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Understanding whether recruitment fluctuations in fish stock arise from stochastic forcing (e.g. environmental variations) rather than deter-
ministic forces (e.g. intrinsic dynamics) is a long standing question with important applied consequences for fisheries ecology. In particular,
the relationship between recruitment, spawning stock biomass and environmental factors is still poorly understood, even though this aspect
is crucial for fisheries management. Fisheries data are often short, but arise from complex dynamical systems with a high degree of stochastic
forcing, which are difficult to capture through classic modelling approaches. In the present study, recent statistical approaches based on the
approximation of the attractors of dynamical systems are applied on a large dataset of time series to assess (i) the directionality of potential
causal relationships between recruitment and spawning stock biomass and potential influence of sea-surface temperature on recruitment and
(ii) their performance to forecast recruitment. Our study shows that (i) whereas spawning stock biomass and sea surface temperature influ-
ence the recruitment to a lesser extent, recruitment causes also parental stock size and (ii) that non-linear forecasting methods performed
well for the short-term predictions of recruitment time series. Our results underline that the complex and stochastic nature of the processes
characterizing recruitment are unlikely to be captured by classical stock–recruitment relationships, but that non-linear forecasting methods
provide interesting perspectives in that respect.
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Introduction
Understanding the relationship between recruitment (i.e. the

number of new individuals to enter the fishery, constituting the

arrival of a new age class in the stock) and spawning biomass is

one of the most challenging topics in fisheries ecology, which

have key applied consequences for the management of exploited

fish populations (Walters and Martell, 2004). For instance, the

fishing mortality that produces the maximum sustainable yield

(i.e. Fmsy) estimates mostly depend upon fish stock productivity,

which in turn depend on the shape of stock–recruitment relation-

ships (steepness). A substantial number of stock–recruitment

models exist, which often involve density dependence mecha-

nisms between the offspring and the parental stock size and can

also include environmental effects (Shepherd and Cushing, 1980;

Köster et al., 2003). However, stock–recruitment models rarely

display a good fit to the data and generally have minimal

forecasting power (Sakuramoto, 2005; Cury et al., 2014;

Szuwalski et al., 2015). This is partly due to the lack of accurate

proxy for the stocks reproductive potential (Marteinsdottir and

Begg, 2002) or the imprecision on the estimates of spawning bio-

mass and recruitment (McGarvey and Kinloch, 2001) or the diffi-

culty of including appropriate processes reflecting the

environmental effects on recruitment within these relationships

(Ottersen and Sundby, 1995; Sparholt, 1996; Ottersen and Loeng,

2000). In addition, autocorrelation in time series can obscure

stock–recruitment relationship parameters (Walters, 1985;

Hilborn and Walters, 1992; Myers and Barrowman, 1995).

This study aims at exploring potential relationship between

recruitment (R) and spawning-stock biomass (SSB) and potential

influence of sea-surface temperature (SST) on recruitment by

assessing causal relationships between them. Analysing causality

between two variables is complicated as it is often confused with
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(linear) correlations, even though correlation does not necessarily

imply causality (Sugihara et al., 2012). A correlation can be

detected between two variables although there is no causal link

between them. Indeed, if these two variables are driven by a third

one, the correlation between them while seeming “real” is actually

spurious. In the case of stock recruitment relationships, establish-

ing causal links can be complicated by the likely non-linear nature

of processes and strong influence of environmental stochasticity,

which can be further blurred by the fact that most stock–recruit-

ment data are estimated from models over relatively short

time-periods.

Ecological time series can be viewed as an outcome of complex

dynamical systems, that transcribe the evolution of the dynamical

behaviour over time (Sugihara, 1994; Perretti et al., 2015). In

recent years, flexible non-linear and non-parametric techniques

have been used to analyse this type of data (Sugihara et al., 2012;

Glaser et al., 2014; Clark et al., 2015). The techniques employed

allow analysing complex dynamical systems through their

approximation obtained from the time series (Takens’ theorem,

Takens’ (1981)). Here, a selection of these non-linear equation-

free techniques were applied on a large dataset of time series from

various fish stocks to investigate (i) if any causal links between

recruitment, SSB and SST could be identified and (ii) whether

accurate short-term recruitment forecasts can be obtained using

these statistical techniques.

