

#### EC contract no. MARE/2012/10

Knowledge base for growth and innovation in ocean economy: Assembly and dissemination of marine data for seabed mapping – Lot #3

## EUSeaMap

## Broad Scale Seabed Habitat Mapping Technical Guide

#### Based on the example of the Black Sea basin

Author: Mickaël Vasquez (orcid.org/0000-0002-7288-2394)

August 2017 - Version 1



| 1.           | Intro                                                                                                      | duct                                        | ion                                                                                                                                                                           | 5                                                                                                    |
|--------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 2.           | . Vocabulary and concepts                                                                                  |                                             |                                                                                                                                                                               | 5                                                                                                    |
| 3.           | Mod                                                                                                        | ellin                                       | g the presence of the habitat descriptor classes                                                                                                                              | 6                                                                                                    |
| 4.           | GIS p                                                                                                      | oroce                                       | ssing                                                                                                                                                                         | 6                                                                                                    |
| 4            | .1.                                                                                                        | Proc                                        | lucing layers of habitat descriptor on extensive areas                                                                                                                        | 6                                                                                                    |
|              | 4.1.1                                                                                                      |                                             | Scaling up GLMs/fuzzy laws                                                                                                                                                    | 6                                                                                                    |
|              | 4.1.2                                                                                                      |                                             | Heads-up delineation                                                                                                                                                          | 7                                                                                                    |
|              | 4.1.3                                                                                                      | l.                                          | Coding convention in the Black Sea for habitat descriptor classes                                                                                                             | 7                                                                                                    |
| 4            | .2.                                                                                                        | Deri                                        | ving the habitat map                                                                                                                                                          | 8                                                                                                    |
|              | 4.2.1                                                                                                      |                                             | The habitat map: a simple sum of the habitat descriptor raster layers                                                                                                         | 8                                                                                                    |
|              | 4.2.2                                                                                                      |                                             | Translating 5-digit codes in habitat classes names                                                                                                                            | 8                                                                                                    |
| 5.           | Some                                                                                                       | e par                                       | ticularities of the Black Sea basin                                                                                                                                           | 9                                                                                                    |
| 5            | .1.                                                                                                        | Whe                                         | n mud and sandy mud seabed substrates meet the infralittoral                                                                                                                  | 9                                                                                                    |
| 5            | .2.                                                                                                        | Infra                                       | littoral/circalittoral modelling: soft bottoms vs. hard bottoms                                                                                                               | . 10                                                                                                 |
| 5            | .3.                                                                                                        | Som                                         | e habitat descriptor classes combinations occur but are not acknowledged                                                                                                      | . 10                                                                                                 |
| 6.           | Worl                                                                                                       | kflow                                       | I Models for the Black Sea                                                                                                                                                    | . 11                                                                                                 |
|              |                                                                                                            |                                             |                                                                                                                                                                               |                                                                                                      |
| 6            | .1.                                                                                                        | Com                                         | pute probability                                                                                                                                                              | . 11                                                                                                 |
| 6            | .1.<br>6.1.1                                                                                               | Com                                         | pute probability                                                                                                                                                              | . 11<br>. 12                                                                                         |
| 6            | .1.<br>6.1.1<br>6.1.2                                                                                      | Com                                         | pute probability<br>Inputs<br>Outputs                                                                                                                                         | . 11<br>. 12<br>. 12                                                                                 |
| 6            | .1.<br>6.1.1<br>6.1.2<br>6.1.3                                                                             | Com<br><br>                                 | pute probability<br>Inputs<br>Outputs<br>Processes                                                                                                                            | . 11<br>. 12<br>. 12<br>. 12                                                                         |
| 6            | .1.<br>6.1.1<br>6.1.2<br>6.1.3<br>.2.                                                                      | Com<br><br><br>S.<br>Bioz                   | pute probability<br>Inputs<br>Outputs<br>Processes<br>one processing                                                                                                          | . 11<br>. 12<br>. 12<br>. 12<br>. 13                                                                 |
| 6            | .1.<br>6.1.1<br>6.1.2<br>6.1.3<br>.2.<br>6.2.1                                                             | Com<br><br><br>Bioz                         | pute probability<br>Inputs<br>Outputs<br>Processes<br>one processing<br>Inputs                                                                                                | . 11<br>. 12<br>. 12<br>. 12<br>. 13<br>. 13                                                         |
| 6            | .1.<br>6.1.1<br>6.1.2<br>6.1.3<br>.2.<br>6.2.1<br>6.2.2                                                    | Com<br><br>Bioz                             | pute probability<br>Inputs<br>Outputs<br>Processes<br>one processing<br>Inputs<br>Outputs                                                                                     | . 11<br>. 12<br>. 12<br>. 12<br>. 13<br>. 13<br>. 17                                                 |
| 6            | .1.<br>6.1.1<br>6.1.2<br>6.1.3<br>.2.<br>6.2.1<br>6.2.2<br>6.2.3                                           | Com<br><br>Bioz                             | pute probability<br>Inputs<br>Outputs<br>Processes<br>one processing<br>Inputs<br>Outputs<br>Processes                                                                        | . 11<br>. 12<br>. 12<br>. 12<br>. 13<br>. 13<br>. 13<br>. 17                                         |
| 6<br>6       | .1.<br>6.1.1<br>6.1.2<br>6.1.3<br>.2.<br>6.2.1<br>6.2.2<br>6.2.3<br>.3.                                    | Com<br><br><br>Bioz<br><br><br>Habi         | pute probability<br>Inputs<br>Outputs<br>Processes<br>one processing<br>Inputs<br>Outputs<br>Processes<br>tats processing                                                     | . 11<br>. 12<br>. 12<br>. 12<br>. 13<br>. 13<br>. 13<br>. 17<br>. 17<br>. 23                         |
| 6<br>6       | .1.<br>6.1.1<br>6.1.2<br>6.1.3<br>.2.<br>6.2.1<br>6.2.2<br>6.2.3<br>.3.<br>6.3.1                           | Com<br><br><br>Bioz<br><br>Habi<br>         | pute probability<br>Inputs<br>Outputs<br>Processes<br>one processing<br>Inputs<br>Outputs<br>Processes<br>tats processing<br>Inputs                                           | . 11<br>. 12<br>. 12<br>. 12<br>. 13<br>. 13<br>. 13<br>. 17<br>. 17<br>. 23<br>. 23                 |
| 6<br>6       | .1.<br>6.1.1<br>6.1.2<br>6.1.3<br>.2.<br>6.2.1<br>6.2.2<br>6.2.3<br>.3.<br>6.3.1<br>6.3.2                  | Com<br><br><br>Bioz<br><br>Habi<br>         | pute probability<br>Inputs<br>Outputs<br>Processes<br>one processing<br>Inputs<br>Outputs<br>Processes<br>tats processing<br>Inputs<br>Outputs                                | . 11<br>. 12<br>. 12<br>. 12<br>. 13<br>. 13<br>. 13<br>. 17<br>. 23<br>. 23                         |
| 6            | .1.<br>6.1.1<br>6.1.2<br>6.1.3<br>.2.<br>6.2.1<br>6.2.2<br>6.2.3<br>.3.<br>6.3.1<br>6.3.2<br>6.3.3         | Com<br><br><br>Bioz<br><br><br>Habi<br><br> | pute probability<br>Inputs<br>Outputs<br>Processes<br>one processing<br>Inputs<br>Outputs<br>Processes<br>tats processing<br>Inputs<br>Outputs<br>Processes                   | . 11<br>. 12<br>. 12<br>. 12<br>. 13<br>. 13<br>. 13<br>. 17<br>. 23<br>. 23<br>. 23<br>. 24         |
| 6<br>6<br>7. | .1.<br>6.1.1<br>6.1.2<br>6.1.3<br>.2.<br>6.2.1<br>6.2.2<br>6.2.3<br>.3.<br>6.3.1<br>6.3.2<br>6.3.3<br>Supp | Com<br><br><br>Bioz<br><br>Habi<br><br><br> | pute probability<br>Inputs<br>Outputs<br>Processes<br>one processing<br>Inputs<br>Outputs<br>Processes<br>tats processing<br>Inputs<br>Outputs<br>Processes<br>ental material | . 11<br>. 12<br>. 12<br>. 12<br>. 13<br>. 13<br>. 13<br>. 17<br>. 23<br>. 23<br>. 23<br>. 24<br>. 27 |

