator
coincides with the material derivative.

3.2. Active scalar conservation law

The transport theorem (28) applied to a quantity ρΘ describes the rate of change of the scalar
Θ and is generally balanced by a production/dissipation term, as

Dt(ρΘ) + ρΘ∇ ·w∗dt = ρFΘ(Θ)dt. (35)

Again, the stochastic transport operator, Dt, is used instead of the material derivative, Dt,
since the source of variation

∫ t
0

(∫
V(t) ρFΘ

)
dt of the extensive property,

∫
V(t) ρΘ, is time-

differentiable (integral in dt), as explained in 2.5.1. Considering the product rule (12) and
mass conservation (34), the transport evolution model for the scalar writes

DtΘ = FΘ(Θ)dt. (36)

For a negligible production/dissipation term, the scalar is conserved by the stochastic flow
and follows properties highlighted in section 2 – e.g. the energy conservation of each realization
and the dissipation of the mean field. As in the deterministic case, the 1st law of thermody-
namics implies both temperature conservation (Θ = T ) and conservation of the amount of
substance – e.g. the conservation of salinity (Θ = S):

DtT = FT (T )dt, (37a)

DtS = FS(S)dt. (37b)

The term FΘ(Θ) corresponds to diabatic terms such as the molecular diffusion process or the
radiative heat transfer.
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3.3. Conservation of momentum

To derive a stochastic representation of the Navier-Stokes equations, pressure forcing is de-
composed into continuous component, p, and white-noise term ṗσ = dtpσ/dt. The smooth
component of the velocity is not only assumed continuous but also time-differentiable (Mémin
2014). As demonstrated in Appendix E, the flow dynamics for an observer in an uniformly
rotating coordinate frame writes:

Navier-Stokes equations under location uncertainty in a rotating frame

Momentum equations

∂tw + (w∗ · ∇)w − 1

2ρ

∑
i,j

∂i

(
ρaij∂jw

)
+ f ×w = g − 1

ρ
∇p+

1

ρ
F(w). (38a)

Effective drift

w∗ = w − 1
2(∇ · a)T . (38b)

Random pressure contribution

∇dtpσ =(σdBt · ∇)w − ρf × σdBt + F(σdBt). (38c)

Mass conservation

Dtρ+ ρ∇ ·w∗dt = 0, ∇ · (σdBt) = 0. (38d)

Similarly to the Reynolds decomposition, the dynamics associated with the drift component
includes an additional stress term, and the large-scale velocity component is advected by an
eddy effective drift velocity. The density is driven by a stochastic mass conservation equation
or alternatively through the stochastic transport of temperature and salinity (37a-37b), to-
gether with a state law. The random density constitutes a random forcing in the large-scale
momentum equation.

For incompressible flows, the pressure is then recovered from a modified Poisson equation;

−∆p =∇ ·
(
ρ
(
w∗ · ∇

)
w + ρf ×w − 1

2

∑
ij

∂i( ρaij∂jw)

)
. (39)

The pressure acts as a Lagrangian penalty term to constrain the large scale component to be
divergent-free.

This formalization can be compared to another stochastic framework based on scale gap:
Stochastic Super-Parametrization (SSP) (Grooms and Majda 2013, 2014). Both modeling
enable separating the large-scale velocity (38a) and the small-scale contribution (38c). This
is done by a differentiability assumption on the large-scale drift, w, in the modeling under
location uncertainty, and through the Reynolds decomposition and a point approximation
assumption in SSP. However, it can be pointed out that no averaging procedure is settled in
the modeling under location uncertainty. Furthermore, the transports of density, temperature
and salinity involve random forcings. Unlike SSP, the whole system to be simulated is thus
random. This randomness is of main importance for Uncertainty Quantification (UQ) apli-
cations as illustrated theoretically in section 2 and numerically in the part II of this set of
papers (Resseguier et al. 2017a). Another main difference between the two methods lies in the
subgrid tensors parametrization. Each SSP scalar evolution law involves a different subgrid
tensor whereas there is a single one (related to the small-scale velocity) for every transports
under location uncertainty. For both model it can be noted that the small-scale velocity com-
ponent is Gaussian conditionally on the large-scale properties. Unlike our models, the SSP
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proposes a simple evolution model for this unresolved velocity and hence for its statistics. This
type of linear forced-dissipative evolution laws, introduced by Eddy-Damped Quasi Normal
Markovian (EDQNM) models (Orszag 1970, Leith 1971, Chasnov 1991), could be as well used
to specify the diffusion operator σ and close the models under location uncertainty. Yet, such
closure also need to be parametrized.