Material and methods
Data
Because this study aims at investigating generic aspects of

stock–recruitment relationships, the dataset had to include as

long time series as possible for a broad range of species. Two

databases were used. The RAM Legacy Stock Assessment

Database (Ricard et al., 2012) and a data compilation built from

stock assessment reports from the International Council for the

Exploration of the Sea (ICES) and from the Northwest Atlantic

Fisheries Organization (Rouyer, 2008). The first database con-

tained both spawning biomass and recruitment time series for

295 stocks, whose length ranged between 6 and 132 years. The

second database contained recruitment, spawning biomass and

SST time series for 25 stocks, whose length ranged between 17

and 100 years depending on the stock. The time series resulting

from models integrating a stock–recruitment relationship were

not used. The two databases had 15 stocks in common. For

these stocks, the data from the second database were chosen

because it contained SST information.

Before the analysis, data were normalized (i.e. the mean was

subtracted and they were divided by their standard deviation)

and recruitment time series were lagged so that years corre-

sponded to age 0 fish. The minimum length for the time series

to be included in the analysis was fixed to 40 consecutive years,

as done in previous works (Glaser et al., 2011; Rouyer et al.,

2014). After selection, the final dataset included 53 fish stocks

whose time series displayed an average length of 50 years. SST

time series were available for 17 stocks. The main characteristics

(i.e. species name, geographical area, time series length, etc.) for

the whole data set used in this study can be found in

Supplementary Table S1.

Non-linear forecasting methods
State space approximation by simplex
Ecological time series are considered as a product of dynamical

systems (Sugihara, 1994). In this study, non-linear forecasting

techniques applied on dynamical system were used. The

approaches used are briefly described herein, but fully detailed

explanations can be found in Sugihara and May (1990), Sugihara

(1994), and Sugihara et al. (2012).

A system is characterized as dynamical when its states evolve

over time (i.e. the value of at least one of the driving variables

that structures the system changes at each time step). The trajec-

tory of its states (i.e. the attractor) spreads out into the space

composed by all possible states which can be taken by the dynam-

ical system. Each axis of the state space describes one driving vari-

able of the dynamical system. Thus, states with comparable values

for each driving variables are neighbours on the attractor.

An approximation of the attractor can be obtained from lagged

versions of a reduced set of observed variables. An univariate

attractor approximation from a single time series X is composed

of a library of embedded vectors (or states) as follows: Xt ;
xt ; xt�s;xt�2s; . . . ; xt�ðE�1Þsg
�

(Takens’ Theorem, Takens, 1981).

When two variables belonging to the same dynamical system are

available, it is also possible to reconstruct a composite attractor

approximation (Multivariate State Space Reconstruction; Sauer

et al., 1991; Deyle et al., 2011, 2013) as follows:

Xt ; Yt ; xt ; xt�s;xt�2s; . . . ; xt� E�1ð Þs; ytg
�

. Within an attractor

approximation, states with similar dynamical profile during a

period of length E are neighbours. For instance, on the attractor

approximation from the recruitment time series only, states char-

acterized by E consecutive years of high recruitment values are

close (Figure 1a). On the attractor approximation based on the

recruitment and the SSB time series, states characterized by high

recruitment values during the period from time t till time

t�(E�1) combined with a high SSB at time t are close

(Figure 1b). In both cases, the embedding dimension (E, i.e. the

number of time steps) and the time lag (s) have to be determined.

Due to the relatively short length of time series, the parameter s
was fixed at 1. The nearest neighbours algorithm named Simplex

projection applied on the different time series was used to iden-

tify the best embedding dimension (E) (Sugihara and May,

1990). The main idea being that the appropriate embedding

dimension of an examined variable is set equal to the minimal

number of neighbouring vectors (i.e. the simplex) in the state-

space needed to obtain the best prediction of the original time

series. A cross-validation procedure was applied to determine the

best embedding dimension. The first half of the embedded vec-

tors was used to approximate the attractor of the dynamical sys-

tem. Whereas the second half was used to compute goodness of

fit between observed and predicted values.

