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Abstract : 
 
We establish the cyst-theca relationship of the dinoflagellate cyst species Trinovantedinium pallidifulvum 
Matsuoka 1987 Matsuoka K. 1987. Organic-walled dinoflagellate cysts from surface sediments of 
Akkeshi Bay and Lake Saroma, North Japan. Bulletin Faculty of Liberal Arts, Nagasaki University 
(Natural Science) 28:35–20. [Google Scholar] based on germination experiments of specimens isolated 
from the Gulf of Mexico. We show that the motile stage is a new species, designated as Protoperidinium 
louisianensis. We also determine its phylogenetic position based on single-cell polymerase chain 
reaction (PCR) of a single cell germinated from the Gulf of Mexico cysts. To further refine the 
phylogeny, we determined the large subunit (LSU) sequence through single-cell PCR of the cyst 
Selenopemphix undulata isolated from Brentwood Bay (Saanich Inlet, BC, Canada). The phylogeny 
shows that P. louisianensis is closest to P. shanghaiense, the motile stage of T. applanatum, and is 
consistent with the monophyly of the genus Trinovantedinium. Selenopemphix undulata belongs to a 
different clade than Selenopemphix quanta (alleged cyst of P. conicum), suggesting that the genus 
Selenopemphix is polyphyletic. Trinovantedinium pallidifulvum is widely distributed with occurrences in 
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the Gulf of Mexico, the North Atlantic, the northeast Pacific and southeast Asia. In addition, we illustrate 
the two other extant species, Trinovantedinium applanatum and Trinovantedinium variabile, and two 
morphotypes of Trinovantedinium. Geochemical analyses of the cyst wall of T. pallidifulvum indicate the 
presence of amide groups in agreement with other heterotrophic dinoflagellate species, although the 
cyst wall of T. pallidifulvum also includes some unique features.  

Keywords : Micro-FTIR, Selenopemphix undulata, Wadden Sea, Lake Saroma, Saanich Inlet, Gulf of 
Mexico 
 
 

 

 



 

 

agreement with other heterotrophic dinoflagellate species, although the cyst wall cyst of 43 

T. pallidifulvum also includes some unique features. 44 

 45 

Keywords: microFTIR; Selenopemphix undulata; Wadden Sea; lake Saroma; Saanich Inlet; Gulf 46 

of Mexico  47 

 48 

1. Introduction 49 

The heterotrophic thecate dinoflagellate genus Protoperidinium Bergh is characterized by 50 

possessing three cingular plates and an additional transitional plate (Balech 1974). This large 51 

genus currently encompasses approximately 280 species (Gómez 2012). The identification of the 52 

thecate stage of Protoperidinium species is based on the body size, outline, presence and position 53 

of apical and/or antapical horns/spines, cingulum displacement and particularly the plate pattern 54 

(e.g., Hoppenrath et al. 2009). In regard to the thecal plate arrangement, Balech (1974) used the 55 

number of anterior intercalary plates and precingular plates to subdivide Protoperidinium into 56 

three subgenera: the subgenus Protoperidinium, which has seven precingular plates and three 57 

anterior intercalary plates; the subgenus Minusculum, which has six precingular plates and three 58 

anterior intercalary plates; and the subgenus Archaeperidinium, which has seven precingular 59 

plates and two anterior intercalary plates. Later, the subgenus Testeria was erected by Faust 60 

(2006) to accommodate species with seven precingular plates, one anterior intercalary plate and 61 

no apical pore complex. However, the results from molecular phylogeny questioned the validity 62 

of the subgenus Minusculum because it was nested within the subgenus Protoperidinium 63 

(Yamaguchi et al. 2007; Ribeiro et al. 2010), and showed the polyphyly of the subgenus 64 

Archaeperidinium, as originally described by Jörgensen (1912) (Ribeiro et al. 2010). 65 

Archaeperidinium was, therefore, emended as a genus and characterized by the flat sulcus, sulcal 66 

flagellar fin covering the sulcal area and circular cingulum without displacement (Yamaguchi et 67 

al. 2011). 68 

The subgenus Protoperidinium can be subdivided into several sections based on the 69 

shape of the first apical (1′ ) plate (ortho, meta or para) and the shape of the second anterior 70 

intercalary (2a) plate (quadra, penta or hexa) (e.g., Gribble and Anderson 2006). Molecular 71 

phylogenies suggested that most of these sections are monophyletic and nested within the 72 

Protoperidinium sensu stricto clade (Mertens et al. 2013; Gu et al. 2015). There are only two 73 

exceptions: the section Conica is polyphyletic and positioned within the Protoperidinium sensu 74 

stricto clade (Yamaguchi et al. 2006; Gu et al. 2015), and the section Oceanica is monophyletic 75 

but positioned outside of the Protoperidinium sensu stricto clade (Sarai et al. 2013).  76 

Several Protoperidinium species have been associated withto a particular cyst, and the 77 

morphology of these cysts can be taxonomically informative, especially the shape of the opening 78 

in the cyst wall, termed the archeopyle (Harland 1982). Thecate stages belonging to 79 

Protoperidinium and Archaeperidinium with a transitional plate have cysts generally havewith a 80 

saphopylic or theropylic 2a archeopyle of their respective cyst (Harland 1982; Ribeiro et al. 81 

2010; Mertens et al. 2012a) whereas, Protoperidinium species without a transitional plate have 82 

cysts with a compound archeopyle involving 2′–4′ (Lewis & Dodge 1987; Kawami & Matsuoka 83 

2009; Kawami et al. 2009; Mertens et al. 2013; Liu et al. 2014). Cyst morphology can be diverse 84 

and is used to classify cysts into various cyst-defined genera such as Brigantedinium Reid, 85 

Votadinium Reid and Selenopemphix Benedek (Fensome et al. 1993). However, differences 86 

between the cyst-based defined nomenclature and the motile-based defined nomenclature have 87 

not yet been fully reconciled. 88 
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Trinovantedinium Reid is a cyst-based defined genus erected by Reid (1977) to describe 89 

peridiniacean cysts with an intercalary archeopyle because, at that time, the existence of such an 90 

archeopyle in the genus Lejeunecysta Artzner & Dörhöfer 1978 was in doubt. This initial 91 

diagnosis included species with or without processes on the cyst. The genus was subsequently 92 

emended by Harland (1977), Bujak (1984) and de Verteuil & Norris (1992). The latter restricted 93 

the diagnosis of Trinovantedinium to only include biphragmal cysts with short, penitabular and 94 

intratabular, but never sutural, hollow to solid processes. There are currently 11 species within 95 

this genus (Table 1). The type species was described by Reid (1977) and is the large transparent 96 

Trinovantedinium capitatum from recent modern Rosslare Point sediment (Ireland). Later, this 97 

was considered a junior synonym of Lejeunia applanata, described by Bradford (1977) from 98 

recent sediments off the east coast of the Musandam Peninsula (Oman), which was renamed later 99 

as Trinovantedinium applanatum (for details see de Verteuil & Norris 1992, p. 408). This is the 100 

first of only three species from this genus that are considered extant; the other eight species are 101 

extinct (Table 1). Trinovantedinium pallidifulvum is the second extant species, first described by 102 

Matsuoka (1987) from Holocene surface sediments in Akkeshi Bay (Hokkaido, Japan). The third 103 

is Trinovantedinium variabile, described by Bujak (1984) from the early Pliocene of the Bering 104 

Sea, and was recorded as extant by Radi & de Vernal (2004), Pospelova et al. (2008), 105 

Krepakevich & Pospelova (2010), Price & Pospelova (2011) and Bringué et al. (2013).  106 

For only one of these extant species is the cyst-theca relationship and molecular 107 

phylogenetic position known. The cyst-theca relationship for the type species Trinovantedinium 108 

applanatum was first established by Wall & Dale (1968); however, it was mistakenly related to 109 

Protoperidinium pentagonum (Gran) Balech. This error was propagated in subsequent studies 110 

(Matsuoka 1982; Lewis et al. 1984; Baldwin 1987). It was Inoue, H. in Fukuyo et al. (1990, p. 111 