3.4. Atmosphere and Ocean dynamics approximations

Ocean and atmosphere dynamical models generally rely on several successive approximations.
In the following, we review these approximations within the uncertainty framework.

For ocean and atmosphere flows, a partition of the density and pressure is generally consid-
ered:

ρ = ρb + ρ0(z) + ρ′(x, y, z, t), (40a)

p = p̃(z) + p′(x, y, z, t). (40b)

Fields ρ̃(z) = ρb + ρ0(z) and p̃(z) correspond to the density and the pressure at equilibrium
(without any motion), respectively; they are deterministic functions and depend on the height
only. The pressure and density departures, p′ and ρ′, are random functions, depending on the
uncertainty component. From the expression of the vertical velocity component (38a), the
equilibrium fields are related through an hydrostatic balance

∂p̃

∂z
= −gρ̃(z). (41)

3.4.1. Traditional approximation

This approximation helps to neglect the deflecting rotation forces associated with vertical
movements. Considering the first moment conservation along the vertical direction of (38),
with the hydrostatic balance (41), it writes

∂tw + (w∗ · ∇)w − 1
2

∑
i,j

∂i

(
aij∂jw

)
+ fxv − fyu = −1

ρ

[
ρ′g +

∂p′

∂z

]
+ F(w). (42)

This approximation is justified when an hydrostatic assumption is employed.

3.4.2. Boussinesq approximation

Within small density fluctuations (i.e. the Boussinesq approximation) as observed in the
ocean, the stochastic mass conservation reads

0 = Dtρ+ ρ∇ ·w∗dt ≈ ρb∇ ·w∗dt. (43)

This implies that the flow is volume-preserving. In an anelastic approximation, density varia-
tions dominate. It can be shown we get the weaker constraint, associated with an horizontal
uncertainty:

∇ ·w − 1
2∇H · (∇H · aH)T =

g

c2ρ
(wρ̃), (44)

where c−2 denotes the velocity of the acoustic waves and subscript H indicates the set of
horizontal coordinates. The classical anelastic constraint implicitly assumes a divergence-free
condition on the variance tensor divergence (as obtained for homogeneous turbulence).

According to equations (37a,b), temperature and salinity are transported by the random
flow. If those tracers do not oscillate too much, the density anomaly, ρ − ρb, can be ap-
proximated by a linear combination of these two properties. And thus, in the Boussinesq
approximation, this anomaly is transported:

0 = Dt(ρ− ρb) = Dt(ρ− ρb). (45)
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Holm (2015) obtained the very same stochastic transport of density anomaly from a La-
grangian mechanics approach.

Using the same approximation, the contribution of the momentum material derivative as-
sociated with the density variation can be neglected. The Navier-Stokes equations coupling
the Boussinesq and traditional approximations then read

Simple Boussinesq equations under location uncertainty

Momentum equations

∂tw + (w∗ · ∇)w − 1
2

∑
i,j

∂i

(
aij∂jw

)
+ fk × u = b k − 1

ρb
∇p′ + F(w), (46a)

Effective drift

w∗ =

(
u∗

w∗

)
= w − 1

2(∇ · a)T , (46b)

Buoyancy equation

Dtb+N2 (w∗dt+ (σdBt)z) = 1
2∇ ·

(
a•zN

2
)

dt, (46c)

Random pressure fluctuation

∇dtpσ =−ρb (σdBt · ∇)w∗ − fk × (σdBt)H + F(σdBt), (46d)

Incompressibility

∇ ·w =∇·
(
σḂ

)
=∇ ·∇ · a = 0. (46e)

For this system, the thermodynamics equations are expressed through the buoyancy variable
b = −gρ′/ρb, and the stratification (Brunt-Väisälä frequency) N2(z) = −g/ρb ∂zρ0(z) is
introduced. The buoyancy term constitutes a random forcing of the vertical large-scale velocity
component. Since the density anomaly, ρ−ρb, has been decomposed into a constant background
slope and a residual, the multiplicative noise of equation (45) is split into an additive and a
multiplicative noise in (46c). The additive noise drains random energy from the stratification
toward the buoyancy. Therefore, the buoyancy energy is not conserved due to the background
stratification.

