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Abstract : 
 
Partial clonality is commonly used in Eukaryotes and has large consequences for their evolution and 
ecology. Assessing accurately the relative importance of clonal versus sexual reproduction matters for 
studying and managing such species. 

Here, we proposed a Bayesian approach, ClonEstiMate, to infer rates of clonality c from populations 
sampled twice over a short time interval, ideally one generation time. The method relies on the 
likelihood of the transitions between genotype frequencies of ancestral and descendent populations, 
using an extended Wright-Fisher model explicitly integrating reproductive modes. Our model provides 
posterior probability distribution of inferred c, given the assumed rates of mutation, as well as inbreeding 
and selfing when occurring. 

Tested under various conditions, this model provided accurate inferences of c, especially when the 
amount of information was modest, i.e. low sample sizes, few loci, low polymorphism and strong linkage 
disequilibrium. Inferences remained robust when mutation models and rates were misinformed. 
However, the method was sensitive to moderate frequencies of null alleles and when the time interval 
between required samplings exceeding two generations. Misinformed rates on mating modes 
(inbreeding and selfing) also resulted in biased inferences. Our method was tested on eleven datasets 
covering five partially clonal species, for which the extent of clonality was formerly deciphered. It 
delivered highly consistent results with previous information on the biology of those species. 
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ClonEstiMate represents a powerful tool for detecting and inferring clonality in finite populations, 
genotyped with SNPs or microsatellites. It is freely available at "h t tp://https://w">https://w w w 
6.rennes.inra.fr / igepp_eng/ Productions/ Software. 
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INTRODUCTION 

Clonality or asexuality is a reproductive mode leading to the production of offspring genetically 

identical to their single parent, with the exception of somatic mutations (De Meeus et al. 2007). 

Clonal descendants are produced by a variety of mechanisms, from vegetative reproduction, such as 

rhizome elongation in angiosperms (Sintes et al. 2005), thallus fragmentation in seaweeds (Guillemin 

et al. 2008) or fission in Cnidaria (Wiedenmann et al. 2000), to different modes of apomixis (i.e. 

production of clonal seeds in plants and parthenogenesis for animals, Schön et al. 2009). This life-

history trait is ubiquitous among the tree of life and can be commonly found in Fungi (Taylor et al. 

2015), Algae (Scrosati 1998), flowering plants (Vallejo-Marín et al. 2010) and all subkingdom of 

animals (De Meeus et al. 2007). Among Eukaryotes, examples of species reproducing using strict 

clonality seem rare (Judson & Normark 1996; Neiman et al. 2009), supporting the hypothesis that 

almost all “clonal” species reproduce actually using partial clonality; i.e. a mixture of clonal and 

sexual reproduction. This reproductive mode has multiple shades of grey that can be characterized 

by the rate of clonality c indicating the relative frequency of the descendants resulting from clonal 

reproduction within populations or species (Marshall & Weir 1979). This rate of clonality deeply 

influences the dynamics of ecosystems (e.g. Cornelissen et al. 2014), of communities (Jones et al. 

2009; Neiman et al. 2009), the ecology and evolutionary trajectories of species, populations and 

individuals (Halkett et al. 2005; De Meeus et al. 2007; Avise 2008; Schön et al. 2009; Tibayrenc & 

Ayala 2012) and impacts human activities (McKey et al. 2010) and health (Tibayrenc et al. 1990). 

Studying and managing the dynamics and ecology of partially clonal organisms requires an accurate 

quantitative estimate of c within populations (Halkett et al. 2005; Duminil et al. 2007; Fehrer 2010; 

Villate et al. 2010; Allen & Lynch 2012). Partial clonality strongly constraints the range of genetic 

diversity that can evolve within species by shaping the spatial and temporal distributions of 

polymorphism within and between individuals (Sunnucks et al. 1996; De Meeus et al. 2007; Pearson 

et al. 2009; Fehrer 2010; Stoeckel & Masson 2014; Rouger et al. 2016). Indeed, clonal reproduction 

maintains genotypic combinations across larger time scales than sexuality, allowing the other 
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evolutionary forces to apply on them, and retaining successful combinations that would only be 

transient under full sexuality. Moreover, when parents unequally contribute to offspring production, 

partial clonality may create repeated genotypes within populations and some linkage disequilibrium 

among alleles all over the genome (Halkett et al. 2005). These effects of partial clonality on the 

occurrence of repeated genotypes and on genetic diversity have led scientists to interpret two 

proxies in population genetics studies to assess the rate of clonality: either by estimating clonal 

richness (ܩ ܰൗ  i.e. the ratio of different genotypes ܩ on the sample size ܰ, Dorken & Eckert 2001; 

Becheler et al. 2010; Becheler et al. 2015) or by using expertise knowledge on some identified 

population genetics indices (Villate et al. 2010; Allen & Lynch 2012). Both approaches present 

methodological limits. The observed number of discriminated genotypes within samples ܩ ܰൗ  highly 

depends on the sampling scheme and effort, and on the fact that parents unequally contribute to 

clonally producing next generations. The relationship between ܩൗܰ  and c is thus multifaceted, and 

impossible to reliably establish in most circumstances. In consequence, the proportion of identical 

genotypes within samples based on genetic markers cannot be considered as a reliable estimate of c 

(Arnaud-Haond et al. 2007). Indirect appraisal of this rate using other population genetics indices 

like ܨூௌ, ܨௌ் or linkage disequilibrium estimates still relies on field expertise but also remains largely 

inaccurate for low to moderate rates of clonality (Berg & Lascoux 2000; De Meeus & Balloux 2005; 

Arnaud-Haond et al. 2007; De Meeus et al. 2007; Navascues et al. 2010). Thus, dedicated methods 

are still missing to indirectly assess the rate of clonality in natural populations. 

A recent theoretical study shows that the probabilities of genotypic transitions (i.e. change in 

genotype frequencies over one generation) would be impacted since very low rates of clonality and 

thus can be useful for indirectly inferring the rates of clonality using temporal genotyping (Stoeckel 

& Masson 2014). Here, we built on those findings and models to propose an innovative semi-

quantitative approach, using the evolution of genotype frequencies sampled over successive 

generations to infer the instantaneous rate of clonality within populations. Such temporal sampling 
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is commonly used for directly or indirectly inferring qualitative and quantitative biological 

properties, like population size (Waples 1989; Wang & Whitlock 2003), dispersal distances (Broquet 

& Petit 2009), evolutionary forces (Stoeckel et al. 2012; Do et al. 2014), behaviors (Zamudio & 

Sinervo 2000; Lander et al. 2013) and mating systems (Franco-Trecu et al. 2015). Temporal sampling 

strategy could allow disentangling the dynamic signature of clonality from the effects of other 

evolutionary forces (Reichel et al. 2016, Rouger et al. 2016).  

In order to exploit those signatures, the present method provides the posterior probabilities of a 

user-defined range of c given the observed transitions of genotype frequencies per locus between 

two temporal samples. It relies on a Wright-Fisher-like population genetics model, which explicitly 

takes the clonal rate c into account (Stoeckel & Masson 2014), to calculate the likelihoods of tested c 

values. For each tested c value, data obtained per locus are combined in a Bayes formula to provide 

posterior probability distributions of c.  

We tested the accuracy and robustness of this newly developed method using both pseudo-

observed datasets (pods) and eleven real genotypic datasets covering a large spectrum of c over five 

species with different life cycles and ecology, which combine multiple life history traits and 

methodological limitations that were not formalized in our model. 