154–155) who first remarked that the cingulum of the T. applanatum thecate stage has no 112 

displacement, in contrast with P. pentagonum. Gu et al. (2015) re-established the cyst-theca 113 

relationship for T. applanatum from the East China Sea, and they erected the species 114 

Protoperidinium shanghaiense to describe the motile stage. The hexa-ortho configuration placed 115 

this species in the Conica group and its LSU rDNA sequence was closest to P. divaricatum, P. 116 

leonis and P. conicum. This cyst-theca relationship was most recently confirmed by Li et al. 117 

(2015). 118 

In this study, we establish the cyst-theca relationship for the second extant species of the 119 

genus Trinovantedinium, T. pallidifulvum, through incubation of surface sediments from the Gulf 120 

of Mexico, Dee Estuary (United Kingdom), and Wadden Sea (Germany). We erect a new 121 

species, Protoperidinium louisianensis, to describe the motile stage of Trinovantedinium 122 

pallidifulvum. We obtained LSU rDNA sequences through single-cell PCR that show the motile 123 

stage is closest to Protoperidinium shanghaiense. In addition, we document the distribution of 124 

Trinovantedinium pallidifulvum and the geochemical composition of its cyst wall. We also 125 

illustrate the two other extant species, Trinovantedinium applanatum and Trinovantedinium 126 

variabile. Finally, to further constrain the phylogeny, we also resolve the phylogenetic position 127 

of Selenopemphix undulata from Brentwood Bay (B.C., Canada). 128 

 129 

2. Material and methods 130 

2.1.  Germination experiments  131 

We collected cysts of Trinovantedinium pallidifulvum for incubation studies from surface 132 

sediment samples at three locations: (1) northern Gulf of Mexico, (2) Dee Estuary (UK), and (3) 133 

the Wadden Sea in northern Germany (Figure 1 and Table 2). All samples were stored in plastic 134 
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bags and refrigerated at 4 °C. In situ sea-surface salinities (SSSs) and sea-surface temperatures 135 

(SSTs) were measured when collecting the samples (Table 2). 136 

 Approximately 0.5–1.0 cm3 of wet sediment was immersed in filtered seawater after 137 

which it was ultrasonicated in a bath (60 s) and rinsed through a 20 µm nylon mesh using filtered 138 

seawater. The cyst fraction was separated from this residue using heavy liquid sodium 139 

polytungstate (density = 1.3 g cm-1) (Bolch 1997). Single cysts were then transferred to Nunclon 140 

0.5 ml microwells subjected to an irradiance of 100 µmol photons m-2 s-1 and 24 h light, and 141 

filled with L1 medium. The wells were kept at room temperature. Cysts were regularly checked 142 

for germination, and observations were performed under an Leitz DM inverted light microscope. 143 

Encysted and excysted cysts as well as motile cells were photographed and measured using an 144 

Leica DM 5000B light microscope equipped with a Leica DFC 490 camera with 100x oil 145 

immersion objectives. For each motile cell, the length, width, depth, distance between the tips of 146 

the antapical horns, and width of the cingulum were measured, as where possible. For each cyst, 147 

the same parameters were measured; additionally, the length of three randomly chosen spines per 148 

cyst were measured. All measurements in the species descriptions cite, in order: the minimum, 149 

average (in parentheses) and maximum values (in µm). The standard deviation (SD) is also 150 

provided where appropriate.Incubation experiments were done by KNM and took place at 151 

GEOTOP (Gulf of Mexico and Dee Estuary samples) and Univ. of Bremen (Wadden Sea 152 

samples). All measurements were done by KNM.  153 

 We also attempted to germinate Selenopemphix undulata from Saanich Inlet (Canada), 154 

but none of the isolated cysts germinated. 155 

 156 

2.2.  Study of cysts from surface sediments 157 

To determine the distribution of Trinovantedinium pallidifulvum, permanent slides of surface 158 

samples were examined which included locations from the the northeastern and northwestern 159 

Pacific and the northern Gulf of Mexico (Figure 1 and Table 2). Routine palynological 160 

techniques were used for processing (Pospelova et al. 2004; Matsuoka et al. 2003; Mertens et al. 161 

2012b). The samples were oven-dried at 40 °C and then treated with room-temperature 10% 162 

hydrochloric acid (HCl) to remove calcium carbonate. The material was rinsed twice with 163 

distilled water, sieved at 120 µm to eliminate the coarse fraction, and retained on a 15 µm nylon 164 

mesh. To dissolve siliceous particles, samples were treated with 48–50% room-temperature 165 

hydrofluoric acid (HF) for at least two days, and then treated for 10 min with room-temperature 166 

HCl (10%) to remove fluorosilicates. The residue was rinsed twice with distilled water, 167 

ultrasonicated for 30 s and finally collected on a 15 µm mesh. Residue aliquots were mounted in 168 

glycerine jelly. All measurements and light photomicrographs were as described in Section 2.1. 169 

In addition, in order to illustrate Trinovantedinium applanatum and Trinovantedinium variabile, 170 

we re-examined permanent slides from palynologically prepared samples from several localities.  171 

 172 

2.3. Single-cell PCR amplification and sequencing of the motile stage of 173 

Trinovantedinium pallidifulvum 174 

Surface sediment samples containing Trinovantedinium pallidifulvum were used from the Gulf of 175 

Mexico (Figure 1 and Table 2). Cysts were isolated from the sediment using the heavy liquid 176 

separation described in Section 2.1. Motile cells identified through light microscopy were rinsed 177 

several times in sterilized distilled water, broken by compressing the cell between the slide and 178 

cover slip, and then transferred into a PCR tube. The single cell was used as the template to 179 

amplify about 1200 bp of the nuclear-encoded LSU rDNA, using the primers D1R (Scholin et al. 180 
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1994) and 28-1483R (Daugbjerg et al. 2000). A 50 µl PCR cocktail containing 0.2 µM primers, 181 

PCR buffer, 50 µM dNTP mixture, 1U of Ex Taq DNA polymerase (Takara, Dalian, China) was 182 

subjected to 35 cycles using a Mastercycler PCR (Eppendorf, Hamburg, Germany). The PCR 183 

protocol was: initial denaturation for 3.5 min at 94 ºC, followed by 35 cycles of 50 s denaturation 184 

at 94 ºC, 50 s annealing at 45 ºC, and 80 s extension at 72 ºC, plus a final extension of 10 min at 185 

72 ºC. The amplified products were run on a 1% agarose gel. Positive bands were excised and 186 

purified using a DNA extraction kit (Sangon, Shanghai, China) and sequenced in both directions 187 

using the ABI Big-Dye dye-terminator technique (Applied Biosystems, Foster City, California, 188 

USA), according to the manufacturer recommendations. This DNA work was performed by HG 189 

in Third Oceanographic Centre, Xiamen, China.  190 

 191 

2.4.  Single-cell PCR amplification and sequencing of cysts of Selenopemphix undulata  192 

We obtained surface sediment samples containing Selenopemphix undulata from Brentwood Bay 193 

(B.C., Canada) (48,58°N,-123.47°E, 6 m water depth) using a petite ponar grab on October 1, 194 

2011. Cysts were isolated from the sediment using heavy liquid separation as described in 195 

Section 2.1. The cysts were then rinsed several times in sterilized distilled water, broken by 196 

compressing the cell between the slide and cover slip, and then transferred into a PCR tube. The 197 

single cell was used as the template to amplify about 1200 bp of the nuclear-encoded LSU 198 

rDNA, using the primers D1R (Scholin et al. 1994) and 28-1483R (Daugbjerg et al. 2000). A 50 199 

µl PCR cocktail containing 0.2 µM primers, PCR buffer, 50 µM dNTP mixture, 1U of Ex Taq 200 

DNA polymerase (Takara, Dalian, China) was subjected to 35 cycles using a Mastercycler PCR 201 

(Eppendorf, Hamburg, Germany). The PCR protocol was an initial denaturation for 3.5 min at 94 202 

ºC, followed by 35 cycles of 50 s denaturation at 94 ºC, 50 s annealing at 45 ºC, and 80 s 203 

extension at 72 ºC, plus a final extension of 10 min at 72 ºC. The amplified products were run on 204 

a 1% agarose gel. Positive bands were excised and purified using a DNA extraction kit (Sangon, 205 