3.4.3. Buoyancy oscillations

To illustrate the effect of this additive noise in simple cases, we consider here constant-
along-depth buoyancy anomaly and stratification (∂zb = 0 and ∂zN = 0) and only a vertical
motion component (i.e u = 0 and (σdBt)H = 0) with no dependence on depth (due to the
divergence constraint). Note that this latter constraint on the diffusion tensor, implies that
only azz is non null with no dependence on depth as well. Then, the Boussinesq equations
read

∂tw = b and dtb = −N2(wdt+ (σdBt)z). (47)

Similarly to the deterministic case, we recognize an oscillatory system if N2 > 0 and a di-
verging system if N2 < 0 (i.e. when lighter fluid is below heavier fluid). The velocity and
buoyancy are coupled by gravity and transport. However, in our stochastic framework, the
density anomaly is also transported by a random velocity. This highly oscillating velocity may
be interpreted as the action of wind on the surface of the ocean. The interaction between
this unresolved velocity component and the stratification acts has a random forcing on the
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oscillator:

dt∂tw +N2wdt = −N2(σdBt)z. (48)

To solve this equation, one can note that:

dt
(
e−2iNt∂t(e

iNtw)
)

= −N2e−iNt(σdBt)z. (49)

Then, by integrating twice, we get the solutions of the stochastic system (47):

w(t) = w(0) cos(Nt) + ∂tw(0)/N sin(Nt)︸ ︷︷ ︸
=E(w(t))

−N
∫ t

0
sin
(
N(t− r)

)
(σdBr)z, (50)

b(t) = ∂tw(0) cos(Nt)− w(0)N sin(Nt)︸ ︷︷ ︸
=E(b(t))

−N2

∫ t

0
cos(N(t− r))(σdBr)z. (51)

The ensemble means are the traditional deterministic solutions whereas the random parts are
continuous summations of sine wave with uncorrelated random amplitudes. At each time r,
the additive random forcing introduces an oscillation. Without dissipative processes, the latter
remains in the system. But, the influence of the past excitations are weighed by sine wave due
to the phase change. The buoyancy and the velocity are Gaussian random variables (as linear
combinations of independent Gaussian variables). Therefore, their finite dimensional law (i.e.
the multi-time probability density function) are entirely defined by their mean and covariance
functions. The variances can be computed through the Ito isometry (Oksendal 1998). Then,
the velocity covariance can be inferred from the SDE (48):

Covw(t, t+ τ) =
azzN

4
cos(Nτ) (2Nt− sin(2Nt)) +

azzN

4
sin(Nτ) (1− cos(2Nt)) . (52)

The covariance of the buoyancy is similar. Since the interaction between the unresolved ve-
locity component and the background density gradient cannot be resolved deterministically,
uncertainties of the dynamics accumulate. Each time introduces a new random uncorrelated
excitation. This is why the buoyancy and velocity variances increase linearly with time. In
contrast, in a deterministic oscillator with random perturbations of the initial conditions, the
variance remains constant and depends solely on the initial velocity variance. This growing
also illustrates in a very simple case the possible destabilization effects of the unresolved
velocity in the models under location uncertainty.

The first term of the covariance (52) modulates the variance with a sine wave. The ran-
domness of w is generated by a set of sine wave which have coherent phases and interfere.
When Nτ = 0[2π] the noises with correlated amplitudes, (σdBr)z, in w(t) and w(t + τ) are
in phase, and thus the velocity covariance is large. When Nτ = π[2π] these correlated noises
have opposite phases, and yields a negative velocity covariance. When Nτ is close to π

2 [π], the
noises are in quadrature and the first term of the velocity covariance is zero.

3.5. Summary

The fundamental conservation laws (mass, momentum and energy) have been interpreted
within the proposed stochastic framework. Usual approximations of fluid dynamics are con-
sidered, leading to a stochastic version of Boussinesq equations. As developed, the buoyancy
is transported by a smooth large-scale velocity component and a small-scale random field,
delta-correlated in time. Consequently, the buoyancy is forced by an additive and a multi-
plicative noises, uncorrelated in time but correlated in space. The additive noise encodes the
interaction between the unresolved velocity and the background stratification. The resulting
random buoyancy then appears as an additive time-correlated random forcing in the vertical
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momentum equation. Both momentum and thermodynamic equations then involve an inhomo-
geneous and anisotropic diffusion, and a drift correction that both depend on the unresolved
velocity variance tensor, a. Assuming hydrostatic equilibrium in this stochastic Boussinesq
model directly provides a stochastic version of the primitive equations. A solvable model is
also derived from this Boussinesq model. This toy model exemplifies how the random forcing
continually increases the variance of the solution.

