
1  

Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive 
publisher-authenticated version is available on the publisher Web site.  

 
ICIP 2017 - IEEE International Conference on Image Processing. 17-
20 September 2017, Beijing, China  
http://dx.doi.org/ 10.1109/ICIP.2017.8297094 

http://archimer.ifremer.fr/doc/00403/51440/ 
© ICIP 2017. All rights reserved.   

Archimer 
http://archimer.ifremer.fr 

Data-driven assimilation of irregularly-sampled image time 
series 

Fablet Ronan 
1
, Viet P. 

1
, Lguensat R. 

1
, Chapron Bertrand 

2
 

 
1
 IMT Atlantique, Brest, France.  

2
 IFREMER, Brest, France. 

 
 

Abstract : 
 
We address in this paper the reconstruction of irregurlarlysampled image time series with an emphasis 
on geophysical remote sensing data. We develop a data-driven approach, referred to as an analog 
assimilation and stated as an ensemble Kalman method. Contrary to model-driven assimilation models, 
we do not exploit a physically-derived dynamic prior but we build a data-driven dynamic prior from a 
representative dataset of the considered image dynamics. Our contribution is here to extend analog 
assimilation to images, which involve high-dimensional state space.We combine patch-based 
representations to a multiscale PCA-constrained decomposition. Numerical experiments for the 
interpolation of missing data in satellite-derived ocean remote sensing images demonstrate the 
relevance of the proposed scheme. It outperforms the classical optimal interpolation with a relative 
RMSE gain of about 50% for the considered case study. 
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1. PROBLEM STATEMENT AND RELATED WORK

The reconstruction of images and image time series from
irregularly-sampled observations is a key issue in numerous
domains. One may cite satellite-based remote sensing in
earth science, where the atmospheric conditions (e.g., clouds,
heavy rains) may result in missing data patterns [1, 2]. In-situ
monitoring networks also lead to irregularly-sampled obser-
vation patterns. Such sampling patterns are for instance very
common in geophysics and ecology for the mapping of spa-
tial and spatiotemporal features of interest such as population
or habitat dynamics and bio-geophysical properties [3]. Fig.1
illustrates the scarcity of the data for such applications, here
a satellite-derived sea surface geophysical field with missing
data rates greater than 90% for a particular day and area. This
example stresses the non-uniform sampling pattern resulting
from the presence of clouds, where large subareas involve
almost no observation. This makes the reconstruction of such
image time series particularly challenging.
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Such interpolation issues are classically addressed using
optimal interpolation [1]. Under the assumption that the field
is Gaussian and its covariance structure is known, optimal in-
terpolation resorts to the reconstruction with minimal mean-
square error. The validity of the Gaussianity assumption and
the knowledge or the estimation of the covariance structure
clearly affect the quality of the reconstructed fields. A variety
of parametric and non-parametric solutions have been investi-
gated [3]. However, for numerous applications, non-Gaussian
fine-scale patterns are expected such that optimal interpola-
tion might only be relevant at intermediate or coarse scales.
Variational or stochastic state-space models, referred to as
data assimilation models in geophysics, address such issues
[4, 5]. They rely on the definition of some dynamic model
or prior in the considered image space. It may be noted that
optimal interpolation may be regarded as a stochastic assimi-
lation method using a direct numerical resolution rather than
sequential methods such as Kalman or particle filters [4]. The
choice of the dynamic model is again a critical step and gene-
rally involves some trade-off between its representativity and
its computational complexity.

This makes particularly appealing data-driven schemes,
referred to as analog assimilation [6, 7, 8]. The key idea
is to replace the explicit definition of the dynamic model
by some implicit representation through a dataset of exem-
plars of the considered process. Analog assimilation shares
common features with non-local image and video models
[9, 10, 11]. It is however embedded in classical stochastic
filtering frameworks, such as particle and Kalman filters,
to exploit computationally-efficient sequential methods. By
contrast, non-local priors resort to iterative optimization tech-
nique, which makes them prohibitive for image time series
with sampling patterns as illustrated in Fig.1. Other classical
models for image and video denoising and inpainting, such
as variational priors [12, 13], appear less relevant to address
large missing data areas as in Fig.1.