 

MATERIAL AND METHODS 

We developed an explicit inference method to estimate the rate of clonality within populations 

genotyped over generations that would gain on the last advances in genetic dynamics under partial 

clonality. We thus develop our mathematical equations for samples collected over two consecutive 

generations, to rapidly assess current rates of clonality and their changes over time.  
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1. Models and notations 

We developed an explicit inference method based on the theoretical transition probabilities of 

diploid genotype frequencies between ancestral and descendent generations with finite population 

sizes. This method required sampling and genotyping individuals in delimited populations sampled at 

a two-generation interval. We defined, a “delimited population” as a group of individuals that 

experience a common event of (mixed, i.e. clonal and sexual outcrossing or selfing) reproduction 

across the studied generation(s) and in which most, if not all, the pool of the studied descendants 

arises from the sampled pool of ancestors (Figure 1). The core idea of this method is that the 

evolution of genotype frequencies at each locus over one generation (hereafter named a genotypic 

transition) will differ depending on the rate of clonality c (Stoeckel & Masson 2014). This method 

uses the exact mathematical prediction of genotypic transitions over one generation given c to infer ܿ̃ observed from genotyped individuals collected in the field.  

We chose to concentrate our first efforts on the development of an inference method for diploid 

individuals because polyploid populations are characterized by complex inheritance patterns and 

problems of genotype identification due to allele copy numbers that can vary, for example, from 1 to 

3 per locus in tetraploid heterozygotes (Dufresne et al. 2014). Nevertheless, most eukaryotes have a 

life cycle which includes a diploid part (Lott et al. 2008) with the vast majority of animals and nearly 

70% of the flowering plant species being diploid (Otto & Whitton 2000). 

 

Likelihood of genotypic transition over one generation in partially clonal finite population with 

mutation 

Let consider the evolution of genotype frequencies at one locus with n alleles, in a finite and diploid 

population of size ܰ, under a mutation rate u, between two successive, non-overlapping and diploid 

generations, the ancestral one t and the descendent one t+1. Let consider that individuals transmit 

their genetic material to offspring using clonality at a rate c, sexuality with consanguinity at an 
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inbreeding rate (1 − c). φ, sexuality with selfing at a rate (1 − c). s, and thus sexuality under 

panmixy at a corresponding rate or (1 − c). (1 − φ). (1 − s). The present equations on genotypic 

transition predict the composition of genotype pools rather than the individual genotypes forming 

them.  

Let ෨ܺ௧ = ൛భభ,… ,  ൟ denotes the set of genotype frequencies observed at one locus within

the ancestral population at generation t from a sample of ௧ܰ individuals and ෨ܺ௧ାଵ = ൛ݍభభ,… ,  ൟ the set of genotype frequencies observed at the same locus oneݍ

generation after in a descendent sample of ௧ܰାଵ individuals. Note that sample size at t and t+1 can 

differ, and that ௧ܰାଵ formalizes the observed genetic drift that shaped genotypic transitions, 

provided that ෨ܺ௧ and ෨ܺ௧ାଵ are good estimates of the ancestral and descendent genotype 

frequencies, or, at least that samples at t are unbiased pictures of the ancestral genotype 

frequencies that sired the descendent sample at t+1. Whatever the generation, genotypes can be 

grouped as homozygote genotypes ܣܣ = ሼ(ܣଵܣଵ), … , ܣܣ ሽ and heterozygotes(ܣܣ) =ሼ(ܣଵܣଶ), … ,  ሽ. Over one generation, ancestral genotype frequencies at one locus evolve(ܣିଵܣ)

under the influence of genetic drift ௧ܰାଵ, mutation rate u and rate of clonality c into a pool of 

genotype frequencies expected under panmictic reproduction ܺ௧∗ = ൛భభ∗ ,… , ∗ ൟ (i.e. pool of 

genotype frequencies in the possible zygotes). The likelihood to observe a genotypic transition over 

one generation between ෨ܺ௧ to ෨ܺ௧ାଵ, knowing the quantitative strength of evolutionary forces 

( ఙܰ , ,ݑ  :c), can thus be written as ,ݏ

൫ܮ ෨ܺ௧, ෨ܺ௧ାଵ൯ = ேశభ!∏ ቀಲಲቁ!∏ ቀಲಲೕቁ!ససభ,ೕಯససభ . ∏ ൫∗ ൯ಲಲ . ∏ ቀೕ∗ ቁಲಲೕ 	ୀୀଵ,ஷୀୀଵ  eq.1 

with ௧ܰାଵ = ∑ ݍ + ∑ ೕ,ݍ  and ∀	݅, ݆ ∈ ሼ1,… , ݊ሽ.  
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In populations, if sexuality occurs with selfing and inbreeding, genotype frequencies after 

reproduction are: 

ቐ∗ = ܿ. ᇱ + (1 − ܿ). ቂ(1 − ߮). (1 − .(ݏ ൫ ݂ᇱ ൯ଶ + (1 − ߮). .ݏ ቀᇱ + ଵଶ∑ ೕᇱஷ ቁ + ߮. (1 − .(ݏ ݂ᇱ ቃೕ∗ = ܿ. ೕᇱ + (1 − ܿ). ቂ2. (1 − ߮). (1 − .(ݏ ݂ᇱ . ݂ೕᇱ + (1 − ߮). ௦ଶ . ೕᇱ ቃ  

  eq. 2 

in which ᇱ  and ೕᇱ  are the homozygote and heterozygote sets of ancestral genotype 

frequencies impacted by mutation, ݂ᇱ  and ݂ೕᇱ  are the sets of ancestral allele frequencies impacted 

by mutation, ݏ the populational rate of homogamy and ߮ the populational inbreeding rate that 

would be equivalent to an estimate of the coefficient of inbreeding in populations. 

Raw entities in previous equations are genotype frequencies in isolated finite population. What we 

name mutation hereafter acts actually as a disturbing factor of gene frequencies (in the sense of 

Wright 1931) integrating all processes that modifies inherited genotype frequencies with no specific 

direction, out of reproductive modes and genetic drift, i.e. mutation in isolated populations, low 

migration coming from indistinct and unknown populations outside the studied populations and all 

technical issues that create random genotyping errors between temporal samples. Though different 

mutation models varying with marker types can be applied in our equations, we choose to integrate 

by default the K-alleles mutation model (KAM) as it better proxies changes that mix such disturbing 

factor accounting for mutation and migration, and is commonly used for modeling microsatellite and 

SNP evolution (Cockerham 1984; Putman & Carbone 2014). KAM considers that the n alleles 

observed in the data are the only possible alleles. Mutation changes any allele to any other allele 

with equal probability. Four different alleles i, j, k and l have to be considered to generalize this 

model for our equations. Nonetheless the model still works with one, two or three alleles, which 

simplify equations below. The rate of mutation from one allele to another among the n possible 

alleles is ߤ = ௨ିଵ and the non-mutation rate is ν = 1 − u. Therefore, the ancestral genotype 

frequencies only impacted by mutation ௧ܺᇱ calculate as 
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ቐᇱ = νଶ.  + ଶߤ ቀ∑ ೕೕஷ + ∑ ೕೖஷ, ቁ + .ߤ	 ∑.ߥ ೕᇱೕஷ = ଶߤ) + .(ଶߥ ೕ + 2. .ଶߤ ൫∑ ೖೖஷ, + ∑ ೖ,ஷ, ൯ + .ߤ) ߥ + .(ଶߤ ቀ∑ ೖஷ, + ∑ ೕೖஷ, ቁ + 2. .ߤ .ߥ ቀ + ೕೕቁ
eq.3 

From the pool of genotype frequencies expected under panmictic population of finite size, whatever 

the mutation model, we can now derive the ancestral pool of frequencies after mutation as  

݂ᇱ = ᇱ + ಲಲೕᇲଶ  eq.4 

that can be used together with the ancestral genotype frequencies to predict the filial genotype 

frequencies in equation1. 