#### **1. Introduction**

This technical guide aims to help the reader understand, with a focus on the Black Sea basin, what composes the GIS workflow models that were developed as part of EMODnet Seabed Habitats<sup>1</sup> phase 2 to produce a broad scale seabed habitat map, EUSeaMap.

The general methods that are employed highly build on a methodology that was originally developed within the framework of MESH Project whose general principles are described in Coltman et al (2008). We highly recommend this short document be read before going through the current one.

Further explanation on the way we employ some concepts such as fuzzy laws or Generalized Linear Models (GLM) in the context of broad scale seabed habitat mapping will be found in the EUSeaMap phase 2 technical report Populus et al (2017). We particularly recommend sections 2.4 and 2.5, as well as appendixes 9 and 12.

#### 2. Vocabulary and concepts

A habitat is the combination of multiple environmental characteristics. In habitat classifications these environmental characteristics are formulated via what we will refer to all along this document as 'habitat descriptors', which in the seafloor section of the European classification EUNIS<sup>2</sup> is a seabed substrate type, a biological zone or any other seabed characteristic. For example the habitat "high energy infralittoral rock" is described via three habitat descriptors: an energy regime (high energy), a biological zone (infralittoral) and a substrate type (rock). The habitat descriptors have their own classification, e.g. in the Atlantic the energy regime habitat descriptor classification comprises 3 classes: high, moderate and low.

In the Black Sea, where the EUNIS classification is not applicable, the habitat classification that was used comprises 3 habitat descriptors: the oxygen regime (oxic, suboxic, anoxic), the seabed substrate type (mud, sand, coarse sediment, mixed sediment, sandy mud, muddy sand and rock) and the biological zone (infralittoral, shallow circalittoral, deep circalittoral, bathyal and abyssal). Another one was used, not visible in the name of the habitat but of paramount importance (see section 5.1). We named it 'local biogeography' and it comprises 3 classes: 'river-influenced', 'sheltered area' and 'other'.

A habitat descriptor class typically comprises two boundaries: a upper and a lower. The upper boundary is the one that the class shares with its upper neighbour class in the habitat descriptor classification, and the lower boundary is the one that the class shares with its lower neighbour. For instance for the biological zone 'shallow circalittoral' the upper boundary is the one that it shares with the infralittoral, while the lower boundary is the one that it shares with the deep circalittoral. However, some habitat descriptor classes have one boundary only, e.g. the 'oxic' oxygen regime only has a lower boundary because this class is at the uppermost level in the oxygen regime habitat descriptor classification.

<sup>&</sup>lt;sup>1</sup> http://www.emodnet-seabedhabitats.eu/

<sup>&</sup>lt;sup>2</sup> http://eunis.eea.europa.eu/habitats.jsp

#### 3. Modelling the presence of the habitat descriptor classes

When feasible, the presence of each individual habitat descriptor class is modelled using either Generalized Linear Models (GLM) or fuzzy laws. Details are given in Populus et al (2017) on how these GLMs and fuzzy laws are fitted in the approach developed by the EMODnet Seabed Habitats project.

Basically, with this approach a GLM/fuzzy law is used to predict the presence of a habitat descriptor class given the unique environmental variable which explains that presence (e.g. light quantity available at the seabed explains the presence of the infralittoral). When fitted, a GLM/fuzzy law provides the presence probability of the habitat descriptor class via an equation which is in the form

 $P(X) = e^{ax+b} / (1+e^{ax+b})$  for a GLM,

P(X) = ax+b for a fuzzy law

where X is the environmental variable value, P(X) is the probability of the habitat descriptor class occurrence, and a and b are respectively the slope and the intercept of the GLM or the fuzzy function.

In order to predict the presence of a habitat descriptor class either one GLM/fuzzy law is required or a set of two GLMs/fuzzy laws are required: one if the habitat descriptor class has one boundary only, two if it has two boundaries.

For each GLM/fuzzy law a probability cut-off (also referred to as threshold) value is also determined so that any predicted presence probability value can be transformed in a binary (present or absent) value: above the probability threshold the habitat descriptor class is qualified as present, below it is qualified as absent. The approaches used to work out these threshold values is described in Populus et al (2017).

#### 4. GIS processing

#### 4.1. Producing layers of habitat descriptor on extensive areas

#### 4.1.1. Scaling up GLMs/fuzzy laws

In order to produce layers of the habitat descriptor classes presence probability on extensive areas, the defined GLMs and fuzzy functions are scaled up in a GIS using full-coverage gridded layers of the environmental variables that explain the presence of the various habitat descriptor classes. Then, using the probability threshold values, for each habitat descriptor class the presence probability layers are transformed in a binary presence/absence layer. Finally for each habitat descriptor all habitat descriptor classes presence/absence layer are assembled in one single thematic layer (e.g. for the biological zones all the individual biological zones presence/absence layer are assembled in one single layer).

In the Black Sea, the infralittoral, shallow circalittoral and deep circalittoral were fully modelled in this way. Some GLM/fuzzy laws were fitted, and some continuous layers of relevant environmental variables (depth, temperature) were compiled.

#### 4.1.2. Heads-up delineation

The approach described in section 4.1.1 requires i) GLM/fuzzy law fitting and ii) compilation of spatially/temporally extensive and continuous data of key environmental variables. These two conditions cannot not always be fulfilled: GLM/fuzzy law fitting requires some observation data which are not always available; neither are environmental variables. Therefore the boundaries of some habitat descriptor classes need to be manually delineated.

