The cyst-theca relationship of the dinoflagellate cyst *Trinovantedinium pallidifulvum*, with erection of *Protoperidinium lousianensis* sp nov and their phylogenetic position within the Conica group

Mertens Kenneth ^{1, 11, *}, Gu Haifeng ², Takano Yoshihito ³, Price Andrea M. ⁴, Pospelova Vera ⁵, Bogus Kara ⁶, Versteegh Gerard J. M. ^{7, 12}, Marret Fabienne ⁸, Turner R. Eugene ⁹, Rabalais Nancy N. ¹⁰, Matsuoka Kazumi ³

¹ Univ Ghent, Res Unit Palaeontol, Krijgslaan 281 S8, B-9000 Ghent, Belgium.

² SOA, Inst Oceanog 3, Xiamen 361005, Peoples R China.

³ Inst East China Sea Res ECSER, 1551-7 Taira Machi, Nagasaki 8512213, Japan.

⁴ McGill Univ, Dept Geog, Burnside Hall,805 Sherbrooke St West, Montreal, PQ H3A OB9, Canada.

⁵ Univ Victoria, Sch Earth & Ocean Sci, OEASB A405,POB 1700 STN CSC, Victoria, BC V8W 2Y2, Canada.

⁶ Texas A&M Univ, Int Ocean Discovery Program, 1000 Discovery Dr, College Stn, TX 77845 USA.

⁷ MARUM Ctr Marine Environm Sci, Leobener Str, D-28359 Bremen, Germany.

⁸ Univ Liverpool, Sch Environm Sci, Liverpool L69 7ZT, Merseyside, England.

⁹ Louisiana State Univ, Dept Oceanog & Coastal Sci, Baton Rouge, LA 70803 USA.

¹⁰ Louisiana Univ Marine Consortium, Chauvin, LA 70344 USA.

¹¹ IFREMER, LER BO, Stn Biol Marine, PI Croix, BP40537, F-29185 Concarneau, France.

¹² Helmholtz Zentrum Polar & Meeresforsch, AWI, Handelshafen 12, D-27570 Bremerhaven, Germany.

Corresponding author : Kenneth Mertens, email address : kenneth.mertens@ifremer.fr

Abstract :

We establish the cyst-theca relationship of the dinoflagellate cyst species *Trinovantedinium pallidifulvum* Matsuoka 1987 Matsuoka K. 1987. Organic-walled dinoflagellate cysts from surface sediments of Akkeshi Bay and Lake Saroma, North Japan. Bulletin Faculty of Liberal Arts, Nagasaki University (Natural Science) 28:35–20. [Google Scholar] based on germination experiments of specimens isolated from the Gulf of Mexico. We show that the motile stage is a new species, designated as *Protoperidinium louisianensis*. We also determine its phylogenetic position based on single-cell polymerase chain reaction (PCR) of a single cell germinated from the Gulf of Mexico cysts. To further refine the phylogeny, we determined the large subunit (LSU) sequence through single-cell PCR of the cyst *Selenopemphix undulata* isolated from Brentwood Bay (Saanich Inlet, BC, Canada). The phylogeny shows that *P. louisianensis* is closest to *P. shanghaiense*, the motile stage of *T. applanatum*, and is consistent with the monophyly of the genus *Trinovantedinium*. *Selenopemphix undulata* belongs to a different clade than *Selenopemphix quanta* (alleged cyst of *P. conicum*), suggesting that the genus *Selenopemphix* is polyphyletic. *Trinovantedinium pallidifulvum* is widely distributed with occurrences in the Gulf of Mexico, the North Atlantic, the northeast Pacific and southeast Asia. In addition, we illustrate the two other extant species, *Trinovantedinium applanatum* and *Trinovantedinium variabile*, and two morphotypes of *Trinovantedinium*. Geochemical analyses of the cyst wall of *T. pallidifulvum* indicate the presence of amide groups in agreement with other heterotrophic dinoflagellate species, although the cyst wall of *T. pallidifulvum* also includes some unique features.

Keywords : Micro-FTIR, Selenopemphix undulata, Wadden Sea, Lake Saroma, Saanich Inlet, Gulf of Mexico

1. Introduction

The heterotrophic thecate dinoflagellate genus *Protoperidinium* Bergh is characterized by possessing three cingular plates and an additional transitional plate (Balech 1974). This large genus currently encompasses approximately 280 species (Gómez 2012). The identification of the thecate stage of *Protoperidinium* species is based on the body size, outline, presence and position of apical and/or antapical horns/spines, cingulum displacement and particularly the plate pattern (e.g., Hoppenrath et al. 2009). In regard to the thecal plate arrangement, Balech (1974) used the number of anterior intercalary plates and precingular plates to subdivide Protoperidinium into three subgenera: the subgenus *Protoperidinium*, which has seven precingular plates and three anterior intercalary plates; the subgenus *Minusculum*, which has six precingular plates and three anterior intercalary plates; and the subgenus Archaeperidinium, which has seven precingular plates and two anterior intercalary plates. Later, the subgenus Testeria was erected by Faust (2006) to accommodate species with seven precingular plates, one anterior intercalary plate and no apical pore complex. However, the results from molecular phylogeny questioned the validity of the subgenus Minusculum because it was nested within the subgenus Protoperidinium (Yamaguchi et al. 2007; Ribeiro et al. 2010), and showed the polyphyly of the subgenus Archaeperidinium, as originally described by Jörgensen (1912) (Ribeiro et al. 2010). Archaeperidinium was, therefore, emended as a genus and characterized by the flat sulcus, sulcal flagellar fin covering the sulcal area and circular cingulum without displacement (Yamaguchi et al. 2011).

The subgenus *Protoperidinium* can be subdivided into several sections based on the shape of the first apical (1') plate (ortho, meta or para) and the shape of the second anterior intercalary (2a) plate (quadra, penta or hexa) (e.g., Gribble and Anderson 2006). Molecular phylogenies suggested that most of these sections are monophyletic and nested within the Protoperidinium sensu stricto clade (Mertens et al. 2013; Gu et al. 2015). There are only two exceptions: the section *Conica* is polyphyletic and positioned within the *Protoperidinium* sensu stricto clade (Yamaguchi et al. 2006; Gu et al. 2015), and the section Oceanica is monophyletic but positioned outside of the *Protoperidinium* sensu stricto clade (Sarai et al. 2013).

Several Protoperidinium species have been associated withto a particular cyst, and the morphology of these cysts can be taxonomically informative, especially the shape of the opening in the cyst wall, termed the archeopyle (Harland 1982). Thecate stages belonging to Protoperidinium and Archaeperidinium with a transitional plate have cysts generally have with a saphopylic or theropylic 2a archeopyle of their respective eyst (Harland 1982; Ribeiro et al. 2010; Mertens et al. 2012a) whereas, Protoperidinium species without a transitional plate have cysts with a compound archeopyle involving 2'-4' (Lewis & Dodge 1987; Kawami & Matsuoka 2009; Kawami et al. 2009; Mertens et al. 2013; Liu et al. 2014). Cyst morphology can be diverse and is used to classify cysts into various cyst-defined genera such as Brigantedinium Reid, Votadinium Reid and Selenopemphix Benedek (Fensome et al. 1993). However, differences between the cyst-based defined nomenclature and the motile-based defined nomenclature have not yet been fully reconciled.

1		
2		
3		
4		
5		
6		
7		
8		
9	89	Trinovantedinium Reid is a cyst-based defined genus erected by Reid (1977) to describe
10	90	peridiniacean cysts with an intercalary archeopyle because, at that time, the existence of such an
11	91	archeopyle in the genus Lejeunecysta Artzner & Dörhöfer <u>1978</u> was in doubt. This initial
12	92	diagnosis included species with or without processes on the cyst. The genus was subsequently
13	93	emended by Harland (1977), Bujak (1984) and de Verteuil & Norris (1992). The latter restricted
14	94	the diagnosis of Trinovantedinium to only include biphragmal cysts with short, penitabular and
15	95	intratabular, but never sutural, hollow to solid processes. There are currently 11 species within
16	96	this genus (Table 1). The type species was described by Reid (1977) and is the large transparent
17	97	Trinovantedinium capitatum from recent modern Rosslare Point sediment (Ireland). Later, this
18	98	was considered a junior synonym of Lejeunia applanata, described by Bradford (1977) from
10	99	recent sediments off the east coast of the Musandam Peninsula (Oman), which was renamed later
20	100	as Trinovantedinium applanatum (for details see de Verteuil & Norris 1992, p. 408). This is the
20	101	first of only three species from this genus that are considered extant; the other eight species are
21	102	extinct (Table 1). Trinovantedinium pallidifulvum is the second extant species, first described by
22	103	Matsuoka (1987) from Holocene surface sediments in Akkesni Bay (Hokkaido, Japan). The third
23	104	is <i>Trinovanteatnium variabile</i> , described by Bujak (1984) from the early Phocene of the Bering
24	105	Sea, and was recorded as extant by Radi & de Vernai (2004), Posperova et al. (2008), Vranakaviah & Despalava (2010), Prize & Despalava (2011) and Pringvé et al. (2012)
20	100	For only one of these extent species is the cyst these relationship and molecular.
20	107	nbylogenetic position known. The cyst-theca relationship for the type species <i>Trinovantedinium</i>
21	100	annlanatum was first established by Wall & Dale (1968): however, it was mistakenly related to
28	110	Protoperidinium pentagonum (Gran) Balech. This error was propagated in subsequent studies
29	111	(Matsuoka 1982: Lewis et al. 1984: Baldwin 1987). It was Inoue. H. in Fukuvo et al. (1990. p.
30	112	154–155) who first remarked that the cingulum of the <i>T. annlanatum</i> thecate stage has no
31	113	displacement, in contrast with <i>P. pentagonum</i> . Gu et al. (2015) re-established the cyst-theca
32	114	relationship for <i>T. applanatum</i> from the East China Sea, and they erected the species
33	115	Protoperidinium shanghaiense to describe the motile stage. The hexa-ortho configuration placed
34	116	this species in the Conica group and its LSU rDNA sequence was closest to P. divaricatum, P.
35	117	leonis and P. conicum. This cyst-theca relationship was most recently confirmed by Li et al.
36	118	(2015).
37	119	In this study, we establish the cyst-theca relationship for the second extant species of the
38	120	genus Trinovantedinium, T. pallidifulvum, through incubation of surface sediments from the Gulf
39	121	of Mexico, Dee Estuary (United Kingdom), and Wadden Sea (Germany). We erect a new
40	122	species, Protoperidinium louisianensis, to describe the motile stage of Trinovantedinium
41	123	<i>pallidifulvum</i> . We obtained LSU rDNA sequences through single-cell PCR that show the motile
42	124	stage is closest to <i>Protoperidinium shanghalense</i> . In addition, we document the distribution of
43	125	<i>Trinovantedinium pallidifulvum</i> and the geochemical composition of its cyst wall. We also
44	126	inusurate the two other extant species, <i>Trinovantedinium applanatum</i> and <i>Trinovantedinium</i>
45	12/ 120	of Selenonemphix undulate from Brentwood Bay (P.C. Conside)
46	120 170	or secenopempnix unuuuu nom brentwood bay (b.C., Canada).
47	120	2 Material and methods
48	130	2.1 Germination experiments
49	132	We collected cysts of <i>Trinovantedinium pallidifulvum</i> for incubation studies from surface
50	133	sediment samples at three locations: (1) northern Gulf of Mexico. (2) Dee Estuary (UK) and (3)
51	134	the Wadden Sea in northern Germany (Figure 1 and Table 2). All samples were stored in plastic
52		
53		
54		
55		
56		
57		

8
9 135 bags and refrigerated at 4 °C. In situ sea-surface salinities (SSSs) and sea-surface temperatures
10 136 (SSTs) were measured when collecting the samples (Table 2).
11 137 Approximately 0.5–1.0 cm³ of wet sediment was immersed in filtered seawater after

Approximately 0.5–1.0 cm³ of wet sediment was immersed in filtered seawater after which it was ultrasonicated in a bath (60 s) and rinsed through a 20 µm nylon mesh using filtered seawater. The cyst fraction was separated from this residue using heavy liquid sodium polytungstate (density = 1.3 g cm^{-1}) (Bolch 1997). Single cysts were then transferred to Nunclon 0.5 ml microwells subjected to an irradiance of 100 µmol photons m⁻² s⁻¹ and 24 h light, and filled with L1 medium. The wells were kept at room temperature. Cysts were regularly checked for germination, and observations were performed under an Leitz DM inverted light microscope. Encysted and excysted cysts as well as motile cells were photographed and measured using an Leica DM 5000B light microscope equipped with a Leica DFC 490 camera with 100x oil immersion objectives. For each motile cell, the length, width, depth, distance between the tips of the antapical horns, and width of the cingulum were measured, as where possible. For each cyst, the same parameters were measured; additionally, the length of three randomly chosen spines per cyst were measured. All measurements in the species descriptions cite, in order: the minimum, average (in parentheses) and maximum values (in µm). The standard deviation (SD) is also provided where appropriate. Incubation experiments were done by KNM and took place at GEOTOP (Gulf of Mexico and Dee Estuary samples) and Univ. of Bremen (Wadden Sea samples). All measurements were done by KNM.

We also attempted to germinate *Selenopemphix undulata* from Saanich Inlet (Canada),
but none of the isolated cysts germinated.

2.2. Study of cysts from surface sediments

To determine the distribution of Trinovantedinium pallidifulvum, permanent slides of surface samples were examined which included locations from the the northeastern and northwestern Pacific and the northern Gulf of Mexico (Figure 1 and Table 2). Routine palynological techniques were used for processing (Pospelova et al. 2004; Matsuoka et al. 2003; Mertens et al. 2012b). The samples were oven-dried at 40 $^{\circ}$ C and then treated with room-temperature 10% hydrochloric acid (HCl) to remove calcium carbonate. The material was rinsed twice with distilled water, sieved at 120 µm to eliminate the coarse fraction, and retained on a 15 µm nylon mesh. To dissolve siliceous particles, samples were treated with 48–50% room-temperature hydrofluoric acid (HF) for at least two days, and then treated for 10 min with room-temperature HCl (10%) to remove fluorosilicates. The residue was rinsed twice with distilled water, ultrasonicated for 30 s and finally collected on a 15 µm mesh. Residue aliquots were mounted in glycerine jelly. All measurements and light photomicrographs were as described in Section 2.1. In addition, in order to illustrate *Trinovantedinium applanatum* and *Trinovantedinium variabile*, we re-examined permanent slides from palynologically prepared samples from several localities.

2.3. Single-cell PCR amplification and sequencing of the motile stage of Trinovantedinium pallidifulvum

Surface sediment samples containing *Trinovantedinium pallidifulvum* were used from the Gulf of Mexico (Figure 1 and Table 2). Cysts were isolated from the sediment using the heavy liquid separation described in Section 2.1. Motile cells identified through light microscopy were rinsed several times in sterilized distilled water, broken by compressing the cell between the slide and cover slip, and then transferred into a PCR tube. The single cell was used as the template to amplify about 1200 bp of the nuclear-encoded LSU rDNA, using the primers D1R (Scholin et al.