 

Semi-quantitative inference of rates of clonality considering the likelihoods of genotypic 

transitions 

To infer c from genetic data sampled over two generations, we use the likelihood equation defined 

above as classifier in a naïve Bayes approach to update the likelihoods obtained at all loci. This 

supervised learning method is one of the most efficient and successful, but mathematically simple 

and extensively studied technique for constructing classifiers (Zhang 2004; Webb et al. 2005). It 

presupposes, as a sufficient but not necessary condition, that random variables (here the genotypic 

transitions) are independent and identically distributed. This conditional independence assumption 

(also called “naïve”) is rarely true in population genetic models as in most real-world applications. 

Yet, it has been shown to be an empirically reasonable approach in many identical situations (Hand 

& Yu 2001) and can be theoretically applied if: i) dependences are evenly distributed, ii) they cancel 

each other out over inferred classes, iii) distributions of random variables sufficiently segregate over 

their means per class (Hand & Yu 2001; Zhang 2004; Webb et al. 2005). On a mathematical point of 

view, the naïve Bayes approach is more convenient since it avoids the complex mathematical 

formula and intensive calculations required to ascertain the likelihoods over all loci as coming from a 

joint distribution that would take into account the possible dependences between transitions. For a 

naïve approach, the product of the marginal likelihoods formalized per locus is sufficient. To 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

strengthen this parsimonious choice as a first step, rather than formalizing the whole complex 

dependence among loci, we thus cross-validated our inference method using pseudo-observed 

simulations (see below). We can gain information on our estimate of the posterior probability of 

rates of clonality conditionally to transitions by stacking likelihoods computed on each locus into a 

Bayes’s theorem equation. In this supervised learning method, estimated rates of clonality and 

mutation rates are discretized and assessed as values among ߢ rates of clonality ܿ̃ ∈ ሼܿଵ,… , ܿሽ and ߩ values of mutation rates ݑ ∈ ൛ݑଵ, … ,  ఘൟ. This discretization limits the computing cost ofݑ

integrating continuous functions and fits with the inference method.  

Considering that ෨ܻ௧ = ቄܺ௧ଵ෪,… , ௧ܺ෪ ቅ and ෨ܻ௧ାଵ = ቄܺ௧ାଵଵ෫,… ,ܺ௧ାଵ෫ቅ represent the respective set of 

genotypic frequencies at generation t and t+1 genotyped from ௧ܰ and ௧ܰାଵ	 sampled individuals at 

m markers/loci, the log-posterior of assessed rate of clonality conditionally to the transition from ෨ܻ௧ 
to ෨ܻ௧ାଵ and the assumed rates of mutation, inbreeding and selfing is: 

	݈݃ _ܲ൫ܿ│ ෨ܻ௧, ෨ܻ௧ାଵ, ௧ܰ, ௧ܰାଵ, ,ݑ ߮, ൯ݏ =∑ 	݈݃ ఈ൫ܮ_ ௧ܺఈ෪ , ௧ܺାଵఈ෫, ௧ܰ, ௧ܰାଵ│ܿ, ,ݑ ߮, ൯ఈୀఈୀଵݏ − ∑൫݈݃ ൫∏ ,ఈ൫ܺ௧ఈ෪ܮ ௧ܺାଵఈ෫, ௧ܰ, ௧ܰାଵ│ܿ, ,߮,ݑ ൯ఈୀఈୀଵݏ ൯ୀୀଵ ൯ (eq.5) 

We provide equation 5 as a joint distribution over genotypic transitions sampled from m loci with a 

uniform prior distribution over a bounded vector of rates of clonality. We deliberately restricted this 

equation to only one parameter, the rate of clonality, given assumed rates of mutation, inbreeding 

and selfing. Indeed the identifiability of the effects of mutation, inbreeding and selfing has not been 

properly studied yet and our ability to decipher their effect on genotypic transitions from the one of 

partial clonality seems to be limited, which thus impede a joint inference of all those parameters. 

As a complementary approach, the method also provides the Maximum a posteriori estimations of ܿ̃ 

for each locus as ܽݔܽ݉݃ݎ̃ ܲ൫ܿ│ܻݐ, ܻ ,1+ݐ ,ݐܰ ,1+ݐܰ ,ݑ ߮,  .൯ݏ
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2. Application to simulated data  

To assess the efficiency and the functionality of the method in practice and how it can be 

generalized to field and experimental datasets, we tested it on pods in which the true values of c and 

all other studied evolutionary forces are known parameters that were used for simulations. Figure 1 

illustrates the approach we used to test the method and summarizes the demo-genetic parameters 

of pods. 

To test the reliability of our method, we chose basic population features (panmictic sexuality, 1000 

individuals, mutation rate 10-3 under KAM) and basic parameters sets (two samples of 40 individuals 

at one generation interval, 10 loci, 4 alleles per locus, independence between loci) which are 

conventionally used to study empirical populations. We assessed the accuracy of the method as the 

proportion of times our method inferred the true c as the best posterior probability among 100 

replicated pods and by providing the 90% precision intervals (5% excluded on both sides of the 

mode), i.e. intervals containing 90% of the maximum a posteriori inferences over 100 replicates. 

For each pods, genotypes at each locus were drawn by randomly associating alleles (frequency of 

each allele: 1/݊, genotypes at Hardy-Weinberg proportions, i.e. maximal genetic diversity possible 

under panmixia) to constitute the initial population. Ancestral and descendent datasets in pods were 

saved at generations 50 and 51, respectively. Those conditions were chosen so that our tests are 

conservative. Indeed, in those conditions, the number of genotype frequencies to be estimated per 

sampled population is maximal which increases the average and total sampling error on genotype 

frequencies, and thus on estimated genotypic transitions. Moreover, we cannot expect to have 

reached the equilibrium which would compromise the use of genetic parameters to estimate c. To 

assess the robustness of the method (i.e. its ability to perform well even if its mechanistic and 

mathematical assumptions are somewhat violated) we then tested our method with pods in which 

we altered, one by one: i) the population properties: increasing the genetic drift (ܰ = 100), 

changing mutation rates (μ = 10ିଷ, 10ିଽ), introducing inbreeding (߮ = 0.1, 0.5, 0.9) and selfing 

ݏ) = 0.1, 0.5, 0.9) during sexual events; ii) the dataset used to infer rates of clonality: changing the 
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sampling effort in both temporal samples ( ௧ܰ = ௧ܰାଵ = 20, 30, 40, 50, 100, 500), increasing the 

number of generations between ancestral and descendent samples (ݐ + 2, ݐ + 3, ݐ + 4, ݐ + 5); iii) the 

marker properties: changing the mutation model (IAM and SMM), increasing the number of loci 

(݉ = 50, 100, 500), changing the number of alleles per loci (݊ = 3, 4, 5, 10), introducing physical 

linkage between loci (ܲݎ = 0.45, 0.25, 0.05), random genotyping errors (μ = 1%,10%) and null 

allele frequency (݂(݊ܽ) = 1%,2%, 5%, 10%, 25%). In our study, by “null allele” we mean the 

missing data due to non-amplified loci (short allele dominance, large allele dropout and null allele 

sensu stricto). All pods were simulated using 15 rates of clonality 

(ܿ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.98, 0.99, 0.999, 1).  