In the Black Sea for various reasons (see Populus et al, 2017) heads-up delineation had to be used for i) the bathyal and abyssal biological zones, ii) the three classes that compose the habitat descriptor "oxygen regime", and iii) the three classes of the habitat descriptor 'local biogeography'. Seabed substrate types were an input provided by the EMODnet geology in the form of classified polygon data.

#### 4.1.3. Coding convention in the Black Sea for habitat descriptor classes

To each habitat descriptor correspond a raster layer, the classes of which are produced either by GLM/fuzzy law modelling or by heads-up delineation. Below are the codes that are used within the various habitat descriptor layers for their respective class.

#### Local biogeography

| Code | Class            |
|------|------------------|
| 1    | Other            |
| 2    | River-influenced |
| 3    | Sheltered area   |

#### **Biological zone**

| Code             | Class                 |  |
|------------------|-----------------------|--|
| 2                | Infralittoral         |  |
| 3                | Shallow circalittoral |  |
| 4                | Deep circalittoral    |  |
| 5                | Bathyal               |  |
| 6                | Abyssal               |  |
| Seabed substrate |                       |  |

# CodeClass1Mud2Sand3Coarse sediment4Mixed sediment5Sandy mud6Muddy sand

#### Oxygen regime

Rock

7

| Code | Class   |
|------|---------|
| 1    | Oxic    |
| 2    | Suboxic |
| 3    | Anoxic  |

#### 4.2. Deriving the habitat map

#### 4.2.1. The habitat map: a simple sum of the habitat descriptor raster layers

The habitat map is the sum of the four habitat descriptor raster layers. The sum is performed in this way:

[local biogeography] x 10000 + [biological zone] x 100 + [seabed susbstrate] x 10 + [oxygen regime]

This produces a seabed habitat raster layer whose cells have a 5-digit code (e.g. 30221). From left to right the first, third, fourth and fifth digit characterize respectively the local biogeography, the biological zone, the seabed substrate and the oxygen regime. The second digit is not used in the Black Sea but in other basins, thus always has the value 0. As a result, in the habitat raster layer each code is representative of a unique combination of a local biogeography class, a biological zone, a substrate type and an oxygen regime. For example the code 30221 correspond to the combination of the habitat descriptor classes Sheltered area + Infralittoral +Sand + Oxic (3x10000 + 2x100 + 2x10 + 1).

#### 4.2.2. Translating 5-digit codes in habitat classes names

Each 5-digit code needs to be translated in a habitat described in the habitat classification (figure 1). Appendix 1 provides a list of all these habitats together with its matching biological zone, substrate(s), oxygen regime and local biogeography. This translation is performed via a look up table which provides for each code its corresponding habitat class in a column named 'AllDesc'. For example the code 10221, corresponding to the combination of the habitat descriptor classes Other + Infralittoral + Sand + Oxic will match the habitat class 'Infralittoral sand and muddy sand' in the column 'AllDesc' of the look up table. So will be the code 10261, as the habitat 'Infralittoral sand and muddy sand' also encompasses the seabed substrate 'Muddy sand'.

| Name             | Description                                                                     |
|------------------|---------------------------------------------------------------------------------|
| ModelCode        | Habitat 5-digit code                                                            |
| MODEL_DESC       | Class name for each habitat descriptor (e.g. 'other - Shallow Circalittoral -   |
|                  | Muddy Sand - Oxic')                                                             |
| Biozone          | Biological zone                                                                 |
| Substrate        | Seabed substrate type                                                           |
| Oxygen           | Oxygen regime                                                                   |
| AllComb          | Habitat code in the classification used. Not very relevant in the Black Sea. If |
|                  | EUNIS was used, would be e.g. 'A5.2'                                            |
| AllDesc          | Habitat description in the classification (e.g. 'Infralittoral sand and muddy   |
|                  | sand')                                                                          |
| AllcomdD         | AllComb + AllDesc - Not relevant in the Black Sea                               |
| MSFD_predominant | Habitat description in the MSFD classification                                  |
| Val_comm         | Free text. Typically used for habitats that are predicted while they should not |
|                  | occur (see section 5.1 or 5.3 for examples)                                     |

The look up table contains other columns that bring the following information.



Figure 1: translation of the 5-digit code map (left) in a map with habitat classes (right)

#### 5. Some particularities of the Black Sea basin

#### 5.1. When mud and sandy mud seabed substrates meet the infralittoral...

Mud and sandy mud rarely occur in the infralittoral. However, the general rules used to predict the infralittoral and shallow circalittoral spatial distribution on soft bottoms, which are based on depth, produce here and there some infralittoral mud or sandy mud polygons.

These might be some actual ones: some are acknowledged in Bulgarian sheltered waters, and some others might exist in the Black Sea but have not been observed yet. This might also be a false prediction from our model due to poor input data on either sediment spatial distribution or bathymetry. Therefore, except in Bulgarian sheltered waters, we decided to clearly flag these polygons where muddy sediments intersect the infralittoral so as to inform the user of the high uncertainty of this information.

Extensive areas located at the mouth of the Danube and Dnieper-Bug rivers, hereafter referred to as river plumes, are under the influence of high fine sediment riverine input. In these areas the development of infralittoral soft bottoms communities is driven by the presence of fine superficial sands, muddy sand, coarse and mixed sediment whereas the circalittoral communities develop on sandy mud and mud substrates. Thus inside the river plumes, the boundaries of which were manually delineated, the following rules were defined:

- where sand, muddy sand, coarse or mixed sediment occur, the biological zone is infralittoral
- where mud or sandy mud occur, the biological zone is shallow circalittoral

All these particularities are the reason why we used the habitat descriptor named 'local biogeography'. This habitat descriptor, that occupies the first digit of the 5-digit habitat code, comprises 3 classes. Those (figure 2) are namely 'River-influenced' (i.e. river plume), 'Sheltered areas' (where infralittoral muddy sediments are likely to occur, i.e. in Bulgarian waters) and 'Other' (most common areas, where infralittoral muddy sediments are not expected to occur). In that way, it is the look up table that drives what habitat class name needs to be assigned whether we are in a river plume, a sheltered area or a common area, e.g. :

- 5-digit code 30211 (**Sheltered area** + Infralittoral + Mud) indicates that we are in a sheltered area where infralittoral mud/sandy mud are likely to occur, thus in the look up table the matching habitat is 'Infralittoral mud or sandy mud' with no restriction
- 5-digit code 10211 (**Other** + Infralittoral + Mud), indicates that we are in the an area where infralittoral mud/sandy mud occurrences are not expected. As a result in the look up table the matching habitat is still 'Infralittoral mud or sandy mud' but a warning message is

present in the *Val\_comm* column ('Uncertain due to poor modeling of biological zone and/or substrate')

• 5-digit code 20251 (**River-influenced** + Infralittoral + Sandy mud) indicates that we are inside a plume area where mud/sandy mud occurs, thus in the look up table the matching habitat is in all cases 'Circalittoral terrigenous muds'



Figure 2: the 'local biogeography' habitat descriptor input layer. 'River-influenced' areas are plume areas. 'Sheltered areas' are where mud/sandy mud are known to occur in the infralittoral. 'Other' areas are common areas where mud/sandy mud are not expected to occur

#### 5.2. Infralittoral/circalittoral modelling: soft bottoms vs. hard bottoms

The fuzzy law used to model the infralittoral and circalittoral for rocky bottoms is different from that used to model the infralittoral and shallow circalittoral on soft bottoms (Populus et al, 2017). Therefore for both of these biological zones the fuzzy equation slope and intercept input raster layers have different values whether the seabed substrate is hard or soft. This is illustrated in figures 5 and 6, section 6.2.