Shanghai, China) and sequenced in both directions using the ABI Big-Dye dye-terminator 206 

technique (Applied Biosystems, Foster City, California, USA), according to the manufacturer’s 207 

recommendations. This DNA work was performed by YT at the University of Nagasaki, Japan.  208 

 209 

2.5.  Sequence alignments and phylogenetic analyses  210 

Newly obtained sequences were first aligned with those of related species available in GenBank 211 

using ‘BioEdit’ v7.0.0 (Hall 1999), and subsequently using Mafft (Katoh et al. 2005) 212 

(http://mafft.cbrc.jp/alignment/server/). Akashiwo sanguinea (Hirasaka) G. Hansen & Moestrup 213 

was selected as the outgroup. A Bayesian reconstruction of the data matrix was performed with 214 

MrBayes 3.0b4 (Ronquist & Huelsenbeck 2003) using a general time reversible model (GTR 215 

+I+G) chosen byJmodelTest (Posada 2008). Four Markov chain Monte Carlo (MCMC) chains 216 

ran for two million generations, sampling every 1,000 generations with a burnin of 10%. A 217 

majority rule consensus tree was created in order to examine the posterior probabilities of each 218 

clade. Maximum likelihood-based analyses were conducted with RaxML v7.2.6 (Stamatakis 219 

2006) on the T-REX web server (Boc et al. 2012) using the above model. Bootstrap values were 220 

determined with 1,000 replicates. 221 

 222 

2.6. Geochemical analysis of cyst wall chemistry 223 

After germination, an empty cyst originally derived from surface sediment of the Wadden Sea 224 

(Germany) (Figure 1) was removed from a microwell using a micropipette into a droplet of water 225 

contained on a glass slide with a concave depression. The water was allowed to evaporate and 226 
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then a droplet of ethanol was added. The cyst was allowed to soak in the ethanol for 30 min after 227 

which a droplet of MilliQ water was added. The cyst was then isolated and the procedure 228 

repeated twice. These steps were to ensure that any polar or apolar compounds adhered to the 229 

cyst wall were removed. The cyst was then visually examined under the light microscope and 230 

placed on an Au-coated mirror and analysed with micro-Fourier transform infrared spectroscopy 231 

using a Bruker FT-IR microscope (Hyperion 3000) with a 15x objective. The spectrum was 232 

acquired in reflective mode with 50 scans over 4000-600 cm-1 and is shown after background 233 

subtraction. Peak assignments were based on Colthup (1990) and relevant published literature 234 

(e.g., Bogus et al. 2012; 2014; Cárdenas et al. 2004; Versteegh et al. 2012). This geochemical 235 

work was done by KB, KNM and GJMV at the Univ. of Bremen, Germany.  236 

 237 

3. Results 238 

3.1.  Results of germination experiments  239 

Undescribed motile cells, here assigned to Protoperidinium louisianensis n. sp., emerged from 240 

Trinovantedinium pallidifulvum cysts isolated from surface sediments of the Gulf of Mexico 241 

(five specimens identified) (Figure 1 and Table 1). These motile cells germinated from the cysts 242 

aAfter one or two days of incubation, motile cells germinated from the cysts. These cells died a 243 

few days after germination and never divided. Two out of four specimens of Trinovantedinium 244 

pallidifulvum from the Wadden Sea (Germany) germinated, but the cells did not fully develop 245 

thecal plates. A single specimen from the Dee Estuary (UK) germinated, but the motile stage 246 

could not be fully observed.  247 

 248 

3.2.  Systematic palaeontology 249 

Division DINOFLAGELLATA (Bütschli 1885) emend. Fensome et al. 1993, emend. Adl et al. 250 

2005 251 

Class DINOPHYCEAE Pascher 1914 252 

Subclass PERIDINIPHYCIDAE Fensome et al. 1993 253 

Order PERIDINIALES Haeckel 1894 254 

Family PROTOPERIDINIACEAE Balech 1988 nom. cons. 255 

Subfamily PROTOPERIDINIOIDEAE (Autonym) 256 

Genus Protoperidinium Bergh 1881 257 

Protoperidinium louisianensis Mertens, Gu, Price et Matsuoka n. sp.  258 

Plate 1, figures 1–15, Plate 2, figures 1-15 259 

Holotype. Plate 1, figures 1–9.  260 

Type locality. Northern Gulf of Mexico, station A7 (28.94°N, 89.75°W), offshore Louisiana. 261 

Diagnosis. A species of intermediate size of the genus Protoperidinium with the tabulation 262 

formula Po, X, 4′, 3a, 7′′, 3c+t, ?s, 5′′′, 2′′′′. The motile cell is pentagonal in outline and 263 

dorsoventrally flattened, with a short apical horn and two antapical horns, each bearing a short 264 

spine. The epitheca is longer than the hypotheca, and bears convex sides. Plate 1′ is ortho-type, 265 

1a and 3a are penta-type, and 2a is hexa-type and stenodeltaform linteloid. Plates are thin with 266 

polygonal reticulations. The cyst is pentagonal and light brown in color, with a thickened apical 267 

horn and two thickened antapical horns. The cyst surface is smooth, bearing numerous 268 

peritabular, short, solid, erect, and non-branching processes with acuminate tips. Sometimes the 269 

dorsal side of the hypotheca is striated. The archeopyle is stenodeltaform linteloid, angular and 270 

saphopylic. 271 
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Derivation of name. The specific epithet refers to the type locality, which liesis offshore the 272 

state of Louisiana (USA). 273 

Gene sequence. The LSU rDNA gene sequence of the cyst—GenBank Accession No. 274 

KU519754XXXXXX (LSU). 275 

Description. Description of motile cell of Protoperidinium louisianensis (Plate 1, figures 1–9, 276 

Plate 2, figures 1-9). The excysted motile cells (five observed and not preserved) were 277 

pentagonal in outline, dorsoventrally flattened and carried an apical horn and two antapical horns 278 

of equal length, each bearing a short spine (Plate 1, figure 1-2, Plate 2, figure 1). The epitheca 279 

had convex sides and was longer than the hypotheca. The cell contents were greenish, except for 280 

a red body. The thin thecal plates carried polygonal reticulations (Plate 1, figure 2,7). 281 

 The plate arrangement on the epitheca was bilaterally symmetrical. The oval apical pore 282 

plate (Po) was surrounded by a low apical collar formed by the raised edges of the apical plates 283 

(Plate 2, figure 4). The canal plate (X) was elongate and trapezoidal (Plate 2, figure 4). The first 284 

apical plate (1′) was wide and rhombic (ortho-type) and the sides of plate 1′ contacting plates 2′ 285 

and 4′ are longer than those contacting plates 1′′ and 7′′ (Plate 1, figure 2). Plates 2′ and 4′ were 286 

elongated and subpentagonal, whereas 3′ was short and subpentagonal (Plate 1, figure 4). The 287 

first and third anterior intercalary plates (1a) were pentagonal and equal in size (Plate 1, figures 288 

3,6). The second anterior intercalary plate (2a) was hexagonal, stenodeltaform linteloid and more 289 

elongated and had two small sides touching plates 3′′ and 5′′ (Plate 1, figure 4). The precingular 290 

series consisted of seven plates. Plate 1′′, 4′′ and 7′′ were quadrangular (Plate 1, figures 2,4), and 291 

2′′, 3′′, 5′′ and 6′′ pentagonal (Plate 1, figures 3,5,6). The cingulum was slightly left-handed 292 

(descending), lined with narrow lists and comprising three cingular plates plus a transitional 293 

plate. The transitional plate (t) was small. Plate 1c reached the end of plate 1′′ and 2′′′ (Plate 1, 294 

figure 3). Plate 2c was the longest of the series and reached a short way beyond the 6′′/7′′ 295 

boundary and the 4′′′/5′′′ boundary (Plate 1, figure 7). Plate 3c was similar in size to Plate 1c.  296 