Among those factors, some can lead to difficulties in accurately identifying parameters, and thus 

should be dealt with increased caution at the time of providing assumed values and interpreting 

data. First, mutation and sexuality with inbreeding or selfing must be provided as given rates to the 

method. We thus analyzed the consequences of providing erroneous quantitative values, i.e. which 

would seriously depart from the real parameters in the population being analyzed. To this end, 

assumed mutation rates were provided as widely under or overestimated (by a factor ±106), 

assumed inbreeding rates as under or overestimated by ±20% and assumed selfing rates as under or 

overestimated by ±10%. Second, depending on the type of markers, different mutation models may 

apply and empirically determining the most relevant mutation model is challenging (Putman & 

Carbone 2014). Thus, we tested the robustness of inferences of ܿ̃ when pods evolved under two 

extreme alternative mutation models, Infinite-Alleles (IAM) and Stepwise-Mutation (SMM) models. 

In SMM, the rate of mutation from one allele size to its two possible other sizes becomes ߤ =  .ݑ0.5

Under SMM, the ancestral genotype frequencies are only impacted by mutation, as follows: 

൝ݎᇱ = νଶ. ݎ + ଶߤ ∑ ೕೕୀ±ଵݎ + .ߤ	 .ߥ ∑ ೕᇱݎೕୀ±ଵݎ = νଶ. ೕݎ + 2. .ଶߤ ∑ ೖೖୀ±ଵ,±ଵݎ + .ଶߤ ∑ ೖୀ±ଵ,ୀ±ଵ,ୀ±ଶݎ + .ߤ ߥ ቀ∑ ೖୀ±ଵ,ஷ±ଵݎ + ∑ ೕೖୀ±ଵ,ஷ±ଵݎ ቁ + ଶߤ ቀ∑ ೖୀ±ଵ,ୀ±ଵݎ + ∑ ೕೖୀ±ଵ,ୀ±ଵݎ ቁ +
eq.6 

Where ߱ = ቊ2. .ߤ ߥ ቀݎ + 	0	ೕೕቁݎ if	i = j ± 1if	i ≠ j ± 1 
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In IAM, every time one mutation occurred, one new allele was created.  

Third, many current datasets, especially those obtained using high-throughput sequencing, may 

involve the existence of physically linked markers or  a standard background linkage disequilibrium 

due to certain technical or biological features other than clonality. We thus tested the reliability of 

our method when increasing the degree of dependence among loci used for genotyping individuals. 

We computed pods with reduced probability of recombination between markers, 	ܲݎ. In previous 

pods, loci were simulated as fully independent markers, implying ܲݎ = 1 2ൗ . The interest of ܲݎ is that 

it can be approximately linked to ݀ (Haldane 1919), the genetic distance between loci in Morgan or 

map units using Haldane’s map function: ܲݎ = 0.5. ൫1 − ݁ିଶௗ൯ (Haldane 1919) and thus easily 

interpreted for applied datasets. 

Finally, as for all methods using genetic markers, improper and biased observations like the ones 

caused by null alleles could result in biased inferences. We thus tested the influence of null alleles by 

generating pods where loci contained 1, 2, 5, 10 and 25% of null alleles that match the classical 

distinction between negligible, moderate and high frequency of null alleles (Chapuis & Estoup 2007). 

 

 

3. Application to empirical datasets combining multiple deviations from model constraints 

To assess both the reliability and feasibility of our method in complex natural and realistic situations, 

we used eleven genotypic transitions derived from genetic data on five partially clonal species, for 

which the prevalence of clonality was previously estimated using both genetic interpretations and 

direct field measures (Table 1). These tests are also the opportunity to present real cases of the 

analysis output and the methodology to interpret them. When analyzing one population, the 

method provides a distribution of posterior probabilities of possible ܿ̃ values. Classically in Bayesian 

inference, users must identify the mode of the posterior distribution as the best inferred ܿ̃ with the 
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maximum a posteriori probability, and delimit a credible interval, i.e. typically the range of c values 

that show higher posterior probabilities than flat/uninformative prior. 

The tested species are the cultivated seaweed Rhodophyta Gracilaria chilensis, the engineer marine 

monocot plant Zostera marina, the scattered long-lived dicot tree Prunus avium, the pathogenic 

fungus Melampsora larici-populina and the cyclical parthenogenetic insect Rhopalosiphum padi. This 

applied set of species was selected because they are distributed all over the tree of life, present very 

distinct modes of clonal reproduction (Table 1) and ecological interests, and have the advantage to 

be otherwise intensively studied. Together, they also encompass a broad range of c, from very low 

to very high values (Table 1). Those datasets were based on very different numbers of microsatellite 

markers and levels of polymorphism. In addition, such data from the “real world” do not perfectly 

respect all model’s assumptions, and presents additional biological features that were not included 

in our population genetics model (e.g. long overlapping generations as in P. avium and Z. marina). 

Applying our method on such diverse sets of data and species for which rates of clonality were 

estimated by other means, aimed at providing a fair appraisal of its versatility.  

 

 

4. Comparison with CloNcaSe (Ali et al. 2016) 

The CloNcaSe method was very recently published, and is, to our knowledge, the only other method 

aiming at quantifying the amount of sexual reproduction versus the amount of clonal reproduction 

within partially clonal populations using genetic information. It was initially extended from the 

equations of Burt et al. (1996) and developed for cyclical parthenogenetic populations (N1 and N2 

numbers of events of pure clonal reproduction, separated by one event of mixed sexual/asexual 

reproduction), and relies on the probability of resampling repeated genotypes within and across 

generations to infer the proportion of sexual vs asexual generations. Ali et al. (2016) also 

recommend its use to quantitatively infer the proportion of sexual versus clonal reproduction in 

other modes of clonality. To assess the accuracy of our method and compare it to the only available 
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method dedicated to quantitatively infer the rates of clonality, we thus applied the CloNcaSe R 

package to 40 replicated pods representing fourteen rates of clonality 

(ܿ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.98, 0.99, 1). Those pods were obtained in 

population sizes of 100 and 1000 individuals (not sub-sampled to provide the best possible 

conditions ClonCaSe requires). Each individual was simulated with 100 independent loci of 10 alleles 

(KAM) that avoid obtaining low probabilities of identity, as expected in classical population genetics 

studies with about ten microsatellites loci with few alleles. Low probabilities of identity may create 

confusing repeated genotypes despite the fact that they would not share the same ancestral clonal 

lineage. Neither null allele, nor physical linkage between markers, nor selfing nor inbreeding were 

integrated in the simulations, thus none of those interfering parameters should affect the genetic 

and genotypic composition of the pods. Pods were saved at generations 50 and 51 as when testing 

ClonEstiMate. We provided the method with the known number of fully clonal cycles before and 

after the mixed (i.e. clonal-sexual) cycle between samples, setting both parameters respectively to 

N1=0 and N2=0. As equations in CloNcaSe do not take mutations into account, we only tested 

CloNcaSe for simulation with our lowest mutation rate, i.e. 10-9, which over one generation in a 

population of N=100 matches CloNcaSe constraint. We also applied CloNcaSe R package to the 15 

real data sets we used to test ClonEstiMate, providing the right parameters N1 and N2, i.e. 0 for all 

species apart for the aphid R. padi that truly reproduced using cyclical parthenogenesis. Data is 

available from the Dryad Digital Repository http://dx.doi.org/10.5061/dryad.32qh8 (Becheler et al. 

2017). 
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RESULTS & DISCUSSION 

1. Inferences from simulated data 

Model results in general conditions 

Raw temporal distributions of genotype frequencies within populations allowed inferring the true 

rates of clonality c within populations, even at low rates of clonality, while using standard minimal 

population genetics datasets. Indeed, only 40 sampled individuals per temporal sample genotyped 

with 10 low polymorphic loci (max. 4 alleles per loci) were sufficient to accurately infer the true c 

values with the maximum a posteriori probability estimates in 69 percent of cases on average, and 

100% of the maximum a posteriori probabilities inferred c values in a precision interval of ±0.1 

around their true values (Figure 2). In the rare cases where the maximum a posteriori over- or under-

estimated c values, the posterior probability distributions always included the true c values i) with 

similar, even if slightly lower, posterior probabilities, ii) as the second most probable point estimates 

of the posterior distributions, whatever the true rates of clonality, even if the posterior probability 

distributions were more spread than when the true c values were inferred (Figure 3).  

