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Abstract : 
 
The objective of this study is to analyse at fine scale the annual, seasonal and spatial distributions of 
several species in the Eastern English Channel (EEC). On the one hand, data obtained from scientific 
surveys are not available all year through, but are considered to provide consistent yearly and spatially 
resolved abundance indices. On the other hand, on-board commercial data do cover the whole year, but 
generally provide a biased perception of stock abundance. The combination of scientific and 
commercial catches per unit of effort (CPUEs), standardized using a delta-generalized linear model, 
allowed to infer spatial and monthly dynamics of fish distributions in the EEC, which could be compared 
with previous knowledge on their life cycles. Considering the scientific survey as a repository, the 
degree of reliability of commercial CPUEs was assessed with survey-based distribution using the Local 
Index of Collocation. Large scale information was in agreement with literature, especially for cuttlefish. 
Fine scale consistency between survey and commercial data was significant for half of the 19 tested 
species (e.g. whiting, cod). For the other species (e.g. plaice, thornback ray), the results were 
inconclusive, mainly owing to poor commercial data coverage and/or to particular aspects of the species 
biology. 
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1. Introduction 31 

Ecosystem-Based Fisheries Management (EBFM) requires enhancing knowledge of 32 

ecosystem functioning, therefore allowing forecasting the impact of fisheries on salient 33 

ecosystem components (Long et al., 2015) and to design future management plans and tools 34 

including Marine Protected Areas (Meyer et al., 2007) or fishing closures (Hunter et al., 35 

2006). This necessitates a stepwise approach, the first tier of which, and one of the most 36 

important, is to gain fine scale knowledge on the seasonal and geographic distribution of 37 

marine organisms, in general, and fish stocks in particular (Booth, 2000). 38 

Scientific surveys have been implemented for decades to derive spatially- and yearly-resolved 39 

abundance indices of commercial fish and shellfish species (e.g. van Keeken et al., 2007). 40 

Surveys provide abundance indices, derived from standardized and controlled protocols, 41 

which allow for a wide spatial coverage associated with a weak selectivity (Verdoit et al., 42 

2003). Survey data, however, are costly to obtain and therefore rarely provide for adequate 43 

seasonal coverage of the resource distribution. In contrast, information derived from 44 

commercial fisheries are generally available all year through. Consequently, the catch per unit 45 

of effort (CPUE), the most common and easily collected fishery-dependent index of 46 

abundance (Maunder and Punt, 2004), has the potential to reflect fish distributions. However, 47 

commercial CPUEs can generally not be used directly as abundance indicators. This is 48 

because fishers target rather than sample fish densities, and continuously adapt their activities 49 

to prevailing conditions, through technological development and tactical adaptations (Marchal 50 

et al., 2006), including discarding practices on which information is often limited (Rijnsdorp 51 

et al., 2007). 52 

A major challenge for fisheries scientists is then to reconcile fisheries-independent and -53 

dependent information into abundance indices that consistently mirror the annual, seasonal 54 

and spatial dynamics of commercial marine species. Kristensen et al. (2014) have 55 



reconstructed spatial and seasonal cohorts of cod (Gadus morhua) in Skagerrak by kriging, in 56 

both time and space, data provided by survey and also by fisheries subject to a survey-like 57 

sampling protocol. To our best knowledge, however, no method has yet been developed to 58 

estimate spatio-temporal distributions of fish at high resolution, by combining survey and true 59 

commercial fisheries data. 60 

The main objective of this paper is to provide detailed annual, seasonal and spatial 61 

distributions of major Eastern English Channel (EEC) commercial fisheries resources, using a 62 

novel approach combining fisheries-independent and -dependent information. The gain in 63 

knowledge on fine scale temporal and spatial fish distribution in the EEC will expand the 64 

scope of earlier results (e.g. Vaz et al., 2007), and strengthen the science support to an EBFM 65 

in this area. To that purpose, we (i) inferred the seasonal and spatial abundance distribution 66 

based on survey and commercial abundance data for several species in the EEC, (ii) 67 

investigated the degree of similarity of fine scale spatial distributions derived from these two 68 

data sources and (iii) investigated abundance indices derived from these data sources. 69 

 70 

2. Material and methods 71 

2.1. Study area 72 

The Eastern English Channel (ICES subdivision VIId) is delimited by latitudes 49.3°N and 73 

51°N and longitudes 2°W and 2°E (Figure 1). This shallow area constitutes a corridor 74 

between the northeast Atlantic Ocean and the North Sea, and a strategic region in the 75 

northeast Atlantic, as it hosts a very intense maritime traffic and human activities such as 76 

mixed fisheries, aggregate extraction and wind farms (Dauvin, 2012). This area is also 77 

important for several commercially important migratory species, e.g. red mullet (Mullus 78 

surmuletus) (Mahé et al., 2005), cuttlefish (Sepia officinalis) (Royer et al., 2006), mackerel 79 



(Scomber scombrus) (Eltink et al., 1986), herring (Clupea harengus) (ICES, 2015), or 80 

European seabass (Dicentrarchus labrax) (Pawson et al., 2007). 81 

Fishing is a key socio-economic activity in the region (Carpentier et al., 2009), which has also 82 

generated a strong pressure on its marine ecosystem (Molfese, 2014). 83 

2.2. Data 84 

This study is supported by two main data sources: a scientific survey (the Channel Ground 85 

Fish Survey – CGFS; Coppin and Travers-Trolet, 1989) and observations on-board 86 

commercial vessels (hereby referred to as the OBSMER French programme; Cornou et al., 87 