 We were unable to dissect and observe all the sulcal plates. 297 

 The plate arrangement of the hypotheca was also symmetrical, featuring five postcingular 298 

plates. Plate 5′′′ was longer than plate 1′′′. Plates 1′′′, 3′′′, and 5′′′ were pentagonal, and 2′′′ and 299 

4′′′ were quadrangular (Plate 1, figures 7-9). The antapical series comprised two plates, 1′′′′ and 300 

2′′′′, which formed the antapical horns (Plate 1, figure 7). 301 

 The plate formula is thus Po, X, 4′, 3a, 7′′, 3c+t, ?s, 5′′′, 2′′′′, and the complete tabulation 302 

(except for the sulcal plates) is illustrated in Figure 2. 303 

Description of cyst of Protoperidinium louisianensis (Plate 1, figures 10–15, Plate 2, figures 10-304 

15). Cysts were similar in shape to the motile stage, but light brown in color, bearing numerous 305 

small solid spines. The cysts were peridinioid (pentagonal) with a thickened apical horn and two 306 

thickened antapical horns of equal length. Living cysts contained abundant greenish granules. 307 

The epicyst had convex sides and was always longer than the hypocyst. The central body wall 308 

was thin (>0.3 µm) and biphragmal with closely appressed layers that separate along the apical 309 

horn and antapical horns, with a smooth surface (Plate 1, figure 11). Sometimes striations were 310 

present on the dorsal side of the hypocyst (Plate 2, figure 15). The processes were short, solid, 311 

erect, and non-branching with acuminate tips (Plate 1, figure 11). The process distribution was 312 

largely peritabular penitabular (Plate 1, figure 13, Plate 2, figure 11). The process length was 313 

fairly constant for individual specimens, except around the apical horn and antapical horns where 314 

they became longer (Plate 2, figure 10). The paracingulum was excavated with lists ornamented 315 

with rows of equidistant processes, and slight left-handed displacement (Plate 2, figure 11). The 316 

parasulcus was free of processes and indented (Plate 1, figure 14), two flagellar scars were 317 
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always visible (Plate 2, figure 12). The archeopyle was angular and saphopylic, involving release 318 

of plate 2a, steno-deltaform linteloid. The description is based on cysts used in the incubation 319 

experiments and those recovered from sediment and prepared using palynological methods. 320 

Cysts without cell content in the palynologically treated samples did not retain their shape well - 321 

they did not seem to be very robust as they were always quite folded and flattened.  322 

Dimensions. Incubated motile cells: length, 52.3 (58.8) 65.1 µm (SD = 6.0, n=4); width, 44.0 323 

(53.6) 58.8 µm (SD = 7.4, n=4); depth, 34.8 (38.4) 41.9 µm (SD = 5.0, n=2); distance between 324 

the tips of the antapical horns, 12.8 (16.3) 20.3 µm (SD = 3.7, n=4); width of cingulum, 3.9 (4.1) 325 

4.4 µm (SD = 0.2, n=4). 326 

Cysts germinated to give identifiable thecae: length, 43.0 (58.5) 68.4 µm (SD = 8.2, n=10); 327 

width, 46.3 (56.5) 63.9 µm (SD = 5.0, n=10); depth, 30.4 (40.6) 48.4 µm (SD = 7.2, n=7); 328 

distance between the tips of the antapical horns, 16.0 (23.9) 27.7 µm (SD = 3.6, n=10); width of 329 

cingulum, 4.5 (6.0) 7.2 µm (SD = 0.8, n=10); average length of three spines per cyst, 1.1 (1.8) 330 

2.7 µm (SD = 0.4, n=30). 331 

Cysts palynologically prepared from surface sediments of different locations: length, 49.9 (56.6) 332 

62.8 µm (SD = 5.7, n=5); width, 49.8 (56.3) 63.3 µm (SD = 5.0, n=5); depth, none measured; 333 

distance between the tips of the antapical horns, 20.6 (21.3) 22.5 µm (SD = 0.8, n=5); width of 334 

cingulum, 4.8 (5.6) 6.5 µm (SD = 0.7, n=4); average length of three spines per cyst, 1.4 (1.9) 2.8 335 

µm (SD = 0.4, n=15). 336 

Comments. The geological preservability of the cysts was demonstrated by their ability to 337 

withstand palynological treatment and presence in sediments at least as old as Holocene 338 

(Matsuoka et al. 1999) to mid-Miocene (our interpretation of the "undefined protoperidiniacean 339 

species" depicted in de Verteuil & Norris (1992), plate 2, figs. 9–12). Specimens from the 340 

German Wadden Sea show an identical morphology (Plate 3, figures 1–12) and the cysts 341 

correspond to the cyst-based defined speciestaxon Trinovantedinium pallidifulvum Matsuoka, 342 

here reillustrated by its holotype (Plate 3, figures 13–16).  343 

 344 

Genus Trinovantedinium Reid 1977, emend. de Verteuil & Norris 1992 345 

Tinovantedinium applanatum (Bradford 1977) Bujak & Davies 1983 346 

Plate 4, figures 1–13, Plate 5, figures 1-10 347 

Synonyms. Trinovantedinium capitatum Reid 1977, Plate 1, figures 6–8. 348 

Comments. The illustrated specimens conform to the original description of Bradford (1977). 349 

We also illustrate two extreme morphotypes of this species. Type A (Plate 5, figures 1–7) was 350 

found in warmer water regions (Omura Bay, Japan; Bay of Bengal; Red Sea) and shows a more 351 

elongate, transparant body shape with straight sides and more elongated horns, separated by a 352 

deep depression. Type B (Plate 5, figures 8–10) was found in cold water (offshore Greenland) 353 

and shows a more rounded, transparent body shape with reduced horns and a very shallow 354 

depression between the antapical horns. Trinovantedinium applanatum differs form 355 

Trinovantedinium pallidifulvum in its transparency, often larger and more elongate body and 356 

longer processes.   357 

 358 

Trinovantedinium variabile (Bujak 1984) de Verteuil & Norris 1992 359 

Plate 6, figures 1–11 360 

Comments. The illustrated specimens conform to the original description of Bujak (1984). The 361 

holotype is redescribed and reillustrated by Head (1994, p. 226, pl. 11, figs. 4,5,7,8). 362 

 363 
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Genus Selenopemphix Benedek 1972, emend. Head 1993 364 

Selenopemphix undulata Verleye, Pospelova, Mertens et Louwye 2011, Plate 1, figure 8  365 

Plate 6, figures 12–14 366 

Comments. One cyst corresponding to Selenopemphix undulata as described by Verleye et al. 367 

(2011, particularly the specimen displayed in Plate 1, figure 8) was isolated for single-cyst PCR 368 

(Plate 6, figures 12–14). The cyst was collected from surface sediment of Brentwood Bay (B.C., 369 

Canada). The cyst was large and polar compressed, with a cingulum with undulating margins 370 

showing very small undulations. The epicyst was conical and striated, the hypocyst was also 371 

striated and bore two fused antapical horns that were wider than the apical horn. The archeopyle 372 

could not be observed on encysted specimens. The single cyst had a length of 44.5 µm (apex to 373 

antapex), width of 74.6 µm, and depth of 70.8 µm. 374 

Gene sequence. The LSU rDNA gene sequence of the cyst—GenBank Accession No. 375 

LC114019 (LSU). 376 

 377 

3.3. Phylogenetic position of Protoperidinium louisianensis and Selenopemphix undulata 378 

as inferred from LSU rDNA sequences  379 

We obtained 1,143 base pairs from one germinated cell of Protoperidinium louisianensis isolated 380 

from the Gulf of Mexico (Accession number: KU519754XXXXXX), and this sequence was used 381 

for the phylogenetic analyses (Figure 3). Protoperidinium louisianensis was closest to 382 

Protoperidinium shanghaiense, and formed a clade with several other species belonging to the 383 