3.6. Guidelines for the derivation of models under location uncertainty

The main steps of the derivation of dynamics under location uncertainty are sketched out
below:

(i) The conservation laws of classical mechanics describe variation of some extensive proper-
ties. As illustrated in Appendix E for the stochastic Navier-Stokes model, if the extensive
property of interest (linear momentum in this Appendix) has a component uncorrelated
in time, the variations of this component must be balanced by a very irregular forcing,
and can be discarded.

(ii) The stochastic Reynolds transport theorem (28) enables us to interpret the variation of
the time-correlated component of the extensive property. The expression of the stochastic
material derivative of an associated intensive quantity follows.

(iii) The formulas (10) relate this material derivative, Dt, to the stochastic transport operator,
Dt. In most cases, these operators coincide.

(iv) Gathering the equations from (ii) and (iii) provides an explicit Eulerian evolution law.
(v) Additional regularity assumptions can be used to separate the large-scale and small-scale

components of the evolution law. As an example, the velocity component, w, has been
assumed to be differentiable with respect to time in this section i.e. the acceleration
component, ∂tw, is correlated in time. Thus, there is no time-uncorrelated noise in the
large-scale momentum evolution law and the random pressure fluctuations appear in a
separate equation. This separation is of great interest for deterministic LES-like simu-
lations. However, by this approximation, we lose the conservation of the kinetic energy
(17). For Uncertainty Quantification (UQ) purposes, this separation is not necessary.

(vi) With or without regularity assumptions, usual approximations (e.g. the Boussinesq ap-
proximation) can be done to simplify further the stochastic model.

Let us point out that the corresponding models involve subgrid terms which generally can-
not be neglected. When adimentionalized, those subgrid terms are weighted by an additional
adimentional number whose value depends on the noise magnitude. For a low noise the ap-
proximate dynamical models take a random form that remains similar to their deterministic
counterparts. At the opposite, the system is generally significantly changed when considering
a strong noise.

A second companion paper (part II) (Resseguier et al. 2017a) describes random versions
of Quasi-Geostrophic (QG) and Surface Quasi-Geostrophic (SQG) models with a moderate
influence of the subgrid terms, whereas the third one (part III) (Resseguier et al. 2017b)
focuses on the same models with a stronger influence of subgrid terms. The two dynamics
are significantly different.

To close the stochastic system, the operator σ needs to be fully specified. Several solutions
can be proposed to that purpose. The simplest specification consists in resorting to a homo-
geneous parametrization such as the Kraichnan model (Kraichnan 1968, 1994, Gawedzky and
Kupiainen 1995, Majda and Kramer 1999). The companion paper Resseguier et al. (2017a)
relies on this type of random field with a parameterization fixed from an ideal spectrum.
When the small-scale velocity is observable or at least partially observable the structure of
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that operator can then be estimated. For instance, in Resseguier et al. (2015) a nonpara-
metric and inhomogeneous variance tensor a(x) = σ(x)σ(x)T is estimated from a sequence
of observed velocity. Parametric and/or homogeneous models could also be specified. If no
small-scale statistics are available, the choice of a closure can expressed σ as a function
of large-scale quantities and similarity assumption (Kadri-Harouna and Mémin 2016, Chan-
dramouli et al. 2016). The unresolved velocity can be defined as the solution of a simple
linearized equations subject to advection by large-scale components, damping and additive
random forcing as in e.g. quasi-linear approximations (Farrell and Ioannou 2014) or stochas-
tic super-parameterizations (Grooms and Majda 2013, 2014). Existing methodologies of data
assimilation literature would also be of great interest in this context. Several authors define
models from observed correlation length or correlation deformation estimation (Pannekoucke
and Massart 2008, Mirouze and Weaver 2010, Weaver and Courtier 2001). Others specify the
correlation matrices by diffusion equations (Michel 2013b,a, Pannekoucke et al. 2014).