In this paper, we develop analog assimilation models for
irregularly-sampled image time series as in Fig.1. Previous
works [6, 7] only apply to low-dimensional spaces and cannot
scale up to high-dimensional spaces associated with images.
Here, using patch-based image representations and multiscale
PCA-constrained decompositions, we demonstrate that ana-
log assimilation models apply to image time series and can



significantly outperform classical model-driven assimilation
schemes. This paper is organized as follows. Section 2 intro-
duces the proposed multiscale exemplar-based assimilation
model. Section 3 presents experimental results for an appli-
cation to missing data interpolation associated with satellite-
derived sampling patterns. We further discuss our key contri-
butions and future work in Section 4.

2. MULTISCALE ANALOG ASSIMILATION

2.1. Model-driven vs. analog assimilation

Following [4], data assimilation, which aims at recons-
tructing a state sequence from a given observation sequence,
can be stated according to a discretized state-space setting :{

x(t) = M (x(t− 1),Θ)
y(t) = H (x(t),Ω(t)) + η

(1)

where t is a discrete time index, x the hidden state sequence to
be reconstructed and y the observed data sequence.M states
the dynamic prior, that is to say the prior on state x(t) gi-
ven previous state x(t − 1). Θ refers to the parameterization
of model M. H is the observation operator associated with
the spatiotemporal missing data pattern Ω. η is a random pro-
cess accounting for noise and calibration uncertainties. In the
following, we will consider a Gaussian white noise for the
sake of simplicity. Extension to non-Gaussian and/or correla-
ted noise can be considered similarly.

Stochastic model-driven assimilation models [4, 2] resorts
to defining parametric priors for model M, often Gaussian
priors stated through a covariance structure Γ. By contrast,
the analog assimilation builds a non-parametric data-driven
prior from a representative dataset of the hidden state dyna-
mics [6]. This dataset is referred to as a catalog denoted by C
and formed by pairs (x̃(ti), x̃(ti + ∆t))i of consecutive state
vectors separated by the same time lag ∆t. By convention, ∆t
is set to 1 without loss of generality. We consider a nearest-
neighbor analog strategy. For a given state x(t) at time t, the
data-driven dynamic priorM(x(t), C) resorts to :

x(t+ 1)|x(t) ∝
∑
i

ωi (x(t)) δ (x(t+ 1)− x̃(ti + 1))

where δ(·) is the Dirac function. ωi(x(t)) is a normalized si-
milarity weight between state x̃(ti) in the catalog and current
state x(t). We here consider a Gaussian similarity measure
and a nearest-neighbor setting such that only the K states in
the catalog the closest to x(t) involve a non-null weight.

The simple sampling of the above data-driven dynamic
model makes it particularly relevant for a combination with
classical stochastic filters, such as ensemble Kalman filters
and smoothers, referred to as EnKF and EnKS, as well as par-
ticle filters [4, 6]. Ensemble Kalman filters show a greater nu-
merical stability and are considered in this study. We let the
reader refer to [6, 8] for further details on analog assimilation.

The dimension of state x is clearly critical for the rele-
vance of this analog dynamic prior. High-dimensional state
makes the search for consistent neighbors much more com-
plex. In addition, the size of the catalog would become extre-
mely large, if not unrealistic, to provide a representative da-
taset of the spatiotemporal variability of state x. This makes
questionable the direct application of the analog assimilation
to image time series.

2.2. Data-driven assimilation for image time series

The key contribution of this paper is the development and
evaluation of analog assimilation models for image time se-
ries. We first exploit a multi-scale decomposition of state x.
We assume that we can decompose x as x = x̄ +

∑
l dxl

where x̄ refers to a large-scale (or approximation) component
of x and {dxl}l to detail fields at different scales. In the sub-
sequent, we assume x̄ to be known or estimated. As this large-
scale component involves some spatial smoothing, an optimal
interpolation arises as a natural solution.

Within an analog assimilation framework, we build data-
driven priors for detail fields dxl, more specifically patch-
based priors [14, 9, 15] to reduce the complexity of the analog
prior to the patch size. We resort to the following formulation :

x = x̄ +

L∑
l=1

dxl with dxl(t+ 1) =M(dxl(t), Cl) (2)

withM(dxl(t), C) a patch-wise temporal Markovian prior :

∀l,dxl(t+ 1)(Pr,l) =M(dxl(t)(Pr,l), Cr,l) (3)

where Pr,l refers to a Wl × Wl patch around spatial po-
sition r at scale l and Cr,l to a catalog of exemplars for
location r at scale l. We further constrain this patch-level
prior through a PCA-based decomposition with Nl compo-
nents : dxl(t)(Pr,l) =

∑Nl

k=1 αt,r,k,lB
l
k. Using this low-

dimensional representation of each patch, we state analog dy-
namic operator M(dxl(t)(Pr,l), Cr,l) as a nearest-neighbor
analog operator as introduced in the previous section. This
dictionary-based decomposition also reduces the computa-
tional complexity of the proposed scheme, especially the
forecast and update iterations of the implemented ensemble
Kalman filters.