2015).  88 

The CGFS has sampled the entire EEC demersal community annually since 1988. The survey 89 

occurs every year in October, with a systematic fixed sampling design of 88 trawling stations 90 

located between 49.3°N and 51.3°N. The sampling gear is a GOV trawl with 3 m vertical 91 

opening, 10 m horizontal opening and a 20 mm codend. For each haul, all fish caught are 92 

sorted, identified and measured to the nearest inferior centimetre. In case of large catch, 93 

random subsampling is performed while ensuring representativeness of species and length 94 

distributions. For the current study only survey data from 1998 to 2014 were retained as this 95 

period corresponds to a relatively stable state of the community structure with no detected 96 

regime shift in species spatial distributions (Auber et al., 2015). 97 

The CGFS provides information for a large panel of economically valuable demersal fishes 98 

and cephalopods, i.e. European seabass, red mullet, cod, whiting (Merlangius merlangus), 99 

plaice (Pleuronectes platessa), cuttlefish, squids (Loligo spp.) and thornback ray (Raja 100 

clavata). Other commercially important species such as common sole (Solea solea), herring 101 

or sardine (Sardina pilchardus), are poorly sampled by the GOV trawl (Carpentier et al., 102 

2009), and thus have not been considered in this study.  103 



On-board observer programmes allow estimating catch and effort for a sample of fishing 104 

operations. Unlike other fisheries data collection programmes, e.g. building on port sampling 105 

and/or mandatory logbooks, observer‘s data are precisely geo-referenced and allow inferring 106 

the total catch, including the discarded fraction, and more accurate measurements of effective 107 

fishing effort. Although on-board fisheries data can generally not be collected for all the 108 

vessels belonging to a given fleet, and although the presence of observers may be perceived as 109 

overly intrusive to fishers, they offer an opportunity to derive CPUE-based abundance 110 

indicators, at a fine spatial and temporal scale.  111 

The OBSMER programme covers the period 2003-2015. It was developed to better estimate 112 

the discards‘ quantity and assess catch composition. Precise information on ship 113 

characteristics (e.g. homeport, length, engine power), fishing activity (time, latitude, 114 

longitude, gear, fishing effort, targeted species assemblage) and catch composition (landings 115 

and discards of fish and commercial invertebrates) are collected for each fishing operation by 116 

scientific observers. For each fishing operation, a subsample of the catch (including both the 117 

part to be landed and the part to be discarded) is sorted, identified and measured. This data 118 

compilation has already been operated to characterize pressures exerted on communities, 119 

discarded fractions of catches, or discarding drivers (Fauconnet et al., 2015). 120 

Spatio-temporal species distributions estimated using OBSMER data are primarily expected 121 

to corroborate previous knowledge on these species‘ life cycles. In addition, they could reflect 122 

species distributions as observed using scientific surveys (considered as a reference) in 123 

converging time lapse. However, because species‘ spatial distributions are dynamic and vary 124 

from one time step to another, and because fishers continuously adapt to prevailing conditions 125 

(Eigaard et al., 2014), time and spatial variations in CPUE reflect two entangled signals 126 

prompted by fisher‘s plasticity and stock fluctuations. Using CPUEs to reflect time changes in 127 



stock abundance therefore requires to preliminarily filter out the skipper effect signal it 128 

originally contains (Maunder and Punt, 2004). 129 

2.3. Standardizing survey and commercial catch rates 130 

Surveys and commercial fisheries operate at different temporal and spatial scales, with 131 

different gears and strategies, thereby targeting dissimilar species assemblages and/or size 132 

ranges. The first step of this study was to identify common temporal and spatial scales, then to 133 

select a common pool of representative species and size ranges, and finally to standardize 134 

survey and commercial catchabilities using a delta- Generalized Linear Model (GLM) 135 

approach. 136 

The temporal scale retained is the month, while the spatial scale considered is cells of 0.3° x 137 

0.3° (~ 700 km²). These seasonal and spatial scales result from a trade-off between having a 138 

sufficient amount of data and maintaining a sufficient level of precision, as described further. 139 

Based on these small-scale spatio-temporal units, a mean CPUE index in number of 140 

individuals caught per hour is calculated separately from OBSMER data for each month and 141 

from CGFS data (only for October) for a set of demersal species (Table 1). These species 142 

have been selected based on their economic importance, relative abundance and/or 143 

catchability by the survey gear being considered. Survey data were only kept from 2005 to 144 

2014 for the cephalopods (i.e. Sepia officinalis and Loligo spp.), as no length information is 145 

available for these species before 2005. To harmonize the survey and commercial gears‘ 146 

selectivities of the species being considered, we used a common length threshold (Ls) above 147 

which a species is considered to be correctly selected by the different gears (Table 1). Ls was 148 

graphically determined from length distribution for each species following the method used 149 

by Ravard et al. (2014): in commercial data most of the length-frequency were unimodal and 150 

Ls was approximately set for each species at the length of the highest mode of the different 151 

gears combined. In our study, Ls mainly corresponded to the official minimum landing sizes 152 



for the few species concerned. The potential case of a different selectivity of large individuals 153 

to particular gears (e.g. Bertignac et al., 2012) is not considered in this study. 154 

OBSMER data were filtered to avoid abundance overestimation. Thus, for each species and 155 

each size, only hauls with all the subsamples representing at least 5% of the total catch 156 

weights each were kept for further calculations. Furthermore, to obtain a clear overview of 157 

abundance for each demersal species being studied, only fishing gears sufficiently represented 158 