4. Conclusion

In this paper, a random component is added to the smooth velocity field. This helps model
a coarse-grained effect. The random component is chosen Gaussian and uncorrelated in time.
Nevertheless, it can be inhomogeneous and anisotropic in space. With such a velocity, the
expression of the material derivative is changed. To explicit this change, we introduce the
stochastic transport operator, Dt. The material derivative, Dt, generally coincides with this
operator, especially for tracer transports. Otherwise, the difference between these operators
has a simple analytic expression. The stochastic transport operator involves an anisotropic and
inhomogeneous diffusion, a drift correction and a multiplicative noise. These terms are spec-
ified by the statistics of the sub-grid velocity. The diffusion term generalizes the Boussinesq
assumption. Moreover, the link between the three previous terms ensures many desired prop-
erties for tracers, such as energy conservation and continuous variance increasing. For passive
tracer, the PDEs of mean and variance field are derived. The unresolved velocity transfers
energy from the small-scale mean field to the variance. This is very suitable to quantify the
uncertainty associated with sub-grid dynamics. This randomized dynamics has been called
transport under location uncertainty. A stochastic version of the Reynolds transport theorem
is then derived. It enables us to compute the time differentiation of extensive properties to
interpret the conservation laws of classical mechanics in a stochastic sense.

Applied to the conservation of linear momentum, amount of substance and first principle of
thermodynamics, a stochastic version of the Navier-Stokes equations is obtained. Similarly to
the deterministic case, a small buoyancy assumption leads to random Boussinesq equations.
The random transport of buoyancy involves both a multiplicative and an additive noises. The
additive noise encodes the interaction between the unresolved velocity and the background
stratification. We schematically presented the action of this last forcing through a solvable
model of fluid parcels vertical oscillations.

Under strong rotation and strong stratification assumptions, the stochastic Boussinesq rep-
resentation simplifies to different mesoscale models depending on the scaling of the subgrid
terms. The companion papers part II (Resseguier et al. 2017a) and part III (Resseguier et al.
2017b) describe such models. For a moderate influence of noise-driven subgrid terms, the Po-
tential Vorticity (PV) is randomly transported up to three source terms (Resseguier et al.
2017a). Assuming zero PV in the fluid interior yields the usual Surface Quasi-Geostrophic
(SQG) relationship. The stochastic transport of buoyancy, yields a stochastic SQG model
referred to as SQG model under Moderate Uncertainty (SQGMU ). This two-dimensional non-
linear dynamics enables Resseguier et al. (2017a) to numerically unveil advantages of the
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models under location uncertainty in terms of small-scale structures restoration (in a single
realization) and ensemble model error prediction (with an improvement compared to per-
turbed deterministic models of one order of magnitude).

To go beyond the framework of this paper, larger-scale random dynamics can be inferred
by averaging the models under location uncertainty using singular perturbation or stochastic
invariant manifold theories (Gottwald and Harlim 2013). Finally, a delta-correlated process
and stochastic calculus may seem insufficient to model the smallest velocity scales. Ito formulas
deal with white-noise forcing and contains only second-order terms. For higher order terms,
such as hyperviscosity, more complete theories exist (Klyatskin 2005).
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Appendix A: Quadratic variation

The quadratic co-variation process denoted 〈X,Y 〉t, is defined as the limit in probability over
a partition {t1, . . . , tn} of [0, t] with t1 < t2 < · · · < tn, and a partition spacing δti = ti− ti−1,
noted as |δt|n = max

i
δti and such that |δt|n → 0 when n→∞:

〈X,Y 〉t =
P

lim
|δt|n→0

n−1∑
i=0

(
X(ti+1)−X(ti)

)(
Y (ti+1)− Y (ti)

)
T
.

For Brownian motions, it follows 〈B,B〉t = t, 〈B, h〉t = 〈h,B〉t = 〈h, h〉t = 0, where h is a
deterministic function (or a random time-differentiable function) and B a scalar Brownian
motion. The quadratic co-variation of the uncertainty component reads〈∫ t

0
(σ(x, t)dBt)

i ,

∫ t

0
(σ(y, t)dBt)

j

〉
=

∫ t

0

∑
k

∫
Ω
σ̆ik(x, z, s) σ̆jk(y, z, s)dsdz,

4
=

∫ t

0
aij(x,y, s)ds. (A.1)

Its time derivative corresponds to the spatial covariance tensor. The diagonal of this tensor,
denoted the variance tensor, corresponds to x = y. For isotropic random fields, σ̆ (x, z) =
σ̆ (‖x− z‖2), the quadratic variation is a constant diagonal matrix.