 

Improved performances when increasing datasets (individuals and loci) and polymorphism  

Increasing the sample sizes from 20 to 30, 40, 50, 100, 250 and 500 sampled individuals increased 

the accuracy and the precision of the method to infer the true c values (Figure SI1). It also increased 

the peakedness of the posterior probability distributions (Figure SI2). However, sampling only 20 

individuals tended to overestimate c (Figure SI1). 

Increasing the quantity of genotyped loci, i.e. the number of genotypic transition, logically increased 

the accuracy of our method and the peakedness of the posterior probability distributions (Figure SI3 

and Figure 4). 
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Interestingly, increasing the number of alleles per loci increased the accuracy of inferences up to a 

certain threshold (Figure SI4 and SI5), above which biased inferences occurred for the lowest rates of 

clonality. This threshold is defined by the balance between sample size and the number of alleles per 

locus that gives the number of possible genotypes whose frequency has to be estimated. With only 

40 individuals sampled, increasing the number of alleles per locus from 2 to 4 alleles increased the 

accuracy of inferences while using loci with 5 to 10 alleles (and more) biased inferences toward an 

overestimate of c when the true rates were low. Indeed, in situations where loci can have more 

possible genotypes than the number of individuals sampled, insufficient sampling would tend to give 

more weight to the more frequent genotypes and miss the less frequent ones in both temporal 

samples. New, therefore less frequent, genotypes are expected to mainly appear through sexuality, 

thus insufficient sampling minimizing changes in genotypic transition would lead to an overestimate 

of c. 

 

Limited impacts of drift, mutation and linkage among loci on inferences 

Performance of our model was maintained for populations evolving under higher genetic drift 

(ܰ = 100, Figure 2) and mutating at lower rate (μ = 10ିଽ, Figure 2). As expected, increasing the 

genetic drift increased the stochastic changes of genotype frequencies over one generation but, 

ultimately, only marginally increased the width of the interval of inferences (and thus the precision 

of estimates).  

The method seemed robust to infer true c values when populations mutated with different mutation 

models (Figure SI6). It also appeared to be robust to erroneous assumed rates of mutation (Figure 

SI7). Given values exceeding or underestimating the true mutation rate by six orders of magnitude 

(μ = 10ିଷ⬌10ିଽ) only shifted the worst inferences to ±0.2 from the true c values, while the 

majority of inferences remained accurate resulting in the similar precision intervals as the ones 

found for the reference set based on correct values. 
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Despite the fact that our equations consider loci as independent, the method still inferred the true c 

values when the 10 loci were in strong physical linkage (Figure SI8). This robustness to linkage 

among markers is consistent with the fact that our inference method is based not on genetic states 

but on genotypic transitions, which properties definitely meet the naïve Bayes constraints (Hand & 

Yu 2001).  

 

Impacts of sexuality occurring with inbreeding and selfing 

The method still showed good performance to infer the true c values when populations reproduced 

sexually under inbreeding (߮ = 0.1, 0.5, 0.9) or low to moderate rates of selfing (ݏ = 0.1, 0.5, 0.9) 

when those rates were properly informed (Figures SI9 and SI10). It only showed difficulties to 

distinguish low rates of clonality from full sexuality at very high rates of selfing (ݏ ≥ 0.9 ∩ 0 ≤ ܿ ≤0.4) which resulted to underestimate c in those populations. However, the method seemed sensitive 

to erroneous information given on inbreeding and selfing rates (Figure SI11). Providing undervalued 

rates of inbreeding tended to result in the underestimation of c values in populations reproducing at 

low rates of clonality, and the other way around. It can be noted, however, that overvaluing the rate 

of inbreeding seemed to less bias inferences than undervaluing it. Interestingly, in selfing 

populations, providing either over- and under-valued selfing rates of ±0.1 all tended to lead to an 

overestimated c in populations experiencing low and moderate clonality (0 ≤ ܿ ≤ 0.8). 

 

Technical issues: impacts of random genotyping errors or migrant gametes, null alleles and 

erroneous timing in sampling 

The performances of the method maintained when introducing disturbing factors fixed at 1% and 

10%, such as random genotyping errors or migrant gametes between temporal samples (Figure 

SI12). Providing the method the appropriate estimates of disturbing factor rates (µ) was key for the 

method to remain as accurate and precise as using datasets without disturbance. The method 

seemed robust to infer true c values when providing underestimated rates of disturbing factors. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Underestimating the disturbing factor by two orders of magnitude (µ=10-3 instead of 10-1) only 

marginally increased the width of the intervals of inferences. 

Introducing null alleles in datasets resulted in an overestimation of c values in moderate clonal 

populations beyond null allele frequencies as low as 2% (Figure SI13). Indeed, null alleles lead to the 

spurious increase of homozygote genotypes and maintain them over genotypic transition against 

heterozygotes, which is one of the signatures of clonality (rough prediction: stable homozygote 

frequencies over time) against sexuality (rough prediction: homozygote frequencies converging 

toward Hardy-Weinberg expectations over time, Stoeckel & Masson 2014, Reichel et al. 2016). 

Sampling the descendent populations after more than one generation resulted in an 

underestimation of the true c values (Figure SI14). Those underestimations increased both in 

frequency and in value as the number of generations between the ancestral and descendent 

samples increased. Indeed, an excess of changes in genotype frequencies due to the reshuffling of 

genotypes through more than one generation will be interpreted by the model as larger amounts of 

recombination. Yet, the bias was not evenly distributed along the spectrum of c: while negligible for 

extreme rates (low or high) of clonality because both respectively maintain stable Hardy-Weinberg 

proportions and stable ancestral proportions over time (Reichel et al. 2016), it is maximal for 

intermediate c values. This result confirms the fact that partial clonality has its own specific and 

nonlinear genetic dynamics. After only 2 generations, inferred c values were underestimated, but 

the bias was lower than ±0.3 from their true values for the worst inferences and of ~0.1 on average 

for c ∈[0.1 - 0.99], which still allowed a good appraisal of the rates of clonality. However, after 3, 4 or 

5 generations, biases were prohibitive for c ∈[0.1 - 0.99] with strong risks to drastically 

underestimate the true c values.  
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2. Inferences from real data 

Inferred c from real-world datasets were in line with previously proposed appraisals of the 

importance of clonality in those populations based on different knowledge of their biology (Table 2; 

Figure 4). 

 

The cultivated seaweed G. chilensis. This haploid-diploid red algae is cultivated along the Chilean 

coasts (Buschmann et al. 2008). Its production in farm is essentially based on replanting cuttings of 

crops selected for diploidy and vegetative propagation (Guillemin et al. 2008; Guillemin et al. 2013). 

This human-induced clonality depressed significantly the level of genotypic diversity of farmed 

populations as compared to wild populations (Guillemin et al. 2008), suggesting a c close to 1. We 

used a dataset from a farmed population in Chile (Guillemin et al. unpublished), sampled in 2009 and 

2010, in which the input of sexual recruits was estimated as more than enough negligible (absence 

of reproductive individuals in the farm and the haploid generation of the sexual life cycle is missing, 

Guillemin et al. unpublished). The method correctly inferred c=1, despite the low number of genetic 

markers used (5 microsatellites). 