46

47

48

49

50

51

	1		
,	י כ		
	2		
	ر ۱		
ĺ,	+		
;	2		
(2		
ł	(
8	8		
Ģ	9	181	1994) and 28-1483R (Daugbjerg et al. 2000). A 50 µl PCR cocktail containing 0.2 µM primers,
•	10	182	PCR buffer, 50 µM dNTP mixture, 1U of Ex Taq DNA polymerase (Takara, Dalian, China) was
	11	183	subjected to 35 cycles using a Mastercycler PCR (Eppendorf, Hamburg, Germany). The PCR
	12	184	protocol was: initial denaturation for 3.5 min at 94 °C, followed by 35 cycles of 50 s denaturation
	13	185	at 94 °C, 50 s annealing at 45 °C, and 80 s extension at 72 °C, plus a final extension of 10 min at
	14	186	72 °C. The amplified products were run on a 1% agarose gel. Positive bands were excised and
	15	187	purified using a DNA extraction kit (Sangon, Shanghai, China) and sequenced in both directions
	16	188	using the ABI Big-Dye dye-terminator technique (Applied Biosystems, Foster City, California,
	17	189	USA), according to the manufacturer recommendations. <u>This DNA work was performed by HG</u>
	18	190	in Third Oceanographic Centre, Xiamen, China.
	19	191	
,	20	192	2.4. Single-cell PCR amplification and sequencing of cysts of Selenopemphix undulata
	20 21	193	We obtained surface sediment samples containing <i>Selenopemphix undulata</i> from Brentwood Bay
	י∠ 2י	194	(B.C., Canada) (48,58°N,-123.47°E, 6 m water depth) using a petite ponar grab on October 1,
4	22 22	195	2011. Cysts were isolated from the sediment using heavy liquid separation as described in
4	∠3 ⊃4	196	Section 2.1. The cysts were then rinsed several times in sterilized distilled water, broken by
1	24	197	compressing the cell between the slide and cover slip, and then transferred into a PCR tube. The
4	25	198	single cell was used as the template to amplify about 1200 bp of the nuclear-encoded LSU
4	26	199	rDNA, using the primers DTR (Scholin et al. 1994) and 28-1485R (Daugbjerg et al. 2000). A 50
4	27	200	μι PCK cocktail containing 0.2 μινι primers, PCK burler, 50 μινι divite mixture, 10 of Ex Taq
2	28	201	DNA polymerase (Takara, Dallan, China) was subjected to 55 cycles using a Mastercycler PCR
2	29	202	(Eppendori, Hamourg, Germany). The PCK protocol was an initial denaturation for 5.5 min at 94
:	30	203	C, followed by 55 cycles of 50's denaturation at 94°C, 50's annealing at 45°C, and 80's
:	31	204	extension at 72°C, plus a final extension of 10 min at 72°C. The amplified products were fun on
:	32	205	a 170 agaiose get. Positive ballos were excised and putitied using a DIVA extraction Kit (Saligon, Shanghai, China) and sequenced in both directions using the A PI Pig. Dve dve termineter
:	33	200	shanghai, China) and sequenced in both directions using the ABI big-Dye dye-terminator tashnigua (Applied Biogystems, Easter City, California, USA), according to the manufacturar's
:	34	207	recommendations. This DNA work was performed by VT at the University of Negasoki. Japan
:	35	208	recommendations. This DIVA work was performed by 11 at the Oniversity of Nagasaki, Japan.
:	36	209	2.5 Sequence alignments and phylogenetic analyses
:	37	210	2.5. Sequence augments and phylogenetic analyses Newly obtained sequences were first aligned with those of related species available in GenBank
(38	211	using 'BioEdit' v7 0.0 (Hall 1999) and subsequently using Mafft (Katoh et al. 2005)
:	39	212	(http://mafft.chrc.in/alignment/server/) Akashiwo sanguinea (Hirasaka) G. Hansen & Moestrun
2	40	213	was selected as the outgroup. A Bayesian reconstruction of the data matrix was performed with
2	41	215	MrBayes 3 0b4 (Ronquist & Huelsenbeck 2003) using a general time reversible model (GTR
2	42	216	+I+G) chosen by ImodelTest (Posada 2008) Four Markov chain Monte Carlo (MCMC) chains
	13	217	ran for two million generations sampling every 1 000 generations with a burnin of 10% A
	4 <u>0</u> 1 <u>4</u>	218	majority rule consensus tree was created in order to examine the posterior probabilities of each
	_		

00 generations with a burnin of 10%. A examine the posterior probabilities of each 219 clade. Maximum likelihood-based analyses were conducted with RaxML v7.2.6 (Stamatakis 220 2006) on the T-REX web server (Boc et al. 2012) using the above model. Bootstrap values were 221 determined with 1,000 replicates. 222

223 2.6. Geochemical analysis of cyst wall chemistry

After germination, an empty cyst originally derived from surface sediment of the Wadden Sea 224 225 (Germany) (Figure 1) was removed from a microwell using a micropipette into a droplet of water contained on a glass slide with a concave depression. The water was allowed to evaporate and 226

URL: http://mc.manuscriptcentral.com/tpal

2 3		
4		
5 6		
7		
7 8 9 10 11 12 13 14 15 16 17	227 228 229 230 231 232 233 234 235 236	then a droplet of ethanol was added. The cyst was allowed to soak in the ethanol for 30 min after which a droplet of MilliQ water was added. The cyst was then isolated and the procedure repeated twice. These steps were to ensure that any polar or apolar compounds adhered to the cyst wall were removed. The cyst was then visually examined under the light microscope and placed on an Au-coated mirror and analysed with micro-Fourier transform infrared spectroscopy using a Bruker FT-IR microscope (Hyperion 3000) with a 15x objective. The spectrum was acquired in reflective mode with 50 scans over 4000-600 cm ⁻¹ and is shown after background subtraction. Peak assignments were based on Colthup (1990) and relevant published literature (e.g., Bogus et al. 2012; 2014; Cárdenas et al. 2004; Versteegh et al. 2012). This geochemical work was done by KB, KNM and GJMV at the Univ. of Bremen, Germany.
19	237	3 Desults
20	230 239	3. Results of germination experiments
21	240	Undescribed motile cells, here assigned to <i>Protoperidinium louisianensis</i> n. sp., emerged from
22	241	Trinovantedinium pallidifulvum cysts isolated from surface sediments of the Gulf of Mexico
23	242	(five specimens identified) (Figure 1 and Table 1). <u>These motile cells germinated from the cysts</u>
24 25	243	<u>a</u> Arter one or two days of incubation, motile cells germinated from the cysts. These cells died a faw days after germination and never divided. Two out of four specimens of <i>Trinovantadinium</i>
26	244	<i>pallidifulyum</i> from the Wadden Sea (Germany) germinated, but the cells did not fully develop
27	246	thecal plates. A single specimen from the Dee Estuary (UK) germinated, but the motile stage
28	247	could not be fully observed.
29	248	2.2 Sustamatic nale contalogu
30	249 250	Division DINOFLAGELLATA (Bütschli 1885) emend. Fensome et al. 1993. emend. Adl et al.
31	251	2005
33	252	Class DINOPHYCEAE Pascher 1914
34	253	Subclass PERIDINIPHYCIDAE Fensome et al. 1993
35	254 255	Family PROTOPERIDINIACEAE Balech 1988 nom cons
36	256	Subfamily PROTOPERIDINIOIDEAE (Autonym)
37	257	Genus Protoperidinium Bergh 1881
38	258	Protoperidinium louisianensis Mertens, Gu, Price et Matsuoka n. sp.
39 40	259	Plate 1, figures 1–15, Plate 2, figures 1-15
40	260	Type locality , Northern Gulf of Mexico, station A7 (28 94°N, 89 75°W), offshore Louisiana
42	262	Diagnosis. A species of intermediate size of the genus <i>Protoperidinium</i> with the tabulation
43	263	formula Po, X, 4', 3a, 7", 3c+t, ?s, 5", 2"". The motile cell is pentagonal in outline and
44	264	dorsoventrally flattened, with a short apical horn and two antapical horns, each bearing a short
45	265	spine. The epitheca is longer than the hypotheca, and bears convex sides. Plate I' is ortho-type, la and 3a are penta-type, and 2a is heve-type and stenodelta form linteloid. Plates are thin with
46	267	polygonal reticulations. The cyst is pentagonal and light brown in color, with a thickened apical
47 48	268	horn and two thickened antapical horns. The cyst surface is smooth, bearing numerous
49	269	peritabular, short, solid, erect, and non-branching processes with acuminate tips. Sometimes the
50	270	dorsal side of the hypotheca is striated. The archeopyle is stenodeltaform linteloid, angular and
51	271	saphopyne.
52		
53		
04 55		
56		
57		
58		
59		
60		

60

Palynology

2			
3			
4 5			
6			
7			
8			
9	272	Derivation of name. The specific epithet refers to the type locality, which lies offshore the	
10	273	state of Louisiana (USA).	
11	274	Gene sequence. The LSU rDNA gene sequence of the cyst—GenBank Accession No.	C
12	275	Description Description of motile cell of Protoneridinium louisianensis (Plate 1 figures 1-0	1
13	270	<i>Plate 2. figures 1-9</i> . The excysted motile cells (five observed and not preserved) were	
14	278	pentagonal in outline, dorsoventrally flattened and carried an apical horn and two antapical horns	
10	279	of equal length, each bearing a short spine (Plate 1, figure 1-2, Plate 2, figure 1). The epitheca	
17	280	had convex sides and was longer than the hypotheca. The cell contents were greenish, except for	
18	281	a red body. The thin thecal plates carried polygonal reticulations (Plate 1, figure 2,7).	
19	282	n ne plate arrangement on the epitheca was bilaterally symmetrical. The oval apical pore	
20	284	(Plate 2, figure 4). The canal plate (X) was elongate and trapezoidal (Plate 2, figure 4). The first	
21	285	apical plate (1') was wide and rhombic (ortho-type) and the sides of plate 1' contacting plates 2'	
22	286	and 4' are longer than those contacting plates 1" and 7" (Plate 1, figure 2). Plates 2' and 4' were	
23	287	elongated and subpentagonal, whereas 3' was short and subpentagonal (Plate 1, figure 4). The	
24	288	first and third anterior intercalary plates (1a) were pentagonal and equal in size (Plate 1, figures 2×10^{-11}	
25	289	3,6). The second anterior intercalary plate (2a) was hexagonal, stenodeltatorm linteloid and more alongated and had two small sides touching plates 3" and 5" (Plate 1, figure 4). The precingular	
20 27	290 291	series consisted of seven plates. Plate 1" 4" and 7" were quadrangular (Plate 1, figure 4). The precingular	
28	292	2", 3", 5" and 6" pentagonal (Plate 1, figures 3,5,6). The cingulum was slightly left-handed	
29	293	(descending), lined with narrow lists and comprising three cingular plates plus a transitional	
30	294	plate. The transitional plate (t) was small. Plate 1c reached the end of plate 1" and 2" (Plate 1,	
31	295	figure 3). Plate 2c was the longest of the series and reached a short way beyond the $6''/7''$	
32	296	boundary and the 4 ^m /5 ^m boundary (Plate 1, figure 7). Plate 3c was similar in size to Plate 1c.	
33	297	The plate arrangement of the hypotheca was also symmetrical featuring five postcingular	
34	299	plates. Plate 5''' was longer than plate 1'''. Plates 1'''. 3'''. and 5''' were pentagonal, and 2''' and	
35	300	4" were quadrangular (Plate 1, figures 7-9). The antapical series comprised two plates, 1"" and	
36	301	2"", which formed the antapical horns (Plate 1, figure 7).	
31 20	302	The plate formula is thus Po, X, 4', 3a, 7", 3c+t, ?s, 5"', 2"", and the complete tabulation	
30 30	303	(except for the sulcal plates) is illustrated in Figure 2.	
40	304	15) Cysts were similar in shape to the motile stage, but light brown in color, hearing numerous	
41	306	small solid spines. The cysts were peridinioid (pentagonal) with a thickened apical horn and two	
42	307	thickened antapical horns of equal length. Living cysts contained abundant greenish granules.	
43	308	The epicyst had convex sides and was always longer than the hypocyst. The central body wall	
44	309	was thin (>0.3 μ m) and biphragmal with closely appressed layers that separate along the apical	
45	310	horn and antapical horns, with a smooth surface (Plate 1, figure 11). Sometimes striations were	
46	312	erect and non-branching with acuminate tins (Plate 1 figure 11). The processed distribution was	
47 10	313	largely peritabular penitabular (Plate 1, figure 13, Plate 2, figure 11). The process length was	
40 ∕\0	314	fairly constant for individual specimens, except around the apical horn and antapical horns where	
4 3 50	315	they became longer (Plate 2, figure 10). The paracingulum was excavated with lists ornamented	
51	316	with rows of equidistant processes, and slight left-handed displacement (Plate 2, figure 11). The	
52	317	parasulcus was free of processes and indented (Plate 1, figure 14), two flagellar scars were	
53			
54			
55			
56			
5/			
วช 50			
22			