Conica section (P. divaricatum, P. conicum, P. leonis). Selenopemphix undulata (Accession 384 

number: LC114019), was closest to Protoperidinium biconicum, which also belongs to the 385 

section Conica and formed a separate clade with P. punctulatum and P. humile, both species 386 

belonging to the section Tabulata. The other members of the Protoperidiniaceae formed several 387 

other clades, which were also used by Gu et al. (2015).  388 

 389 

3.4. Modern Recent ddistribution of Trinovantedinium pallidifulvum and inferred ecology  390 

Trinovantedinium pallidifulvum was initially described by Matsuoka (1987) from Akkeshi Bay 391 

(Hokkaido, Japan) and subsequently predominantly in southeast Asia, such asincluding surface 392 

sediments off South Korea (Cho et al. 2003; Shin et al. 2011), Japan (Kojima et al., 1994; 393 

Matsuoka et al. 2003), China (Wang et al. 2004), and Malaysia (Furio et al. 2006) (Figure 1)).  394 

In this study we show that this species is much more widely distributed since it is 395 

recorded in surface sediments from the northern Gulf of Mexico, Casino Coast (Brazil), the 396 

North Atlantic (La Vilaine Bay, Wadden Sea (Germany), Dee Estuary (UK), Kattegat), NW 397 

Pacific (Tokyo Bay and Ariake Sound, both in Japan) and the NE Pacific (Vancouver Island, 398 

Canada) (Table 2 and Figure 1). We also identify a specimen from the German Bight depicted by 399 

Nehring (1997, his figures 23–-24, as Trinovantedinium capitatum) also as T. pallidifulvum. The 400 

highest relative abundance of T. pallidifulvum cysts was recorded in a surface sample from the 401 

Gulf of Mexico where itthe cysts contributes up to 3.8% of the cyst assemblages (Table 2). T. 402 

pallidifulvum was found in this study in surface sediment samples corresponding to SSTs of 403 

~11.30–31.45 °C and SSSs with a range of 8.60–33.61 psu (Table 2).  404 

 405 

3.5. Trinovantedinium pallidifulvum cyst wall chemistry 406 

The spectrum produced by micro-FTIR analysis of the cyst wall (Figure 4) shows: a broad peak 407 

centered at 3340 cm-1 (OH stretching), weak peaks at 2920 and 2860 cm-1 (aliphatic CH 408 

stretching), peaks at 1780 and 1700 cm-1 (C=O stretching), 1630 cm-1 (C=C, C=O stretching 409 
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(amide I)), 1585 and 1560 cm-1 (CN stretching, NH bending (amide II)), 1440 and 1405 cm-1 
410 

(CH bending), 1350 cm-1 (NO2, CCH3 (not indicated in Figure 4)), 1310 cm-1 (amide III), 1255 411 

cm-1 (NH bending), 1140 and 1030 cm-1 (C-O stretching), and 890, 850 and 770 cm-1 (CH out of 412 

plane). 413 

 414 

4. Discussion 415 

4.1.  Comparative morphology of the motile stage of P. louisianensis within the Conica 416 

group 417 

The motile stage of P. louisianensis can be distinguished from all species from the Conica group 418 

by the unique combination of excavated antapical horns each bearing a single spine, an epitheca 419 

with convex sides being longer than the hypotheca, a slightly left-handed cingulum, a 420 

stenodeltaform linteloid 2a and plates with polygonal reticulations. A few species show strong 421 

similarities. P. conicum also has spines on the antapical horns, but has an epitheca that is as long 422 

as the hypotheca, straight sutures from the apex to the cingulum and a more elongated pore (Gu 423 

et al. 2015). P. shanghaiense has no displacement of the cingulum, an epitheca with straight 424 

sides, two relatively closer antapical horns that bear no spines and a 2a that was isodeltaform 425 

linteloid (Gu et al. 2015). P. conicoides also bears spines on the antapical horns, but is more 426 

polar compressed. It also has an epitheca that is as long as the hypotheca, a 1′′′ which has a 427 

"nose" at the onset of the sulcus, and straight sutures from the apex to the cingulum (Hoppenrath 428 

et al. 2009, p. 158). The plates of P. obtusum and P. leonis are ornamented with longitudinal ribs 429 

(Hoppenrath et al. 2009, p. 158–159). 430 

 431 

4.2.  Comparative morphology of the cyst of P. louisianensis within the Conica group 432 

The cyst of P. louisianensis, which corresponds to the cyst-based defined speciestaxon 433 

Trinovantedinium pallidifulvum, can be easily differentiated from all other species belonging to 434 

the genus Trinovantedinium (Table 1). The species differs from Trinovantedinium applanatum 435 

and Trinovantedinium henrietii because these are transparant and have an epicyst the same 436 

length as the hypocyst (Matsuoka 1987, Louwye et al. 2008). Trinovantedinium boreale is also 437 

transparant and has processes with platforms (Bujak 1984; see also Head 1994). 438 

Trinovantedinium glorianum has much more densely distributed and hollow processes and 439 

antapical horns that are sharper (Head et al. 1989). T. variabile, T. harpagonium, T. 440 

ferrugnomatum and T. sterthense are more polar compressed with rounded antapical horns and 441 

bear longer processes with distal platforms or taeniate or aculeate processes (Bujak 1984, de 442 

Verteuil & Norris 1992, Head 1993). Trinovantedinium papula and Trinovantedinium? 443 

xylochoporum are much more rounded and have longer processes (de Verteuil & Norris 1992).  444 

 445 

4.3.  Validity of the genus genera Trinovantedinium and Selenopemphix 446 

The molecular phylogeny shows that P. louisanensis and P. shanghaiense are most closely 447 

related, which is thus the case for their respective cysts, Trinovantedinium pallidifulvum and 448 

Trinovantedinium applanatum. This supports is consistent with the monophyly of the genus 449 

Trinovantedinium. Whether this will be supported by the molecular characterization of the other 450 

extant species, Trinovantedinium variabile, should be the subject of further study. 451 

 The phylogenetic position of Selenopemphix undulata is more problematic because it is 452 

positioned in another clade than Protoperidinium conicum, the motile stage associated with the 453 

cyst-based taxon Selenopemphix quanta (note that this cyst-theca relationship needs further 454 

study, e.g. Matsuoka & Head 2013). This polyphyly suggests that both species belong to two 455 
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different genera, and their relatively long genetic distance suggests that they diverged a long time 456 

ago. This polyphyly is also supported by significant morphological differences between species 457 

of both cyst types, particularly the position of the archeopyle, which is more offset in 458 

Selenopemphix undulata (Verleye et al. 2009) than Selenopemhix quanta (it is considered central 459 

or slightly offset, see Head 1993, p. 31-32). It is, therefore, likely that Selenopemphix quanta 460 

should be transferred back to its initial name, Multispinula quanta. However, we suggest that the 461 

molecular phylogenetic position of the type species of Selenopemhix, Selenopemphix nephroides, 462 

the cyst considered to belong to Protoperidinium subinerme (Rochon et al. 1999) needs to be 463 

established before such a transfer. Either way, this result emphasizes the importance of the 464 

archeopyle position in cyst taxonomy, whereas the reniform cyst shape of both species, seems to 465 

be polyphyletic. 466 

 467 

4.4. Validity of the genus Protoperidinium 468 

Since long there has been a mismatch between paleontological and biological names, whereas 469 

several biological species that belong to the genus Protoperidinium have been associated with 470 

cysts belonging to different cyst-defined genera (e.g. Brigantedinium, Quinquecuspis, 471 

Selenopemphix, etc.) (e.g. Fensome et al. 1993). Although there have been attempts to reconcile 472 

both nomenclatural systems (e.g. Harland 1982), no consensus has yet been reached as how to 473 

resolve this issue and here we also suggest to respect the status quo in order to avoid further 474 

confusion.  475 

 476 

4.4.4.5. Evolution of Trinovantedinium and Selenopemphix within the Peridiniales 477 

Previous studies have tried to elucidate evolutionary patterns based on the morphologic 478 

changes of the motile stages (e.g., Taylor 1980) or on the basis of cyst morphology (e.g., Bujak 479 

& Davies 1983). Molecular phylogenetics largely support the biological approach which focuses 480 

on variations in tabulation, and consider the Monovela group and Diplopsaloideans as ancestral 481 

to the Protoperidinium sensu stricto group (e.g., Liu et al. 2015a,b; Gu et al. 2015; Mertens et al. 482 