 

The engineer marine plant Z. marina. This dataset comes from a seagrass meadow in Brittany 

(France), sampled in 2009 and 2012. This species reproduces sexually only once a year through 

flowers that blossoms in spring. In 2012, a large clone was sampled, with at least 11m between two 

ramets, suggesting an active rhizomatous growth. Along these 3 years, the clonal richness decreased 

from 0.93 to 0.65 (Becheler et al. 2014). We thus expected intermediary rates of clonality for this 

species. Our method inferred c=0.5. Yet, as the number of generations between 2009 and 2012 is 

likely higher than one, considering the effects we identified on pods (Figure SI13), the true rate of 

clonality should thus be probably above 0.5. 
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The pathogenic fungus M. larici-populina. This fungal pathogen is responsible for foliar rust disease 

on poplar trees and is a typical example of obligate cyclical parthenogenesis (Xhaard et al. 2012), in 

which around ten rounds of clonal reproduction alternate once a year with a unique and 

synchronized event of sexual reproduction. Here we chose a population living in quasi-isolation 

upstream the Durance River (Xhaard et al. 2012), sampled twice at a year interval. In accordance 

with the obligate cyclical parthenogenetic life cycle, a single event of sex separates the two 

successive samplings. However, about 10 generations of clonal reproduction have occurred between 

parental and descended samplings. Accordingly, the model inferred c=0.2, highlighting the slight but 

significant occurrence of clonal reproduction, even though no genotype was shared between 

sampling periods. 

The scattered long-lived tree P. avium. Wild cherry trees combine clonality through sprouting and 

sexual reproduction controlled by a gametophytic self-incompatibility system. Clonality was 

extensively estimated in the species using isozymes (Frascaria et al. 1993; Ducci & Santi 1997; 

Gömöry & Paule 2001) and microsatellites (Schueler et al. 2006; Stoeckel et al. 2006; Vaughan et al. 

2007a; Vaughan et al. 2007b) leading to contrasting values of the G/N index. The parental 

population was composed by adult trees of different ages and fitnesses (Stoeckel et al. 2012). In 

2002 and 2003, seeds were collected as the production of one parental perennial population. 

Groups of these seeds originated from a single mother (substructure of inheritance) and long-

distance migration was detected due to insect pollination (Stoeckel et al. 2008; Lander et al. 2013; 

Stoeckel et al. 2012). In 2002 and 2003, the expected c was 0 but our method inferred a slightly 

higher value (c=0.1). The weak overestimation may be linked to the genetic substructure within the 

seed pools. In 2004, a population of wild cherry seedlings was collected on the ground as young 

shoot leaves. These seedlings mainly originated from seeds (visible at roots) and more marginally 

from vegetative propagation (phalanx strategy from seeds and sprouting). Our method inferred 

c=0.2, a slightly higher value than found in seeds which is thus highly consistent with field 

information.  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

The parasitic insect R. padi. Aphids have complex mechanisms of coexistence and inheritance of 

sexuality and clonality in populations (Simon et al. 2010; Jaquiery et al. 2014). In R. padi, two kinds of 

lineages coexist. On the one hand, sexual lineages reproduce through obligate cyclical 

parthenogenesis and have a full commitment to the production of sexual forms during the studied 

period. On the other hand, facultative asexual lineages have a mixed investment in the production of 

both sexual and parthenogenetic forms, and hence survive clonally from year to year (Halkett et al. 

2005). In this system, the sexual forms migrate to a secondary host where only sexual reproduction 

takes place, which enables to collect them specifically. A previous study, Halkett et al. (2006) drew 

the first assessment of the rate of clonality of a given population. The abundance of both kinds of 

lineages and their contribution to the reproductive effort were monitored for 11 weeks. The results 

show that the abundance of sexual lineages collapsed after week 5 (Halkett et al. 2006). We thus 

expect an increase of the inferred rates of clonality from low to high levels as time elapsed. The 

instantaneous variations of the rate of clonality perfectly match the field observations from Halkett 

et al. (2006). During the first weeks of survey, clonality was medium (between 0.3 and 0.5). We then 

observe a clear shift toward higher values of c. At the end of the survey, the model indeed inferred 

strong rate of clonality between 0.8 and 0.95. Those last estimations are consistent with the fact 

that clonal lineages are in fact facultative sexual and produce under stress some sexual descendants 

among a majority of clonal progeny. 

 

3. Comparison with CloNcaSe inferences 

CloNcaSe (Ali et al. 2016) was the first published method allowing quantitative estimates of the rate 

of sex versus clonality within populations subjected to cyclical parthenogenesis. To summarize 

briefly, this method used the probability to observe repeated genotypes as a proxy for rates of 

clonality. Additionally, it provides estimate for population size. Like our method, ClonNcaSe requires 

temporal samples and users have to provide information on the number of generations that 

separates samples. 
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We tested CloNCase estimates on the whole simulated populations containing 100 and 1000 

individual genotyped with 100 independent loci. Results are provided in Table 2 (all details are 

available on Dryad repository DOI:10.5061/dryad.32qh8). Based on our pods, when ܿ ≤ 0.9, the 

CloNCase method assessed c with difficulty. It provided highly variable inferred effective sizes, e.g. 

ranging for example from 3 to 3*1026 in populations of 100 individuals (Table 2). The discrepancies 

between true and inferred values of both c and Ne may come from the fact that CloNcaSe estimates 

clonality from repeated genotypes within and/or among generations, while ClonEstiMate infers 

clonality using the likelihoods of changes in genotype frequencies over generations. CloNcaSe was 

formalized from the observed distribution and life cycle of Puccinia striiformis, a cyclical 

parthenogenetic species which mostly reproduce using full clonality in expanding populations and 

sporadically using few synchronized sexual events (Ali et al. 2016), thus using concepts that may 

appear to be true for high clonal species but are not generally applicable to other partially clonal 

species. Even if trivial, it is important to remember that clonality does not equal the rate of 

occurrence of repeated genotypes ܩ ܰൗ  (Arnaud-Haond et al. 2007), and depending on sampling 

density many genotypes would appear unique while in reality they are not. For example, if one 

ancestor provides one clonal and one sexual descendant per generation on average, it is unlikely to 

find many repeated genotypes due to clonality even though the population rate of clonality is indeed 

50%. Only the accumulation of stochastic variations along generations in clonal production can lead 

to the detection, after many generations, of a power-law (Pareto) distribution of the number of 

ramets within genets that would indeed indicate the significant occurrence of clonal reproduction. 

Yet, even in such case, inference methods based on repeated genotypes would likely miss the 

background c=50% of the mass of genets with no detected repeated ramets.  

Moreover, repeated genotypes in species with life cycle similar to Puccinia striiformis will be still 

hard to observe with samples of realistic size when taken from very large populations (i.e. blooming 

planktonic populations of marine unicellular dinoflagellates, Dia et al. 2014; extended sea grass 

meadows, Arnaud-Haond et al. 2007). This limitation may explain why ClonCaSe mis-inferred more 
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sex than expected in our aphid dataset on the last sample (i.e. sample “week 5”, Table 1). In fact, 

repeated genotypes can be caused by clonality and unequal production of clonal descents between 

genets but also in purely sexual populations by, for example, twinning, inbreeding or selfing. 

However, ClonCaSe, if applicable, should perform better than ClonEstiMate on datasets with null 

alleles because repeated genotypes can be expected to be evenly impacted by such technical 

artefact. 

 

4. Methodological recommendations on sampling and marker properties for precise 

estimates 

Identifying the way genes are transmitted in space and time in natural populations and obtaining 

accurate estimates of the relative importance of alternative reproductive modes such as sex and 

clonality is crucial for understanding the ecology and evolution of species (Duminil et al. 2007, 

Fehrer 2010). The method presented here is the first comprehensive attempt to pave the way for a 

reliable estimate of the clonality rate, despite some limitations and recommendations to which users 

should be aware. 