### 5.3. Some habitat descriptor classes combinations occur but are not acknowledged

In addition to the combination muddy sediment + infralittoral discussed in section 5.1, the combination of some habitat descriptors classes is predicted by our model while their occurrence is not reported in the literature (see appendix 1, habitat names in brown colors). For these habitats a warning message is included in the look up table's *Val\_comm* column ('Unexpected. Requires further investigation).

#### 6. Workflow Models for the Black Sea

In order to automate the production of the broad scale maps, toolboxes with GIS Worflow models were developed under ArcGIS 10.2. was developed. The toolbox dedicated to the Black Sea basin comprises three workflow models, namely *Compute probability, Biozone processing* and *Habitats processing*.

EUSeaMap\_habitat\_modeling\_BlackSea.tbx
 Biozones processing
 Compute probability
 Habitats processing

#### Figure 3: the three workflow models that compose the Black Sea toolbox

The three workflow models are specifically described in the following subsections.

#### 6.1. Compute probability



#### Figure 4: the 'compute probability' workflow

This generic workflow produces a raster for the presence probability of a habitat descriptor class (e.g. shallow circalittoral) given the value of the environmental factor that explains that presence. The probability can be computed via either a GLM (Generalized Linear Model) or a fuzzy function, whose equation is in the form (see section 3)

 $P(X) = e^{ax+b} / (1+e^{ax+b})$  for a GLM,

P(X) = ax+b for a fuzzy function

where X is the environmental parameter value, P(X) is the probability of the habitat descriptor class occurrence, and a and b are respectively the slope and the intercept of the GLM or the fuzzy function.

#### **6.1.1.** Inputs

| Name                   | Description                              | Туре   |
|------------------------|------------------------------------------|--------|
| Variable raster        | The environmental factor values          | Raster |
| Slope raster           | Equation slope values                    | Raster |
| Intercept raster       | Equation intercept values                | Raster |
| Modeling method raster | Method type<br>1=fuzzy function<br>2=GLM | Raster |
| Output location        | Path to the output geodatabase           | Text   |

#### 6.1.2. Outputs

| Name                      | Description                 | Туре   |
|---------------------------|-----------------------------|--------|
| Output probability raster | Presence probability values | Raster |

#### 6.1.3. Processes

| Name        | Compute ax plus b                                                                      |  |
|-------------|----------------------------------------------------------------------------------------|--|
| Inputs      | Variable raster                                                                        |  |
| name        | Slope raster                                                                           |  |
|             | Intercept raster                                                                       |  |
| Outputs     | utputs ax plus b Raster tmp, which is a raster with ax+b values (a=slope, b=intercept) |  |
| name        |                                                                                        |  |
| Formula     | "%Slope Raster%"*"%Variable Raster%"+"%Intercept Raster%"                              |  |
| Description | a=slope, b=intercept                                                                   |  |

| Name        | adjust ax plus b                                                                                                                                                                                                                                                                       |  |  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Inputs      | ax plus b Raster tmp, the output raster of the process Compute ax plus b                                                                                                                                                                                                               |  |  |
| name        | Modeling method raster, an input of the workflow                                                                                                                                                                                                                                       |  |  |
| Outputs     | ax plus b Raster tmp, which is a raster with ax+b values (a=slope, b=intercept)                                                                                                                                                                                                        |  |  |
| name        | adjusted according to below considerations                                                                                                                                                                                                                                             |  |  |
| Formula     | Con("%Modeling methods Raster%"==1,Con("%ax plus b Raster temp%" > 1,1,<br>Con("%ax plus b Raster temp%" < 0,0,"%ax plus b Raster<br>temp%")),Con("%ax plus b Raster temp%" > 7,7,"%ax plus b Raster<br>temp%"))                                                                       |  |  |
| Description | <pre>temp%")) n If the equation is a fuzzy function, the ax+b calculated in the previous process (Compute ax plus b) might produce out of the range [0,1]. This has to be corrected because the result of fuzzy functions are probability values, thus values in the range [0,1]</pre> |  |  |

| limitation of ArcGIS 10.2 is that the exponential function does not work properly with |
|----------------------------------------------------------------------------------------|
| values > 7                                                                             |
| • If input > 7 then output = 7                                                         |
| <ul> <li>otherwise output=input</li> </ul>                                             |

| Name            | Compute probability                                                                                                                                      |  |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Inputs<br>name  | ax plus b Raster, the output raster of the process <i>adjust ax plus b</i> that contains ax+b values<br>Modeling method raster, an input of the workflow |  |  |
| Outputs<br>name | A raster with ax+b values (a=slope, b=intercept)                                                                                                         |  |  |
| Formula         | <pre>Con("%Modeling methods Raster%"==1,"%ax plus b Raster%",Exp("%ax plus b Raster%")/(1+Exp("%ax plus b Raster%")))</pre>                              |  |  |
| Description     | If the equation is a fuzzy function, output = input<br>If the equation is a GLM, output = $e^{input}/(1+e^{input})$                                      |  |  |

#### 6.2. Biozone processing

The workflow aims to produce both presence probability layers and spatial distribution layers for the infralittoral, the shallow circalittoral and the deep circalittoral. Bathyal and abyssal spatial distribution are provided as a single "ready for use" raster layer, because this is the way they are produced, thus can't be treated in the same manner.

The workflow 1) computes, according to GLM/fuzzy laws, the presence probability layers required for each of the biological zones infralittoral, shallow circalittoral and deep circalittoral, 2) creates a spatial distribution raster layer for each of these biological zones (i.e.; each cell where the biological zone is present has a value, each cell where it is absent has null value), 3) produces spatial distribution layers for the bathyal and the abyssal and 4) finally merges each individual presence raster layer into a single one that comprises all biological zone.

| Name                                            | Description                                                                                                                                                                                                                                                            | Туре   |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Infra lower bound proxy raster                  | Environmental factor values that are<br>used as a predictor of the infralittoral<br>presence in the deeper part. In the<br>Black sea they are depth values                                                                                                             | Raster |
| Equation Slope Raster for<br>Infra lower bound  | Slope value of the equations that are<br>used to compute the infralittoral<br>presence probability in the deeper<br>part. In the Black Sea there are 2<br>equations, one for sediment<br>substrate and another one for rock,<br>thus there are 2 values (see figure 5) | Raster |
| Equation Intercept Raster for Infra lower bound | Intercept value of the equations that<br>are used to compute the infralittoral<br>presence probability in the deeper<br>part. In the Black Sea there are 2<br>equations, one for sediment                                                                              | Raster |