The embedding dimension value selected is important as too

small a dimension may generate an artificial refolding (i.e. con-

sidering that points are close whereas they are actually distant)

(Landini et al., 2002) whereas too high a dimension adds uncer-

tainty (Deyle et al., 2013), which would ultimately affect the accu-

racy of the attractor approximation. In order to have enough

vectors to use for forecasting, the range of embedding dimensions

tested was arbitrarily set from 2 to the quarter of the size of the

time series considered. From this range, the embedding dimen-

sion was selected by assessing the simplex performance on the

basis of the forecasting skill.
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Convergent cross mapping to detect causal link
Once the embedding dimension was set, the cross-map procedure

was applied (see Sugihara et al., 2012 for details). The principle of

cross-mapping is to measure the concordance between the local

neighbourhoods of two attractor approximations. If one variable

x influences another variable y, their attractor approximations

should converge towards similar trajectories. Thus, the simplex of

each embedded vector should be the same in both attractors. So,

reliable estimations for the variable x can be obtained using the

simplex of each embedded vector determined from the variable y.

Recruitment estimate for a given year can thus be obtained as fol-

lows. Years having similar dynamical profile than the year of

interest are identified in the attractor approximation of SSB.

Then, the recruitment estimate is computed as a weighted average

of the recruitment observations for these years. If recruitment

estimates are comparable to recruitment observations, then

dynamical information for recruitment is encoded in spawning

stock size, meaning that recruitment influences the parental

stock size.

The accuracy of an attractor approximation increases with the

number of historical data points available. If causation links two

variables, the denser their attractor approximations, the closer

estimates should be to observations. The reduction of the gap

between the state-space vectors from the two variables of interest,

called convergence, is the proof of causation. Looking at the

increase in forecast performance with extra information allows to

assess whether variables are causally linked.

To assess the convergence, cross-mapping was applied for dif-

ferent library sizes (L; number of embedded vectors used to

approximate the attractor). The values of forecasting skill (i.e. the

accuracy of estimates to observed values) were plotted against the

library size to follow the evolution of the prediction error

obtained by cross-mapping with the increase in information.

A causal relationship was considered meaningful only if the pre-

dictability was significantly improving with library size. To quan-

tify the statistical significance of the average trend, a General

Linear Mixed Model (GLMM) was applied including each stock

as a random effect, which allows to include variability for both

intercept and slope coefficient for each stock. In order to respect

the conditions of use of a linear model, the relationship between

the predictability and the library size was linearized applying a

logarithmic transformation on the response variable. However,

using only a parametric model was insufficient for looking at con-

vergence (Clark et al., 2015). Because GLMM does not give infor-

mation about the significance of the slope for each random effect,

a Mann-Kendall test for monotonic trend (Mann, 1945) was

applied for each stock to detect a potential lack of causation. The

correlation coefficient returned by the test gave an indication on

the trend: a positive value indicated an increasing trend whereas a

negative value indicated a decreasing trend. Stocks characterized

by a significant correlation coefficient lower than �0.95 displayed

a causal link.

S-map to forecast
Recruitment forecasts were obtained using S-map method

(Sugihara, 1994). The basic principle of the S-map procedure is

similar to the Simplex method excepted that it does not only

account for the E þ 1 nearest neighbours (or the simplex) but

for all the library embedded vectors. In the S-map procedure,

the weighting function includes a tuning parameter h � 0 which

corresponds to the extent of the weighting used for neighbour

vectors in the state-space approximation (Sugihara, 1994).

When h is equal to zero, identical weights are assigned to all

embedded vectors, which is equivalent to a linear model [autor-

egressive model (AR) of order E – AR(E)] that characterized

auto-correlated red noise; whereas a high value of h indicates

that more weight is given to neighbouring vectors compared

with remote vectors in the attractor, which reveals non-linearity.