In terms of sampling size, we recommend all users sample at least 30 individuals per population and 

sample period, and to target samples of 50 individuals to ensure confident estimates of genotype 

frequencies. Those sample sizes are congruent with classical standard recommendations for 

population genetic studies (Kalinowski 2005, Hale et al. 2012, Fung & Keenan 2014). Inference of c 

values appears acceptable when up to two generations separate putative ancestral and descendent 

populations but were seriously biased for wider time lag. We therefore recommend users to respect 

as much as possible the modelling assumption that only one generation separates the ancestral and 

descendant populations. This objective can be addressed using basic naturalist approaches, either i) 

by classifying individuals by age using adapted biometrics or physiological methods, or ii) to sample 

the descendent populations after one average generation-time or after a time equivalent to one 

average breeding-season. If no naturalistic or only vague information is available to disentangle 
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generations, users must be aware that by using samples separated by more than one generation, 

they risk to seriously overestimate sex when rates of clonality are intermediate. In case this is 

suspected, the inferred ܿ̃ has to be interpreted as a minimal rate of clonality. As detailed in 

equations, our method does not necessarily need a direct parentage between the genotyped 

individuals of the two temporal samples. Both samples rather have to give a representative picture 

of the genotype frequencies within both temporal populations at all genotyped loci. 

About ten loci with 4 alleles seem sufficient to get accurate inferences, even if more markers 

enhance the peakedness of the posterior probability distribution on its best inference. Loci do not 

need to be physically independent on genomes. However, users should notice that, in case of high 

linkage, like in sequences or for physically close SNPs, the naïve Bayes approach would yield to infer 

the correct c but with misleading shapes of the posterior distributions. Expectedly when the same 

information is spuriously multiplicated, posterior probability distribution will appear peakier than 

they should be if conditional likelihoods over all loci had been explicitly taken into account because 

of physical linkage. Our analyses on mutation models showed that our method can be used with 

different types of markers as long as they are codominant (e.g. microsatellites and SNP). Providing 

the method erroneous rates of disturbing factor (which embed mutation, migrant gametes and 

random genotyping errors) did not seem to affect much the robustness of estimates. However, loci 

with more than 1% of null allele should be discarded as they tend to induce an overestimation of the 

rates of clonality.  

Locus polymorphism must be adjusted to the sample sizes to optimize the precision of estimates. 

Indeed, the number of possible genotypes ( ܰ௧௬௦) rapidly increases with the number of alleles 

(݊) ܰ௧௬௦ = ಲ.(ಲାଵ)ଶ  (e.g. Reichel et al. 2015). From our current results, we empirically 

recommend ensuring that the sample size of both temporal samples exceeds at least twice the 

possible number of different genotypes at each locus. Markers with few alleles, like SNP and many 

microsatellites with fewer than 5 alleles, should be preferentially selected, especially when using low 

sample size ( ௦ܰ ≤ 50), as they would ensure more precise estimates of genotype frequencies 
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than highly polymorphic ones. Since the consequences of inbreeding, selfing and partial clonality 

cannot be disentangled using genotypic transitions to the date, we recommend independently 

assessing inbreeding and selfing rates, when occurring, before using our method, to provide it with 

the best assumed values. 

Our results analyzed the behavior of the method in various conditions using distributions of 

maximum a posteriori inferences and precision intervals. Future studies will mostly have to interpret 

one posterior probability distribution per population and only one maximum a posteriori. We 

propose future studies to report inferences as typical Bayesian credible intervals, i.e. ranges of c 

values that would have higher posterior probabilities than a non-informative prior. We showed that, 

in the rare but existing cases of mis-inference, posterior probability distributions were flatter than 

usual but always included the true c value (i.e. true c value generally had a posterior probability 

similar to its maximum, or was ranked as the second-highest probabilities). Finally, we also 

recommend discussing and interpreting the credible interval of inferences provided by ClonEstiMate 

in the light of i) biological knowledge available, ii) inferences obtained from other methods, currently 

CloNcaSe (Ali et al. 2016) and qualitative classes considering that studied populations are at 

equilibrium proposed by De Meeus et al. (2007). 

 

CONCLUSION 

We proposed a Bayesian method based on the likelihoods of transitions of genotype frequencies 

between two samples, one ancestral and one descendent, which provide accurate quantitative 

inference of clonality in populations. This method works even in the absence of equilibrium between 

drift and mutation and rates of clonality, which is of primary importance for some combinations of 

those evolutionary forces (Reichel et al. 2016). This method proved to be efficient and functional 

even when using few makers (i.e. ten microsatellites) or physically linked markers, and when using 

reduced sampling effort. It seems robust when providing misleading assumed mutation rate or when 

applied on genetic markers that do not mutate under the specified KAM but remains sensitive to 
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erroneous assumed values of inbreeding and selfing rates, null alleles and sampling time interval 

greater than two generations. Genomes, SNP or microsatellites data can thus be used and even 

mixed when analyzed with this method. We believe that, living in a world where clonality is 

ubiquitous, our method will be useful for population geneticists dealing with partially clonal species, 

to make rational quantitative interpretations of genetics data. Its performance to estimate low rates 

of clonality enables for the first time the possibility for future studies to screen natural populations, 

at low cost, for the natural occurrence of suspected but infrequent clonal reproduction events (e.g. 

vertebrates: Avise 2015, Dudgeon et al. 2017). 
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Data accessibility 

The method is available at http://www6.rennes.inra.fr/igepp_eng/Productions/Software as binaries 
for Windows and GNU/Linux operating systems. It has no restrictions on the number of markers that 
can be analyzed and should work in minutes on all current laptop and desktop computers, without 
restriction other than computation time that will depend on the number of markers and of 
populations analyzed. Data files must be formatted as in the example files and outputs can be read 
as explained in the user guide.  
Data of 1) the cross-validation of ClonEstiMate using pods, 2) the distributions of posterior 
probabilities of c values provided by ClonEstiMate when true c=0.4 and 3) the estimations of c by 
CloNcaSe, are available from the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.32qh8 
 
 

Tables 

Table 1 Basic information about the five partially clonal species included in this analysis. R 
corresponds to the clonal richness, assessed for each time-step (R = [G-1]/[N-1], G and N being the 
number of distinct clonal lineages and the number of sampling units, respectively). All of these 
species were genotyped with microsatellite markers. Genotyping errors, inbreeding and selfing were 
assumed null. Genotypic datasets are available on the Dryad repositories indicated on each 
reference papers (Z. marina: populations of Sainte-Marguerite. G. chilensis: population of Chaica. M. 
larici-populina: populations of Prelles. P. avium: populations of Saint-Gobain. R. padi, population of 
the tree B). 

Species 
Type of 
partial 

clonality 

refere
nce 

num
ber 
of 

mar
kers 

samp
ling 
date 

samp
le size 

N 

clona
l 

richn
ess R 

reprod
uctive 
rhyth

m 

expect
ed 

rate of 
clonali

ty 

ClonEsti
Mate 

inferred 
c  

CloNcaSe 

Ne s c=1-s 

Marine 
phaneroga
m 
(Zostera 
marina) 

rhizomat
ic 
elongati
on 

Bechel
er et 
al. 
2014 

9 

2009 30 0.93 

annual 
mediu

m 
0.5 66 1.00 0.00 

2012 30 0.65 

Red alga 
(Gracilaria 
chilensis) 

fragment
ation  

Guille
min et 
al. 
Unpub
lished 
data 

5 

2009 26 0.20 

annual 
fully 

clonal 
1 

9.34E+0
8 

0.18 0.82 
2010 27 0.23 

Poplar Rust 
(Melampsor
a larici-
populina) 

clonal 
sporulati
on 

Xhaard 
et al. 
2012 

21 

2008 24 1.00 

annual low 0.2 6.52E+6
5 

1.00 0.00 
2009 42 1.00 

Wild 
Cherry tree 
(Prunus 

clonal 
sproutin
g 

Stoeck
el et 
al. 