Formatted: Font: Times New Roman, 12 pt

4 5			
6			
7			
8			
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 	always visible (Plate 2, figure 12). The archeopyle was angular and saphopylic, involving release of plate 2a, steno-deltaform linteloid. The description is based on cysts used in the incubation experiments and those recovered from sediment and prepared using palynological methods. Cysts without cell content in the palynologically treated samples did not retain their shape well - they did not seem to be very robust as they were always quite folded and flattened. Dimensions. Incubated motile cells: length, 52.3 (58.8) 65.1 μ m (SD = 6.0, n=4); width, 44.0 (53.6) 58.8 μ m (SD = 7.4, n=4); depth, 34.8 (38.4) 41.9 μ m (SD = 5.0, n=2); distance between the tips of the antapical horns, 12.8 (16.3) 20.3 μ m (SD = 3.7, n=4); width of cingulum, 3.9 (4.1) 4.4 μ m (SD = 0.2, n=4). (Cysts germinated to give identifiable thecae: length, 43.0 (58.5) 68.4 μ m (SD = 8.2, n=10); width, 46.3 (56.5) 63.9 μ m (SD = 5.0, n=10); depth, 30.4 (40.6) 48.4 μ m (SD = 7.2, n=7); distance between the tips of the antapical horns, 16.0 (23.9) 27.7 μ m (SD = 3.6, n=10); width of cingulum, 4.5 (6.0) 7.2 μ m (SD = 0.8, n=10); average length of three spines per cyst, 1.1 (1.8) 2.7 μ m (SD = 5.7, n=5); width, 49.8 (56.3) 63.3 μ m (SD = 5.0, n=5); depth, none measured; distance between the tips of the antapical horns, 20.6 (21.3) 22.5 μ m (SD = 0.8, n=5); width of cingulum, 4.8 (5.6) 6.5 μ m (SD = 0.7, n=4); average length of three spines per cyst, 1.4 (1.9) 2.8 μ m (SD = 0.4, n=15). Comments. The geological preservability of the cysts was demonstrated by their ability to withstand palynological preservability of the cysts was demonstrated by their ability to withstand palynological reatment and presence in sediments at least as old as Holocene (Matsuoka et al. 1999) to mid-Miocene (our interpretation of the "undefined protoperidiniacean species" denicted in de Verteuil & Norris (1992) plate 2 fres. 9–12). Specimens from the	
30	340	species" depicted in de Verteuil & Norris (1992), plate 2, figs. 9–12). Specimens from the	
31	341	German Wadden Sea show an identical morphology (Plate 3, figures 1–12) and the cysts	
32	342	correspond to the cyst-based defined speciestaxon Trinovantedinium pallidifulvum Matsuoka,	
33	343	here reillustrated by its holotype (Plate 3, figures 13–16).	
34	344		
35	345	Genus Trinovantedinium Reid 1977, emend. de Verteuil & Norris 1992	Formatted: French (France)
36	346	Tinovantedinium applanatum (Bradford 19/7) Bujak & Davies 1983	
37	347	Plate 4, figures 1–13, Plate 5, figures 1-10	
38	348	Synonyms. Trinovanteainium capitatum Reid 19/7, Plate 1, figures 6–8.	
30	349	Comments. The illustrated specimens conform to the original description of Bradford (1977).	
10	350	found in warmer water ragions (Omure Day, Japan; Day of Dangal; Dad Sao) and shows a more	
40 //1	351	alongata, transparant body shape with straight sides and more elongated heres, separated by a	
12	352	deen depression. Type B (Plate 5, figures 8–10) was found in cold water (offshore Greenland)	
12	354	and shows a more rounded transparent body shape with reduced horns and a very shallow	
11	355	depression between the antanical horns <i>Trinovantedinium applantum</i> differs form	
44	356	<i>Trinovantedinium pallidifulyum</i> in its transparency often larger and more elongate body and	
45	357	longer processes.	
40 17	358		
41 10	359	Trinovantedinium variabile (Bujak 1984) de Verteuil & Norris 1992	
40	360	Plate 6, figures 1–11	
49	361	Comments. The illustrated specimens conform to the original description of Bujak (1984). <u>The</u>	
50 54	362	holotype is redescribed and reillustrated by Head (1994, p. 226, pl. 11, figs. 4,5,7,8).	
51	363		
52			
53			
54			
55			
56			
57			
57			
57 58			
57 58 59			

60

Palynology

2			
4			
5			
67			
/ 8			
9	364	Genus Selenopemphix Benedek 1972, emend. Head 1993	
10	365	Selenopemphix undulata Verleye, Pospelova, Mertens et Louwye 2011, Plate 1, figure 8	
11	366	Plate 6, figures 12–14	
12	367	(2011 particularly the specimen displayed in Plate 1 figure 8) was isolated for single-cyst PCR	
13	369	(Plate 6, figures 12–14). The cyst was collected from surface sediment of Brentwood Bay (B.C.,	
14	370	Canada). The cyst was large and polar compressed, with a cingulum with undulating margins	
16	371	showing very small undulations. The epicyst was conical and striated, the hypocyst was also	
17	372	striated and bore two fused antapical horns that were wider than the apical horn. The archeopyle could not be observed on encysted specimens. The single cyst had a length of $A45$ µm (apex to	
18	374	antapex), width of 74.6 um, and depth of 70.8 um.	
19	375	Gene sequence. The LSU rDNA gene sequence of the cyst—GenBank Accession No.	
20	376	<u>LC114019 (LSU).</u>	
21	377 279	3.3 Phyloganatic position of Protoportidinium louisionensis and Selenonemphix undulate	
23	378	as inferred from LSU rDNA sequences	
24	380	We obtained 1,143 base pairs from one germinated cell of <i>Protoperidinium louisianensis</i> isolated	
25	381	from the Gulf of Mexico (Accession number: <u>KU519754XXXXXX</u>), and this sequence was used	
26	382	for the phylogenetic analyses (Figure 3). <i>Protoperidinium louisianensis</i> was closest to	
27	384	Conica section (P divaricatum P conicum P leonis) Selenopemphix undulata (Accession	
20 29	385	number: LC114019), was closest to <i>Protoperidinium biconicum</i> , which also belongs to the	
30	386	section Conica and formed a separate clade with P. punctulatum and P. humile, both species	
31	387	belonging to the section <i>Tabulata</i> . The other members of the Protoperidiniaceae formed several	
32	388 389	other clades, which were also used by Gu et al. (2015).	
33	390	3.4. Modern Recent ddistribution of Trinovantedinium pallidifulvum and inferred ecology	
34 25	391	Trinovantedinium pallidifulvum was initially described by Matsuoka (1987) from Akkeshi Bay	
36	392	(Hokkaido, Japan) and subsequently predominantly in southeast Asia, such as including surface	
37	393 301	sediments off South Korea (Cho et al. 2005; Shin et al. 2011), Japan (Kojima et al., 1994; Matsuoka et al. 2003), China (Wang et al. 2004), and Malaysia (Eurio et al. 2006) (Figure 1))	
38	395	In this study we show that this species is much more widely distributed since it is	
39	396	recorded in surface sediments from the northern Gulf of Mexico, Casino Coast (Brazil), the	
40	397	North Atlantic (La Vilaine Bay, Wadden Sea (Germany), Dee Estuary (UK), Kattegat), NW	
41 42	398	Pacific (Tokyo Bay and Ariake Sound, both in Japan) and the NE Pacific (Vancouver Island, Canada) (Table 2 and Figure 1). We also identify a specimen from the German Bight depicted by	
43	400	Nehring (1997, his figures 23–24, as <i>Trinovantedinium capitatum</i>) also as <i>T. pallidifulvum</i> . The	
44	401	highest relative abundance of <i>T. pallidifulvum</i> eysts was recorded in a surface sample from the	
45	402	Gulf of Mexico where <u>itthe cysts</u> contributes up to 3.8% of the cyst assemblages (Table 2). <i>T</i> .	
46	403	<i>pallidifulvum</i> was found in this study in surface sediment samples corresponding to SSTs of 11.20, 21.45 °C and SSSs with a range of 8.60, 22.61 psy (Table 2)	
47	404 405	$\sim 11.50 - 51.45$ C and 555s with a range of 8.00 - 55.01 psu (rable 2).	
48 ⊿0	406	3.5. Trinovantedinium pallidifulvum cyst wall chemistry	
5 0	407	The spectrum produced by micro-FTIR analysis of the cyst wall (Figure 4) shows: a broad peak	
51	408	centered at 3340 cm ⁻¹ (OH stretching), weak peaks at 2920 and 2860 cm ⁻¹ (aliphatic CH stretching) peaks at 1720 and 1700 cm ⁻¹ (C=O stretching) 1630 cm ⁻¹ (C=O stretching)	
52	409	stretching), peaks at 1780 and 1700 cm $(C=0$ stretching), 1050 cm $(C=C, C=0$ stretching	
53			
54			
55 56			
57			
58			
59			

Formatted: Font: Times New Roman, 12 pt

(amide I)), 1585 and 1560 cm⁻¹ (CN stretching, NH bending (amide II)), 1440 and 1405 cm⁻¹ (CH bending), 1350 cm⁻¹ (NO₂, CCH₃ (not indicated in Figure 4)), 1310 cm⁻¹ (amide III), 1255 cm⁻¹ (NH bending), 1140 and 1030 cm⁻¹ (C-O stretching), and 890, 850 and 770 cm⁻¹ (CH out of plane).

4. Discussion

4.1. Comparative morphology of the motile stage of P. louisianensis within the Conica group

The motile stage of *P. louisianensis* can be distinguished from all species from the *Conica* group by the unique combination of excavated antapical horns each bearing a single spine, an epitheca with convex sides being longer than the hypotheca, a slightly left-handed cingulum, a stenodeltaform linteloid 2a and plates with polygonal reticulations. A few species show strong similarities. P. conicum also has spines on the antapical horns, but has an epitheca that is as long as the hypotheca, straight sutures from the apex to the cingulum and a more elongated pore (Gu et al. 2015). P. shanghaiense has no displacement of the cingulum, an epitheca with straight sides, two relatively closer antapical horns that bear no spines and a 2a that was isodeltaform linteloid (Gu et al. 2015). P. conicoides also bears spines on the antapical horns, but is more polar compressed. It also has an epitheca that is as long as the hypotheca, a 1" which has a "nose" at the onset of the sulcus, and straight sutures from the apex to the cingulum (Hoppenrath et al. 2009, p. 158). The plates of P. obtusum and P. leonis are ornamented with longitudinal ribs (Hoppenrath et al. 2009, p. 158–159).

4.2. Comparative morphology of the cyst of P. louisianensis within the Conica group

The cyst of P. louisianensis, which corresponds to the cyst-based defined speciestaxon Trinovantedinium pallidifulvum, can be easily differentiated from all other species belonging to the genus Trinovantedinium (Table 1). The species differs from Trinovantedinium applanatum and Trinovantedinium henrietii because these are transparant and have an epicyst the same length as the hypocyst (Matsuoka 1987, Louwye et al. 2008). Trinovantedinium boreale is also transparant and has processes with platforms (Bujak 1984; see also Head 1994). Trinovantedinium glorianum has much more densely distributed and hollow processes and antapical horns that are sharper (Head et al. 1989). T. variabile, T. harpagonium, T. ferrugnomatum and T. sterthense are more polar compressed with rounded antapical horns and bear longer processes with distal platforms or taeniate or aculeate processes (Bujak 1984, de Verteuil & Norris 1992, Head 1993). Trinovantedinium papula and Trinovantedinium? xylochoporum are much more rounded and have longer processes (de Verteuil & Norris 1992).

Validity of the genus genera Trinovantedinium and Selenopemphix 4.3.

The molecular phylogeny shows that *P. louisanensis* and *P. shanghaiense* are most closely related, which is thus the case for their respective cysts, Trinovantedinium pallidifulvum and Trinovantedinium applanatum. This supports is consistent with the monophyly of the genus Trinovantedinium. Whether this will be supported by the molecular characterization of the other extant species, Trinovantedinium variabile, should be the subject of further study.

The phylogenetic position of *Selenopemphix undulata* is more problematic because it is positioned in another clade than *Protoperidinium conicum*, the motile stage associated with the cyst-based taxon Selenopemphix quanta (note that this cyst-theca relationship needs further study, e.g. Matsuoka & Head 2013). This polyphyly suggests that both species belong to two

Formatted: Font: Not Italic

1	
2 3	
4	
5 6	
7	
8 9	456
10	457 458
11 12	459
13	460 461
14 15	462
16	463 464
17 18	465
19	466 467
20 21	468 469
22	470
23 24	471 472
25	473
26 27	474 475
28	476
29 30	477 478
31	479 480
32 33	481
34	482 483
35 36	484
37	485 486
38 39	487 489
40	488 489
41 42	490 491
43	492
44 45	493 494
46	495
47 ⊿8	496 497
49	498 ⊿99
50 51	500
52	
53 54	
55	
56 57	
ว/ 58	

59 60

different genera, and their relatively long genetic distance suggests that they diverged a long time 6 ago. This polyphyly is also supported by significant morphological differences between species 7 of both cyst types, particularly the position of the archeopyle, which is more offset in 8 Selenopemphix undulata (Verleye et al. 2009) than Selenopemhix quanta (it is considered central 9 60 or slightly offset, see Head 1993, p. 31-32). It is, therefore, likely that Selenopemphix quanta 51 should be transferred back to its initial name, Multispinula quanta. However, we suggest that the 52 molecular phylogenetic position of the type species of Selenopemhix, Selenopemphix nephroides, 53 the cyst considered to belong to Protoperidinium subinerme (Rochon et al. 1999) needs to be 54 established before such a transfer. Either way, this result emphasizes the importance of the 55 archeopyle position in cyst taxonomy, whereas the reniform cyst shape of both species, seems to 6 be polyphyletic.

4.4. Validity of the genus Protoperidinium

Since long there has been a mismatch between paleontological and biological names, whereas several biological species that belong to the genus *Protoperidinium* have been associated with cysts belonging to different cyst-defined genera (e.g. *Brigantedinium, Quinquecuspis, Selenopemphix*, etc.) (e.g. Fensome et al. 1993). Although there have been attempts to reconcile both nomenclatural systems (e.g. Harland 1982), no consensus has yet been reached as how to resolve this issue and here we also suggest to respect the status quo in order to avoid further confusion.

7 4.4.4.5. Evolution of Trinovantedinium and Selenopemphix within the Peridiniales

8 Previous studies have tried to elucidate evolutionary patterns based on the morphologic '9 changes of the motile stages (e.g., Taylor 1980) or on the basis of cyst morphology (e.g., Bujak & Davies 1983). Molecular phylogenetics largely support the biological approach which focuses 80 on variations in tabulation, and consider the Monovela group and Diplopsaloideans as ancestral 31 to the Protoperidinium sensu stricto group (e.g., Liu et al. 2015a,b; Gu et al. 2015; Mertens et al. 32 3 2015). Both of these ancestral groups have not been identified in the earlier fossil record of the Peridiniales (Cretaceous - Eocene), and the cyst morphologies observed during this time period 34 (Bujak & Davies 1983) are more similar to the cyst-based genera Lejeunecysta, Quinquecuspis 35 and Trinovantedinium, which, based on molecular phylogenetics, belong to the Protoperidinium 6 sensu stricto group (Figure 3). A reinvestigation of the fossil record is urgently needed to explain 37 this discrepancy between the fossil record and the molecular phylogenetics, and begs the 88 question whether preservation issues or the complex cyst identification of these relatively 9 unknown ancestral species could be responsible, or if multigene phylogenies would also support 0 the LSU based phylogeny (e.g., Orr et al. 2012).)1

Trinovantedinium boreale would presumably be the oldest *Trinovantedinium* species, as it has been observed in the late Paleocene, since all other species have Miocene or later first occurrences appearances (Table 1). Two other closely related species to *Trinovantedinium applanatum* and *Trinovantedinium pallidifulvum*, the cyst of *Protoperidinium divaricatum* (cyst_defined-based name *Xandarodinium xanthum*) and the cyst of *Protoperidinium leonis* (cyst_defined-based name *Quinquecuspis concreta*) (Figure 3) both have younger first occurrences appearances (Miocene-(: Matsuoka, 1992;); and Pleistocene:-(de Vernal et al., 1992), respectively). Interestingly, the here documented *Trinovantedinium applanatum* type B shows similarities to *Trinovantedinium boreale*, although the latter has longer and fewer processes. It

Formatted: Font: Bold

Formatted: Bullets and Numbering

Formatted: Font: Not Italic

would, therefore, be important to obtain a sequence from this type B and see how it relates to the other sequences.