2.3. Numerical resolution

Given its multiscale structure, the resolution of Model
(2) for a series of observations y exploits a classical coarse-
to-fine strategy. It sequentially solves for detail components
{dxl}l from l = 1 to l = L. At each scale l, a classic
iterative stochastic or gradient-based resolution for the resul-
ting spatiotemporal Markovian model [15] would result in
an extremely large computational cost. We take advantage of
the patch-wide temporal Markovian structure to approximate



the the global optimization as the resolution of independent
patch-level reconstructions. The considered algorithm pro-
ceed as follows. At a given scale l, we perform a NL-
dimensional analog assimilation issue similar to [8] for each
Prn,l, where position rn refers to a regular subsampling of the
resolution grid with a view to reducing the overall computa-
tional complexity. We resort to a sequential ensemble Kalman
smoother of the residual observation sequence with respect to
the previous scale, i.e. x(t) − H

(̂̄x(t) +
∑l−1

l′=1 dx′l,Ω(t)
)

.
Given PCA basis {Bk,l}, the assimilation applies to decom-
position coefficients {αt,s,k,l} and observation operator H
in (1) embeds the linear mapping associated with PCA basis
{Bk,l}. Given all patch-level reconstructions at scale l, we
apply a spatial averaging of the overlapping patches to build
the final estimate d̂xl at scale l.

3. NUMERICAL EXPERIMENTS

3.1. Case-study

To perform a qualitative and quantitative evaluation of
the proposed data-driven framework, we consider an ap-
plication to the reconstruction of satellite-derived SST (sea
surface temperature) images. We focus on a region off South
Africa, which involves active ocean dynamics and complex
turbulence-related structures (fronts, filaments, ...). As illus-
trated in Fig.1, the considered satellite-derived SST images
involve very large and non-uniform missing data patterns,
what makes it challenging for our study.

With a view to numerically evaluating reconstruction
performance, we proceed as follows. We use a reference
gap-free SST time series, namely OSTIA product delivered
daily by UK Met Office[1] with a 0.05◦ spatial resolution
(approx. 5km) from January 2007 to December 2015. The
OSTIA analysis combines satellite data from infrared and
microwave sensors along with in situ data. Using the mis-
sing data patterns from METOP infrared sensor, we generate
realistic high-resolution SST image series associated with a
cloud-related irregular space-time sampling. Overall, we are
provided with a 8-year daily time series of 600×300 images,
i.e. a∼150-000-dimensional state-space when removing land
pixels of the case-study area.

3.2. Experimental setting

In our experiments, We evaluate for three methods.
Optimal interpolation (OI) : as baseline approach, we consi-
der an optimal interpolation using a Gaussian prior. OI refers
to the operational state-of-the-art procedure for SST interpo-
lation [1]. Empirically, We select an exponential covariance
structure [16]. A spatial correlation length of 100km and a
temporal correlation length of 3 days were empirically pro-
ven optimal in terms of RMSE values.

Global analog assimilation (G-AnEnKS) : we also consi-
der a direct application of the analog assimilation to state x.
We apply a spatial PCA-based decomposition of state x using
200 components, which accounts for more than 99% of the
total variance of x. The PCA is trained with gap-free SST
data from 2007 to 2014. We build the catalog of exemplars
from both the gap-free dataset from 2007 to 2014 and the
optimally-interpolated fields for year 2015. K = 50 neigh-
bors in the analog forecasting led to the best reconstruction
performance.
Multi-scale analog assimilation (MS-AnEnKS) : We consi-
der a two-scale model (L = 2 in (Eq.2)). For the coarse-
scale component x̄, we consider an optimal interpolation with
the same parameterization as described above. The interme-
diate scale (l = 1) involves 40 × 40 patches and the finest
one (l = 2) 20 × 20 patches. We use PCA decompositions
with 10 components for both scales. They are trained from
the gap-free SST data from 2007 to 2014. We build catalogs
of exemplars from both the gap-free SST data from 2007 to
2014 and the optimally-interpolated SST data for year 2015.
We consider position-specific catalogs such that for a given
patch center r only patches from the same location are consi-
dered. K = 50 neighbors in the analog forecasting led to the
best reconstruction performance.