2015). Both of these ancestral groups have not been identified in the earlier fossil record of the 483 

Peridiniales (Cretaceous – Eocene), and the cyst morphologies observed during this time period 484 

(Bujak & Davies 1983) are more similar to the cyst-based genera Lejeunecysta, Quinquecuspis 485 

and Trinovantedinium, which, based on molecular phylogenetics, belong to the Protoperidinium 486 

sensu stricto group (Figure 3). A reinvestigation of the fossil record is urgently needed to explain 487 

this discrepancy between the fossil record and the molecular phylogenetics, and begs the 488 

question whether preservation issues or the complex cyst identification of these relatively 489 

unknown ancestral species could be responsible, or if multigene phylogenies would also support 490 

the LSU based phylogeny (e.g., Orr et al. 2012). 491 

 Trinovantedinium boreale would presumably be the oldest Trinovantedinium species, as 492 

it has been observed in the late Paleocene, since all other species have Miocene or later first 493 

occurrences appearances (Table 1). Two other closely related species to Trinovantedinium 494 

applanatum and Trinovantedinium pallidifulvum, the cyst of Protoperidinium divaricatum (cyst-495 

defined based name Xandarodinium xanthum) and the cyst of Protoperidinium leonis (cyst-496 

defined based name Quinquecuspis concreta) (Figure 3) both have younger first occurrences 497 

appearances (Miocene (: Matsuoka, 1992;), and Pleistocene:  (de Vernal et al., 1992), 498 

respectively). Interestingly, the here documented Trinovantedinium applanatum type B shows 499 

similarities to Trinovantedinium boreale, although the latter has longer and fewer processes. It 500 
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would, therefore, be important to obtain a sequence from this type B and see how it relates to the 501 

other sequences.  502 

 503 

4.5.4.6.  Distribution of Trinovantedinium pallidifulvum  504 

T. pallidifulvum was shown in this study to be widely distributed in temperate to tropical waters 505 

(Figure 1), in surface sediment samples corresponding to SSTs of ~11.30–31.45 °C and SSSs 506 

with a range of 8.60–33.61 psu.  507 

 508 

4.6.4.7. Cyst wall geochemistry of Trinovantedinium pallidifulvum 509 

The T. pallidifulvum cyst wall chemistry demonstrates a composition both consistent and 510 

dissimilar with other known heterotrophic dinoflagellates (Figure 4). The greatest similarity is 511 

the evidence for nitrogen-containing functional groups in the cyst wall, which is consistent with 512 

all previously analyzed cysts from heterotrophic dinoflagellates (Bogus et al. 2014). This 513 

evidence includes several absorptions indicative of amide groups (1630, 1585, 1560, 1310, and 514 

1255 cm-1). The presence of nitrogen-containing functional groups was suggested to reflect the 515 

heterotrophy of the dinoflagellate producing the cyst (Bogus et al. 2014), with the incorporation 516 

of prey waste products (high in nitrogen groups from the breakdown of proteinaceous material) 517 

into the cyst wall. Additionally, similar to other species, there is clear evidence for alcohol 518 

groups (3340, 1140 and 1030 cm-1), although the strongest series of absorptions in T. 519 

pallidifulvum is different. In fact, the most obvious difference in the cyst wall chemistry of T. 520 

pallidifulvum compared to other heterotrophic dinoflagellates is the lack of the dominant series 521 

of absorptions characteristic for polysaccharides (Bogus et al. 2014; Versteegh et al. 2012). 522 

However, absorptions at 1140 and 1030 cm-1 are present, indicating that sugars may still be 523 

present as part of the cyst wall. The strongest absorptions are at 890 and 850 cm-1, which usually 524 

result from ring vibrations and is supported somewhat by the absorption at 1630 cm-1. There is 525 

also evidence that this species has a cyst wall that contains a significant carboxylic acid/ester 526 

component (1780, 1700 cm-1), which may increase the stability of the cyst wall polymer (Yang et 527 

al. 1996). This pattern has been suggested in some species of the fossil Apectodinium genus 528 

(Bogus et al. 2012). However, the cyst wall is not aliphatic because absorptions indicating 529 

aliphatic C-H stretching are weak, which is consistent with many dinoflagellate cysts (de Leeuw 530 

et al. 2004; Bogus et al. 2014; Versteegh et al. 2012). Therefore, the spectrum of T. pallidifulvum 531 

is unique to any previously analyzed species because it appears to incorporate amide groups, 532 

similar to other heterotrophic species, and contain a higher abundance of ester groups, found 533 

only in two other fossil species thus far. These results suggest that dinoflagellate cyst wall 534 

chemistry may be more diverse than previously considered and further study is required. 535 

 536 

5. Conclusions 537 

• We document the cyst-theca relationship for the cyst-based taxon Trinovantedinium 538 

pallidifulvum, and erect the species Protoperidinium lousianensis to describe the motile 539 

stage. 540 

• LSU rDNA based phylogenies show the closeness of P. lousianensis and P. 541 

shanghaiense, and also of their respective cysts, Trinovantedinium pallidifulvum and 542 

Trinovantedinium applanatum.  543 

• The genus Trinovantedinium is monophyletic, whilst the genus Selenopemphix is 544 

polyphyletic. 545 
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• Trinovantedinium pallidifulvum is widely distributed, and can be found at SSTs of 546 

~11.30–31.45 °C and SSSs of 8.60–33.61 psu.  547 

• Trinovantedinium pallidifulvum’s cyst wall chemistry is unique but contains amide 548 

groups, which is consistent with other heterotrophic species. 549 

 550 
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Tables 990 

 991 

Table 1. List of species belonging to the genus Trinovantedinium, their biostratigraphical ranges and dimensions. 992 

 993 

Species name Biostratigraphical range 

Length 

(excluding 

processes) (µm) 

Width 

(excluding 

processes) (µm) 

Length of 

processes 

(µm) Measurements from 

Trinovantedinium applanatum (Bradford 1977) Bujak 
and Davies 1983  

middle Pleistocene (Mudie 1989) - recent (see Rochon et al. 1999 for 
remarks) 

53–87 47–74 max 5 Bradford 1977 

54–80 54–80 max 5–7 Reid 1977 

Trinovantedinium sterthense Head 1993a late Plioceneearly Pleistocene (Head 1993a) 41(50.0)61  45(49.6)53 4.5(5.5)7.0  Head 1993a 

Trinovantedinium variabile (Bujak 1984) de Verteuil 
and Norris 1992 

late Miocene (Bujak 1984) – recent (e.g., Radi & de Vernal 2004; 
Price & Pospelova 2011) 45–53 44–50 4–6.5 Bujak 1984 

Trinovantedinium harpagonium de Verteuil and 
Norris 1992 

middle Miocene (late Miocene (de Verteuil & Norris 1992Jiménez-

Moreno et al. 2006) – late Pliocene (De Schepper et al. 2009) 52(60)78 48(59)68 8–16 
de Verteuil & Norris 
1992 

Trinovantedinium glorianum (Head et al. 1989) de 
Verteuil and Norris 1992 

early Miocene (Louwye et al. 2007) – early Pleistocene (Head et al. 
2004) 58(68)73 52(63)70 2–3 

de Verteuil & Norris 
1992 

Trinovantedinium ferrugnomatum de Verteuil and 
Norris 1992 

late Miocene (de Verteuil & Norris 1992) – early Pliocene (De 
Schepper et al. 2009) 30(39)55 30(39)48 3–6 

de Verteuil & Norris 
1992 

Trinovantedinium papula de Verteuil and Norris 
1992 late Miocene (de Verteuil & Norris 1992)  50(65)75 48(57)70 3–6 

de Verteuil & Norris 
1992 

Trinovantedinium pallidifulvum Matsuoka 1987 mid Miocene (de Verteuil & Norris 19921) – recent (Matsuoka 1987) 
52.2–70.8  56.0–63.4  2.5 Matsuoka 1987 

43.0(58.5)68.4 46.3(56.5)63.9 1.1(1.8)2.7 This study 

Trinovantedinium henrietii Louwye et al. 2008 mid Miocene (Louwye et al. 2008) 81(89)99 61(75)84 5(7)10 Louwye et al. 2008 

Trinovantedinium? xylochoporum de Verteuil and 
Norris 1992 

lower Miocene (Soliman et al. 2012) – middle Miocene (Jiménez-
Moreno et al., 2006)mid Miocene (de Verteuil & Norris 1992) 36(51)66 38(45)62 8-20 

de Verteuil & Norris 
1992 

Trinovantedinium boreale Bujak 1984 
late Paleocene –  late Oligocene (Kurita & Matsuoka 1993; see Head 
1994 for discussion)  42-65 42-63 7-15 Bujak 1984 

1Our interpretation of the "undefined protoperidiniacean species" depicted in de Verteuil & Norris, plate 2, figs. 9–12.     
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Table 2. Sampling stations with details on the collection site, relative abundance (%) 
and how the sample was used in this study.  