503	A	
504	4.5.4.6Distribution of Trinovantedinium pallidifulvum	
505	T. pallidifulvum was shown in this study to be widely distributed in temperate to tropical waters	
506	(Figure 1), in surface sediment samples corresponding to SSTs of ~11.30-31.45 °C and SSSs	
507	with a range of 8.60–33.61 psu.	
508		

4.6.4.7. Cyst wall geochemistry of Trinovantedinium pallidifulvum

The T. pallidifulvum cyst wall chemistry demonstrates a composition both consistent and dissimilar with other known heterotrophic dinoflagellates (Figure 4). The greatest similarity is the evidence for nitrogen-containing functional groups in the cyst wall, which is consistent with all previously analyzed cysts from heterotrophic dinoflagellates (Bogus et al. 2014). This evidence includes several absorptions indicative of amide groups (1630, 1585, 1560, 1310, and 1255 cm⁻¹). The presence of nitrogen-containing functional groups was suggested to reflect the heterotrophy of the dinoflagellate producing the cyst (Bogus et al. 2014), with the incorporation of prey waste products (high in nitrogen groups from the breakdown of proteinaceous material) into the cyst wall. Additionally, similar to other species, there is clear evidence for alcohol groups (3340, 1140 and 1030 cm⁻¹), although the strongest series of absorptions in T. pallidifulvum is different. In fact, the most obvious difference in the cyst wall chemistry of T. *pallidifulvum* compared to other heterotrophic dinoflagellates is the lack of the dominant series of absorptions characteristic for polysaccharides (Bogus et al. 2014; Versteegh et al. 2012). However, absorptions at 1140 and 1030 cm⁻¹ are present, indicating that sugars may still be present as part of the cyst wall. The strongest absorptions are at 890 and 850 cm⁻¹, which usually result from ring vibrations and is supported somewhat by the absorption at 1630 cm⁻¹. There is also evidence that this species has a cyst wall that contains a significant carboxylic acid/ester component (1780, 1700 cm⁻¹), which may increase the stability of the cyst wall polymer (Yang et al. 1996). This pattern has been suggested in some species of the fossil Apectodinium genus (Bogus et al. 2012). However, the cyst wall is not aliphatic because absorptions indicating aliphatic C-H stretching are weak, which is consistent with many dinoflagellate cysts (de Leeuw et al. 2004; Bogus et al. 2014; Versteegh et al. 2012). Therefore, the spectrum of T. pallidifulvum is unique to any previously analyzed species because it appears to incorporate amide groups, similar to other heterotrophic species, and contain a higher abundance of ester groups, found only in two other fossil species thus far. These results suggest that dinoflagellate cyst wall chemistry may be more diverse than previously considered and further study is required.

5. Conclusions

- We document the cyst-theca relationship for the cyst-based taxon Trinovantedinium pallidifulvum, and erect the species Protoperidinium lousianensis to describe the motile stage.
- LSU rDNA based phylogenies show the closeness of *P. lousianensis* and *P.* shanghaiense, and also of their respective cysts, Trinovantedinium pallidifulvum and Trinovantedinium applanatum.
- The genus *Trinovantedinium* is monophyletic, whilst the genus *Selenopemphix* is polyphyletic.

Formatted: Font: Bold

- Formatted: Bullets and Numbering
- Formatted: Font: Bold
- Formatted: Bullets and Numbering
- Formatted: Font: Not Bold

1		
2		
3		
4		
5		
6		
7		
8		
9	546	• Trinovantedinium pallidifulvum is widely distributed, and can be found at SSTs of
10	547	$\sim 11.30 - 31.45$ °C and SSSs of 8.60 - 33.61 psu.
11	548	• <i>Trinovantedinium pallidijulvum</i> 's cyst wall chemistry is unique but contains amide
12	549	groups, which is consistent with other neterotrophic species.
13	551	Acknowledgements
14	552	Kenneth Neil Mertens is a postdoctoral researcher of FWO Belgium Martin I Head is
15	553	acknowledged for advice on the genus <i>Trinovantedinium</i> . Anna Godhe is thanked for providing a
10	554	sample from the Kattegat. Evelyne Goubert is thanked for providing a sample from La Vilaine
10	555	Bay and Jean-Pierre Debenay for samples from the Vie River estuary. We acknowledge the
10	556	Scripps Institution of Oceanography (SIO) Geological Collections and in particular Alex
20	557	Hangsterfer for sediment samples from the Bay of Bengal. Pieter R. Gurdebeke is thanked for
20	558	providing a nice specimen of <i>Trinovantedinium variabile</i> . K.N.M. and A.M.P. thank Anne de
22	559	Vernal for letting us use the equipment to conduct germination experiments at GEOTOP. Sofia
23	560	Ribeiro is thanked for loan of slides from Portugal. G.J.M. V. acknowledges support by the
24	562	support of the Natural Science and Engineering Research Council of Canada (NSERC). Support
25	563	for shin time for Gulf of Mexico specimens was provided by the National Oceanic and
26	564	Atmospheric Administration. Center for Sponsored Coastal Ocean Research, under awards
27	565	NA06OP0528 and NA09NOS4780204 to Louisiana Universities Marine Consortium and awards
28	566	NA06OP0529 and NA09NOS4780230 to Louisiana State University. The crew of the R/V
29	567	Pelican is thanked for assistance with sample collection. Martin J. Head and an anonymous
30	568	reviewer are thanked for remarks that significantly improved the manuscript.
	560	
31	203	
31 32	509 570	Author biographies
31 32 33	570 571	Author biographies
31 32 33 34	570 571 572 573	Author biographies Kenneth Neil Mertens is a postdoctoral-permanent researcher at Ghent University, BalaiumIfremer, LEB BO, Concarneau, France, He received his Ph D, in 2009 from Ghent
31 32 33 34 35	570 571 572 573 574	Author biographies Kenneth Neil Mertens is a postdoctoral permanent researcher at Ghent University, BelgiumIfremer, LER BO, Concarneau, France. He received his Ph.D. in 2009 from Ghent University. His research interests are the taxonomy evolution, phylogeny and biogeography of
31 32 33 34 35 36	505 570 571 572 573 574 575	Author biographies Kenneth Neil Mertens is a postdoctoral permanent researcher at Ghent University, BelgiumIfremer, LER BO, Concarneau, France. He received his Ph.D. in 2009 from Ghent University. His research interests are the taxonomy, evolution, phylogeny and biogeography of dinoflagellates, and the palaeoceanographical application of dinoflagellate cysts, particularly in
31 32 33 34 35 36 37	503 570 571 572 573 574 575 576	Author biographies Kenneth Neil Mertens is a postdoctoral permanent researcher at Ghent University, BelgiumIfremer, LER BO, Concarneau, France. He received his Ph.D. in 2009 from Ghent University. His research interests are the taxonomy, evolution, phylogeny and biogeography of dinoflagellates, and the palaeoceanographical application of dinoflagellate cysts, particularly in the Quaternary and Neogene.
31 32 33 34 35 36 37 38	503 570 571 572 573 574 575 576 577	Author biographies Kenneth Neil Mertens is a postdoctoral-permanent researcher at Ghent University, BelgiumIfremer, LER BO, Concarneau, France. He received his Ph.D. in 2009 from Ghent University. His research interests are the taxonomy, evolution, phylogeny and biogeography of dinoflagellates, and the palaeoceanographical application of dinoflagellate cysts, particularly in the Quaternary and Neogene.
31 32 33 34 35 36 37 38 39	570 571 572 573 574 575 576 577 578	Author biographiesKenneth Neil Mertens is a postdoctoral permanent researcher at Ghent University, BelgiumIfremer, LER BO, Concarneau, France. He received his Ph.D. in 2009 from Ghent University. His research interests are the taxonomy, evolution, phylogeny and biogeography of dinoflagellates, and the palaeoceanographical application of dinoflagellate cysts, particularly in the Quaternary and Neogene.Haifeng Gu is a Professor at Third Institute of Oceanography, China. He received his Ph.D. in
31 32 33 34 35 36 37 38 39 40	570 571 572 573 574 575 576 577 578 579	Author biographiesKenneth Neil Mertens is a postdoctoral permanent researcher at Ghent University, BelgiumIfremer, LER BO, Concarneau, France. He received his Ph.D. in 2009 from Ghent University. His research interests are the taxonomy, evolution, phylogeny and biogeography of dinoflagellates, and the palaeoceanographical application of dinoflagellate cysts, particularly in the Quaternary and Neogene.Haifeng Gu is a Professor at Third Institute of Oceanography, China. He received his Ph.D. in 2007 from Ocean University of China. His research interests are taxonomy and evolution of
31 32 33 34 35 36 37 38 39 40 41	570 571 572 573 574 575 576 577 578 579 580	Author biographiesKenneth Neil Mertens is a postdoctoral permanent researcher at Ghent University, BelgiumIfremer, LER BO, Concarneau, France. He received his Ph.D. in 2009 from Ghent University. His research interests are the taxonomy, evolution, phylogeny and biogeography of dinoflagellates, and the palaeoceanographical application of dinoflagellate cysts, particularly in the Quaternary and Neogene.Haifeng Gu is a Professor at Third Institute of Oceanography, China. He received his Ph.D. in 2007 from Ocean University of China. His research interests are taxonomy and evolution of dinoflagellates.
31 32 33 34 35 36 37 38 39 40 41 42 42	570 571 572 573 574 575 576 577 578 579 580 581 582	 Author biographies Kenneth Neil Mertens is a postdoctoral permanent researcher at Ghent University, BelgiumIfremer, LER BO, Concarneau, France. He received his Ph.D. in 2009 from Ghent University. His research interests are the taxonomy, evolution, phylogeny and biogeography of dinoflagellates, and the palaeoceanographical application of dinoflagellate cysts, particularly in the Quaternary and Neogene. Haifeng Gu is a Professor at Third Institute of Oceanography, China. He received his Ph.D. in 2007 from Ocean University of China. His research interests are taxonomy and evolution of dinoflagellates. Voshibito Takano is a postdoctoral researcher at National Persearch Institute of Eicherice.
31 32 33 34 35 36 37 38 39 40 41 42 43 44	570 571 572 573 574 575 576 577 578 579 580 581 582 582	 Author biographies Kenneth Neil Mertens is a postdoetoral-permanent researcher at Ghent University, BelgiumIfremer, LER BO, Concarneau, France. He received his Ph.D. in 2009 from Ghent University. His research interests are the taxonomy, evolution, phylogeny and biogeography of dinoflagellates, and the palaeoceanographical application of dinoflagellate cysts, particularly in the Quaternary and Neogene. Haifeng Gu is a Professor at Third Institute of Oceanography, China. He received his Ph.D. in 2007 from Ocean University of China. His research interests are taxonomy and evolution of dinoflagellates. Yoshihito Takano is a postdoctoral researcher at National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Japan, He received his Ph.D. in 2006 from
31 32 33 34 35 36 37 38 39 40 41 42 43 44	503 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584	 Author biographies Kenneth Neil Mertens is a postdoctoral permanent researcher at Ghent University, BelgiumIfremer, LER BO, Concarneau, France. He received his Ph.D. in 2009 from Ghent University. His research interests are the taxonomy, evolution, phylogeny and biogeography of dinoflagellates, and the palaeoceanographical application of dinoflagellate cysts, particularly in the Quaternary and Neogene. Haifeng Gu is a Professor at Third Institute of Oceanography, China. He received his Ph.D. in 2007 from Ocean University of China. His research interests are taxonomy and evolution of dinoflagellates. Yoshihito Takano is a postdoctoral researcher at National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Japan. He received his Ph.D. in 2006 from Hokkaido University. His research interests are taxonomy and evolution of dinoflagellates.
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585	 Author biographies Kenneth Neil Mertens is a postdoctoral permanent researcher at Ghent University, BelgiumIfremer, LER BO, Concarneau, France. He received his Ph.D. in 2009 from Ghent University. His research interests are the taxonomy, evolution, phylogeny and biogeography of dinoflagellates, and the palaeoceanographical application of dinoflagellate cysts, particularly in the Quaternary and Neogene. Haifeng Gu is a Professor at Third Institute of Oceanography, China. He received his Ph.D. in 2007 from Ocean University of China. His research interests are taxonomy and evolution of dinoflagellates. Yoshihito Takano is a postdoctoral researcher at National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Japan. He received his Ph.D. in 2006 from Hokkaido University. His research interests are taxonomy and evolution of dinoflagellates.
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586	 Author biographies Kenneth Neil Mertens is a postdoctoral permanent researcher at Ghent University, BelgiumIfremer, LER BO, Concarneau, France. He received his Ph.D. in 2009 from Ghent University. His research interests are the taxonomy, evolution, phylogeny and biogeography of dinoflagellates, and the palaeoceanographical application of dinoflagellate cysts, particularly in the Quaternary and Neogene. Haifeng Gu is a Professor at Third Institute of Oceanography, China. He received his Ph.D. in 2007 from Ocean University of China. His research interests are taxonomy and evolution of dinoflagellates. Yoshihito Takano is a postdoctoral researcher at National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Japan. He received his Ph.D. in 2006 from Hokkaido University. His research interests are taxonomy and evolution of dinoflagellates. Andrea Price is a PhD candidate in the Department of Geography at McGill University. She
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 583 584 585 586 587	 Author biographies Kenneth Neil Mertens is a postdoctoral permanent researcher at Ghent University, BelgiumIfremer, LER BO, Concarneau, France. He received his Ph.D. in 2009 from Ghent University. His research interests are the taxonomy, evolution, phylogeny and biogeography of dinoflagellates, and the palaeoceanographical application of dinoflagellate cysts, particularly in the Quaternary and Neogene. Haifeng Gu is a Professor at Third Institute of Oceanography, China. He received his Ph.D. in 2007 from Ocean University of China. His research interests are taxonomy and evolution of dinoflagellates. Yoshihito Takano is a postdoctoral researcher at National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Japan. He received his Ph.D. in 2006 from Hokkaido University. His research interests are taxonomy and evolution of dinoflagellates. Andrea Price is a PhD candidate in the Department of Geography at McGill University. She recieved her BSc Honours and MSc in Earth and Ocean Sciences at the University of Victoria.
31 32 33 34 35 36 37 38 39 40 41 42 43 44 5 46 47 48 49	570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588	 Author biographies Kenneth Neil Mertens is a postdoctoral-permanent researcher at Ghent University, BelgiumIfremer, LER BO, Concarneau, France. He received his Ph.D. in 2009 from Ghent University. His research interests are the taxonomy, evolution, phylogeny and biogeography of dinoflagellates, and the palaeoceanographical application of dinoflagellate cysts, particularly in the Quaternary and Neogene. Haifeng Gu is a Professor at Third Institute of Oceanography, China. He received his Ph.D. in 2007 from Ocean University of China. His research interests are taxonomy and evolution of dinoflagellates. Yoshihito Takano is a postdoctoral researcher at National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Japan. He received his Ph.D. in 2006 from Hokkaido University. His research interests are taxonomy and evolution of dinoflagellates. Andrea Price is a PhD candidate in the Department of Geography at McGill University. She recieved her BSc Honours and MSc in Earth and Ocean Sciences at the University of Victoria. Her main research interests include using dinoflagellate cysts as indicators of water quality in
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 588 589	 Author biographies Kenneth Neil Mertens is a postdoctoral-permanent_researcher at Ghent University, BelgiumIfremer, LER BO, Concarneau, France. He received his Ph.D. in 2009 from Ghent University. His research interests are the taxonomy, evolution, phylogeny and biogeography of dinoflagellates, and the palaeoceanographical application of dinoflagellate cysts, particularly in the Quaternary and Neogene. Haifeng Gu is a Professor at Third Institute of Oceanography, China. He received his Ph.D. in 2007 from Ocean University of China. His research interests are taxonomy and evolution of dinoflagellates. Yoshihito Takano is a postdoctoral researcher at National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Japan. He received his Ph.D. in 2006 from Hokkaido University. His research interests are taxonomy and evolution of dinoflagellates. Andrea Price is a PhD candidate in the Department of Geography at McGill University. She recieved her BSc Honours and MSc in Earth and Ocean Sciences at the University of Victoria. Her main research interests include using dinoflagellate cysts as indicators of water quality in North American estuaries, the seasonality of cyst production, and the use of cysts in Quaternary
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	503 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 582 583 584 585 586 587 588 589 590	Author biographiesKenneth Neil Mertens is a postdoctoral-permanent researcher at Ghent University, BelgiumIfremer, LER BO, Concarneau, France. He received his Ph.D. in 2009 from Ghent University. His research interests are the taxonomy, evolution, phylogeny and biogeography of dinoflagellates, and the palaeoceanographical application of dinoflagellate cysts, particularly in the Quaternary and Neogene.Haifeng Gu is a Professor at Third Institute of Oceanography, China. He received his Ph.D. in 2007 from Ocean University of China. His research interests are taxonomy and evolution of dinoflagellates.Yoshihito Takano is a postdoctoral researcher at National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Japan. He received his Ph.D. in 2006 from Hokkaido University. His research interests are taxonomy and evolution of dinoflagellates.Andrea Price is a PhD candidate in the Department of Geography at McGill University. She recieved her BSc Honours and MSc in Earth and Ocean Sciences at the University of Victoria. Her main research interests include using dinoflagellate cysts as indicators of water quality in North American estuaries, the seasonality of cyst production, and the use of cysts in Quaternary paleoceanographic studies.
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 586 587 588 589 590 591	 Author biographies Kenneth Neil Mertens is a postdoctoral permanent researcher at Ghent University, BelgiumIfremer, LER BO, Concarneau, France. He received his Ph.D. in 2009 from Ghent University. His research interests are the taxonomy, evolution, phylogeny and biogeography of dinoflagellates, and the palaeoceanographical application of dinoflagellate cysts, particularly in the Quaternary and Neogene. Haifeng Gu is a Professor at Third Institute of Oceanography, China. He received his Ph.D. in 2007 from Ocean University of China. His research interests are taxonomy and evolution of dinoflagellates. Yoshihito Takano is a postdoctoral researcher at National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Japan. He received his Ph.D. in 2006 from Hokkaido University. His research interests are taxonomy and evolution of dinoflagellates. Andrea Price is a PhD candidate in the Department of Geography at McGill University. She received her BSc Honours and MSc in Earth and Ocean Sciences at the University of Victoria. Her main research interests include using dinoflagellate cysts as indicators of water quality in North American estuaries, the seasonality of cyst production, and the use of cysts in Quaternary paleoceanographic studies.
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 586 587 588 589 590 591	 Author biographies Kenneth Neil Mertens is a postdoctoral permanent researcher at Ghent University, BelgiumIfremer, LER BO, Concarneau, France. He received his Ph.D. in 2009 from Ghent University. His research interests are the taxonomy, evolution, phylogeny and biogeography of dinoflagellates, and the palaeoceanographical application of dinoflagellate cysts, particularly in the Quaternary and Neogene. Haifeng Gu is a Professor at Third Institute of Oceanography, China. He received his Ph.D. in 2007 from Ocean University of China. His research interests are taxonomy and evolution of dinoflagellates. Yoshihito Takano is a postdoctoral researcher at National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Japan. He received his Ph.D. in 2006 from Hokkaido University. His research interests are taxonomy and evolution of dinoflagellates. Andrea Price is a PhD candidate in the Department of Geography at McGill University. She recieved her BSc Honours and MSc in Earth and Ocean Sciences at the University of Victoria. Her main research interests include using dinoflagellate cysts as indicators of water quality in North American estuaries, the seasonality of cyst production, and the use of cysts in Quaternary paleoceanographic studies.
$\begin{array}{c} 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ 50 \\ 51 \\ 52 \\ 53 \\ 54 \end{array}$	570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 586 587 588 589 590 591	 Author biographies Kenneth Neil Mertens is a postdoctoral permanent researcher at Ghent University, BelgiumIfremer, LER BO, Concarneau, France. He received his Ph.D. in 2009 from Ghent University. His research interests are the taxonomy, evolution, phylogeny and biogeography of dinoflagellates, and the palaeoceanographical application of dinoflagellate cysts, particularly in the Quaternary and Neogene. Haifeng Gu is a Professor at Third Institute of Oceanography, China. He received his Ph.D. in 2007 from Ocean University of China. His research interests are taxonomy and evolution of dinoflagellates. Yoshihito Takano is a postdoctoral researcher at National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Japan. He received his Ph.D. in 2006 from Hokkaido University. His research interests are taxonomy and evolution of dinoflagellates. Andrea Price is a PhD candidate in the Department of Geography at McGill University. She recieved her BSc Honours and MSc in Earth and Ocean Sciences at the University of Victoria. Her main research interests include using dinoflagellate cysts as indicators of water quality in North American estuaries, the seasonality of cyst production, and the use of cysts in Quaternary paleoceanographic studies.
$\begin{array}{c} 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ 50 \\ 51 \\ 52 \\ 53 \\ 54 \\ 55 \end{array}$	570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591	 Author biographies Kenneth Neil Mertens is a postdoetoral permanent researcher at Ghent University, BelgiumIfremer, LER BO, Concarneau, France. He received his Ph.D. in 2009 from Ghent University. His research interests are the taxonomy, evolution, phylogeny and biogeography of dinoflagellates, and the palaeoceanographical application of dinoflagellate cysts, particularly in the Quaternary and Neogene. Haifeng Gu is a Professor at Third Institute of Oceanography, China. He received his Ph.D. in 2007 from Ocean University of China. His research interests are taxonomy and evolution of dinoflagellates. Yoshihito Takano is a postdoctoral researcher at National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Japan. He received his Ph.D. in 2006 from Hokkaido University. His research interests are taxonomy and evolution of dinoflagellates. Andrea Price is a PhD candidate in the Department of Geography at McGill University. She recieved her BSc Honours and MSc in Earth and Ocean Sciences at the University of Victoria. Her main research interests include using dinoflagellate cysts as indicators of water quality in North American estuaries, the seasonality of cyst production, and the use of cysts in Quaternary paleoceanographic studies.
$\begin{array}{c} 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 546\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\end{array}$	570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 582 583 584 585 586 587 588 589 590 591	 Author biographies Kenneth Neil Mertens is a postdoctoral permanent researcher at Ghent University, BelgiumIfremer, LER BO, Concarneau, France. He received his Ph.D. in 2009 from Ghent University. His research interests are the taxonomy, evolution, phylogeny and biogeography of dinoflagellates, and the palaeoceanographical application of dinoflagellate cysts, particularly in the Quaternary and Neogene. Haifeng Gu is a Professor at Third Institute of Oceanography, China. He received his Ph.D. in 2007 from Ocean University of China. His research interests are taxonomy and evolution of dinoflagellates. Yoshihito Takano is a postdoctoral researcher at National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Japan. He received his Ph.D. in 2006 from Hokkaido University. His research interests are taxonomy and evolution of dinoflagellates. Andrea Price is a PhD candidate in the Department of Geography at McGill University. She recieved her BSc Honours and MSc in Earth and Ocean Sciences at the University of Victoria. Her main research interests include using dinoflagellate cysts as indicators of water quality in North American estuaries, the seasonality of cyst production, and the use of cysts in Quaternary paleoceanographic studies.
$\begin{array}{c} 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 445\\ 46\\ 47\\ 48\\ 9\\ 50\\ 51\\ 52\\ 53\\ 55\\ 56\\ 57\end{array}$	570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 582 583 584 585 586 587 588 589 590 591	 Author biographies Kenneth Neil Mertens is a postdoctoral-permanent researcher at Ghent University; BelgiumIfremer, LER BO, Concarneau, France. He received his Ph.D. in 2009 from Ghent University. His research interests are the taxonomy, evolution, phylogeny and biogeography of dinoflagellates, and the palaeoceanographical application of dinoflagellate cysts, particularly in the Quaternary and Neogene. Haifeng Gu is a Professor at Third Institute of Oceanography, China. He received his Ph.D. in 2007 from Ocean University of China. His research interests are taxonomy and evolution of dinoflagellates. Yoshihito Takano is a postdoctoral researcher at National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Japan. He received his Ph.D. in 2006 from Hokkaido University. His research interests are taxonomy and evolution of dinoflagellates. Andrea Price is a PhD candidate in the Department of Geography at McGill University. She recieved her BSc Honours and MSc in Earth and Ocean Sciences at the University of Victoria. Her main research interests include using dinoflagellate cysts as indicators of water quality in North American estuaries, the seasonality of cyst production, and the use of cysts in Quaternary paleoceanographic studies.
$\begin{array}{c} 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 9\\ 40\\ 41\\ 42\\ 43\\ 44\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\end{array}$	570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 586 587 588 589 590 591	 Author biographies Kenneth Neil Mertens is a postdoctoral permanent researcher at Ghent University, Belgiumffremer, LER BO, Concarneau, France. He received his Ph.D. in 2009 from Ghent University. His research interests are the taxonomy, evolution, phylogeny and biogeography of dinoflagellates, and the palaeoceanographical application of dinoflagellate cysts, particularly in the Quaternary and Neogene. Haifeng Gu is a Professor at Third Institute of Oceanography, China. He received his Ph.D. in 2007 from Ocean University of China. His research interests are taxonomy and evolution of dinoflagellates. Yoshihito Takano is a postdoctoral researcher at National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Japan. He received his Ph.D. in 2006 from Hokkaido University. His research interests are taxonomy and evolution of dinoflagellates. Andrea Price is a PhD candidate in the Department of Geography at McGill University. She recieved her BSc Honours and MSc in Earth and Ocean Sciences at the University of Victoria. Her main research interests include using dinoflagellate cysts as indicators of water quality in North American estuaries, the seasonality of cyst production, and the use of cysts in Quaternary paleoceanographic studies.
$\begin{array}{c} 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 9\\ 40\\ 41\\ 42\\ 43\\ 44\\ 56\\ 47\\ 48\\ 9\\ 50\\ 1\\ 52\\ 53\\ 55\\ 56\\ 57\\ 8\\ 59\end{array}$	570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591	 Author biographies Kenneth Neil Mertens is a postdoctoral permanent researcher at Ghent University, Belgium/fremer, LER BO, Concarneau, France. He received his Ph.D. in 2009 from Ghent University. His research interests are the taxonomy, evolution, phylogeny and biogeography of dinoflagellates, and the palaeoceanographical application of dinoflagellate cysts, particularly in the Quaternary and Neogene. Haifeng Gu is a Professor at Third Institute of Oceanography, China. He received his Ph.D. in 2007 from Ocean University of China. His research interests are taxonomy and evolution of dinoflagellates. Yoshihito Takano is a postdoctoral researcher at National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Japan. He received his Ph.D. in 2006 from Hokkaido University. His research interests are taxonomy and evolution of dinoflagellates. Andrea Price is a PhD candidate in the Department of Geography at McGill University. She recieved her BSc Honours and MSc in Earth and Ocean Sciences at the University of Victoria. Her main research interests include using dinoflagellate cysts as indicators of water quality in North American estuaries, the seasonality of cyst production, and the use of cysts in Quaternary paleoceanographic studies.