Appendix B: Link between the material derivative Dt and the operator Dt

Let us assume that

DtΘ = fdt+ hTdBt. (B.1)

By definition of Dt (see (9)),

DtΘ = dtΘ + (w∗dt+ σdBt) · ∇Θ − 1
2∇ · (a∇Θ) dt. (B.2)

It yields

dtΘ =
(
f −w∗ · ∇Θ + 1

2∇ · (a∇Θ)
)

dt+ hTdBt − (σdBt) · ∇Θ. (B.3)
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Denoting HΘ the Hessian of the function Θ, we have

dt∇Θ =∇
(
f −w∗ · ∇Θ + 1

2∇ · (a∇Θ)
)

dt

+∇hTdBt −∇ (σdBt)
T ∇Θ −HΘ (σdBt) . (B.4)

As Θ is a random function, its material derivative, i.e. the differential of Θ(t,Xt), involves
the composition of two stochastic processes. Its evaluation requires the use of a generalized
Ito formula, referred to as the Ito-Wentzell formula (see theorem 3.3.1, Kunita 1990). In the
same way as the classical Ito formula1, it incorporates quadratic variation terms related to the
process Xt, but also co-variation terms between Xt and the gradient of the random function
Θ, as

(DtΘ) (t,Xt)
4
= d (Θ (t,Xt)) , (B.5)

= dtΘ + dXt · ∇Θ + 1
2tr (d <Xt,X

T

t >HΘ) + d <XT

t ,∇Θ >, (B.6)

= dtΘ + (wdt+ σdBt) · ∇Θ + 1
2tr (aHΘ) dt+ tr (σT∇hT ) dt

−
d∑

k=1

σT

•k∇σT

•k∇Θdt− tr (σTHΘσ) dt, (using (B.4)) (B.7)

= dtΘ + (wdt+ σdBt) · ∇Θ − 1
2tr (aHΘ) dt

+tr (σT∇hT ) dt− (∇·a−∇·σσT )∇Θdt, (B.8)

= dtΘ +
((
w − 1

2 (∇·a)T + σ(∇·σ)T
)

dt+ σdBt

)
· ∇Θ

−1
2∇·(a∇Θ) dt+ tr (σT∇hT ) dt, (B.9)

= DtΘ + tr (σT∇hT ) dt (by definition of Dt). (B.10)

Finally, taking this Lagrangian formulation at Xt = x leads to the (Eulerian) expression of
the material derivative:

DtΘ
4
= (dt (Θ (t,Xt)))|Xt=x

= DtΘ + tr (σT∇hT ) dt. (B.11)

Conversely, assuming that the explicit expression (B.1) is unknown whereas the expression of
the material derivative is known:

DtΘ = f̃dt+ h̃
T

dBt. (B.12)

Using (B.11) we obtain

DtΘ = DtΘ − tr (σT∇hT) dt = (f − tr (σT∇hT)) dt + hTdBt. (B.13)

By uniqueness of the martingale decomposition (term in dt and term in dBt), we can identify

h̃ = h. Then, using again (B.11) yields

DtΘ = DtΘ − tr (σT∇hT) dt = DtΘ − tr
(
σT∇h̃T

)
dt. (B.14)

Appendix C: The evolution of the variance of a passive tracer

For a passive scalar Θ, we denote Y
4
= Θ−E(Θ) and Z

4
= Y 2. The goal is to find the evolution

of V ar(Θ) = E(Z). The conservation of the tracer, says DtΘ = 0, gives the evolution equation

1relevant only to express the differential of a time-differentiable function of a stochastic process.
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of Y :

dtY = − (w? · ∇)Y dt+∇ ·
(

1
2a∇Y

)
dt− (σdBt · ∇)Θ. (C.1)

Then, by the Ito formula, we obtain

dtZ = 2Y dtY + dt < Y, Y >, (C.2)

= −w? · ∇Zdt+ Y∇·(a∇Y ) dt− 2Y (σdBt · ∇)Θ + (∇Θ)T a∇Θdt. (C.3)

Taking the expectation of this expression and using Θ = E(Θ) + Y , yields

∂tV ar(Θ) =−w? · ∇V ar(Θ)

