Data-driven assimilation of irregularly-sampled image time series

Type Conference article
Date 2017
Language English
Copyright ICIP 2017. All rights reserved.
Author(s) Fablet Ronan1, Viet P.1, Lguensat R.1, Chapron Bertrand2
Affiliation(s) 1 : IMT Atlantique, Brest, France.
2 : IFREMER, Brest, France.
Meeting ICIP 2017 - IEEE International Conference on Image Processing. 17-20 September 2017, Beijing, China
Source Image Processing (ICIP), 2017 IEEE International Conference on. ISSN 2381-8549 . 5p.
DOI 10.1109/ICIP.2017.8297094
Note Technical program. WQ-PB: Interpolation, Super-resolution, and Mosaicing II. WQ-PB.2
Keyword(s) Data assimilation, irregular sampling, image time series, data-driven methods, Kalman methods
Abstract

We address in this paper the reconstruction of irregurlarlysampled image time series with an emphasis on geophysical remote sensing data. We develop a data-driven approach, referred to as an analog assimilation and stated as an ensemble Kalman method. Contrary to model-driven assimilation models, we do not exploit a physically-derived dynamic prior but we build a data-driven dynamic prior from a representative dataset of the considered image dynamics. Our contribution is here to extend analog assimilation to images, which involve high-dimensional state space.We combine patch-based representations to a multiscale PCA-constrained decomposition. Numerical experiments for the interpolation of missing data in satellite-derived ocean remote sensing images demonstrate the relevance of the proposed scheme. It outperforms the classical optimal interpolation with a relative RMSE gain of about 50% for the considered case study.

Full Text
File Pages Size Access
Author's final draft 5 1 MB Open access
Top of the page

How to cite 

Fablet Ronan, Viet P., Lguensat R., Chapron Bertrand (2017). Data-driven assimilation of irregularly-sampled image time series. Image Processing (ICIP), 2017 IEEE International Conference on. ISSN 2381-8549 . 5p. http://archimer.ifremer.fr/doc/00403/51440/