1		
2		
3		
4		
5		
6		
7		
8		
9	592	Dr. Vera Pospelova is an Associate Professor at the School of Earth and Ocean Sciences (SEOS),
10	593	University of Victoria. She received her Honours BSc in Geology from the Novosibirsk
11	594	University (Russia) and PhD in Physical Geography from McGill University (Canada). Vera's
12	595	research interests include: taxonomy of late Quaternary dinoflagellate cysts; cyst production,
12	596	ecology, and seasonal dynamics in coastal waters; applications of dinoflagellate cysts as
1/	597	indicators of water quality conditions, with the emphasis on pollution and eutrophication in
14	598	North American estuaries, as well as paleoceanographic reconstructions using sedimentary
16	599	archives.
10	600	
10	601	Kara Bogus is a staff scientist with the International Ocean Discovery Program (IODP) at Texas
10	602	A&M University (College Station, TX, USA). She earned her PhD (marine geosciences) from
19	603	the University of Bremen (Bremen, Germany). Her research interests include using organic-
20	604	walled dinoflagellate cysts in paleoceanographic studies, cyst wall chemical composition and its
21	605	application both to environmental reconstructions and diagenesis of sedimentary organic carbon.
22	606	~
23	607	Gerard Versteegh combines organic geochemistry, palynology and palaeobotany to assess
24	608	organic matter degradation, and, through this, to elucidate present and past environment and
25	609	evolution. In 1995 received his PhD in Biology at Utrecht University on palynology and the
26	610	onset of Northern Hemisphere Glaciations <u>la Catalions</u> . <u>He e</u> -xpanded his expertise with organic
27	611	geochemistry at the Netherlands Institute for Sea Research. At the Universite de Life 1, France
28	612	he was an invited Professor in 2007 and 2008 and obtained a prestigious Heisenberg Fellowship
29	613	Promorbayon and the Contro for Marine Environmental Passarch, Promon University, His
30	614	interacts include the mean melocular composition of nelumemorphs, selective degradation of
31	616	organic matter the Paleozoic terrestrialisation (sub)recent Mediterranean environmental change
32	617	provy development linids acritarche and dinoflagellates
33	618	proxy development, nprus, dertarens and amonagenates.
34	619	Fabienne Marret is a micropalaeontologist by training with research interest in the field of
35	620	Ouaternary nalaeoceanography and nalaeoecology. She received her Ph D in 1994 from the
36	621	University of Bordeaux, France, She studies marine sediments from around the world to interpret
37	622	past environmental changes, based on vegetation tracers (pollen grains) and sea-surface
38	623	conditions (dinoflagellate cysts). She is particularly interested in the causes of abrupt climate
39	624	changes in the past, from the tropics to the poles.
40	625	
41	626	R. Eugene Turner is a faculty member at Louisiana State University. He received his Ph.D. in
42	627	1974 from the University of Georgia, USA. His research interests include coastal oceanography
43	628	and wetlands.
44	629	
45	630	Nancy Rabalais is Executive Director and Professor of the Louisiana Universities Marine
46	631	Consortium in Chauvin, Louisiana. Since the mid-1980s, Rabalais has been the driving force
47	632	behind identifying and characterizing the dynamics of the large hypoxic region in the Gulf of
48	633	Mexico, which receives excess nutrients from the Mississippi River. She serves on numerous
49	634	boards and panels for federal agencies and national organizations. She has received numerous
50	635	awards, most recently the John D. & Catherine T. MacArthur 'genius' award (2012). She
51	636	graduated with a Ph.D. from the University of Texas in 1983.
52	637	
53		
54		
55		
56		
57		
58		
59		
59		