  994 

Station Location 

Latitude 

(°N) 

Longitude 

(°E) 

Water 

depth 

(m) Sampling data 

Salinity 

(psu) 

Temperature 

(°C) Type of core 

Sampled 

by* 

Relative 

abundance 

(%) Notes 

Heslwall, Dee 
Estuary UK 53,32 -3,12 0 6/02/14 NA NA 

Hand 
sampling FM NA 

Germination 
experiment 

Wadden Sea st . 1 Northern Germany 53,72 7,97 0 29/02/12 NA NA 
Hand 
sampling 

GV, KZ, 
KNM NA 

Germination 
experiment 

Vinga SW Kattegat 57,55 11,53 77,5 1994 NA NA Boxcore AG NA Palynological study 

BV3  La Vilaine Bay, France 47,48 -2,44 6 1/04/10 NA NA Boxcore EG NA Palynological study 

C6B Gulf of Mexico 28,87 -90,47 18,4 28/07/08 22,17 30,54 Boxcore GT, NR 0,8 Palynological study 

E2A Gulf of Mexico 28,74 -91,25 15,2 28/07/08 16,14 29,7 Boxcore GT, NR 0,6 Palynological study 

G3 Gulf of Mexico 28,98 -92,00 20,2 28/07/08 21,51 30,45 Boxcore GT, NR 0,9 Palynological study 

J4 Gulf of Mexico 29,29 -93,08 15 25/07/08 27,99 30,52 Boxcore GT, NR 0,8 Palynological study 

A'2 Gulf of Mexico 29,09 -89,50 11,2 27/07/14 8,60 31,45 Boxcore GT, NR 0,3 Palynological study 

A'3 Gulf of Mexico 29,03 -89,53 13,2 27/07/14 13,60 30,99 Boxcore GT, NR 1,7 Palynological study 

A'4 Gulf of Mexico 28,98 -89,57 33,7 27/07/14 15,15 30,90 Boxcore GT, NR 0,6 Palynological study 

A'5 Gulf of Mexico 28,95 -89,58 63,9 27/07/14 17,73 30,19 Boxcore GT, NR 1,7 Palynological study 

A2 Gulf of Mexico 29,24 -89,75 13,5 28/07/14 25,00 30,00 Boxcore GT, NR 1,2 Palynological study 

A5 Gulf of Mexico 29,07 -89,75 30,5 28/07/14 25,30 29,70 Boxcore GT, NR 1,2 Palynological study 

A7 Gulf of Mexico 28,94 -89,75 53,20 28/07/14 24,70 29,90 Boxcore GT, NR 2,0 

Germination 
experiment / 
Palynological study 

B4 Gulf of Mexico 29,03 -90,12 18,5 28/07/14 28,09 29,55 Boxcore GT, NR 3,8 Palynological study 

C6C Gulf of Mexico 28,87 -90,49 19,80 28/07/14 23,40 29,40 Boxcore GT, NR 1,8 
Single-cell PCR / 
Palynological study 

D3 Gulf of Mexico 28,72 -90,83 17,8 29/07/14 15,05 30,83 Boxcore GT, NR 2,4 Palynological study 

F0 Gulf of Mexico 29,27 -91,62 8,0 31/07/14 23,20 31,30 Boxcore GT, NR 3,7 Palynological study 

F3 Gulf of Mexico 28,88 -91,62 19,9 30/07/14 29,15 29,92 Boxcore GT, NR 1,5 Palynological study 

F6 Gulf of Mexico 28,58 -91,62 39,6 30/07/14 30,02 29,51 Boxcore GT, NR 0,8 Palynological study 

I4 Gulf of Mexico 29,18 -92,75 20,8 1/08/14 32,40 30,00 Boxcore GT, NR 0,3 Palynological study 

K4 Gulf of Mexico 29,33 -93,42 17,3 1/08/14 31,74 29,92 Boxcore GT, NR 0,8 Palynological study 

P6 Gulf of Mexico 29,00 -93,71 20,0 1/08/14 33,61 30,08 Boxcore GT, NR 0,3 Palynological study 

SR8 Lake Saroma 44,09 143,52 ca. 7 July 1980  33-33.2 0-15 TFO corer YF 0,5 Palynological study 
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AK2 Akkeshi Bay, Japan 43,02 144,47 ca. 6 July 1980  32.6-33 
1.5(winter)-
14(summer) TFO corer YF 0.5-1.8 Palynological study 

AB40 Ariake Sound, Japan 33,08 130,28 10,9 7/06/05 
20.0-
30.2 9.2-28.5 TFO corer KM NA Palynological study 

Tkb8 Tokyo Bay, Japan 35,27 139,45 ca.12 1/08/99 
26.8-
30.5 10.4-30.1 KK type corer RV NA Palynological study 

Nagayo-Ura Omura Bay, Japan 32,51 129,52 11 June 2004 
30.8-
33.4 9.5-30.5 sediment trap HK, KM NA Palynological study 

YJ1 Yeoja Bay, Korea 34,42 127,31 11 May 2006 NA NA Scuba diver KM, HC NA Palynological study 

D1 Deukryang Bay, Korea 34,40 127,11 10 1/04/01 NA NA Gravity corer HC NA Palynological study 

Casino coast Brazil -32,12 -52,10 ca.10 7/03/97 NA NA TFO corer KM NA Palynological study 

Saanich Inlet st. S13 
Vancouver Island, BC, 
Canada 48,75 -123,61 60 24/05/07 28,5 11,3 

Petite Ponar 
Grab VP NA Palynological study 

* AG = Anna Godhe, EG = Evelyne Goubert, FM = Fabienne Marret, GV= Gerard Versteegh, GT = Gene Turner, HC = Hyun-Jin 995 

Cho, HK = Hisae Kawami, KM = Kazumi Matsuoka, KNM = Kenneth Neil Mertens, KZ = Karin Zonneveld, NR = Nancy Rabalais, 996 

RV = R/V Shirafuji-Maru, VP = Vera Pospelova, YF = Yasuo Fukuyo 997 

 998 

999 
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 1000 

Supplementary table 1. Sampling stations with details on latitude, longitude and water depth. 1001 

Name of station Locality Latitude (°N) Longitude (°E) 