7 
2000 235 0.47 

annual 
2002 904 0.98 null 0.1 

5.95E+0
4 

0.99 0.01 
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avium) 2006  
2003 654 0.99 null 0.1 

6.29E+0
4 

0.46 0.54 

2004 154 0.94 low 0.2 1583 0.25 0.75 

Aphid 
(Rhopalosip
hum padi) 

cyclical 
partheno
genesis 

Halkett 
et al. 
2006 

8 

3rd 
week 

31 1.00 

annual 

increas
ing 

contin
uously 
from 

mediu
m to 
high 

    
5th 

week 
40 0.46 0.5 20 0.25 0.75 

8th 
week 

47 0.61 0.3 591 0.45 0.55 

9th 
week 

17 0.69 0.8 
2.68E+0

2 
0.00 1.00 

10th 
week 19 0.67 0.95 

5.00E+0
9 0.04 0.96 

11th 
week 

10 0.89 0.9 1.78E+0
9 

0.32 0.68 

 

Table 2 Inferences from CloNcaSe, based on our standard simulated populations (for N=100 and an 
exhaustive sampling, 100 independent loci evolving under KAM, random mating). As the model of 
CloNcaSe does not take mutations into account, we provided only results based on populations 
simulated for our lowest mutation rate, i.e. 10-9. Additional CloNcaSe’s outputs are available on 
Dryad (Doi:10.5061/dryad.32qh8). Averaged values were assessed through 40 repetitions for each 
combination of model’s parameters. 

 

c N µ/assu
med µ 

 rate of sex s deduced rate of 
clonality c = 1-s  

averaged 
deviation 
from true 

c 
 Mea

n s SE s IC(95%
) 

mea
n c SE c IC(95%

) 
 

0 100 1e-09  0.00 1.28E-
29 

4.09E-
30 1.00 1.12E-

16 
3.60E-

17  1.00 

0.1 100 1e-09  0.20 2.23E-
01 

7.13E-
02 0.80 2.23E-

01 
7.13E-

02  0.70 

0.2 100 1e-09  0.18 1.92E-
01 

6.16E-
02 0.82 1.92E-

01 
6.16E-

02  0.62 

0.3 100 1e-09  0.08 1.17E-
01 

3.74E-
02 0.92 1.17E-

01 
3.74E-

02  0.62 

0.4 100 1e-09  0.08 1.05E-
01 

3.35E-
02 0.92 1.05E-

01 
3.35E-

02  0.52 

0.5 100 1e-09  0.08 1.15E-
01 

3.67E-
02 0.92 1.15E-

01 
3.67E-

02  0.42 

0.6 100 1e-09  0.05 6.64E-
02 

2.12E-
02 0.95 6.64E-

02 
2.12E-

02  0.35 

0.7 100 1e-09  0.05 6.39E-
02 

2.04E-
02 0.95 6.39E-

02 
2.04E-

02  0.25 

0.8 100 1e-09  0.03 5.28E-
02 

1.69E-
02 0.97 5.28E-

02 
1.69E-

02  0.17 

0.9 100 1e-09  0.03 4.35E-
02 

1.39E-
02 0.97 4.35E-

02 
1.39E-

02  0.07 

0.95 100 1e-09  0.03 4.01E-
02 

1.28E-
02 0.97 4.01E-

02 
1.28E-

02  0.02 

0.98 100 1e-09  0.02 2.74E-
02 

8.77E-
03 0.98 2.74E-

02 
8.77E-

03  0.00 

0.99 100 1e-09 0.02 2.92E- 9.34E- 0.98 2.92E- 9.34E- -0.01 
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02 03 02 03 

1 100 1e-09  0.01 2.10E-
02 

6.71E-
03 0.99 2.10E-

02 
6.71E-

03  -0.01 

0 1000 1e-09  0.00 1.28E-
29 

1.27E-
31 1.00 1.12E-

16 
1.11E-

18  1.00 

0.1 1000 1e-09  0.15 1.63E-
01 

1.61E-
03 0.85 1.63E-

01 
1.61E-

03  0.75 

0.2 1000 1e-09  0.04 7.01E-
02 

6.95E-
04 0.96 7.01E-

02 
6.95E-

04  0.76 

0.3 1000 1e-09  0.05 6.59E-
02 

6.53E-
04 0.95 6.59E-

02 
6.53E-

04  0.65 

0.4 1000 1e-09  0.02 2.97E-
02 

2.94E-
04 0.98 2.97E-

02 
2.94E-

04  0.58 

0.5 1000 1e-09  0.02 2.50E-
02 

2.48E-
04 0.98 2.50E-

02 
2.48E-

04  0.48 

0.6 1000 1e-09  0.03 3.30E-
02 

3.27E-
04 0.97 3.30E-

02 
3.27E-

04  0.37 

0.7 1000 1e-09  0.01 2.06E-
02 

2.04E-
04 0.99 2.06E-

02 
2.04E-

04  0.29 

0.8 1000 1e-09  0.02 2.49E-
02 

2.47E-
04 0.98 2.49E-

02 
2.47E-

04  0.18 

0.9 1000 1e-09  0.01 1.65E-
02 

1.64E-
04 0.99 1.65E-

02 
1.64E-

04  0.09 

0.95 1000 1e-09  0.01 1.80E-
02 

1.79E-
04 0.99 1.80E-

02 
1.79E-

04  0.04 

0.98 1000 1e-09  0.01 1.87E-
02 

1.85E-
04 0.99 1.87E-

02 
1.85E-

04  0.01 

0.99 1000 1e-09  0.01 1.67E-
02 

1.66E-
04 0.99 1.67E-

02 
1.66E-

04  0.00 

1 1000 1e-09  0.00 4.17E-
03 

4.13E-
05 1.00 4.17E-

03 
4.13E-

05  0.00 

 

Legends of figures: 

 

Figure 1 Summarized approach and notations of the model.  

Figure 2 Relationships between real and inferred c, using pseudo-observed data generated in 
respect of the model’s assumptions (pods of reference, see Material & Methods for details). Over 
100 repetitions, the median values were provided for each tested rate of clonality (grey dots). 
Intervals of confidence at 90% (black dashed lines) were determined by excluding the 10 extremal 
inferred values of c (i.e. the 5 minimal and 5 maximal). 

Figure 3 Posterior distribution of inferred rates of clonality in pods reproducing at c=0.4, in a 
population of 1000 individuals mutating at µ=10-3 in KAM, two samples of 40 individuals at one 
generation interval, 10 loci, 4 alleles per locus, physical independence between loci. Posterior 
distribution with black-filled points is the typical posterior distribution obtained in 56% of the 
replicates that were accurately inferred to be c=0.4; with grey-filled points, the typical posterior 
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points, the typical posterior distribution 
c=0.3. 

Figure 4 Posterior distributions of rates 
number of simulated loci (from the darke
respectively). 

Figure 5 Distributions of posterior proba
datasets from five very different species,
clonality consistent with the ones previo
direct field measures (for details, see Tab

  

cates that were overinferred as c=0.5; with blank-filled
obtained in 21% of the replicates that were underinfe

of clonality in pods reproducing at c=0.4 with an incre
er to lighter shades of grey: 10, 50, 100 and 500 loci 

abilities assessed on the real datasets. On those eleve
, maximum a posteriori probabilities identified rates o
usly deciphered using both genetic interpretations an
ble 1).  
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