#### **6.2.1.** Inputs

|                                                               | substrate and another one for rock,<br>thus there are 2 values (see figure 5)                                                                                                                                                                                                     |        |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Equation Type Raster for<br>Infra lower bound                 | Type of the equations that are used<br>to compute the infralittoral presence<br>probability in the deeper part. In the<br>Black Sea the two equations are fuzzy<br>ones, thus the value is 1 for all cells                                                                        | Raster |
| Cut-off values Raster for<br>Infra lower bound                | The probability threshold values that<br>are used to set the infralittoral lower<br>boundary. For the Black Sea it is 0.5<br>everywhere                                                                                                                                           | Raster |
| Shallow Circa upper<br>bound proxy raster                     | Environmental factor values that are<br>used as a predictor of the shallow<br>circalittoral presence in the upper<br>part. In the Black sea they are depth<br>values                                                                                                              | Raster |
| Equation Slope Raster for<br>Shallow Circa upper<br>bound     | Slope value of the equations that are<br>used to compute the shallow<br>circalittoral presence probability in<br>the upper part. In the Black Sea there<br>are 2 equations, one for sediment<br>substrate and another one for rock,<br>thus there are 2 values (see figure 6)     | Raster |
| Equation Intercept Raster<br>for Shallow Circa upper<br>bound | Intercept value of the equations that<br>are used to compute the shallow<br>circalittoral presence probability in<br>the upper part. In the Black Sea there<br>are 2 equations, one for sediment<br>substrate and another one for rock,<br>thus there are 2 values (see figure 6) | Raster |
| Equation Type Raster for<br>Shallow Circa upper<br>bound      | Type of the equations that are used<br>to compute the shallow circalittoral<br>presence probability in the upper<br>part. In the Black Sea the two<br>equations are fuzzy ones, thus the<br>value is 1 for all cells                                                              | Raster |
| Cut-off values Raster for<br>Shallow Circa upper<br>bound     | The probability threshold values that<br>are used to set the shallow<br>circalittoral upper boundary. For the<br>Black Sea it is 0.5 everywhere                                                                                                                                   | Raster |
| Shallow Circa lower<br>bound proxy raster                     | Environmental factor values that are<br>used as a predictor of the shallow<br>circalittoral presence in the deeper<br>part. In the Black sea they are<br>temperature values                                                                                                       | Raster |
| Equation Slope Raster for<br>Shallow Circa lower<br>bound     | Slope value of the equations that are<br>used to compute the shallow<br>circalittoral presence probability in<br>the deeper part. In the Black Sea<br>there is only one equation thus it is<br>the same value everywhere (3.74)                                                   | Raster |

| Equation Intercept Raster<br>for Shallow Circa lower<br>bound | Intercept value of the equations that<br>are used to compute the shallow<br>circalittoral presence probability in<br>the deeper part. In the Black Sea<br>there is only one equation thus it is<br>the same value everywhere (-34.59)          | Raster |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Equation Type Raster for<br>Shallow Circa lower<br>bound      | Values for the type of the equations<br>that are used to compute the shallow<br>circalittoral presence probability in<br>the deeper part. In the Black Sea<br>there is only one equation and it is a<br>GLM, thus the value is 2 for all cells | Raster |
| Cut-off values Raster for<br>Shallow Circa lower<br>bound     | The probability threshold values that<br>are used to set the shallow<br>circalittoral lower boundary. For the<br>Black Sea it is 0.27 everywhere                                                                                               | Raster |
| Deep Circa upper bound proxy raster                           | Environmental factor values that are<br>used as a predictor of the deep<br>circalittoral presence in the upper<br>part. In the Black sea they are<br>temperature values                                                                        | Raster |
| Equation Slope Raster for<br>Deep Circa upper bound           | Slope value of the equations that are<br>used to compute the deep<br>circalittoral presence probability in<br>the upper part. In the Black Sea there<br>is only one equation thus it is the<br>same value everywhere (-3.74)                   | Raster |
| Equation Intercept Raster<br>for Deep Circa upper<br>bound    | Intercept value of the equations that<br>are used to compute the deep<br>circalittoral presence probability in<br>the upper part. In the Black Sea there<br>is only one equation thus it is the<br>same value everywhere (34.59)               | Raster |
| Equation Type Raster for<br>Deep Circa upper bound            | Type of the equations that are used<br>to compute the deep circalittoral<br>presence probability in the upper<br>part. In the Black Sea there is only<br>one equation and it is a GLM, thus<br>the value is 2 for all cells                    | Raster |
| Cut-off values Raster for<br>Deep Circa upper bound           | The probability threshold values that<br>are used to set the deep circalittoral<br>upper boundary. For the Black Sea it<br>is 0.73 everywhere                                                                                                  | Raster |
| bathyal & abyssal zones                                       | Spatial distribution of shelf, bathyal<br>and abyssal. The following codes are<br>used<br>• 0 = shelf<br>• 1 = bathyal<br>• 2 = abyssal                                                                                                        | Raster |
| Reference raster                                              | A raster on which are shapped the outcomes of all processes                                                                                                                                                                                    | kaster |



Figure 5: slope and intercept values that are used for modeling the infralittoral deeper part where the seabed substrate is sediment (green) and where it is rock (red)



Figure 6: slope and intercept values that are used for modeling the shallow circalittoral upper part where the seabed substrate is sediment (green) and where it is rock (red)

#### 6.2.2. Outputs

| Name                                      | Description                                                        | Туре   |
|-------------------------------------------|--------------------------------------------------------------------|--------|
| Output Presence<br>Probability Paster for | Presence probability of the                                        | Raster |
| Infra lower bound                         |                                                                    |        |
| Output Presence                           | Presence probability of the shallow                                | Raster |
| Shallow Circa upper                       | circalittoral in the upper part                                    |        |
| bound                                     |                                                                    |        |
| Output Presence                           | Presence probability of the shallow                                | Raster |
| Shallow Circa lower                       | circalitoral in the deeper part                                    |        |
| bound                                     |                                                                    |        |
| Output Presence                           | Presence probability of the deep                                   | Raster |
| Probability Raster for                    | circalittoral in the upper part                                    |        |
| Output Infra presence                     | Infralittoral spatial distribution.                                | Raster |
| Raster                                    | Where present the cell values is 2,                                |        |
|                                           | where absent it is null                                            |        |
| Output Shallow Circa                      | Shallow circalittoral spatial distribution. Where present the cell | Raster |
| presence nuster                           | values is 3, where absent it is null                               |        |
| Output Deep Circa                         | Deep circalittoral spatial distribution.                           | Raster |
| presence Raster                           | Where present the cell values is 4,                                |        |
| Output Biozones                           | All five biozones in a single layer.                               | Raster |
|                                           | Values are the following                                           |        |
|                                           | • 2 = infralittoral                                                |        |
|                                           | <ul> <li>3 = shallow circalittoral</li> </ul>                      |        |
|                                           | <ul> <li>4 = deep circalittoral</li> </ul>                         |        |
|                                           | • 5 = bathyal                                                      |        |
|                                           | • 6 = abyssal                                                      |        |