+ E {Y∇·(a∇Y )}+ (∇E(Θ))T a∇E(Θ) + E {(∇Y )T a∇Y } . (C.4)

Expanding the second term of the right-hand side makes appear the diffusion of the variance

E {Y∇·(a∇Y )} =
∑
i,j

∂iaijE {Y ∂jY }+
∑
i,j

aijE
{
Y ∂2

ijY
}
, (C.5)

=
∑
i,j

∂iaijE {Y ∂jY }+
∑
i,j

aijE
{

1
2∂

2
ij(Y

2)− ∂iY ∂jY
}
, (C.6)

= 1
2

∑
i,j

∂iaij∂jE {Z}+ 1
2

∑
i,j

aij∂ijE {Z} − E {(∇Y )T a∇Y } , (C.7)

=∇·
(

1
2a∇V ar(Θ)

)
− E {(∇Y )T a∇Y } . (C.8)

Finally, the evolution law of the variance writes

∂tV ar(Θ) +w? · ∇V ar(Θ) =∇·
(

1
2a∇V ar(Θ)

)
+ (∇E(Θ))T a∇E(Θ). (C.9)

Appendix D: Stochastic extension of the Reynolds transport theorem

In the following, we consider a scalar function φ transported by the stochastic flow x0 7→ x =
Xt(x0) (see (5)). Its initial time value g is

φ(Xt(x0), t) = g(x0). (D.1)

We will assume that the initial function g : Ω → R has bounded spatial gradients and vanishes
outside the initial volume V(t0) and on its boundary. The material derivative of φ is

(Dtφ)(t,Xt(x0))
4
= d (φ(t,Xt(x0))) = dg(x0) = 0. (D.2)

With (10), it writes in the Eulerian space

0 = Dtφ
4
= dtφ+ (w?dt+ σdBt) · ∇φ−∇ ·

(
1
2a∇φ

)
dt, (D.3)

with

w? = w − 1
2(∇ · a)T + σ(∇·σ)T . (D.4)

Thus we have

dtφ = Lφdt−∇φ · σdBt, (D.5)

Lφ = −∇φ · w? + 1
2∇ · (a∇φ). (D.6)
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Denoting J the Jacobian corresponding to the change of variables x0 7→ x = Xt(x0), the
differential of the integral over a material volume of the product qφ is given by

d

∫
V(t)

(qφ)(x, t)dx = d

∫
V(0)

(Jqφ)(Xt(x0), t)dx0, (D.7)

= d

∫
Ω
(Jqφ)(Xt(x0), t)dx0, (D.8)

= d

∫
Ω
(qφ)(x, t)dx, (D.9)

=

∫
Ω

(
dtqφ+ qdtφ+ dt〈q, φ〉

)
(x, t)dx, (D.10)

where the second line comes from φ(Xt(x0), t) = g(x0) = 0 if x0 ∈ Ω\V(t0) and the last line
from the Ito’s formula. To compute the quadratic covariation dt〈q, φ〉, we introduce a notation

for the non-differentiable part (i.e. the integral in dBt) of
∫ t

0 Dtq:

Dtq = fdt+ hTdBt. (D.11)

Together with the stochastic operator, Dt, this relation determines the form of the time dif-
ferential of q:

dtq = m dt+ (−∇qTσ + hT ) dBt. (D.12)

Hence, from (D.5), we have

d

∫
Ω
qφ =

∫
Ω

[
dtqφ+ q

(
Lφdt−∇φ · σdBt

)
−∇φTσ (−σT∇q + h) dt

]
. (D.13)

Introducing L∗ the (formal) adjoint of the operator L in the space L2(Ω) with Dirichlet
boundary conditions, this can be written as∫

Ω

[
dtq +

(
L∗q −∇ · (a∇q) +∇ · (σh)

)
dt+∇ ·

(
qσdBt

)]
φ. (D.14)

With the complete expression of L∗ (the second right-hand term of D.6 is self-adjoint), the
condition φ(x, t) → 1IV(t)/∂V(t), where 1I stands for the characteristic function, leads to the
following form of this differential

d

∫
V(t)

q =

∫
V(t)

[
dtq +

(
∇ ·

(
qw?