Values between 0 and 1 by steps of 0.01 were explored for h.

Again, the value of h—the best model—was chosen based on

the forecasting skill. To assess whether recruitment forecasts

could be improved from the dynamical system encoded in time

series and from the covariates, the S-map method was applied

on univariate or composite attractors. S-map recruitment fore-

casts applied on multivariate attractor were done incorporating

the SSB and/or incorporating the SST to the recruitment uni-

variate attractor.

Forecast performance
The comparison between observed and estimated values was

done through the Mean Absolute Scaled Error (MASE) measure

(Hyndman and Koehler, 2006). The MASE, which is not scale-

dependent and applies equal weights to each error, was used to

evaluate the model performance:

MASE ¼
R
n

t¼1
etj j

n
n�1

R
n

i¼2
Yi � Yi�1j j

;

where Yt is the value of time series Y at time t , Ŷ t is its forecast

and et ¼ Yt � Ŷ t is the forecast error. The MASE corresponds to

the ratio between the effective forecasts error and the naı̈ve fore-

casts error (i.e. the last observed value in the time series is used as

the forecast of the present value). The MASE measure has thus the

advantage to be easy to interpret as a value lower than 1 indicates

that forecasts obtained with the method of interest give better

results than naı̈ve forecasts. A null MASE indicates perfect forecasts

with the method of interest (i.e. forecasts are equal to

Figure 1. State space approximation for a three-dimensional
attractor. (a) Univariate attractor approximation based on the
recruitment (R) time series of the Chilipepper rockfish (Sebastes
goodie) from the Southern Pacific Coast only. Each point is a time-
lagged coordinate vector hR(t), R(t-1), R(t-2) i; (b) Multivariate (or
Composite) attractor approximation based on both recruitment (R)
and SSB time series of the Pacific herring (Clupea pallasii) from the
west coast of Vancouver Island. Each point is a time-lagged
coordinate vector hR(t), R(t-1), SSB(t) i.
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observations). Furthermore, it is a useful metric to compare fore-

cast accuracy across several time series as it is independent of the

data scale.

In this work, the MASE value was used as follows. First,

the MASE metric was used to determine the embedding dimen-

sion E. For each stock, the embedding dimension associated to

the smallest MASE value was selected. Second, the MASE was

used to assess causal links: a statistically significant decreasing in

MASE with extra information was interpreted as the presence of

causation. Finally, it was used to characterise the forecasting per-

formance: a MASE value lower than 1 indicated good recruitment

prediction ability.

In this study, conventions for the notation of causation between

recruitment (R) and SSB and between recruitment (R) and SST are

as follows: SSB causes R is referred as SSB!R and conversely

R!SSB means that R causes SSB. Finally, the influence of SST on

R is referred as SST!R. A significant decreasing in MASE is a

proof of causation.

The forecasting analysis has been applied on four different

attractors: the univariate attractor based on recruitment data

only, the composite attractor R-SSB with recruitment and SSB

data, the composite attractor R-SST with recruitment and SST

data and the composite attractor R-SSB-SST with recruitment,

SSB and SST data. MASE values lower than 1 indicate good pre-

dictive ability for recruitment, and the lower, the better.

Results
Causation analysis
Our causation analysis using convergent cross mapping (CCM)

method demonstrates the existence of both R!SSB and SSB!R

causal links, but also the presence of a SST!R causal link. Indeed,

a decrease in MASE with library size was found for the three causal

links tested for the majority of stocks (Figure 2a). Consequently,

GLMM average curves modelling the three causations exhibit a sig-

nificant decreasing trend with library size (cf. Table 1 and Figure

2b). So a bidirectional causal link between SSB and recruitment

was detected and SST influenced recruitment as well. However,

even if at least one causal link was found for 85% of the stocks, the

three causations were not present for all stocks (Figure 3).

The most common causation was the SSB!R (found for more

than 70% of the stocks) and more than half of the stocks were

concerned by the R!SSB causation (Figure 3a). A bidirectional

causal links between recruitment and SSB was found for more

than 40% of stocks.