Water depth 

(m) Reference 

Akkeshi Bay AK1 Hokkaido, Japan 43,04 144,83 25 Matsuoka 1987 

Akkeshi Bay AK2 Hokkaido, Japan 43,02 144,79 25 Matsuoka 1987 

Akkeshi Bay AK3 Hokkaido, Japan 42,99 144,79 25 Matsuoka 1987 

Akkeshi Bay AK4 Hokkaido, Japan 42,95 144,86 25 Matsuoka 1987 

Saroma lake SR8 Hokkaido, Japan 44,14 143,86 16 Matsuoka 1987 

6 Lake Nakaumi, Japan 35,52 134,08 NA Kojima et al. 1994 

8 Lake Nakaumi, Japan 35,52 134,08 NA Kojima et al. 1994 

24 Lake Nakaumi, Japan 35,52 134,08 NA Kojima et al. 1994 

25 Lake Nakaumi, Japan 35,52 134,08 NA Kojima et al. 1994 

26 Lake Nakaumi, Japan 35,52 134,08 NA Kojima et al. 1994 

TKB-6 Tokyo Bay, Japan 35,50 139,83 NA 
Matsuoka et al. 
2003  

D1 South of South Korea 34,67 127,18 10 Cho et al. 2003 

4 Chinese coast 22,56 114,51 6 Wang et al. 2004 

Kuala Penyu Lagoon 1 Sabah, Malaysia 5,53 115,62 NA Furio et al. 2006 

Kuala Penyu Lagoon 2 Sabah, Malaysia 5,57 115,60 NA Furio et al. 2006 

YJB1 
Yeoja Bay, South 
Korea 34,78 127,50 NA Shin et al. 2011 

YJB2 
Yeoja Bay, South 
Korea 34,74 127,50 NA Shin et al. 2011 

YJB3 
Yeoja Bay, South 
Korea 34,71 127,50 NA Shin et al. 2011 

YJB4 
Yeoja Bay, South 
Korea 34,67 127,51 NA Shin et al. 2011 

YJB6 
Yeoja Bay, South 
Korea 34,50 127,59 NA Shin et al. 2011 

YJB8 
Yeoja Bay, South 
Korea 34,43 127,70 NA Shin et al. 2011 

GMB3 
Gamak Bay, South 
Korea 34,60 127,70 NA Shin et al. 2011 
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Figure captions 1002 

 1003 

Figure 1. Map showing locations where Trinovantedinium pallidifulvum was found in this study 1004 

(red circles) and in previous studies (blue circles) (see Table 1 and Supplementary Table 1 for 1005 

respective sample localities).  1006 

 1007 

Figure 2. Drawings of Protoperidinium louisanensis n. sp. A). Ventral view. B). Dorsal view.  1008 

 1009 

Figure 3. Molecular phylogeny. A phylogenetic tree using Bayesian inference inferred from LSU 1010 

rDNA sequences based on new sequence data for Protoperidinium louisanensis n. sp. from the 1011 

Gulf of Mexico and Selenopemphix undulata from Brentwood Bay, BC, Canada. The ML 1012 

bootstrap support values (ML) over 50 and Bayesian posterior probabilities (PP) over 0.7 are 1013 

shown at the nodes (ML/PP). The black circles indicate maximal support. Clades are labeled and 1014 

marked with vertical lines on the right, with dashed lines indicating sections of the 1015 

Protoperidinium sensu stricto clade. The scale bar represents inferred evolutionary distance in 1016 

changes/site. New sequences obtained in this study are indicated in bold font. 1017 

 1018 

Figure 4. Trinovantedinium pallidifulvum (German Wadden Sea) cyst wall FTIR spectrum in 1019 

comparison with other cysts produced by heterotrophic dinoflagellates. The spectra from D. 1020 

caperatum, Brigantedinium sp., cysts of Polykrikos. kofoidii sensu Matsuoka et al. (2009) and 1021 

Polykrikos. schwartzii sensu Matsuoka et al. (2009) are modified from Bogus et al. (2014). 1022 

 1023 

Plate captions 1024 

 1025 

Plate 1. Figures 1–9. Different views of single specimen of motile stage of Protoperidinium 1026 

louisanensis germinated from cyst depicted in Figures 10–15, and isolated from the Northern 1027 

Gulf of Mexico. 1. General shape of cell. 2. Ventral view. 3. Lateral view. 4. Dorsal view 1028 

showing the second intercalary plate (2a). 5. Lateral view. 6. Lateral view. 7. Ventral view 1029 

showing sulcal area. 8. Dorsal view. 9. Ventral view of hypotheca. Figures 10–15. Cyst stage of 1030 

Protoperidinium louisanensis, corresponding to Trinovantedinium pallidifulvum, with motile 1031 

stage depicted in Figures 1–9. 10. Ventral view. 11. Cross section. 12. Dorsal view showing 1032 

operculum. 13. Peritabular distribution of processes. 14-15. Ventral view showing process 1033 

distribution on the hypotheca. All scale bars = 10 µm. 1034 

 1035 

Plate 2. Figures 1–9. Motile stage of Protoperidinium louisanensis germinated from cyst 1036 

depicted in Figures 10-15, isolated from the Northern Gulf of Mexico. 1. Cross section showing 1037 

general shape and cell contents. 2. Ventral view. 3. Ventral view showing shape of the first 1038 

apical plate. 4. Focus on the apical pore. 5. Dorsal view showing shape of second intercalary 1039 

plate (2a). 6. Lateral view. 7. Ventral view showing sulcal area. 8. Dorsal view. 9. View of dorsal 1040 

side of hypotheca. Figures 10–15. Cyst stage of Protoperidinium louisanensis, corresponding to 1041 

Trinovantedinium pallidifulvum, with motile stage depicted in Figures 1–9. 10. General shape of 1042 

cyst. 11. Ventral view showing peritabular distribution of processes. 12. Ventral view showing 1043 

presence of 2 flagellar scars. 13. Lateral view. 14. Dorsal view showing operculum. 15. Dorsal 1044 

view of hypotheca showing presence of striations on this specimen. All scale bars = 10 µm. 1045 

 1046 
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Plate 3. Figures 1–12. Trinovantedinium pallidifulvum from German Wadden Sea. 1–3. Cyst 1047 

with cell contents from St. 1. 4–8. Different orientations of germinated specimen. 9–12. Other 1048 

specimen). 9. Apical pore. Figures 13–16. Holotype of Trinovantedinium pallidifulvum. Slide no. 1049 

AK2–2 (87.4/27.6); Sample no. AK2, Recent modern sediment in Akkeshi Bay, Hokkaido, 1050 

North Japan (Matsuoka 1987). All scale bars = 10 µm. 1051 

 1052 

Plate 4. Figures 1–12. Trinovantedinium applanatum. 1-4. High focus to low focus of single 1053 

specimen from 11–12 cm depth in core po287-39-1B (37.75°N, 8.87°W, 92 m water depth, Mira, 1054 

Portugal). 5–6, 8–10. Different orientations of single specimen isolated from the German 1055 

Wadden Sea (location shown in Table 2). 7. Other specimen from the German Wadden Sea. 11–1056 

13. Scanning electron microscope photographs of specimens isolated from Vie River st. 10 1057 

(46.70°N, 1.94°W, France). All scale bars = 10 µm. 1058 

 1059 

Plate 5. Trinovantedinium applanatum type A and B occurring in recent sediments. 1–2, 5–7. 1060 

Different views of single specimen from Type A from station 1 (32.93°N, 129.86°E, 11.1 m 1061 

water depth, Omura Bay, Japan). 3. Type A from Red Sea (va01-200P, 0-5 cm depth, 16.67°N, 1062 

41.32°E, , 84 m water depth). 4. Specimen from 1–2 cm core depth from core CIRCE03AR 25P 1063 

(15.30°N, 83.39°E, 3145m water depth, Bay of Bengal). 8–9. Type B from sample 11B 1064 

(35.87°W, 64.11°N, 1318 m water depth, offshore Greenland, Boessenkool et al. 2001). 10. Type 1065 

B from sample 1B (60.02°N, 11.76°W, water depth unknown, offshore Greenland, Boessenkool 1066 

et al. 2001). All scale bars = 10 µm. 1067 

 1068 

Plate 6. 1–11. Trinovantedinium variabile. 1-6. Specimen from Saanich inlet (UVic 13-303-1, 1069 

48.59°N, 123.50°W, water depth 226 m). 7–9. Other specimen from sediment-trap from Saanich 1070 

Inlet (UVic 09-183, slide 1, 48.65°N, 123.48°W, water depth 96 m), previously studied by Price 1071 

and Pospelova (2011). 10–11. Scanning electron microscope photographs of two specimens from 1072 

sample Exp37A from Saanich Inlet (48.55°N, 123.53W, water depth 215 m). Figures 12–14. 1073 

Selenopemphix undulata from Brentwood Bay, BC, Canada, sequenced through single-cell PCR. 1074 

All scale bars = 10 µm.  1075 

 1076 
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Figure 2. Drawings of Protoperidinium louisanensis n. sp. A). Ventral view. B). Dorsal view.  
55x33mm (300 x 300 DPI)  
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