)
+∇ · (σh)

)
dt+∇ ·

(
qσdBt

)]
, (D.15)

=

∫
V(t)

[
Dtq + tr (σT∇hT ) dt+ (∇·σ)h dt+∇ · (w?dt+ σdBt) q

]
, (D.16)

=

∫
V(t)

[
Dtq +∇ · (w?dt + σdBt) q + (∇·σ)h dt

]
, (D.17)

=

∫
V(t)

[
Dtq +∇ · (w?dt + σdBt) q + d

〈∫ t

0
Dt′q,

∫ t

0
∇·σdBt′

〉]
, (D.18)

(D.19)

where the third line comes from the explicit link (10), between the stochastic transport oper-
ator Dt and the material derivative Dt.

As a simple example of these formulas application, the rate of change of a passive scalar
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quantity within a material volume (i.e h = 0) for a divergent uncertainty random field, reads:

d

∫
V(t)

q =

∫
V(t)

[
Dtq +∇ · (w?dt + σdBt) q

]
, (D.20)

=

∫
V(t)

[
Dtq +∇ · (w?dt+ σdBt) q

]
, (D.21)

=

∫
V(t)

[
dtq +∇ ·

(
q
(
w − 1

2(∇ · a)T + σ(∇·σ)T
))

dt+∇ ·
(
qσdBt

)]
. (D.22)

Appendix E: Stochastic Navier-Stokes model

From the conservation of linear momentum, the balance between the momentum variation
and the forces can be expressed as

d

∫
V(t)
ρ
(
w + σḂ

)
=

∫
V(t)
dtF . (E.1)

The left-hand term must be interpreted in a distribution sense, the small-scale velocity, σḂ,
being non-continuous. For every test function h ∈ C∞0 (R+), we have∫

R+

h(t)d

∫
V(t)
ρw −

∫
R+

dh

dt
(t)

∫
V(t)
ρσdBt =

∫
R+

h(t)

∫
V(t)
dtF . (E.2)

Both sides of this equation must have the same structure, and the forces can be written as∫
R+

h(t)

∫
V(t)
dtF = −

∫
R+

dh

dt
(t)

∫
V(t)
ρσdBt +

∫
R+

h(t)

∫
V(t)
(ηdt+ θdBt) . (E.3)

The right-hand first term must compensate the white-noise distributional differentiation of
(E.2), whereas the last term of (E.3) provides the structure of the forces under location
uncertainty. The forces are due to the gravitation potential Φa within the absolute frame,
pressure and friction forces, dtF(w,σ). A direct stochastic extension of the deterministic
forces expression reads∫

V(t)
(ηdt+ θdBt) =

∫
V(t)

(ρ∇Φadt−∇(pdt+ dtpσ) + dtF(w,σ)) . (E.4)

The pressure term p denotes the continuous contribution of the pressure. The other term,
ṗσ, is a zero-mean non-continuous stochastic process (the white noise part of the pressure).
It describes the pressure fluctuations due to the random velocity component. Note that the
gravity force is continuous in time, whereas the friction force applies both on the deterministic
and stochastic velocity components. For a fixed observer in a rotating frame, the rate of
change of the fluid velocity incorporates (considering the rotation, f , constant in time) the
centripetal acceleration and the Coriolis acceleration as additional terms. The centrifugal
force is included within an effective gravity, g = −∇Φ. The Coriolis term applies both to the
large-scale component of the velocity and to the random small-scale field.

The transport equation applied to the linear momentum gives

d

∫
V(t)

ρw =

∫
V(t)

Dt (ρw) + ρw∇ ·w?dt. (E.5)

With Dt given by (9), the equation (E.5) can be expressed in terms of ρ, w and dt(ρw).
The large-scale velocity w is assumed to be differentiable in time:

dt(ρw) = dtρw + ρ∂twdt. (E.6)
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The density time derivative, dtρ uses (9) and the mass conservation equation

Dtρ+ ρ∇ ·w? = 0. (E.7)

From equations (E.5), (9), (E.6) and (E.7), the variation of the large-scale linear momentum
reads

d

∫
V(t)

ρwi =

∫
V(t)

(
ρ
(
∂twidt+ ρ (w∗dt+ σdBt) · ∇wi − 1

2∇ · (ρa∇wi) dt
)
. (E.8)

From the balance between the forces (E.4) and the momentum variation (E.8), the expres-
sion of the flow dynamics for an observer in an uniformly rotating coordinate frame is then
obtained by considering the slow temporal bounded variation terms and the Brownian terms.