The influence of temperature on recruitment was found for

the majority of stocks (Figure 3b). On the 17 stocks having SST

data available, 10 of them displayed a SST!R causal link. The

simultaneous influence of temperature and SSB on the recruit-

ment were found for about 40% of the 17 stocks.

A complete set of figures for the CCM analysis for each stock

can be found in the Supplementary Material.

Figure 2. Detecting causation between recruitment (R) and SSB and between recruitment (R) and SST using convergent CCM. Results are
presented for R!SSB causation (on the left), for SSB!R causation (on the middle) and for SST!R causation (on the right). The behaviour
of the MASE (i.e. the performance of cross-map estimates) with extra information was analysed with a GLMMs. A significant decrease in
MASE with the length of the time series (L) indicates the existence of a causal link (i.e. convergence). The results of GLMMs are presented in
two ways. (a) In detail, indicating the causation for each stock. The black points are observations whereas grey lines represent estimated
curves. (b) On the whole, indicating the global causation trend. The solid line is the average estimated curve and the grey zone represents the
95% confidence bands. This shows that a bidirectional causal link between recruitment and spawning biomass is detected and that
recruitment is also forced by temperature.
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Forecasts
Good ability to predict recruitment was obtained using the

S-map method. Most of stocks displayed a non-linear behaviour

(i.e. no auto-correlated red noise) as their h values were above 0

(Figure 4a). For the majority of stocks, good ability to predict

recruitment was obtained using the S-map method based on the

univariate attractor R (only using recruitment data) (Figure 4b).

The more variables were used to approximate the attractor (i.e.

two variables for composite attractors R-SSB or R-SST and three

variables for the composite attractor R-SSB-SST), the less the pro-

portion of stocks obtaining good recruitment prediction ability

was found (Figure 4b). Whatever the attractor approximation, a

good recruitment prediction ability using the S-map method was

obtained for more than half of the 53 stocks (Figure 4c): 30 stocks

(more than 56% of the stocks) obtained a MASE value lower than

1, among which 13 had the available information on SST.

Using parental stock size or SST information was not useful to

forecast the recruitment with S-map. Considering all 53 stocks,

including SSB information into the attractor approximation did not

significantly improve the ability to predict the recruitment

[Wilcoxon test, alpha risk fixed at 5%: W ¼ 530, p-value¼ 0.10;

median MASE improvement and 95% CI ¼ �0.11 (�0.59; 0.01)].

Two stocks out of 17 obtained best recruitment predictive ability

based on the composite attractor R-SST and only one stock obtained

best recruitment predictive ability based on the composite attractor

R-SSB-SST (cf. Figure 4c and Supplementary Figures and Tables).

The presence of a causal link did not improve the ability to

predict the recruitment. The improvement in recruitment predic-

tion ability when integrating the SSB into the attractor approxi-

mation was not significantly different for stocks displaying a

SSB!R causal relationship compared with stocks without

SSB!R causal link [Mann-Whitney two-sided test, alpha risk

fixed at 5%: U ¼ 198, p-value ¼ 0.13; difference in medians and

95% CI ¼ �0.16 (�0.61; 0.03); Figure 5a]. Furthermore, the

MASE gain including SSB to forecast recruitment for the stocks

displaying SSB!R causation was not signicantly different from

0 (Mann-Whitney two-sided test, alpha risk fixed at 5%:

U ¼ 441, p-value ¼ 0.49; difference in medians and 95%

CI ¼ 0.07 (�0.05; 0.44)]. In the same way, the improvement in

recruitment prediction ability when integrating the SST into the

attractor approximation was not significantly different for stocks

displaying a SST!R causal relationship compared with stocks

without SST!R causal link [Mann-Whitney two-sided test, alpha

risk fixed at 5%: U ¼ 52, p-value ¼ 0.11; difference in medians

and 95% CI ¼ 0.10 (�0.04; 0.59); Figure 5b]. Moreover, includ-

ing SST to forecast recruitment for the stocks displaying SST!R

causation caused a significant loss in ability to forecast

recruitment [Mann-Whitney two-sided test, alpha risk fixed at

Table 1. Modelling the causation trend.