1		
2		
3		
4		
5		
6		
7		
8		
9	638	Kazumi Matsuoka is a Professor Emeritus at Nagasaki University. After retiring in Although
10	639	retired since 2013, he continues scientific works inresearch on fossil and modern dinoflagellates
11	640	in particular cyst-motile form relationships of both naked and thecate dinoflagellates.
12	641	
13	642	References
14	643	
15	644	Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS,
16	645	Brugerolle G, Fensome RA, Fredericq S, et al. 2005. The new higher level classification of
17	646	Eukaryotes with emphasis on the taxonomy of Protists. J Eukaryot Microbiol. 52: 399–451.
18	647	
10	648	Artzner DG, Dörhöfer G. 1978. Taxonomic note: <i>Lejeunecysta</i> nom. nov. pro <i>Lejeunia</i> Gerlach
20	649	<u>1961 emend. Lentin and Williams 1976 - dinoflagellate cyst genus. Can J Bot 56: 1381–1382.</u>
20	650	
21	651	Baldwin RP. 1987. Dinoflagellate resting cysts isolated from sediments in Marlborough Sounds,
22	652	New Zealand. New Zeal Mar Fresh. 21: 543–553.
23	653	
24	654	Balech E. 1974. El Genero "Protoperidinium" Bergh, 1881 (Peridinium Ehrenberg, 1831,
25	655	partim). Revista Mus Argent Ci Nat, Bernardino Rivadavia Inst Nac Invest Ci Nat Bot. 4: 1–79.
26	656	Delech F. 1000 J diversite des del Addinica Suda esidentel Dub Ferr Lest Ferreñol
27	657	Desena grafia 1: 1, 210
28	058	Oceanografia 1. 1–510.
29	659	Panadak DN 1072 Dhytanlanktantan aug dam Mittal und Obaraligazön von Tönisbarg
30	661	(Niedersheingehiet) Peleoenteer Abt P 127: 1, 71
31	662	(Nedermenigeolet). I diacontogi Aot B 157. 1–71.
32	663	Bergh RS 1881 Der Organismus der Cilioflagellaten Eine nhvlogenetische Studie Gegenhaurs
33	664	Mornholog Jahrh 7: 177–288
34	665	horpholog sum o. (. 177 200.
35	666	Boc A Diallo AB Makarenkov V 2012 T-REX a web server for inferring validating and
36	667	visualizing phylogenetic trees and networks. Nucleic Acids Res. 40: W573–W579.
37	668	
38	669	Boessenkool K, Van Gelder M-J, Brinkhuis H, Troelstra SR, 2001. Distribution of organic-
39	670	walled dinoflagellate cysts in surface sediments from transects across the Polar Front offshore
40	671	southeast Greenland. J Quaternary Sci. 16: 661–666.
41	672	
42	673	Bogus K, Harding IC, King A, Charles AK, Zonneveld K, Versteegh, GJM. 2012. The
43	674	composition of species of the Apectodinium complex (Dinoflagellata). Rev Palaeobot Palynol.
44	675	183: 21–31.
45	676	
46	677	Bogus K, Mertens KNM, Lauwaert J, Harding IC, Vrielinck H, Zonneveld K, Versteegh, GJM.
47	678	2014. Differences in the chemical composition of organic-walled dinoflagellate resting cysts
48	679	from phototrophic and heterotrophic dinoflagellates. J Phycol. 50: 254–266.
49	680	
50	681	Bolch CJS. 1997. The use of polytungstate for the separation and concentration of living
51	682	dinoflagellate cysts from marine sediments. Phycologia 37: 472–478.
52	683	
53		
54		
55		
56		
57		
52		
50		
60		
00		

Formatted: Font: Italic

Formatted: Font: Italic

2 3 4 5 6	
5789101234567892222222222222222333333567890112345678901222222222222223333335678901223456789012234556789001223455678900122345567890012234556789001223455678900122345567890012234556789000000000000000000000000000000000000	684 685 686 687 688 690 691 692 693 694 695 696 697 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 723 724 725 726 727 728

1

60

1961 emend. Lentin and Williams 1975. Grana 16: 45–59.
Bringué M, Pospelova V, Pak D. 2013. Seasonal production of organic-walled dinoflagellate cysts in an upwelling system: a sediment trap study from the Santa Barbara Basin, California. Mar Micropaleontol. 100: 34–51.
Bujak JP. 1984. Cenozoic dinoflagellate cysts and acritarchs from the Bering Sea and northern North Pacific, D.S.D.P. Leg 19. Micropaleontology 30: 180–212.

Bradford MR. 1977. New species attributable to the dinoflagellate cyst genus Lejeunia Gerlach,

Bujak JP, Davies EH. 1983. Modern and fossil Peridiniineae. AASP Contribution Series 13: 1–
204.

Bütschli O. 1885. Erster Band. Protozoa. 3. Unterabtheilung (Ordnung) Dinoflagellata. In: Dr.
H.G. Bronn's Klassen und Ordnungen des Thier-Reichs, wissenschaftlich dargestellt in Wort und
Bild. C.F. Leipzig und Heidelberg: Winter'sche Verlagshandlung; p. 906–1029.

Cárdenas G, Cabrera G, Taboada E, Miranda SP. 2004. Chitin characterization by SEM, FTIR,
 XRD, and 13C cross polarization/mass angle spinning NMR. J Appl Polym Sci. 93: 1876–1885.

Cho H-J, Kim C-H, Moon C-H, Matsuoka K. 2003. Dinoflagellate cysts in recent sediments from the southern coastal waters of Korea. Bot Mar. 46: 332–337.

Colthup NB, Daly LH, Wiberly SE. 1990. Introduction to Infrared and Raman Spectroscopy.
 London: Academic Press Limited.

Daugbjerg N, Hansen G, Larsen J, Moestrup Ø. 2000. Phylogeny of some of the major genera of
dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the
erection of three new genera of unarmoured dinoflagellates. Phycologia 39: 302–317.

de Leeuw JW, Versteegh GJM, van Bergen PF. 2006. Biomacromolecules of algae and plants and their fossil analogues. Plant Ecol. 182: 209–233.

De Schepper S, Head MJ, Louwye S. 2009. Pliocene dinoflagellate cyst stratigraphy,
 palaeoecology and sequence stratigraphy of the Tunnel-Canal Dock, Belgium. Geol Mag 146:
 92–112.

de Vernal A, Londeix L, Mudie PJ, Harland R, Morzadec-Kerfourn M-T, Turon J-L, Wrenn JH.
1992. Quaternary organic-walled dinoflagellate cysts of the North Atlantic Ocean and adjacent
seas: ecostratigraphy and biostratigraphy. In: Head MJ, Wrenn JH, editors. Neogene and
Quaternary dinoflagellate cysts and acritarchs. Dallas, Texas: American Association of
Stratigraphic Palynologists Foundation; p. 289–328.

de Verteuil L, Norris G. 1992. Miocene Protoperidiniacean dinoflagellate cysts from the Maryland and Virginia coastal plain. In: Head MJ, Wrenn JH, editors. Neogene and Quaternary

1		
2		
3		
4		
5		
6		
0		
1		
8		
9	729	dinoflagellate cysts and acritarchs. Dallas, Texas: American Association of Stratigraphic
10	730	Palynologists Foundation; p. 391–430.
11	731	
12	732	Faust MA. 2006. Creation of the subgenus <i>Testeria</i> Faust subgen. nov. Protoperidinium Bergh
13	733	from the SW Atlantic Ocean: Protoperidinium novella sp. nov. and Protoperidinium concinna
14	734	sp. nov. Dinophyceae. Phycologia 45: 1–9.
15	735	
16	736	Fensome RA, Taylor FJR, Norris G, Sarjeant WAS, Wharton DI, Williams GL. 1993. A
17	737	classification of fossil and living dinoflagellates. Micropaleontology Special Publication 7: 1–
10	738	245.
10	739	
19	740	Fukuyo Y, Takano H, Chihara M, Matsuoka K. 1990. Red tide organisms in Japan-An illustrated
20	741	taxonomic guide. In: Fukuyo Y, Takano H, Chihara M, Matsuoka, editors. Tokyo, Japan: Uchida
21	742	Rokakuho Co. Ltd. (In Japanese/English); 407 p.
22	743	
23	744	Furio EE, Matsuoka K, Mizushima K, Baula I, Chan KW, Puyong A, Srivilai D, Sidharta, BR,
24	745	Fukuyo Y. 2006. Assemblage and geographical distribution of dinoflagellate cysts in surface
25	746	sediments of coastal waters of Sabah, Malaysia. Coastal Marine Science 30: 62-73.
26	747	
27	748	Gómez F. 2012. A checklist and classification of living dinoflagellates (Dinoflagellata,
28	749	Alveolata). CICIMAR Oceánides 27: 65–140.
29	750	
30	751	Gribble KE, Anderson DA. 2006. Molecular phylogeny of the heterotrophic dinoflagellates,
31	752	Protoperidinium, Diplopsalis and Preperidinium (Dinophyceae), inferred from large subunit
32	753	rDNA. J Phycol 42: 1081–1095.
22	754	
22	755	Gu H, Liu T, Mertens KN. 2015. Cyst-theca relationship and phylogenetic positions of
34	756	Protoperidinium (Peridiniales, Dinophyceae) species of the sections Conica and Tabulata.
35	757	Phycologia 54: 49–66.
36	758	
37	759	Haeckel E. 1894. Systematische Phylogenie. Entwurf eines natürlichen Systems der Organismen
38	760	auf Grund ihrer Stammesgeschichte. 1. Theil: Systematische Phylogenie der Protisten und
39	761	Pflanzen: p. I–XV + 1–400, Georg Reimer (Berlin).
40	762	
41	763	Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis
42	764	program for Windows 95/98/NT. pp. 95–98.
43	765	
44	766	Harland R. 1977. Recent and Late Quaternary (Flandrian and Devensian) dinoflagellate cysts
45	767	from marine continental shelf sediments around the British Isles. Palaeontogr Abt B 164: 87-
46	768	126.
47	769	
<u></u> 48	770	Harland R. 1982. A review of recent and quaternary organic-walled dinoflagellate cysts of the
10	771	genus Protoperidinium. Palaeontology 25: 369-397.
+3 50	772	
50	773	
51	774	
52 52		
53		
54		
55		
56		
57		
58		
59		
60		

2
2
3
4
5
6
2
1
8
g
10
10
11
12
10
13
14
15
16
47
17
18
19
20
20
21
22
23
23
24
25
26
27
21
28
29
20
30
31
32
33
00
34
35
36
27
57
38
39
40
14
41
42
43
44
т-т ЛЕ
40
46
47
18
40
49
50
51
50
JZ
53
54
55
55
56
57
58
50
09
60

Head MJ, Norris G, Mudie PJ. 1989. 26. New species of dinocysts and a new species of acritarch 775 from the upper Miocene and lowermost Pliocene, ODP Leg 105, Site 646, Labrador Sea. In: 776 Srivastava SP, Arthur M, Clement B, et al., editors. Ocean Drilling Program, Proceedings, 777 Scientific Results, Leg 105, p. 453-466. 778 779 780 Head MJ. 1993. Dinoflagellates, sporomorphs and other palynomorphs from the Upper Pliocene St. Erth Beds of Cornwall, southwestern England. J Paleo. Memoir 31: 1-62. 781 782 Head MJ. (Ed.) 1994. A forum on Neogene and Quaternary dinoflagellate cysts: the edited 783 transcript of a round table discussion held at the Third Workshop on Neogene and Quaternary 784 Dinoflagellates; with taxonomic appendix. Palynology 17: 201–239. [Imprinted 1993] 785 786 Head MJ, Norris G, Mudie PJ. 1989. 26. New species of dinocysts and a new species of acritarch 787 from the upper Miocene and lowermost Pliocene, ODP Leg 105, Site 646, Labrador Sea. In: 788 Srivastava SP, Arthur M, Clement B, et al., editors. Ocean Drilling Program, Proceedings, 789 Scientific Results, Leg 105, p. 453-466. 790 791 Head MJ, Riding JB, Eidvin T, Chadwick RA. 2004. Palynological and foraminiferal 792 biostratigraphy of (Upper Pliocene) Nordland Group mudstones at Sleipner, northern North Sea. 793 794 Mar Petrol Geol 21: 277–297. 795 796 Hoppenrath M, Elbrächter M, Drebes G. 2009. Marine Phytoplankton. Selected Microphytoplankton Species from the North Sea around Helgoland and Sylt. Kleine 797 Senckenberg-Reihe 49, 264 pp. 798 799 Jiménez-Moreno G, Head MJ, Harzhauser M. 2006. Early and Middle Miocene dinoflagellate 800 cyst stratigraphy of the Central Paratethys, Central Europe. J Micropal 25: 113-139. 801 802 Jörgensen E. 1912. Bericht über die von der schwedischen Hydrographisch- Biologischen 803 Kommission in den schwedischen Gewässern in den Jahren 1909-1910 eingesammelten 804 Planktonproben. Svenska Hydrogr-Biol Komm Skr. 4: 1-20. 805 806 Katoh K, Kuma K, Toh H, Miyata T. 2005. MAFFT version 5: improvement in accuracy of 807 multiple sequence alignment. Nucleic Acids Res. 33: 511-518. 808 809 Kawami H, Matsuoka K. 2009. A new cyst-theca relationship for Protoperidinium parthenopes 810 (Peridiniales, Dinophyceae). Palynology 33: 11-18. 811 812 813 Kawami H, van Wezel R, Koeman RPT, Matsuoka K. 2009. Protoperidinium tricingulatum sp. 814 nov. (Dinophyceae), a new motile form of a round, brown, and spiny dinoflagellate cyst. Phycol Res. 57: 259-267. 815 816 Kojima N, Seto K, Takayasu K, Nakamura M. 1994. Dinoflagellate cysts assemblage found in 817 the surface sediments of Lake Nakaumi, Western Japan. Laguna 1: 45-51. 818 819