(i.e. > 10 observations for a given species) were kept in the analysis. 159 

Finally, we adjusted the remaining catchability differences by standardizing CPUE values 160 

derived from both OBSMER and survey data. This was operated by applying a delta-GLM to 161 

the CPUEs of each species under consideration. The delta-GLM first fits the probability of 162 

observing a zero catch as a function of the explanatory variables, and then fits another GLM 163 

to the non-zero catches (Maunder and Punt, 2004; Meissa et al., 2008; among others).  164 

The probability of presence is based on the binomial distribution after a binary recoding 165 

(0=absence and 1=presence). For hauls with positive CPUE a logarithmic transformation was 166 

first applied on data in order to homogenize variances and to transform the multiplicative 167 

effects into additive effects (Meissa et al., 2008). 168 

The delta-GLM for OBSMER data contains a maximum of six explanatory variables: 169 

logit(        
  ) = βaδm + λy + ρgτ + υs (1) 170 

log(IAi,a,m,y) = βaδm + λy + ρgτ + υs + εi,a,m,y (2) 171 

where         
   is the mean presence probability and IAi,a,m,y the CPUE of a species caught by 172 

vessel i of length τ rigged with gear g (e.g. bottom otter trawl, trammel net), fishing in (0.3° x 173 

0.3°) area a, year y and month m. βa is the area effect of the fishing operation (treated as 174 

factor), δm is the month effect of the fishing operation,  ρg is the gear effect, λy is the annual 175 

effect, υs isthe sediment effect, which accounts for small scale habitat variability and is 176 



decomposed into five categories s: mud, fine sand, coarse sand, gravel and pebble, based on a 177 

sediment map of EEC from Larsonneur et al. (1982), and εi,a,m,y a term of residual error.   178 

Sediments are kept because they proved to have the strongest influence on the distribution of 179 

species in the shallow Eastern English Channel, compared with, e.g. depth, temperature and 180 

salinity (see Carpentier et al., 2009). Engine power information was also available but only 181 

vessel length was kept as these two variables are usually highly correlated for bottom otter 182 

trawlers (r = 0.94 using OBSMER data), the main size-varied vessels of the available 183 

commercial data.  184 

CGFS survey data are always collected in October (i.e. no month effect) with the same 185 

research vessel (i.e. no vessel or gear effects), hence the previous formula was reduced to the 186 

following, with a maximum of three explanatory variables: 187 

logit(    
  ) = βa + λy + υs (3) 188 

log(IAi,a,m,y) = βa + λy + υs + εa,y (4) 189 

Models‘ retained explanatory variables were selected for each species based on Akaike 190 

information criterion (AIC). Model selection was largely influenced by the previous choice of 191 

the spatial resolution for area variable.  192 

In none of the models (1-4) an interaction term between area (or area-by-month) and year 193 

effects was considered. This requires some clarifications, given such an interaction term could 194 

potentially reveal spatial shifts in fish distribution over time. 195 

In the analysis of commercial CPUE indices, spatio-temporal interactions were partly covered 196 

by introducing an area-by-month term. It was, however, not possible to explore the effect of 197 

introducing the higher-ranked interaction area-by-month-by-year, partly owing to the limited 198 

amount of observations available but also to opportunistic fisher‘s behaviour, which in 199 

combination resulted in a variable inter-annual coverage of the OBSMER dataset. In the 200 

analysis of survey abundance indices, only area-by-year effects could potentially be 201 



considered, since the CGFS is operated in October only. Auber et al. (2015) concluded that 202 

although October EEC fish communities were subject to a substantial spatial shift in 1997, no 203 

significant change was observed during 1998-2014, i.e. the period being considered in this 204 

analysis. Still, we did investigate a model including a spatio-annual effect. According to the 205 

AIC none of the presence/absence models and only 3 out of the 19 abundance models showed 206 

improved goodness of fit performances when an area-by-year interaction term was added 207 

(poor cod, starry smooth-hound and thornback ray), without statistically significant 208 

differences in the distribution outputs (Table S1 and S2). Furthermore, 14 out of the 19 209 

presence/absence models did not converge with an area-by-year interaction term. 210 

Final predictions are obtained by the product of presence probabilities and CPUE. Knowing 211 

the sediment characteristics of each area, the total abundance in each cell is computed by 212 

reallocating the environmental effects in proportions to sediment types coverage. 213 

Finally a limit of 10 observations per cell in both OBSMER and CGFS was determined as the 214 

threshold above which the square was kept in the analysis, resulting from a trade-off between 215 

a sufficient coverage of the EEC and a consistent number of observations (Figure 2). By 216 

applying this limit and our spatial resolution to survey data, 88% of the EEC is covered (for 217 

OBSMER data this percentage is variable among month and species). In comparison, using 218 

cells of 0.4° x 0.4° instead of 0.3° x 0.3° leads to the representation of 90% of the Eastern 219 

English Channel, while using smaller cells of 0.2° x 0.2° only allows representing 68% of the 220 

Eastern English Channel. Thus our choice seems to be the best trade-off between precision 221 

and coverage. 222 

Importantly, the explained variables presented above are likely to include inherent spatial 223 

dependence (spatial autocorrelation SAC; Legendre, 1993), owing to the nature of the data at 224 

hand. As a result, the values of the dependent variables are unlikely to be conditionally 225 

independent as assumed in these models. The SAC inherent to both CGFS and OBSMER data 226 



was here accounted for by applying the Moran‘s Eigenvectors (MEV) mapping method 227 

following the protocol described by Cormon et al. (2014) with R packages {spdep} (Bivand 228 

et al., 2013), {spacemakeR} (Dray, 2013) and {packfor} (Dray et al., 2013). The concept of 229 

this method is to allow the translation of the spatial arrangement of the data into a set of 230 

explanatory variables through the eigenvector decomposition of data coordinate connectivity 231 

matrix previously built (Dormann et al., 2007). For OBSMER data, MEV are computed and 232 

selected for each month separately, and then integrated in the whole model set of parameters. 233 