Fixed effects Random effects

Estimates SE p-value SD Corr

R!SSB Intercept 0.16 0.05 <0.01 0.35 �0.71
L �5.28e-03 1.02e-03 <0.01 0.01 –

SSB!R Intercept 1.35 0.08 <0.01 0.61 �0.50
L �0.01 1.48e-03 <0.01 0.01 –

SST!R Intercept 0.39 0.07 <0.01 0.29 �0.21
L �5.51e-03 8.03e-04 <0.01 3.19e-03 –

GLMM results obtained for each causal link R!SSB, SSB!R and SST!R with each stock as random effect. The relationship between the logarithmic MASE val-
ues obtained by CCM and the library size (L) was modelled by regression. A significant negative slope (i.e. L estimates) indicates the presence of causation.

Figure 3. Presence of each causal link detected between recruitment (R) and SSB and between recruitment and SST. R!SSB suggests that
recruitment influences parental stock size and vice versa; and SST!R indicates that temperature influences recruitment. (a) Proportion of
each type of causation detected for all the 53 stocks. (b) Proportion of each type of causation detected for the 17 stocks having SST
information available. These two plots show that the 3 causations are detected and that SSB!R is the most prevalent causation.
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5%: U ¼ 53, p-value ¼ 5.86e-3; difference in medians and 95%

CI ¼ 0.32 (0.06; 5.39)].

Discussion
In an ecosystem approach to fisheries perspective, a step forward

in our understanding of stock–recruitment relationships would

consist in establishing the relative importance of deterministic

and stochastic forces on recruitment (Szuwalski et al., 2015). This

would improve our understanding of the stock–recruitment rela-

tionship and in turn our ability to forecast fish-stock productiv-

ity. For this purpose, two forecasting techniques based on

dynamical systems were applied in this article.

Even if the arbitrary constraint to select time series with a min-

imum of 40 consecutive annual values reduced the number of

stocks studied, preserving as long time series as possible is an

important aspect because the techniques used here rely on esti-

mating the embedding dimension. As in Cury et al. (2014), the

dynamical systems generating recruitment time series were found

complex and mostly stochastic processes. Non-linear dynamics

were identified for most marine species stocks, which is in

accordance with previous works (Dixon et al., 1999; Royer and

Fromentin, 2006; Glaser et al., 2011). The use of non-linear

model-free forecasting techniques rather than deterministic

methods for recruitment forecasts seems therefore appropriate, as

advocated in several studies (Sugihara et al., 2012; Deyle et al.,

2013; Glaser et al., 2014).

The results of our analysis suggested that the underlying proc-

ess of recruitment is multi-factorial. The evidence of causal rela-

tionships in a number of stocks between an intrinsic (SSB) and/

or an extrinsic (SST) variable on recruitment has been

Figure 4. Recruitment predictive ability obtained by S-map applied on different attractor approximations. The univariate attractor
approximation is based on recruitment (R) data only whereas composite attractor are approximated using at least two variables. The number
of stocks concerned by the univariate attractor R approximation and the composite attractor R-SSB approximation (using both recruitment
and SSB data) is 53. The number of stocks concerned by the composite attractor R-SST (using both recruitment and SST data) and the
composite attractor R-SSB-SST (using recruitment, SSB and SST data) is 17. (a) Proportion of non-linear dynamics for the different attractor
approximations used to obtain S-map recruitment forecasts. This shows that non-linear dynamics are mainly detected. (b) Proportion of
stocks obtaining good predictive ability for the recruitment with S-map method (i.e. MASE < 1) based on each univariate or composite
attractor approximations. The more variables were used to approximate the attractor, the less the proportion of stocks obtaining good
recruitment prediction ability was found. (c) Repartition of each attractor approximation obtaining the best recruitment predictive ability
(i.e. the smallest MASE) for the 36 stocks having no SST information available (plot on the left) and for the 17 stocks having SST information
available (plot on the right). S-map performs to forecast recruitment because good recruitment predictive abilities (i.e. MASE < 1) are
obtained for more than half of the 53 stocks and best recruitment forecasts are mainly obtained using recruitment data only (i.e. based on
the univariate attractor R).
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demonstrated. Information about recruitment was also found in