#### 6.2.3. Processes

1) The worflow model starts by running a series of processes, namely a, b, c and d on figure 8, that produce for each biozone and for each of its boundaries a presence probability raster according to the rules that condition the biozone's presence/absence at the boundary. By "rules" is meant an environmental factor and a GLM/fuzzy equation (both governed by a slope and an intercept).

| Name    | Compute Presence Probability for Infra lower bound - (a) on figure 8 |
|---------|----------------------------------------------------------------------|
| Inputs  | Infra lower bound proxy raster                                       |
| name    | Equation Slope Raster for Infra lower bound                          |
|         | Equation Intercept Raster for Infra lower bound                      |
|         | Equation Type Raster for Infra lower bound                           |
| Outputs | Output Presence Probability Raster for Infra lower bound             |

| name        |                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Formula     | -                                                                                                                                                                                                                                                                                                                                                                                                    |
| Description | All inputs (proxy, equation slope, equation intercept and equation type) feed the workflow <i>Compute probability</i> that in turn produces the presence probability raster according to the rules that govern the infralittoral presence/absence in the deeper part.<br>A more specific description of the workflow <i>Compute probability</i> is provided in the section dedicated to the workflow |

| Name        | Compute Presence Probability for Shallow Circa upper bound - (b) on figure 8                                                                                                                                                                                                                                                                                                                                |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inputs      | Shallow Circa upper bound proxy raster                                                                                                                                                                                                                                                                                                                                                                      |
| name        | Equation Slope Raster for Shallow Circa upper bound                                                                                                                                                                                                                                                                                                                                                         |
|             | Equation Intercept Raster for Shallow Circa upper bound                                                                                                                                                                                                                                                                                                                                                     |
|             | Equation Type Raster for Shallow Circa upper bound                                                                                                                                                                                                                                                                                                                                                          |
| Outputs     | Output Presence Probability Raster for Shallow Circa upper bound                                                                                                                                                                                                                                                                                                                                            |
| name        |                                                                                                                                                                                                                                                                                                                                                                                                             |
| Formula     | -                                                                                                                                                                                                                                                                                                                                                                                                           |
| Description | All inputs (proxy, equation slope, equation intercept and equation type) feed the workflow <i>Compute probability</i> that in turn produces the presence probability raster according to the rules that govern the shallow circalittoral presence/absence in the upper part.<br>A more specific description of the workflow <i>Compute probability</i> is provided in the section dedicated to the workflow |

| Name        | Compute Presence Probability for Shallow Circa lower bound - (c) on figure 8                                                                                                                                                                                                                                                                                                                                 |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inputs      | Shallow Circa lower bound proxy raster                                                                                                                                                                                                                                                                                                                                                                       |
| name        | Equation Slope Raster for Shallow Circa lower bound                                                                                                                                                                                                                                                                                                                                                          |
|             | Equation Intercept Raster for Shallow Circa lower bound                                                                                                                                                                                                                                                                                                                                                      |
|             | Equation Type Raster for Shallow Circa lower bound                                                                                                                                                                                                                                                                                                                                                           |
| Outputs     | Output Presence Probability Raster for Shallow Circa lower bound                                                                                                                                                                                                                                                                                                                                             |
| name        |                                                                                                                                                                                                                                                                                                                                                                                                              |
| Formula     | -                                                                                                                                                                                                                                                                                                                                                                                                            |
| Description | All inputs (proxy, equation slope, equation intercept and equation type) feed the workflow <i>Compute probability</i> that in turn produces the presence probability raster according to the rules that govern the shallow circalittoral presence/absence in the deeper part.<br>A more specific description of the workflow <i>Compute probability</i> is provided in the section dedicated to the workflow |

| Name        | Compute Presence Probability for Deep Circa upper bound - (d) on figure 8         |
|-------------|-----------------------------------------------------------------------------------|
| Inputs      | Deep Circa upper bound proxy raster                                               |
| name        | Equation Slope Raster for Deep Circa upper bound                                  |
|             | Equation Intercept Raster for Deep Circa upper bound                              |
|             | Equation Type Raster for Deep Circa upper bound                                   |
| Outputs     | Output Presence Probability Raster for Deep Circa upper bound                     |
| name        |                                                                                   |
| Formula     | -                                                                                 |
| Description | All inputs (proxy, equation slope, equation intercept and equation type) feed the |
| Description | All inputs (proxy, equation slope, equation intercept and equation type) feed the |

| workflow Compute probability that in turn produces the presence probability raster |
|------------------------------------------------------------------------------------|
| according to the rules that govern the deep circalittoral presence/absence in the  |
| upper part.                                                                        |
| A more specific description of the workflow Compute probability is provided in the |
| section dedicated to the workflow                                                  |

2) At that point a presence probability raster has been produced for each biozone and for each of its boundary. Then the workflow model runs three processes, namely e, f, and g on figure 8, that produce for each biozone a binary presence raster, i.e. a raster whose cells have a value where the biozone is present, and have no value where the biozone is absent. Cell values are coded according to the coding convention that is given in table 'biological zone', section 4.1.3

| Name        | Compute Infra binary presence - (e) on figure 8                                                                                                                                                       |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Inputs      | Output Presence Probability Raster for Infra lower bound                                                                                                                                              |  |
| name        | Cut-off values Raster for Infra lower bound                                                                                                                                                           |  |
| Outputs     | Output Infra presence Raster                                                                                                                                                                          |  |
| name        |                                                                                                                                                                                                       |  |
| Formula     | <pre>SetNull("%Output Presence Probability Raster for Infra lower bound%" &lt;    "%Cut-off values Raster for Infra lower bound%",2)</pre>                                                            |  |
| Description | <b>1</b> The inputs (presence probability and cut-off) feed the process that in turn transform                                                                                                        |  |
|             | the presence probability raster in a binary infralittoral spatial distribution raster (i.e. a raster where value is either 2 if present, or null if absent)                                           |  |
|             | The cells that have a probability value < the cut-off value are set to null. The cells that have a probability value > the cut-off value are given the code 2 which is the code for the infralittoral |  |
|             | The infralittoral only has one boundary, the lower one, because there is no biological zone above the infralittoral.                                                                                  |  |