Temporal dependencies were not examined in the study. 234 

2.4. Assessing the similarity between fisheries- and survey-based spatial abundance 235 

The data treatment described above allows to produce monthly maps of species abundance 236 

distribution. While the global seasonal patterns obtained can be compared with disparate 237 

knowledge available for some species, the degree of reliability of the fine scale spatial 238 

distribution derived from commercial data can be addressed through comparison to survey-239 

based maps. 240 

To quantitatively determine how similar spatial distribution derived from commercial and 241 

survey data are at fine scale, we estimated, for October, the local overlap between 242 

distributions, using the geostatistical index Local Index of Collocation (LIC, Woillez et al., 243 

2009): 244 

LIC = 
∑       ( )       ( )

√∑       
 ( )   ∑       

 ( )
 (5) 245 

where zobsmer(i) and zsurvey(i) are the computed abundances in area i, as provided by OBSMER 246 

and CGFS data, respectively. LIC was computed using R package {RGeostats} (Renard et al., 247 

2014). This spatial indicator is considered appropriate to assess local overlapping between 248 

two densities of population, without taking the mean abundance into account (Woillez et al., 249 

2009). 250 



This index theoretically ranges between 0, showing absolutely no match between the two 251 

spatial distributions (zobsmer(i) = 0 if zsurvey(i) > 0, zsurvey(i) = 0 if zobsmer(i) > 0, ∀ i), and 1, 252 

demonstrating a perfect match between them (zobsmer(i) = zsurvey(i), ∀ i). 253 

The significance of index values was assessed using random permutations of OBSMER 254 

abundance values against constant CGFS ones. This procedure is repeated 5000 times, and the 255 

spatial distributions derived from commercial data were considered to overlap spatial 256 

distributions derived from the CGFS survey when the actual LIC value was above the 95
th

 257 

percentile of the LIC randomly permutated values.  258 

The Horn‘s index (Horn, 1966) was also tested for the study, but it provides approximately 259 

the same results and is less efficient with extreme values of abundance, thus only results 260 

based on LIC are presented. 261 

Finally, to assess the sensitivity of our results to the set of areas being considered, a jackknife 262 

resampling was operated for all species, by removing sequentially each area, and by 263 

evaluating its impact on LIC significance.  264 

2.5. Comparing yearly abundance indices 265 

Additionally to the spatial abundance, the model provides a year effect that can be used to 266 

derive an inter-annual abundance index in both survey and OBSMER data following the 267 

method of Lo et al. (1992). The time series ranges from 1998 to 2014 for survey data (2005-268 

2014 for cephalopods series) and from 2003 to 2015 for OBSMER data. It is obtained by 269 

varying only the year parameter on the computation of CPUEs, and taking the mean of all 270 

areas in natural space to avoid variance disparities. Pearson‘s correlation index was computed 271 

to quantify the correlation between abundance indices from the two data sources. 272 

 273 

3. Results 274 

3.1. Monthly spatial distribution patterns 275 



In the delta-GLM applied to commercial CPUEs, every parameters were kept, with an 276 

exception for the sediment parameter in the presence/absence model of cuttlefish (Table S3). 277 

However, area-by-month was replaced by month alone in the presence/absence models of 278 

starry smooth-hound, flounder and John Dory. In the delta-GLM applied to survey CPUEs, 279 

the parameters selection is more variable (Table S4). For example, the year parameter is not 280 

kept in both presence/absence and abundance models for tub gurnard, and the sediment one is 281 

not kept for three species: cod, pouting and tub gurnard. The area parameter was always 282 

significant and kept. The monthly spatial distribution of cuttlefish derived from the delta-283 

GLM models applied to commercial and survey CPUEs is presented in Figure 3. This species 284 

has been chosen for illustration because it is one of the main species in terms of yields in the 285 

EEC  (Royer et al., 2006). These maps are partial and do not cover the same areas over all 286 

months, owing to varying fisheries distributions. The map presented for October results from 287 

survey-based information, hence explaining its wider spatial coverage. Some informative 288 

spatial patterns can be evidenced for cuttlefish: their quasi-absence in the EEC from January 289 

to March, a coastal aggregation along the French coast in May-June, and a more offshore 290 

distribution in October-November indicate the existence of a seasonal migration pattern for 291 

this species. 292 

3.2. Comparison of fine scale spatial distributions from survey data and commercial 293 

data 294 

The fine scale match between the spatial abundances estimated from fisheries and survey has 295 

been quantified for each species by computing the LIC value, and testing its significance with 296 

5000 random permutations of CPUE abundances. Of the 19 tested species, 9 had a LIC 297 

significance above 95%, 6 between 75% and 95%, and only 4 under 75% (Figure 4). 298 

Considering 95% significance threshold, survey- and fisheries-based spatial distributions were 299 

therefore found to overlap for half of the species under investigation. Although the 300 



distribution of LIC values resulting from the permutation tests is variable among species, the 301 

results highlight that almost all species with a LIC above 0.6 showed high significance 302 

(except John Dory for which the LIC value of 0.67 falls just below the third quartile of 303 

permutations), while species with a LIC value smaller than 0.6 showed no significant overlap 304 

(except cod with a LIC of 0.52). It can also be noted that John Dory, the only species showing 305 

no significant overlap despite a LIC above 0.6, shows a very low variability of LIC in the 306 

permutation test. 307 

Thornback ray, poor cod, plaice and pouting had the lowest LIC values, under 0.4. 308 