parental biomass for more than half of the stocks. This was a

rather expected result as over years, recruitment spreads through

age-classes and eventually contributes to the SSB (Bjørnstad et al.,

2004). Footprint of spawning biomass was also detected in most

recruitment time series. Such results differ greatly from other

recent work using other methodology (Cury et al., 2014). This

could be due to the complexity of the non-linear nature of the

link between SSB and recruitment, whose shape might not be the

same across all stocks.

Potential density-independent control found also support for

most of the stocks in our analysis. This result suggests that

density-independent processes, such as stochastic environmental

control, might be an important aspect of the interplay between

deterministic and stochastic forces governing recruitment fluctu-

ations (Bjørnstad and Grenfell, 2001). This aspect and the stock-

specific processes involved in recruitment might partly explain

why general stock–recruitment relationships do not clearly

emerge through meta-analyses.

However, the detected causal links were found to be weak and

therefore to have little influence on the predictability of recruitment

in accordance with Cury et al. (2014) and Szuwalski et al. (2015).

The presence of causal relationships between an intrinsic (i.e. SSB)

and/or an extrinsic (i.e. SST) variable on recruitment led to

improved recruitment predictive ability obtained by S-map in only

a few stocks. Indeed, S-map succeeded in forecasting the recruit-

ment for more than half of the stocks and recruitment forecasts

similar to observations were mostly obtained using recruitment data

only. Thus, S-map appeared as a robust tool as it only required

recruitment data to provide accurate recruitment forecasts.

The use of non-linear and non-parametric forecasting techni-

ques provided a useful tool to test for potential environmental

drivers of recruitment which could then be used to eventually

improve our ability to understand changes in fish stock produc-

tivity. Including external factors will improve fisheries manage-

ment only if the effect of the driving factors is well known

(Punt et al., 2014). SST was the only environmental factor tested

in this work. Although SST is not likely the main driver governing

recruitment success for all stocks (Hjort, 1914; Cushing and

Dickson, 1976; Cushing, 1990), it would be interesting to test the

predominant environmental drivers emerging from the literature

for each stock. Furthermore, sudden and unexpected shifts in a

population could be explained by networks of interacting species

(Travis et al., 2014). Between two interacting species, the fluctua-

tions of one can affect the fluctuation of the other. Abiotic

interactions influencing recruitment of each stock, such as

predator-prey relationship, could be then explored in order to

improve fisheries management.

Non-linear forecasting technics have a great potential for

unravelling underlying processes in fisheries ecology. The non-

correlative nature of the technique used in the manuscript

allowed eliminating spurious effects between recruitment and

the environment which could arise due to the interplay between

environmental noise and population dynamics (Rouyer et al.,

2012). The convergence cross-mapping method can help identi-

fying sources of recruitment variability, and thus help to

improve our knowledge of dynamical processes underlying

recruitment variability. In addition, S-map provides good

recruitment forecasts and also allows to include judiciously

chosen driving variables. The use of these methods to predict

next years recruitment is a real interesting perspective for stock

assessment, as it provides a model-free and empirical approach

to estimate fish-stock productivity, a key parameter in fish-

stock assessment (Houde, 2008).

Figure 5. Improvement of the ability to predict the recruitment (i.e. MASE) using composite attractor approximation. A MASE value lower
than 1 indicates that forecasts obtained with the method of interest give better results than naı̈ve forecasts. (a) Comparison of the predictive
abilities for recruitment obtained applying S-map on the univariate attractor R (i.e. using recruitment data only) with those obtained based
on composite attractor R-SSB (i.e. using both recruitment and SSB data). The black dots represent the 39 stocks displaying a SSB!R causal
link whereas the white dots represent the 14 stocks displaying no SSB!R causal link. (b) Comparison of the predictive abilities for
recruitment obtained applying S-map on the univariate attractor R with those obtained based on composite attractor R-SST (i.e. using both
recruitment and SST data). The black squares represent the 10 stocks displaying a SST!R causal link whereas the white squares represent the
7 stocks displaying no SST!R causal link. Stocks below the bisectors obtained best recruitment predictive ability based on composite
attractor than based on univariate attractor R and vice versa. These two graphs show that using the composite attractor does not necessarily
improve recruitment forecasts and that the presence of a causal link does not help to forecast recruitment.
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sur la variabilité des stocks halieutiques exploités. p. 217. Rennes,
ENSA.