| Name        | Compute Shallow Circa binary presence - (f) on figure 8                                                                                                                                                                                                                                                     |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Inputs      | Output Presence Probability Raster for Shallow Circa upper bound                                                                                                                                                                                                                                            |  |
| name        | Cut-off values Raster for Shallow Circa upper bound                                                                                                                                                                                                                                                         |  |
|             | Output Presence Probability Raster for Shallow Circa lower bound                                                                                                                                                                                                                                            |  |
|             | Cut-off values Raster for Shallow Circa lower bound                                                                                                                                                                                                                                                         |  |
| Outputs     | Output Shallow Circa presence Raster                                                                                                                                                                                                                                                                        |  |
| name        |                                                                                                                                                                                                                                                                                                             |  |
| Formula     | <pre>SetNull(("%Output Presence Probability Raster for Shallow Circa upper<br/>bound%" &lt; "%Cut-off values Raster for Shallow Circa upper bound%")  <br/>("%Output Presence Probability Raster for Shallow Circa lower bound%" &lt;<br/>"%Cut-off values Raster for Shallow Circa lower bound%"),3)</pre> |  |
| Description | The inputs (presence probability and cut-off) feed the process that in turn transform                                                                                                                                                                                                                       |  |
|             | the presence probability raster in a binary shallow circalittoral spatial distribution                                                                                                                                                                                                                      |  |
|             | raster (i.e. a raster where value is either 3 if present, or null if absent)                                                                                                                                                                                                                                |  |
|             | For both boundaries, the cells that have a probability value < the cut-off value are set                                                                                                                                                                                                                    |  |
|             | to null. The cells that have a probability value > the cut-off value are given the code 3                                                                                                                                                                                                                   |  |
|             | which is the code for the shallow circalittoral                                                                                                                                                                                                                                                             |  |

| Name   | Compute Deep Circa binary presence - (g) on figure 8          |
|--------|---------------------------------------------------------------|
| Inputs | Output Presence Probability Raster for Deep Circa upper bound |
| name   | Cut-off values Raster for Deep Circa upper bound              |

| Outputs<br>name | Output Deep Circa presence Raster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Formula         | <pre>SetNull("%Output Presence Probability Raster for Deep Circa upper<br/>bound%" &lt; "%Cut-off values Raster for Deep Circa upper bound%",4)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Description     | The inputs (presence probability and cut-off) feed the process that in turn transform<br>the presence probability raster in a binary deep circalittoral spatial distribution raster<br>(i.e. a raster where value is either 4 if present, or null if absent)<br>The cells that have a probability value < the cut-off value are set to null. The cells that<br>have a probability value > the cut-off value are given the code 4 which is the code for<br>the deep circalittoral<br>The deep circalittoral only has one boundary, the upper one, because below the deep<br>circalittoral is the bathyal and the boundary between deep circalittoral and bathyal is<br>defined as a slope change which is manually drawn. Bathyal spatial distribution is<br>provided "ready-for-use" to the model workflow, and <i>de facto</i> so is the boundary<br>between the deep circalittoral and the bathyal. |

3) At that point a binary spatial distribution raster has been produced for the infralittoral, the shallow circalittoral and the deep circalittoral. The bathyal and the abyssal are treated in a different way because their boundaries are produced separately by manual delineation. Their spatial distribution is provided to the workflow in the form of a single raster layer, the cells of which have the value 1 where it is bathyal and the value 2 where it is abyssal. Two processes, namely h and i on figure 8, are in charge of making 2 layers from that single one, i.e. one for the bathyal spatial distribution and another one for the abyssal spatial distribution.

| Name        | bathyal calculation - (h) on figure 8                                                                                                                                                         |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inputs      | bathyal & abyssal zones                                                                                                                                                                       |
| name        |                                                                                                                                                                                               |
| Outputs     | bathyal                                                                                                                                                                                       |
| name        |                                                                                                                                                                                               |
| Formula     | <pre>SetNull("%bathyal &amp; abyssal zones%" != 1,5)</pre>                                                                                                                                    |
| Description | The cells that in the input have another value than that of the bathyal (i.e. 1) are set to null. The cells that in the input have the value 1 are set to 5 which is the code for the bathyal |

| Name        | abyssal calculation - (i) on figure 8                                                                                                                                                         |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inputs      | bathyal & abyssal zones                                                                                                                                                                       |
| name        |                                                                                                                                                                                               |
| Outputs     | abyssal                                                                                                                                                                                       |
| name        |                                                                                                                                                                                               |
| Formula     | SetNull("%bathyal & abyssal zones%" != 2,6)                                                                                                                                                   |
| Description | The cells that in the input have another value than that of the abyssal (i.e. 2) are set to null. The cells that in the input have the value 2 are set to 6 which is the code for the abyssal |

A last process (j on figure 8) assembles each individual spatial distribution layer in order to produce a single biological zone raster layer (figure 7).

| Name        | Assemble - (j) on figure 8                           |
|-------------|------------------------------------------------------|
| Inputs      | Output Infra presence Raster                         |
| name        | Output Shallow Circa presence Raster                 |
|             | Output Deep Circa presence Raster                    |
|             | bathyal                                              |
|             | abyssal                                              |
| Outputs     | Output Biozones                                      |
| name        |                                                      |
| Formula     | -                                                    |
| Description | The Mosaic To New Raster ArcGIS native tool is used. |



Figure 7: final biological zone layer



#### 6.3. Habitats processing

The workflow (figure 10) aims to produce the broad scale habitat map by summing the four habitat descriptor layers that are the local biogeography, the biological zones, the seabed substrate types and the oxygen regime (figure 9). The 5-digit code raster layer that results from that sum is subsequently converted in a polygon layer, to which is joined the look up table (see section 4.2.2) which contains the seabed habitats classes that match each 5-digit code.



Figure 9: the 4 habitat descriptor raster layers that are summed to produce the habitat map

#### 6.3.1. Inputs

| Name                     | Description                    | Туре   |
|--------------------------|--------------------------------|--------|
| Input seabed substrate   | Seabed substrate types         | Raster |
| Input oxygen conditions  | Oxygen regimes                 | Raster |
| Input local biogeography | Plume, sheltered area or other | Raster |
| Input biological zones   | Biological zones               | Raster |
| Habitats LUT             | Look up table                  | Table  |
| Output location          | Path to the output geodatabase | Text   |

#### **6.3.2. Outputs**

| Name                                                     | Description                  | Туре     |
|----------------------------------------------------------|------------------------------|----------|
| Output habitat Raster Output 5-digit code habitat raster |                              | Raster   |
|                                                          | layer                        |          |
| Output habitat polygons                                  | Habitat layer in vector form | Polygons |

#### 6.3.3. Processes

| Name        | Compute Habitats                                                                                                                        |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Inputs      | Input seabed substrate                                                                                                                  |
| name        | Input oxygen conditions                                                                                                                 |
|             | Input local biogeography                                                                                                                |
|             | Input biological zones                                                                                                                  |
| Outputs     | Output habitat Raster                                                                                                                   |
| name        |                                                                                                                                         |
| Formula     | "%Input local biogeography%" * 10000 + "%Input biological zones%" * 100 + "%Input seabed substrate%" * 10 + "%Input oxygen conditions%" |
| Description | Performs the sum of the 4 habitat descriptor layers in a way the local biogeography,                                                    |
|             | the biozones, the seabed substrate and the oxygen regime are coded in the 5-digit                                                       |
|             | code output habitat raster layer respectively in the 10000s, 100s, 10s and 1s                                                           |

| Name        | Join Fields To Raster Table                                          |
|-------------|----------------------------------------------------------------------|
| Inputs      | Output habitat Raster                                                |
| name        |                                                                      |
| Outputs     | Output habitat Raster with all Fields                                |
| name        |                                                                      |
| Formula     | -                                                                    |
| Description | Joins the look up table to the the 5-digit code habitat raster layer |

| Name        | Raster to Polygon                                  |
|-------------|----------------------------------------------------|
| Inputs      | Output habitat Raster with all Fields              |
| name        |                                                    |
| Outputs     | Output habitat polygons                            |
| name        |                                                    |
| Formula     | -                                                  |
| Description | Converts the habitat raster layer in polygon layer |

| Name        | Join Fields To PolygonTable                          |
|-------------|------------------------------------------------------|
| Inputs      | Output habitat polygons                              |
| name        |                                                      |
| Outputs     | Output habitat polygons with all fields              |
| name        |                                                      |
| Formula     | -                                                    |
| Description | Joins the look up table to the habitat polygon layer |