Cephalopods species, cuttlefish and squids, had intermediate LIC values of 0.50 and 0.54, 309 

respectively, and both were between the median and the 95
th

 percentile. Finally, of the four 310 

flatfish species, i.e. common dab, lemon sole, European flounder and plaice, only common 311 

dab and lemon sole had a significant LIC. 312 

3.3. Sensitivity to areas 313 

In order to assess the sensitivity of the results obtained, a jackknife resampling was performed 314 

and results were analysed in regard to some characteristics of sensitive areas (Table 2). Of the 315 

10 species for which no overlap could be evidenced, red mullet was the only one for which 316 

LIC became significant by removing one area. Red mullet original LIC significance value 317 

compared with permutations was close to 0.05, and dropped below that threshold with the 318 

removal of either the first or second top abundance areas as derived from CGFS information 319 

(ranked 8
th

 and 4
th

 building on OBSMER data). 320 

Among the nine species for which the LIC was significant for all areas being considered, the 321 

LIC of seven species became not significant when removing one area (Table 3). The LIC of 322 

tub gurnard, common dab, lemon sole, starry smooth-hound and lesser-spotted dogfish were 323 

thus sensitive to the absence of one particular area, ranked first or second in abundance. The 324 

LIC of cod and black seabream became not significant with the removal of one area among a 325 



list of 6 and 8, respectively. Their original p-values, close to the 0.05 threshold (i.e. 0.046 and 326 

0.043), can partially explain the high number of sensitive areas. 327 

3.4. Rebuilding of yearly abundance index 328 

The year effect derived from each delta-GLM analysis can be considered as a yearly 329 

abundance index for each species. Figure 5 displays two examples of different levels of fit 330 

between survey and commercial data, ranging from good visual fit, for cod, to poor fit for 331 

black seabream. Cod abundance index shows consistent fluctuations in both survey and 332 

commercial data, with higher abundance from 2007 to 2009 followed by 4 years of lower 333 

abundance. Black seabream abundance index derived from survey displayed a general 334 

decrease from 2004 until 2014. in contrast, the index derived from commercial CPUEs shows 335 

an increase over this period. The Pearson‘s correlation index was computed to quantify the 336 

link between the two abundance indices produced for each species (Table 4). The results 337 

indicated that spatial overlap represented by LIC‘s significance is not necessarily related to 338 

concordant abundance indices time series, as most of the species with a significant LIC value 339 

have an intermediate correlation (Figure S1). Black seabream, with a significant LIC, has 340 

even the third
 
lowest value for Pearson‘s correlation metrics. 341 

 342 

4. Discussion 343 

Seasonal distribution patterns of the main fishing resources in the EEC 344 

Our results show the usefulness of fisheries data to infer, in combination with surveys, the 345 

spatial and seasonal distributions of several species. The spatial and seasonal distribution of 346 

cuttlefish, one of the main commercial species for French fleets (Royer et al., 2006), is in 347 

agreement with literature. Indeed, from the examination of landings data, cuttlefish adults are 348 

known to start migrating in October to spend winter in the Central and Western English 349 

Channel, and to be inshore in the Eastern English Channel during summer for feeding and 350 



reproduction (Royer et al., 2006). Other remarkable life distribution can be derived from the 351 

maps (see Figures S2-S19), like the high winter abundance of squids in the EEC, confirming 352 

previous knowledge (Royer et al., 2002), or the quasi-absence of red mullet in the East of the 353 

EEC in the beginning of the year while it concentrates in the East central part of the EEC in 354 

the end of the year, which adheres to the conclusions of Mahé et al. (2005) based on fishers‘ 355 

interviews. On the contrary the spatial distribution of other species remains more stable 356 

through the year, e.g. red gurnard in the centre of the EEC, or European flounder inshore 357 

except during the winter period, as described by Skerritt (2010). Finally punctual abundance 358 

or absence can be detected, like the high concentration of cod along the English coast in June 359 

and in the Dover Strait in November, or the high presence of black seabream in the centre of 360 

the EEC in February, contrasting with its absence in the eastern part, consistent with Pawson 361 

(1995). 362 

Coherence between fisheries-dependent and -independent abundance indices 363 

In addition to the accordance between the global seasonal pattern produced here and the 364 

available literature, our results also show that half of the species‘ spatial distributions 365 

exhibited good coherence at fine scale across the two data sources. This conclusion built on 366 

an analysis of the LIC overlap metric, the statistical significance of which was quantified 367 

using a permutation test. Prior to this study, LIC values were compared with and have been 368 

found very close to Horn index values. The Horn index is another overlap metric that is 369 

commonly used in trophic ecology, and for which a value > 0.6 is usually considered 370 

significant, without further testing (Scrimgeour and Winterbourn, 1987). Our results cross-371 

checked this approach. Except for John Dory (i.e. LIC = 0.67) and cod (i.e. LIC = 0.52), every 372 

species‘ distribution with a LIC above 0.6 were significant. The unexpected outcome obtained 373 

for John Dory reveals a shortcoming of the method we applied to assess overlap significance. 374 

Indeed, when abundance is homogeneously spread in the entire study area (here the EEC), 375 



LIC can be above 0.6 and still non-significant when compared with values resulting from the 376 

permutation test. Actually, the LIC (as well as the Horn index) random permutation test can 377 

only be efficient with areas of contrasted abundance, as demonstrated by lemon sole or 378 

common dab with one area of high abundance contrasting with relatively low values. 379 