Rouyer, T., Fromentin, J.-M., Hidalgo, M., and Stenseth, N. C. 2014.
Combined effects of exploitation and temperature on fish stocks
in the Northeast Atlantic. ICES Journal of Marine Science, 71:
1554–1562.

Rouyer, T., Sadykov, A., Ohlberger, J., and Stenseth, N. C. 2012. Does
increasing mortality change the response of fish populations to
environmental fluctuations? Ecology Letters, 15: 658–665.

Royer, F., and Fromentin, J.-M. 2006. Recurrent and density-dependent
patterns in long-term fluctuations of Atlantic bluefin tuna trap
catches. Marine Ecology Progress Series, 319: 237–249.

Sakuramoto, K. 2005. Does the Ricker or Beverton and Holt type of
stock-recruitment relationship truly exist? Fisheries Science, 71:
577–592.

Sauer, T., Yorke, J. A., and Casdagli, M. 1991. Embedology. Journal
of Statistical Physics, 65: 579–616.

Shepherd, J., and Cushing, D. 1980. A mechanism for
density-dependent survival of larval fish as the basis of a
stock-recruitment relationship. ICES Journal of Marine Science,
39: 160–167.

Sparholt, H. 1996. Causal correlation between recruitment and
spawning stock size of central Baltic cod? ICES Journal of Marine
Science, 53: 771–779.

Sugihara, G. 1994. Nonlinear forecasting for the classification of nat-
ural time series. Philosophical Transactions of the Royal Society
of London. Series A: Physical and Engineering Sciences, 348:
477–495.

Sugihara, G., and May, R. M. 1990. Nonlinear forecasting as a way of
distinguishing chaos from measurement error in time series.
Nature, 344: 734–741.

910 M. Pierre et al.

Downloaded from https://academic.oup.com/icesjms/article-abstract/75/3/903/4590187
by IFREMER user
on 31 May 2018

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsx202#supplementary-data


Sugihara, G., May, R. M., Ye, H., Hsieh, C.-H., Deyle, E., Fogarty, M.
J., and Munch, S. B. 2012. Detecting causality in complex ecosys-
tems. Science, 338: 496–500.

Szuwalski, C. S., Vert-Pre, K. A., Punt, A. E., Branch, T. A., and
Hilborn, R. 2015. Examining common assumptions about recruit-
ment: a meta-analysis of recruitment dynamics for worldwide
marine fisheries. Fish and Fisheries, 16: 633–648.

Takens, F. 1981. Detecting strange attractors in turbulence. In
Dynamical Systems and Turbulence, Warwick 1980, pp.
366–381. Ed. by D. Rand, and L.-S. Young. Springer, Berlin
Heidelberg.

Travis, J., Coleman, F. C., Auster, P. J., Cury, P. M., Estes, J. A.,
Orensanz, J., Peterson, C. H. et al. 2014. Integrating the invisible
fabric of nature into fisheries management. Proceedings of the
National Academy of Sciences of the United States of America,
111: 581–584.

Walters, C. J. 1985. Bias in the estimation of functional relationships
from time series data. Canadian Journal of Fisheries and Aquatic
Sciences, 42: 147–149.

Walters, C. J., and Martell, S. J. 2004. Fisheries ecology and manage-
ment, Princeton University Press, Princeton.

Handling editor: Mikko Heino

Stock-recrutiment relationships 911

Downloaded from https://academic.oup.com/icesjms/article-abstract/75/3/903/4590187
by IFREMER user
on 31 May 2018


	fsx202-TF1