Figure 10: the 'Habitat processing' workflow

#### 7. Supplemental material

All supplemental material is available in zip file (85 MB) at the following address. It contains the toolbox, input/output data and some ArcGIS documents. ArcGIS 10.2 version is required.

https://cloud.ifremer.fr/index.php/s/orQJsWyEDJ3L47M

#### 8. References

Coltman, N., Golding, N., Verling, E., 2008. Developing a broadscale predictive EUNIS habitat map for the MESH study area. 16 pp. Available online at *www.emodnet-seabedhabitats.eu*/pdf/MESH%20EUNIS%20model.pdf

Populus J., Vasquez M., Albrecht J., Manca E., Agnesi S., Al Hamdani Z., Andersen J., Annunziatellis A., Bekkby T., Bruschi A., Doncheva V., Drakopoulou V., Duncan G., Inghilesi R., Kyriakidou C., Lalli F., Lillis H., Mo G., Muresan M., Salomidi M., Sakellariou D., Simboura M., Teaca A., Tezcan D., Todorova V. and Tunesi L., 2017. EUSeaMap, a European broad-scale seabed habitat map. 174p. http://doi.org/10.13155/49975 **Appendix 1**: Habitat names that match each individual combination biozone + substrate + oxygen regime + local biogeography. Red text is for those combinations that are considered as uncertain (i.e. the habitat is not acknowledged but is predicted in some places), and brown text is for those that are unexpected (i.e. the combination requires further investigation).

| Classification habitat name                                                           | Biological<br>Zone | Substrate                                     | Oxygen<br>regim | Local biogeography |
|---------------------------------------------------------------------------------------|--------------------|-----------------------------------------------|-----------------|--------------------|
| Infralittoral sand (Plume)                                                            | INFRA              | SAND                                          | OXIC            | RIVER-INFLUENCED   |
| Infralittoral muddy sand (Plume)                                                      | INFRA              | MUDDY SAND                                    | OXIC            | RIVER-INFLUENCED   |
| Shallow circalittoral coarse and mixed sediment (Plume)                               | CIRCA              | MIXED/COARSE                                  | OXIC            | RIVER-INFLUENCED   |
| Circalittoral terrigenous muds<br>(Plume)                                             | CIRCA              | MUD/ SANDY<br>MUD                             | OXIC            | RIVER-INFLUENCED   |
| Infralittoral rocks with photophilic algae                                            | INFRA              | ROCK                                          | OXIC            | OTHER              |
| Infralittoral mud and sandy mud                                                       | INFRA              | MUD; SANDY<br>MUD;                            | OXIC            | OTHER              |
| Infralittoral mud and sandy mud                                                       | INFRA              | MUD; SANDY<br>MUD;                            | OXIC            | SHELTERED AREAS    |
| Infralittoral sand and muddy sand                                                     | INFRA              | SAND; MUDDY<br>SAND                           | OXIC            | OTHER              |
| Infralittoral Coarse and Mixed<br>Sediment                                            | INFRA              | COARSE;<br>MIXED                              | OXIC            | OTHER              |
| Circalittoral rock                                                                    | CIRCA              | ROCK                                          | OXIC            | OTHER              |
| Shallow circalittoral mud and<br>organogenic sandy mud/muddy<br>sand                  | CIRCA              | MUD; SANDY<br>MUD; MUDDY<br>SAND; MIXED       | OXIC            | OTHER              |
| Shallow circalittoral shelly<br>organogenic sand (clean shelly<br>debris without mud) | CIRCA              | SAND; COARSE<br>(shelly with no<br>mud)       | OXIC            | OTHER              |
| Deep circalittoral mixed sediments                                                    | DEEP CIRCA         | COARSE;<br>MIXED;<br>MUDDY SAND,<br>SANDY MUD | OXIC            | OTHER              |
| Deep circalittoral sand<br>(unexpected)                                               | DEEP CIRCA         | SAND                                          | OXIC            | OTHER              |
| Deep circalittoral mud                                                                | DEEP CIRCA         | MUD                                           | OXIC            | OTHER              |
| Deep circalittoral suboxic<br>calcareous muds                                         | DEEP CIRCA         | MUD                                           | SUBOXIC         | OTHER              |

| Classification habitat name                         | Biological<br>Zone | Substrate  | Oxygen<br>regim | Local biogeography |
|-----------------------------------------------------|--------------------|------------|-----------------|--------------------|
| Deep circalittoral suboxic muddy sand (unexpected)  | DEEP CIRCA         | MUDDY SAND | SUBOXIC         | OTHER              |
| Deep circalittoral suboxic sand<br>(unexpected)     | DEEP CIRCA         | SAND       | SUBOXIC         | OTHER              |
| Deep circalittoral suboxic sandy mud (unexpected)   | DEEP CIRCA         | SANDY MUD  | SUBOXIC         | OTHER              |
| Deep circalittoral anoxic muds                      | DEEP CIRCA         | MUD        | ANOXIC          | OTHER              |
| Deep circalittoral anoxic muddy sand (unexpected)   | DEEP CIRCA         | MUDDY SAND | ANOXIC          | OTHER              |
| Deep circalittoral anoxic sand<br>(unexpected)      | DEEP CIRCA         | SAND       | ANOXIC          | OTHER              |
| Deep circalittoral anoxic sandy<br>mud (unexpected) | DEEP CIRCA         | SANDY MUD  | ANOXIC          | OTHER              |
| Bathyal anoxic muds                                 | BATHYAL            | MUD        | ANOXIC          | OTHER              |
| Bathyal coarse sediment<br>(unexpected)             | BATHYAL            | COARSE     | ANOXIC          | OTHER              |
| Bathyal mixed sediment<br>(unexpected)              | BATHYAL            | MIXED      | ANOXIC          | OTHER              |
| Bathyal muddy sand<br>(unexpected)                  | BATHYAL            | MUDDY SAND | ANOXIC          | OTHER              |
| Bathyal sand (unexpected)                           | BATHYAL            | SAND       | ANOXIC          | OTHER              |
| Bathyal sandy mud (unexpected)                      | BATHYAL            | SANDY MUD  | ANOXIC          | OTHER              |
| Abyssal seabed                                      | ABYSSAL            | ANY        | ANOXIC          | OTHER              |