Therefore, for the evenly distributed John Dory spatial distributions derived from survey and 380 

fisheries data can be considered to be close. 381 

Concerning the remaining half of species with lower coherence, a number of reasons can be 382 

invoked to explain the discrepancies observed. The results of jackknife analysis demonstrated 383 

the impact of some influential areas on the result of the LIC, which cannot be observed 384 

depending on the fishers‘ spatial distribution in October, and highlight the sensitivity of using 385 

fine scale comparison when high abundance areas are not available. Another issue is a 386 

possible non-proportionality between CPUE and abundance (Hilborn and Walters, 1992). 387 

Indeed, commercial fisheries are expected to concentrate their activities into attractive areas ( 388 

Gillis, 2003). This issue was addressed by standardizing CPUEs using a delta-GLM, and by 389 

filtering out spatial auto-correlation. Owing to the limited amount of data, however, SAC 390 

correlations could not be computed separately for each year. This could be a concern, as 391 

species presence in a precise area/season may vary from one year to another. Thus, a more 392 

realistic approach could consist of computing SAC separately for each year, which could not 393 

be achieved in this study owing to the low number of observations in the dataset. For similar 394 

reasons, the CPUE delta-GLM could not be applied to each gear separately. Instead, 395 

observations from the different gears were analysed through the same model, where gear type 396 

was treated as an explanatory variable. This approach allowed to estimate the overall impact 397 

of gears on CPUE. However, more specific effects of gear types on CPUEs (e.g. selectivity, 398 

saturation) could not be fully addressed. In particular, the selectivity of large individuals 399 

could be a challenge, as the trawl selectivity ogive is sigmoid-shaped, while that of gillnets 400 



could be bell-shaped, or bi-normal, reducing the catch of larger individuals (Dickson et al., 401 

1995). Among other potential limits, the soaking time of gillnets is much longer compared 402 

with trawls, and it is more subject to saturation effect, which could result in an asymptotic 403 

relationship between catches and fishing time (Hickford and Schiel, 1996). 404 

Still, the lack of overlap between the spatial distributions derived from fisheries-dependent 405 

and -independent abundance indices for some species could also be explained by their actual 406 

biological and ecological characteristics. These could have strong impact on abundance 407 

estimations, particularly if only few observations are available within an area. Based on a 408 

scientific protocol, the CGFS sampling strategy is fixed and the timing of the survey almost 409 

does not vary from one year to the other. However, the EEC ecosystem constitutes for several 410 

species a migration path between the North Sea and the Atlantic Ocean, and this can lead to 411 

biased estimates of abundance based on survey conducted at a fixed period. For example, red 412 

mullet migrates during fall from the southern part of the North Sea to the Western English 413 

Channel (Mahé et al., 2005), but its migration timing appears variable across years 414 

(Carpentier et al., 2009), which could lead to high variance in some areas and thus causes 415 

difficulties to obtain a clear static mean distribution. 416 

Pouting, poor cod, thornback ray and plaice have the lowest LIC in our results. Various 417 

species are known to change their behaviour between day and night (Pitcher, 1992), which 418 

may affect our results (Fréon et al., 1993). Indeed, pouting are known to have diel activity 419 

patterns, forming shoals near wrecks or rocks during the day and disperse during the night for 420 

feeding (Jensen et al., 2000). Thornback rays predate also at night and burry in the sand 421 

during the day (Wilding and Snowden, 2008). There is evidence that poor cod is mainly 422 

caught at night (Gibson et al., 1996). Concerning plaice, differences in catches between day 423 

and night are less clear and vary across studies (De Groot, 1971; Arnold and Metcalfe, 1995). 424 

Surveys like CGFS occur only during daylight, while about half of the fishing operations are 425 



conducted during the night. Including explicitly the time of the day in our model would be a 426 

way forward, which would require a larger set of data (Benoît and Swain, 2003). Finally, 427 

variability in species distribution can occur by environmentally-driven spatial and annual 428 

shifts (Verdoit et al., 2003). As previously evoked, with sufficient data, dealing with these 429 

shifts would require interaction parameters, introduced by fixed effects (with associated 430 

restrictions, e.g. Thorson and Ward, 2013) or random effects (with corresponding bias-431 

correction, e.g. Thorson and Kristensen, 2016). The high number of presence/absence models 432 

that did not converge with an area-by-year interaction can be explained by the small number 433 

of observations for each occurrence (i.e. on average 2 per area-by-year), often 0 or 1 for a 434 

substantial part of the new parameters. Increasing the number of iteration failed to improve 435 

model convergence. 436 

In the coming years, the growing collection of data may allow for accommodating such 437 

processes, but also fine-scale targeting (e.g. Thorson et al., in press), and hence lead to more 438 

reliable abundance estimates per area for a broader coverage of the EEC. A next step could 439 

then be to derive spatially-explicit estimations of fish lengths, building on innovative 440 

approaches (e.g. Petitgas et al., 2011; Nielsen et al., 2014). These could help to distinguish 441 

between mature and non-mature individuals, which are driving fish movement (Pittman and 442 