For each method, we compute the daily time series of the
RMSE values between the reconstructed SST field and the
reference one for year 2015 as well as the mean RMSE values.

3.3. Results

We report in Table 1 the reconstruction performance of the
considered approaches. The proposed multiscale analog assi-
milation clearly outperforms the optimal interpolation (0.20
vs. 0.42 in terms of relative RMSE), with a mean relative
gain of about 50%. By contrast, the direct application of a
global analog assimilation only leads to a marginal RMSE
gain (0.38 vs. 0.42 in terms of relative RMSE). These results
point out the relevance of the multiscale decomposition to de-
fine consistent analog priors. The analysis of the time series of
the RMSE values in Fig.2 further illustrates these results. The
RMSE values of the multiscale analog assimilation depict a

Table 1. Reconstruction performance of the optimal inter-
polation (OI), the global (G-AnEnKS) and multi-scale (MS-
AnEnKS) analog assimilation. We report the mean relative
MSE (Mean Square Error) for a 1-year daily time series.

Method Relative MSE

OI 0.42 ± 0.13
G-AnEnKS 0.38 ±0.09
MS-AnEnKS 0.20 ± 0.06



Fig. 1. Reconstruction of a SST image (September 14, 2015) involving a high missing data rate (92%) : first row, reference SST
field (groundtruth (GT)), associated gradient magnitude, observed missing data pattern ; second row, interpolated images using
OI, MS-AnEnKS and G-AnEnKS; third row, gradient magnitude fields of the three reconstructions.
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Fig. 2. Time series of the reconstruction error : relative MSE
of OI (blue,-), G-AnEnKS (black,-) and MS-AnEnKS (red,-).

lower standard deviation (0.06 vs. 0.13 for OI and 0.09 for G-
AnEnKS). Besides, whereas OI and G-AnEnKS reconstruc-
tions depict greater RMSE values during the austral summer,
this seasonal feature of the RMSE is much reduced using MS-
AnEnKS. This suggests a greater robustness of MS-AnEnKS
to the temporal variability of the missing data patterns.

We further illustrate in Fig.1 the relevance of the recons-
tructed fields for a day corresponding to a missing data rate
of 92%. Visual differences can be for instance observed in the
region South of the African coast highlighted by a red box.
In this area, MS-AnEnKS clearly retrieves thinner structures
compared with GS-AnEnKS and OI (for instance, the obser-
ved light blue core). The reconstruction of the gradient ma-
gnitude is also clearly improved. Overall, this example illus-
trates the greater ability of the proposed approach to recons-
truct fine-scale details from very partial observations using
the prior knowledge brought by the multi-scale catalogs of
exemplars. By contrast, neither the OI nor the global analog

assimilation model can reconstruct such fine-scale details in
large missing data areas. They involve a very similar overs-
moothing of the local gradients. The analysis of the spectral
properties of the reconstructed fields (not shown due to space
limitation) further illustrates this point.

4. CONCLUSION

In this paper, we developed a novel framework towards
model-free and data-driven reconstruction of irregularly-
sampled image time series with very large missing data
rates (between 50% and 100%). It significantly outperfor-
med the classical model-driven approach, namely optimal
interpolation. Whereas previous data-driven models [6, 7]
were limited to low-dimensional problems (typically, up to
100 dimensions), our key contribution lies in the design of a
multiscale patch-based and PCA-constrained setting to make
feasible and efficient the application of such data-driven as-
similation models to image spaces (here, 300×600 images).
Our model may be regarded as an extension of non-local
patch-based models [9] to spatiotemporal fields, where the
proposed patch-wise temporal Markovian prior results in an
efficient sequential optimization using Kalman methods.

Our results open new research avenues for other appli-
cations of data-driven computational models to the recons-
truction of spatiotemporal dynamics, especially in the field
of earth science where large-scale observation and simulation
datasets are available. Future work will explore such applica-
tions, especially the synergy between observation and simu-
lation data, as well as the theoretical analysis of analog assi-
milation performance for non-Gaussian dynamical systems.
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