Palynology

2 3		
4		
5		
6		
/ 8		
9	820	Krepakevich A, Pospelova V. 2010. Tracing the influence of sewage discharge on coastal bays
10	821	of Southern Vancouver Island (BC, Canada) using sedimentary records of phytoplankton. Cont
11	822	Shelf Res. 30: 1924–1940.
12	823	Lowis L Dodgo ID. Tott P. 1084 Cyst those relationships in some Protonaridinium species
13	825	(Peridiniales) from Scottish sea lochs. Journal of Micropalaeontology 3: 25–34.
14	826	
16	827	Lewis J, Dodge JD. 1987. The cyst-theca relationship of <i>Protoperidinium americanum</i> (Gran &
17	828	Braarud) Balech. Journal of Micropalaeontology 6: 113–121.
18	829 830	Li Z. Matsuoka K. Shin HH. Kobayashi S. Shin K. Lee T. Han M-S. 2015. Brigantedinium
19	831	<i>majusculum</i> is the cyst of <i>Protoperidinium sinuosum</i> (Protoperidiniaceae, Dinophyceae).
20	832	Phycologia 54: 517–529.
21	833	
22	834 825	Liu I, Gu H, Mertens KN, Lan D. 2014. A new dinofiagellate species <i>Protoperialnium</i>
24	836	position within the <i>Monovela</i> group. Phycol Res. 62: 109–124.
25	837	
26	838	Liu T, Mertens KN, Ribeiro S, Ellegaard M, Matsuoka H, Gu H. 2015a. Cyst-theca relationships
27	839	and phylogenetic positions of Peridiniales (Dinophyceae) with two anterior intercalary plates,
28	840 841	Phycol Res. 63: 134–151.
29 30	842	
31	843	Liu T, Mertens KN, Gu H. 2015b. Cyst-theca relationship and phylogenetic positions of the
32	844	diplopsalioideans (Peridiniales, Dinophyceae), with description of <i>Niea</i> and <i>Qia</i> gen. nov.
33	845 846	Phycologia 54. 210–252.
34	847	Louwye S, Mertens KN, Vercauteren D. 2008. New dinoflagellate cysts from the Miocene of the
35	848	Porcupine Basin, offshore southwest Ireland. Palynology 32: 131-142.
30 37	849	
38	850 851	taxonomy in the Akashiwo Kenyukai editors Synopsis of Red-tide organisms Sheet no 108 [In
39	852	Japanese].
40	853	
41	854	Matsuoka K. 1987. Organic-walled dinoflagellate cysts from surface sediments of Akkeshi Bay
4Z 13	855 856	and Lake Saroma, North Japan. Bulletin Faculty of Liberal Arts, Nagasaki University (Natural Science) 28: 35–123
44	857	Science, 20. 55 (125.
45	858	Matsuoka K. 1992. Peridiniacean cyst genus Xandarodinium in the Miocene Kaminoyama
46	859	Formation in the western part of Zao Volcano, Yamagata, north Japan. In: Ishizaki K, Saito T.,
47	860 861	Company: p.449-455
48	862	company, p. (1) 100.
49 50	863	Matsuoka K, Head MJ. 2013. Clarifying cyst-motile stage relationships in dinoflagellates. In:
51	864	Lewis JM, Marret F, Bradley L., editors. Biological and Geological Perspectives of
52		
53		
54		
55 56		
57		
58		
59		
60		
		URL: http://mc.manuscriptcentral.com/tpal

965	Dinoflagallator, London: The Migropoleoontological Society, Special Dublications, Coological
805	Dinonagenates. London. The Micropalaeoniological Society, Special Publications. Geological
866	Society, p. 325–350.
867	Materiala V. Variani, H. Marai, C. Luntali, M. Talanama, H. 2000, Da anamination of and mat
868	Matsuoka K, Kawami H, Nagai S, Iwataki M, Takayama H. 2009. Re-examination of cyst-mot
869	relationships of <i>Polykrikos kojoidii</i> Chatton and <i>Polykrikos schwartzii</i> Butschii (Gymnodiniale
870	Dinophyceae). Rev Palaeobot Palynol 154: 79–90.
8/1	
872	Matsuoka K, Joyce LB, Kotani Y, Matsuyama Y. 2003. Modern dinofiagellate cysts in
8/3	nypertrophic coastal waters of Tokyo Bay, Japan. J Plankton Res. 25: 1461–14/0.
874	
875	Mertens KN, Yamaguchi A, Kawami H, Ribeiro S, Leander BS, Price AM, Pospelova, V,
876	Ellegaard, M, Matsuoka K. 2012a. Archaeperidinium saanichi sp. nov.: A new species based o
877	morphological variation of cyst and theca within the Archaeperidinium minutum Jörgensen 191
878	species complex. Mar Micropaleontol. 96: 48–62.
879	
880	Mertens KN, Bringué M, Van Nieuwenhove N, Takano Y, Pospelova V, Rochon A, de Vernal
881	A, Radi T, Dale B, Patterson RT, Weckström K, Andrén E, Louwye S, Matsuoka K. 2012b.
882	Process length variation of the cyst of the dinoflagellate <i>Protoceratium reticulatum</i> in the North
883	Pacific and Baltic-Skagerrak region: calibration as an annual density proxy and first evidence of
884	pseudo-cryptic speciation. J Quaternary Sci. 27: 734–744.
885	
886	Mertens KN, Yamaguchi A, Takano Y, Pospelova V, Head MJ, Radi T, Pieńkowski A, de
887	Vernal A, Kawami H, Matsuoka K. 2013. A new heterotrophic dinoflagellate from the
888	Northeastern Pacific, Protoperidinium fukuyoi: cyst-theca relationship, phylogeny, distribution
889	and ecology. J Eukaryot Microbiol. 60: 545–563.
890	
891	Mertens KN, Takano Y, Yamaguchi A, Gu H, Bogus K, Kremp A, Bagheri S, Matishov G,
892	Matsuoka K. 2015. The molecular characterization of the enigmatic dinoflagellate Kolkwitziell
893	acuta reveals an affinity to the Excentrica section of the genus Protoperidinium. Syst Biodiver
894	doi:10.1080/14772000.2015.1078855.
895	
896	Nehring S. 1997. Dinoflagellate resting cysts from German coastal sediments. Bot Mar. 40: 30
897	324.
898	
899	Orr RJS, Murray SA, Stüken A, Rhodes L, Jakobsen KS. 2012. When naked became armored:
900	An eight-gene phylogeny reveals monophyletic origin of theca in dinoflagellates. PloS one 7:
901	e50004.
902	
903	Pascher A. 1914. Über Flagellaten und Algen. Berichte der Deutschen Botanischen
904	Gesellschaft 32: 136–160.
905	
906	Posada D. 2008. jModelTest: phylogenetic model averaging. Mol Biol Evol. 25: 1253–1256.
907	
908	Pospelova V, Chmura GL, Walker HA. 2004. Environmental factors influencing spatial
909	distribution of dinoflagellate cyst assemblages in shallow lagoons of southern New England
910	(USA). Rev Palaeobot Palynol. 128:7–34.
	865 866 867 868 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 890 891 892 893 894 895 896 897 898 900 901 902 903 904 905 906 907 908 909 910

60

1

suoka K, Kawami H, Nagai S, Iwataki M, Takayama H. 2009. Re-examination of cyst-motile tionships of *Polykrikos kofoidii* Chatton and *Polykrikos schwartzii* Bütschli (Gymnodiniales.

Formatted: Font: Italic

Formatted: Font: Italic

1 2 3					
4					
5 6					
7					
8					
9 10	911 912	Pospelova V de Vernal A Pedersen TF 2008 Distribution of dinoflagellate cysts in surface			
11	913	sediments from the northeastern Pacific Ocean (43–25 degrees N) in relation to sea-surface			
12	914	temperature, salinity, productivity and coastal upwelling. Mar Micropaleontol. 68: 21-48.			
13	915 016	Price AM Posselova V 2011 High resolution sediment tran study of organic walled			
14	910 917	dinoflagellate cvst production and biogenic silica flux in Saanich Inlet (BC, Canada). Mar			
15	918	Micropaleontol. 80: 18–43.			
17	919	Dedite de Vernel A 2004 Disservet distribution in surface se dimente form the mother stars			
18	920 921	Pacific margin (40-60°N) in relation to hydrographic conditions, productivity and unwelling			
19	922	Rev Palaeobot Palynol. 128: 169–193.			
20	923				
21 22	924 025	Reid P. 1977. Peridiniacean and glenodiniacean dinoflagellate cysts from the British Isles. Nova			
23	925 926	11cdwigia 29. 429–405.			
24	927	Ribeiro S, Lundholm N, Amorim A, Ellegaard M. 2010. Protoperidinium minutum			
25	928	(Dinophyceae) from Portugal: cyst-theca relationship and phylogenetic position on the basis of			
26	929 930	single-cell SSU and LSU rDNA sequencing. Phycologia 49: 48–63.			
27 28	930 931	Rochon A, de Vernal A, Turon J-L, Matthiessen J, Head MJ. 1999. Distribution of recent			
29	932	dinoflagellate cysts in surface sediments from the North Atlantic Ocean and adjacent seas in			
30	933	relation to sea-surface parameters. AASP Contribution Series, 35, 146 pp.			
31	934 935	Ronquist F. Huelsenbeck IP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed			
32	936	models. Bioinformatics 19: 1572–1574.			
33 34	937				
35	938	Sarai C, Kawami H, Matsuoka K. 2013. Two new species formally attributed to <i>Protoperidinium</i>			
36	939 940	incubation experiments. Rev Palaeobot Palynol. 192: 103–118.			
37	941				
38	942	Scholin CA, Herzog M, Sogin M, Anderson DM. 1994. Identification of group- and strain-			
39 40	943 044	specific genetic markers for globally distributed <i>Alexandrium</i> (Dinophyceae). II. Sequence			
41	944 945	analysis of a fragment of the LSO fRfvA gene. 51 fryeor. 50. 555-1011.			
42	946	Shin HH, Yoon YH, Kim Y-O, Matsuoka K. 2011. Dinoflagellate Cysts in Surface Sediments			
43	947 049	from Southern Coast of Korea. Estuaries and Coasts 34: 712–725.			
44 45	949	Soliman A, Corić S, Head MJ, Piller W, El Beialy SY, 2012. Lower and Middle Miocene	 Format	t ted: Font: 1	.2 pt
46	950	biostratigraphy, Gulf of Suez, Egypt, based on dinoflagellate cysts and calcareous nannofossils.	 Format	t ted: Font: 1	.2 pt
47	951	Palynology 36: 1–42.	 Format	tted: Font: 1	.2 pt
48	953 953	Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with			
49 50	954	thousands of taxa and mixed models. Bioinformatics 22: 2688–2690.			
51	955				
52	956	1 aylor F. 1980. On dinoflagellate evolution. BioSystems 13: 65–108.			
53					
54 55					
ວວ 56					
57					
58					
59					

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Verleye T, Po (palaeo)ecolo from the Paci Versteegh GJ KAF. 2012. F <i>Lingulodiniun</i> Wall D, Dale Micropaleont Wang Z, Mat coastal waters Yamaguchi A heterotrophic subunit riboso Yamaguchi A <i>Protoperidini</i> ribosomal RN Yamaguchi A ohylogeny of description of 46: 98–112. Yang CQ, Xu paper wet stree
--	---

1

ospelova V, Mertens KN, Louwye S. 2011. The geographical distribution and gy of Selenopemphix undulata sp. nov., a new late Quaternary dinoflagellate cyst fic Ocean. Mar Micropaleontol.78: 65-83. M, Blokker P, Bogus K, Harding IC, Lewis J, Oltmanns S, Rochon A, Zonneveld Flash pyrolysis and infrared spectroscopy of cultured and sediment derived n polyedrum (Dinoflagellata) cyst walls. Org Geochem. 43: 92-102. B. 1968. Modern dinoflagellate cysts and evolution of the Peridiniales. ology 14: 265-304. suoka K, Qi Y, Chen J. 2004. Dinoflagellate cysts in recent sediments from Chinese s. Marine Ecology 25: 289–311. , Kawamura H, Horiguchi T. 2006. A further phylogenetic study of the dinoflagellate genus, Protoperidinium (Dinophyceae) based on small and large omal RNA gene sequences. Phycol Res. 54: 317–329. A, Kawamura H, Horiguchi T. 2007. The phylogenetic position of an unusual ium species, P. bipes (Peridiniales, Dinophyceae), based on small and large subnit IA gene sequences. Phycologia 46: 270–276. , Hoppenrath M, Pospelova V, Horiguchi T, Leander BS. 2011. Molecular the marine sand-dwelling dinoflagellate Herdmania litoralis and an emended f the closely related planktonic genus Archaeperidinium Jörgensen. Eur J Phycol.

Yang CQ, Xu Y, Wang D. 1996. FT-IR spectroscopy study of the polycarboxylic acids used for
 paper wet strength improvement. Ind Eng Chem Res. 35: 4037–4042.

990 Tables

Table 1. List of species belonging to the genus *Trinovantedinium*, their biostratigraphical ranges and dimensions.

Species name	Biostratigraphical range	Length (excluding processes) (µm)	Width (excluding processes) (µm)	Length of processes (µm)	Measurements from	
Trinovantedinium applanatum (Bradford 1977) Bujak	middle Pleistocene (Mudie 1989) - recent (see Rochon et al. 1999 for	53—87	47—74	max 5	Bradford 1977	
and Davies 1983	remarks)	54-80	54—80	max 5 - 7	Reid 1977	
Trinovantedinium sterthense Head 1993a	late Pliocenecarly Pleistocene (Head 1993a)	41(50.0)61	45(49.6)53	4.5(5.5)7.0	Head 1993a	
Trinovantedinium variabile (Bujak 1984) de Verteuil and Norris 1992	late Miocene (Bujak 1984) — recent (e.g., Radi & de Vernal 2004; Price & Pospelova 2011)	45-53	44—50	4-6.5	Bujak 1984	
Trinovantedinium harpagonium de Verteuil and Norris 1992	<u>middle Miocene (late Miocene (de Verteuil & Norris 1992]iménez-</u> <u>Moreno et al. 2006</u>) — late Pliocene (De Schepper et al. 2009)	52(60)78	48(59)68	8—16	de Verteuil & Norris	atted: French (France)
<i>Trinovantedinium glorianum</i> (Head et al. 1989) de Verteuil and Norris 1992	early Miocene (Louwye et al. 2007) – early Pleistocene (Head et al. 2004)	58(68)73	52(63)70	2—3	de Verteuil & Norris 1992	
Trinovantedinium ferrugnomatum de Verteuil and Norris 1992	late Miocene (de Verteuil & Norris 1992) – early Pliocene (De Schepper et al. 2009)	30(39)55	30(39)48	3—6	de Verteuil & Norris 1992	
Trinovantedinium papula de Verteuil and Norris 1992	late Miocene (de Verteuil & Norris 1992)	50(65)75	48(57)70	3—6	de Verteuil & Norris 1992	
Trinovantedinium pallidifulvum Matsuoka 1987	mid Miocana (da Vartauil & Norris 1902 ¹) — recent (Matsuoka 1987)	52.2-70.8	56.0-63.4	2.5	Matsuoka 1987	
	ind Moene (de Verteur & Wirts 1992) - recent (Watsuoka 1987)	43.0(58.5)68.4	46.3(56.5)63.9	1.1(1.8)2.7	This study	
Trinovantedinium henrietii Louwye et al. 2008	mid Miocene (Louwye et al. 2008)	81(89)99	61(75)84	5(7)10	Louwye et al. 2008	
Trinovantedinium? xylochoporum de Verteuil and	Jower Miocene (Soliman et al. 2012) - middle Miocene (Jiménez-	26(51)66			de Verteuil & No Forma	atted: English (U.K.)
1001115 1772	late Paleocene — late Oligocene (Kurita & Matsuoka 1993: see Head	30(31)00	38(43)02	8-20	Forma	atted: English (U.S.)
Trinovantedinium boreale Bujak 1984	1994 for discussion)	42-65	42-63	7-15	Bujak 1984 Forma	atted: English (U.K.)
¹ Our interpretation of the "undefined protoperidiniacear	n species" depicted in de Verteuil & Norris, plate 2, figs. 9-12.				```	

Formatted: English (U.K.)