McAlpine, 2001). 443 

Uses of data collected on-board commercial vessels 444 

Another objective of this study was to provide annual series of abundance indices. The 445 

comparison between fisheries-dependent and -independent time series suggested contrasted 446 

results across species. 447 

For species like cod (Figure 5a) and lemon sole, both the spatial and annual abundance 448 

distributions derived from fisheries and survey data were reasonably consistent. However, 449 

consistent annual trends across the two data sources were not necessarily linked with spatially 450 



overlapping distributions, e.g. cuttlefish or red mullet. Potential reasons for the lack of spatial 451 

overlap for such species were discussed above.  452 

For other species, a good spatial overlap between fisheries-dependent and -independent 453 

abundance distributions was not necessarily associated with synchronous time series (e.g. 454 

black seabream, Figure 5b). This could be owing to data limitations, but also to some 455 

hyperstable relationship between abundance and CPUE (Hilborn and Walters, 1992), that 456 

could not be completely filtered out by our standardization approach. In addition, the species 457 

which present a good spatial overlap can be subject to intra-annual fluctuations of abundance 458 

owing to high exploitation, migrations and recruitment (Gillis and Peterman, 1998), that could 459 

strongly impact the mean annual abundance value. 460 

Finally, abundance indices derived from fisheries data could be an appropriate source of 461 

information to provide seasonal and spatial distributions, particularly during periods where 462 

surveys do not operate. A better overview of species migrations is first a progress in current 463 

knowledge on species ecology, which could further be linked with seasonally-explicit abiotic 464 

and biotic environmental conditions. Secondly such information could be linked with fishers‘ 465 

movement throughout year, which could enhance our knowledge on fishers-resource 466 

interactions. Thirdly, seasonally- and spatially-resolved information such as that output from 467 

this study could also serve to calibrate complex end-to-end models such as Atlantis (Fulton et 468 

al., 2007), OSMOSE (Shin and Cury, 2001), ISIS-Fish (Pelletier et al., 2009) or Ecospace 469 

(Walters et al., 1999), and enhance their capacity to evaluate ecosystem-based management 470 

strategies (e.g. closed areas and seasons). Finally, further studies could validate the 471 

assumptions that on-board commercial data give a better overview of spatial distributions than 472 

survey for a small portion of species (e.g. pouting). However, the distributions derived for 473 

species presenting strong variability in selectivity or behavioural pattern (e.g. diel variations 474 

or migrations) should be interpreted with caution.  475 



In addition to spatial distributions, annual abundance indices derived from fisheries data could 476 

potentially complement the survey-based series used in stock assessments. This would 477 

require, as a follow-up to this study, to structure those fisheries-based annual indices by 478 

length and/or age, and perhaps to try to obtain such indices on a shorter duration than year. 479 

Previously, fisheries-based abundance indices should be closely examined, on a case-by-case 480 

basis, cognisant of the life cycle and exploitation features of the species under investigation. 481 

 482 

5. Conclusion 483 

This study shows the potential of combining fisheries-dependent and -independent data to 484 

increase our knowledge on the seasonal and spatial distribution of several marine species. 485 

Even if the comparisons realized during this study showed that fisheries-dependent data did 486 

not always mirror the time and spatial survey-based distribution of some species, they still 487 

remain a valid source of information. Fisheries-dependent data are relatively abundant, 488 

opportunistic and cheaper than survey data, and their use should be encouraged, especially to 489 

reflect abundance distributions in areas and seasons that are not covered by surveys. 490 

Moreover, some species are poorly sampled by surveys owing to their diel behaviour, and the 491 

use of at-night observations on-board commercial vessels could help better inferring their 492 

spatial distributions. The method we used here is relatively simple compared with, e.g. log-493 

Gaussian Cox model method developed by Kristensen et al. (2014). Still, the quality of the 494 

resulting outputs we presented was assessed, and these provide valuable information on 495 

spatial and temporal species distributions, which concur with existing ecological knowledge. 496 

This approach would benefit from a better spatial representation along the English coastline, 497 

and further cooperation, data sharing and on-board observation program strengthening could 498 

substantially enhance our understanding of the spatio-temporal distribution of marine species 499 

in the Eastern English Channel.  500 



Supplementary material 501 

The following supplementary material is available at ICESJMS online: one table for 502 

parameters of survey data models incorporating spatio-temporal interactions, one table for 503 

comparison between models with and without spatio-temporal interactions and two tables of 504 

parameters chosen for each species in the commercial data and survey data Delta-GLM. It 505 

also contains additional abundance index from the two sources of data. Finally it contains 506 

additional maps of the 18 species not presented in the study.  507 
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Table 1. List of species considered in this study, with their minimum total length Ls (cm), 698 

above which individuals are considered to be equally selected by survey and commercial 699 

gears, and Minimum Landing Size (MLS) during the 2003-2014 period in Eastern English 700 

Channel when relevant. 701 

species Ls (cm) MLS (cm) Common name 

Chelidonichthys cuculus 22 - Red gurnard 

Chelidonichthys lucerna 26 - Tub gurnard 

Dicentrarchus labrax 36 36 European seabass 

Gadus morhua 35 35 Atlantic cod 

Limanda limanda 21 - Common dab 

Loligo spp. 14
 a
 - Squids 

Merlangius merlangus 24 27 Whiting 

Microstomus kitt 25 - Lemon sole 

Mullus surmuletus 20 - Red mullet 

Mustelus asterias 60 - Starry smooth-hound 

Platichthys flesus 29 - European flounder 

Pleuronectes platessa 25 27 European plaice 

Raja clavata 49 - Thornback ray 

Scyliorhinus canicula 54 - Lesser-spotted dogfish 

Sepia officinalis 13
 a
 - Common cuttlefish 

Spondyliosoma cantharus 17 - Black seabream 

Trisopterus luscus 25 - Pouting 

Trisopterus minutus 13 - Poor cod 

Zeus faber 21 - John Dory 
a
 mantle length 702 

 703 
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Table 2. Jackknife results and main data attributes for species that did not initially 705 

demonstrate significant overlap between OBSMER and Channel Ground Fish Survey (CGFS) 706 

distributions. LIC: original value of Local Index of Collocation. p-value: situation of the LIC 707 

value related to the distribution of permutation tests (values below 0.05 indicate significant 708 

overlap). JK: number of areas which prevented from having significant overlap (with total 709 

number of areas). % abundance OBSMER & CGFS: percentage of abundance represented by 710 

these sensitive areas among all OBSMER and CGFS areas respectively (with ranking among 711 

all areas).  712 

 LIC p-value JK 

% 

abundance 

OBSM 

% 

abundance 

CGFS 

Seabass 0.49 0.156 0 (24) / / 

Squids 0.54 0.440 0 (20) / / 

Red mullet 0.58 0.063 2 (23) 
5.8 (4/23) 