Table 2. Sampling stations with details on the collection site, relative abundance (%) and how the sample was used in this study.

Station	Location	Latitude (°N)	Longitude (°E)	Water depth (m)	Sampling data	Salinity (psu)	Temperature (°C)	Type of core	Sampled by*	Relative abundance (%)	Notes
Heslwall, Dee Estuary	UK	53,32	-3,12	0	6/02/14	NA	NA	Hand sampling Hand	FM GV KZ	NA	Germination experiment Germination
Wadden Sea st . 1	Northern Germany	53,72	7,97	0	29/02/12	NA	NA	sampling	KNM	NA	experiment
Vinga SW	Kattegat	57,55	11,53	77,5	1994	NA	NA	Boxcore	AG	NA	Palynological study
BV3	La Vilaine Bay, France	47,48	-2,44	6	1/04/10	NA	NA	Boxcore	EG	NA	Palynological study
C6B	Gulf of Mexico	28,87	-90,47	18,4	28/07/08	22,17	30,54	Boxcore	GT, NR	0,8	Palynological study
E2A	Gulf of Mexico	28,74	-91,25	15,2	28/07/08	16,14	29,7	Boxcore	GT, NR	0,6	Palynological study
G3	Gulf of Mexico	28,98	-92,00	20,2	28/07/08	21,51	30,45	Boxcore	GT, NR	0,9	Palynological study
J4	Gulf of Mexico	29,29	-93,08	15	25/07/08	27,99	30,52	Boxcore	GT, NR	0,8	Palynological study
A'2	Gulf of Mexico	29,09	-89,50	11,2	27/07/14	8,60	31,45	Boxcore	GT, NR	0,3	Palynological study
A'3	Gulf of Mexico	29,03	-89,53	13,2	27/07/14	13,60	30,99	Boxcore	GT, NR	1,7	Palynological study
A'4	Gulf of Mexico	28,98	-89,57	33,7	27/07/14	15,15	30,90	Boxcore	GT, NR	0,6	Palynological study
A'5	Gulf of Mexico	28,95	-89,58	63,9	27/07/14	17,73	30,19	Boxcore	GT, NR	1,7	Palynological study
A2	Gulf of Mexico	29,24	-89,75	13,5	28/07/14	25,00	30,00	Boxcore	GT, NR	1,2	Palynological study
A5	Gulf of Mexico	29,07	-89,75	30,5	28/07/14	25,30	29,70	Boxcore	GT, NR	1,2	Palynological study Germination experiment /
A7	Gulf of Mexico	28,94	-89,75	53,20	28/07/14	24,70	29,90	Boxcore	GT, NR	2,0	Palynological study
B4	Gulf of Mexico	29,03	-90,12	18,5	28/07/14	28,09	29,55	Boxcore	GT, NR	3,8	Palynological study
C6C	Gulf of Mexico	28,87	-90,49	19,80	28/07/14	23,40	29,40	Boxcore	GT, NR	1,8	Single-cell PCR / Palynological study
D3	Gulf of Mexico	28,72	-90,83	17,8	29/07/14	15,05	30,83	Boxcore	GT, NR	2,4	Palynological study
F0	Gulf of Mexico	29,27	-91,62	8,0	31/07/14	23,20	31,30	Boxcore	GT, NR	3,7	Palynological study
F3	Gulf of Mexico	28,88	-91,62	19,9	30/07/14	29,15	29,92	Boxcore	GT, NR	1,5	Palynological study
F6	Gulf of Mexico	28,58	-91,62	39,6	30/07/14	30,02	29,51	Boxcore	GT, NR	0,8	Palynological study
I4	Gulf of Mexico	29,18	-92,75	20,8	1/08/14	32,40	30,00	Boxcore	GT, NR	0,3	Palynological study
K4	Gulf of Mexico	29,33	-93,42	17,3	1/08/14	31,74	29,92	Boxcore	GT, NR	0,8	Palynological study
P6	Gulf of Mexico	29,00	-93,71	20,0	1/08/14	33,61	30,08	Boxcore	GT, NR	0,3	Palynological study
SR8	Lake Saroma	44,09	143,52	ca. 7	July 1980	33-33.2	0-15	TFO corer	YF	0,5	Palynological study

2 3 4 5 6 7 8	
9 10 11 12 13 14 15 16	
17	995 996
18 19	997
20	998
21 22 23 24 25 26 27 28 29 30 32 33 45 36 37 89 40 42 43 44 546 47	999

1

							1.5(winter)-				
AK2	Akkeshi Bay, Japan	43,02	144,47	ca. 6	July 1980	32.6-33 20.0-	14(summer)	TFO corer	YF	0.5-1.8	Palynological study
AB40	Ariake Sound, Japan	33,08	130,28	10,9	7/06/05	30.2	9.2-28.5	TFO corer	KM	NA	Palynological study
Tkb8	Tokyo Bay, Japan	35,27	139,45	ca.12	1/08/99	30.5	10.4-30.1	KK type corer	RV	NA	Palynological study
Nagayo-Ura	Omura Bay, Japan	32,51	129,52	11	June 2004	30.8- 33.4	9.5-30.5	sediment trap	HK, KM	NA	Palynological study
YJ1	Yeoja Bay, Korea	34,42	127,31	11	May 2006	NA	NA	Scuba diver	KM, HC	NA	Palynological study
D1	Deukryang Bay, Korea	34,40	127,11	10	1/04/01	NA	NA	Gravity corer	HC	NA	Palynological study
Casino coast	Brazil Vancouver Island, BC,	-32,12	-52,10	ca.10	7/03/97	NA	NA	TFO corer Petite Ponar	KM	NA	Palynological study
Saanich Inlet st. S13	Canada	48,75	-123,61	60	24/05/07	28,5	11,3	Grab	VP	NA	Palynological study

* AG = Anna Godhe, EG = Evelyne Goubert, FM = Fabienne Marret, GV= Gerard Versteegh, GT = Gene Turner, HC = Hyun-Jin

Cho, HK = Hisae Kawami, KM = Kazumi Matsuoka, KNM = Kenneth Neil Mertens, KZ = Karin Zonneveld, NR = Nancy Rabalais,

RV = R/V Shirafuji-Maru, VP = Vera Pospelova, YF = Yasuo Fukuyo

1001 Supplementary table 1. Sampling stations with details on latitude, longitude and water depth.

Name of station	Locality	Latitude (°N)	Longitude (°E)	Water depth (m)	Reference
Akkeshi Bay AK1	Hokkaido, Japan	43,04	144,83	25	Matsuoka 1987
Akkeshi Bay AK2	Hokkaido, Japan	43,02	144,79	25	Matsuoka 1987
Akkeshi Bay AK3	Hokkaido, Japan	42,99	144,79	25	Matsuoka 1987
Akkeshi Bay AK4	Hokkaido, Japan	42,95	144,86	25	Matsuoka 1987
Saroma lake SR8	Hokkaido, Japan	44,14	143,86	16	Matsuoka 1987
6	Lake Nakaumi, Japan	35,52	134,08	NA	Kojima et al. 1994
8	Lake Nakaumi, Japan	35,52	134,08	NA	Kojima et al. 1994
24	Lake Nakaumi, Japan	35,52	134,08	NA	Kojima et al. 1994
25	Lake Nakaumi, Japan	35,52	134,08	NA	Kojima et al. 1994
26	Lake Nakaumi, Japan	35,52	134,08	NA	Kojima et al. 1994 Matsuoka et al
TKB-6	Tokyo Bay, Japan	35,50	139,83	NA	2003
D1	South of South Korea	34,67	127,18	10	Cho et al. 2003
4	Chinese coast	22,56	114,51	6	Wang et al. 2004
Kuala Penyu Lagoon 1	Sabah, Malaysia	5,53	115,62	NA	Furio et al. 2006
Kuala Penyu Lagoon 2	Sabah, Malaysia	5,57	115,60	NA	Furio et al. 2006
YJB1	Yeoja Bay, South Korea Yeoja Bay, South	34,78	127,50	NA	Shin et al. 2011
YJB2	Korea Yeoja Bay, South	34,74	127,50	NA	Shin et al. 2011
YJB3	Korea Veoja Bay, South	34,71	127,50	NA	Shin et al. 2011
YJB4	Korea Veoja Bay, South	34,67	127,51	NA	Shin et al. 2011
YJB6	Korea Veoja Bay, South	34,50	127,59	NA	Shin et al. 2011
YJB8	Korea Gamak Bay, South	34,43	127,70	NA	Shin et al. 2011
GMB3	Korea	34.60	127.70	NA	Shin et al. 2011

Figure 1. Map showing locations where *Trinovantedinium pallidifulvum* was found in this study (red circles) and in previous studies (blue circles) (see Table 1 and Supplementary Table 1 for

Figure 2. Drawings of *Protoperidinium louisanensis* n. sp. A). Ventral view. B). Dorsal view.

Protoperidinium sensu stricto clade. The scale bar represents inferred evolutionary distance in

Figure 4. *Trinovantedinium pallidifulvum* (German Wadden Sea) cyst wall FTIR spectrum in comparison with other cysts produced by heterotrophic dinoflagellates. The spectra from *D. caperatum*, *Brigantedinium* sp., cysts of *Polykrikos- kofoidii* sensu Matsuoka et al. (2009) and *Polykrikos- schwartzii* sensu Matsuoka et al. (2009) are modified from Bogus et al. (2014).

Plate 1. Figures 1–9. Different views of single specimen of motile stage of *Protoperidinium louisanensis* germinated from cyst depicted in Figures 10–15, and isolated from the Northern Gulf of Mexico. 1. General shape of cell. 2. Ventral view. 3. Lateral view. 4. Dorsal view showing the second intercalary plate (2a). 5. Lateral view. 6. Lateral view. 7. Ventral view showing sulcal area. 8. Dorsal view. 9. Ventral view of hypotheca. Figures 10–15. Cyst stage of *Protoperidinium louisanensis*, corresponding to *Trinovantedinium pallidifulvum*, with motile stage depicted in Figures 1–9. 10. Ventral view. 11. Cross section. 12. Dorsal view showing operculum. 13. Peritabular distribution of processes. 14-15. Ventral view showing process

Plate 2. Figures 1–9. Motile stage of *Protoperidinium louisanensis* germinated from cyst depicted in Figures 10-15, isolated from the Northern Gulf of Mexico. 1. Cross section showing general shape and cell contents. 2. Ventral view. 3. Ventral view showing shape of the first apical plate. 4. Focus on the apical pore. 5. Dorsal view showing shape of second intercalary plate (2a). 6. Lateral view. 7. Ventral view showing sulcal area. 8. Dorsal view. 9. View of dorsal side of hypotheca. Figures 10–15. Cyst stage of *Protoperidinium louisanensis*, corresponding to *Trinovantedinium pallidifulvum*, with motile stage depicted in Figures 1–9. 10. General shape of cyst. 11. Ventral view showing peritabular distribution of processes. 12. Ventral view showing presence of 2 flagellar scars. 13. Lateral view. 14. Dorsal view showing operculum. 15. Dorsal view of hypotheca showing presence of striations on this specimen. All scale bars = 10 µm.

marked with vertical lines on the right, with dashed lines indicating sections of the

changes/site. New sequences obtained in this study are indicated in bold font.

distribution on the hypotheca. All scale bars = $10 \mu m$.

Figure 3. Molecular phylogeny. A phylogenetic tree using Bayesian inference inferred from LSU rDNA sequences based on new sequence data for *Protoperidinium louisanensis* n. sp. from the Gulf of Mexico and *Selenopemphix undulata* from Brentwood Bay, BC, Canada. The ML bootstrap support values (ML) over 50 and Bayesian posterior probabilities (PP) over 0.7 are shown at the nodes (ML/PP). The black circles indicate maximal support. Clades are labeled and

$\begin{smallmatrix} 2 & 3 & 4 & 5 & 6 \\ 7 & 8 & 9 & 10 & 11 & 2 & 13 \\ 1 & 1 & 1 & 1 & 15 & 16 & 17 & 18 & 19 & 02 & 12 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 33 & 13 & 23 & 33 & 43 & 53 & 63 & 73 & 83 & 94 & 44 & 44 & 44 & 44 & 44 & 44 & 4$	1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1031 1035	
44 45 46 47 48 49 50 51 52 53 54 55 56 57	1040 1041 1042 1043 1044 1045 1046	

1

Figure captions

Plate captions

respective sample localities).

1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 10 10 10 10 10 10 10 10 10 10 10 10 10	1047 1048 1049 1051 1052 1053 1054 1055 1056	 Plate 3. Figures 1–12. <i>Trinovantedinium pallidifulvum</i> from German Wadden Sea. 1–3. Cyst with cell contents from St. 1. 4–8. Different orientations of germinated specimen. 9–12. Other specimen). 9. Apical pore. Figures 13–16. Holotype of <i>Trinovantedinium pallidifulvum</i>. Slide no. AK2–2 (87.4/27.6); Sample no. AK2, Recent-modern sediment in Akkeshi Bay, Hokkaido, North Japan (Matsuoka 1987). All scale bars = 10 μm. Plate 4. Figures 1–12. <i>Trinovantedinium applanatum</i>. 1-4. High focus to low focus of single specimen from 11–12 cm depth in core po287-39-1B (37.75°N, 8.87°W, 92 m water depth, Mira, Portugal). 5–6. 8–10. Different orientations of single specimen from the German Wadden Sea (location shown in Table 2). 7. Other specimen from the German Wadden Sea. 11–13. Scanning alexten migraceane habtearrapha of aneximene inducted from Via Ruer at 10
22 23 24 25 26 27 28 29 30 31 32 33 34	1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074	Plate 5. <i>Trinovantedinium applanatum</i> type A and B occurring in recent sediments. 1–2, 5–7. Different views of single specimen from Type A from station 1 (32.93°N, 129.86°E, 11.1 m water depth, Omura Bay, Japan). 3. Type A from Red Sea (va01-200P, 0-5 cm depth, 16.67°N, 41.32°E, , 84 m water depth). 4. Specimen from 1–2 cm core depth from core CIRCE03AR 25P (15.30°N, 83.39°E, 3145m water depth, Bay of Bengal). 8–9. Type B from sample 11B (35.87°W, 64.11°N, 1318 m water depth, offshore Greenland, Boessenkool et al. 2001). 10. Type B from sample 1B (60.02°N, 11.76°W, water depth unknown, offshore Greenland, Boessenkool et al. 2001). All scale bars = 10 μ m.
35 36 37 38 39 41 42 43 44 45 46 47 489 501 52 53 45 57 589 60	1075	All scale bars = 10 μm.

Figure 2. Drawings of Protoperidinium louisanensis n. sp. A). Ventral view. B). Dorsal view. 55x33mm (300 x 300 DPI)

URL: http://mc.manuscriptcentral.com/tpal

209x258mm (300 x 300 DPI)

209x267mm (300 x 300 DPI)

209x297mm (300 x 300 DPI)

209x225mm (300 x 300 DPI)

209x191mm (300 x 300 DPI)

209x297mm (300 x 300 DPI)