3.7 (8/23) 

12.4 (2/23) 

19.2 (1/23) 

Flounder 0.47 0.118 0 (21) / / 

Plaice 0.32 0.194 0 (24) / / 

Thornback ray 0.22 0.703 0 (22) / / 

Cuttlefish 0.50 0.248 0 (21) / / 

Pouting 0.39 0.108 0 (23) / / 

Poor cod 0.10 0.768 0 (21) / / 

John Dory 0.67 0.259 0 (24) / / 

 713 
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Table 3. Jackknife results and main data attributes for species that did initially demonstrate 715 

significant overlap between OBSMER and Channel Ground Fish Survey (CGFS) 716 

distributions. LIC: original value of Local Index of Collocation. p-value: situation of the LIC 717 

value related to the distribution of permutation tests (values below 0.05 indicate significant 718 

overlap). JK: number of areas which allowed having significant overlap (with total number of 719 

areas). % abundance OBSMER & CGFS: percentage of abundance represented by these 720 

sensitive areas among all OBSMER and CGFS areas respectively (with rank among all areas).  721 

 
LIC p-value JK 

% 

abundance 

OBSM 

% 

abundance 

CGFS 

Red gurnard 0.83 6e-04 0 (24) / / 

Tub gurnard 0.79 0.016 1 (24) 11.1 (2/24) 11.3 (1/24) 

Cod 0.52 0.046 6 (24) 

1.9 (2/24) 

0.0 (23/24) 

45.3 (1/24) 

0.2 (20/24) 

3.8 (7/24) 

0.0 (24/24) 

0.7 (19/24) 

1.2 (14/24) 

10.6 (2/24) 

0.5 (20/24) 

2.3 (12/24) 

3.4 (10/24) 

Common dab 0.66 0.019 1 (23) 22.2 (1/23) 43.1 (1/23) 

Whiting 0.71 0.030 0 (23) / / 

Lemon sole 0.65 0.021 1 (22) 25.5 (1/22) 27.1 (1/22) 

Starry smooth-hound 0.62 0.046 1 (22) 14.9 (3/22) 25.9 (1/22) 

Lesser-spotted dogfish 0.63 0.020 1 (24) 27.9 (1/24) 12.2 (2/24) 

Black seabream 0.67 0.043 8 (23) 

0.2 (18/23) 

0.0 (20/23) 

0.0 (21/23) 

0.2 (17/23) 

0.0 (22/23) 

7.8 (5/23) 

0.0 (23/23) 

14.8 (2/23) 

1.0 (17/23) 

0.1 (22/23) 

0.1 (21/23) 

0.3 (20/23) 

0.0 (23/23) 

12.6 (3/23) 

1.6 (13/23) 

12.7 (2/23) 
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Table 4. Correlation between Channel Ground Fish Survey (CGFS) and OBSMER annual 724 

abundance indices assessed by Pearson‘s correlation index (Pearson). LIC values are also 725 

reported for 18 species Eastern English Channel species. Tub gurnard is not represented 726 

because the year effect was not significant (p > 0.05) in the survey model. * emphasizes 727 

species for which spatial overlap was significant (p < 0.05). 728 

Common name Pearson LIC 

Poor cod 0.81 0.10 

Cod 0.72 0.52* 

John Dory 0.71 0.67 

Red mullet 0.66 0.58 

Plaice 0.65 0.32 

Lemon sole 0.63 0.65* 

Cuttlefish 0.51 0.50 

Common dab 0.24 0.66* 

Red gurnard 0.20 0.83* 

Whiting -0.01 0.71* 

Starry smooth-hound -0.05 0.62* 

Thornback ray -0.08 0.22 

Squids -0.12 0.54 

Pouting -0.13 0.39 

Lesser-spotted dogfish -0.22 0.63* 

Black seabream -0.23 0.67* 

Flounder -0.27 0.47 

Seabass -0.50 0.49 
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 730 

Figure 1. Study area of the Eastern English Channel, corresponding to the ICES division 731 

VIId. 732 

 733 

 734 

Figure 2. Mean percentage of cells kept in the analysis according to the minimal threshold of 735 

hauls set per cell. Dotted lines represent the standard deviation along the 19 species. Dashed 736 

vertical line represents the chosen limit of 10 observations.  737 

 738 



739 
Figure 3. Monthly spatial abundance distribution estimated from OBSMER and CGFS for 740 

cuttlefish. ‗X‘ represents areas where no cuttlefish was ever fished during a month in the 741 

database.  742 



 743 

Figure 4. Actual Local Index of Collocation of the 19 species investigated in the Eastern 744 

English Channel (bold black line), compared to the distribution of 5000 randomly simulated 745 

LICs (permutation test). Minimum and maximum simulated LIC are represented by the short 746 

segments. Grey boxes represent Q1, median and Q3 ranges of simulated LICs. The white box 747 

represents the range of values between Q3 and the 95
th

 percentile of simulated LICs. 748 

 749 



 750 

Figure 5. Annual abundance index estimated from Channel Ground Fish Survey (CGFS; 751 

dotted line) and OBSMER (solid line) for A) cod and B) black seabream. 752 
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