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ABSTRACT

Multiscale seismic attributes based on wavelet transform
properties have recently been introduced and successfully
applied to identify the geometry of a complex seismic reflec-
tor in an elastic medium. We extend this quantitative ap-
proach to anelastic media where intrinsic attenuation
modifies the seismic attributes and thus requires a specific
processing to retrieve them properly. The method assumes
an attenuation linearly dependent with the seismic wave
frequency and a seismic source wavelet approximated with
a Gaussian derivative function (GDF). We highlight a quasi-
conservation of the Gaussian character of the wavelet during
its propagation. We found that this shape can be accurately
modeled by a GDF characterized by a fractional integration
and a frequency shift of the seismic source, and we establish
the relationship between these wavelet parameters and Q.
Based on this seismic wavelet modeling, we design a time-
varying shaping filter that enables making constant the
shape of the wavelet allowing retrieval of the wavelet trans-
form properties. Introduced with a homogeneous step-like
reflector, the method is first applied on a thin-bed reflector
and then on a more realistic synthetic data set based on an in
situ acoustic impedance sequence and a high-resolution seis-
mic source. The results clearly highlight the efficiency of the
method in accurately restoring the multiscale seismic attrib-
utes of complex seismic reflectors in anelastic media by the
use of broadband seismic sources.

INTRODUCTION

In the framework of seismic analysis aiming at quantifying physi-
cal properties of seismic reflectors, recent methodologies have been

developed using multiscale decomposition of seismic traces (Cas-
tagna et al., 2003), in particular, based on multifrequency wavelet
analyses (Ker et al., 2013). The interest and scientific issue of such
developments have been motivated by a significant increase of the
seismic data frequency bandwidth related to recent improvements in
seismic acquisition: broadband seismic acquisition (Soubaras and
Dowle, 2010) and source design (Marsset et al., 2010) now allow
assessing seismic information over several octaves, a prerequisite
when imaging complex seismic structures. The potential of multi-
frequency quantitative characterization of various kinds of seismic
reflectors has been extensively demonstrated, including subsurface
thin beds (Ker et al., 2011), gas-charged layers (Ker et al., 2014),
and more recently thermocline-related oceanographic structures
(Ker et al., 2015). The method is the so-called wavelet response
(WR) introduced by Le Gonidec et al. (2002) that considers wavelet
propagation as a natural extension of continuous wavelet transform
(CWT) signal processing. In the WR method, the seismic sources
consist of wavelet signals that are dilated versions of a common
analyzing wavelet defined in the theoretical framework of the
CWT: This wavelet family is used to probe the medium to perform
a multiscale analysis of its acoustic impedance profile. Assuming
the validity of the Born approximation, the seismic WR method
is equivalent to computing the CWTof the in situ impedance profile
(Le Gonidec et al., 2002). In particular, this allowed (1) extending
the use of the CWT ridge functions as new multiscale seismic attrib-
utes (Ker et al., 2011), (2) providing an original processing se-
quence to correct the WR from the seismic source signature
(Ker et al., 2012), and (3) merging seismic sources in the wavelet
domain to improve seismic resolution capability (Ker et al., 2013).
But, the capacity of the WR in characterizing reflector geometry

could be altered. For instance, Le Gonidec and Gibert (2006) high-
light the impact of viscoelastic properties in the ridge function as-
sociated to a complex reflector. A similar effect is observed by Ker
et al. (2014) with the WR associated to a half-space gas-charged
medium. This suggests that the WR can be strongly affected by
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seismic attenuation, a physical phenomenon that may affect seismic
waves during their propagation and constitutes two main research
topics. The first topic deals with attenuation as a quantitative param-
eter, i.e., the so-called quality factor Q, related to the physical prop-
erties of the medium, for instance, in seismology and in exploration
seismology, in which attenuation can be related to fault density
(Worthington and Hudson, 2000) or gas saturation (Morgan et al.,
2012). The second topic deals with the impact of attenuation on the
resolution of seismic images, i.e., so-called Q inverse filtering,
which aims at correcting this effect to improve imaging of oil
and gas reservoirs (Wang, 2008). To better address these issues,
seismic attenuation mechanisms have to be identified, with a dis-
tinction between extrinsic and intrinsic phenomena. The former re-
fers to attenuation generated by geometric spreading of the seismic
wave and to scattering effects related to the presence of hetero-
geneities in the medium. The latter is related to the viscoelastic
properties of the medium, in which the elastic energy of a seismic
wave is gradually converted into heat and then dissipated (Toksöz
and Johnston, 1981). This attenuation is inversely proportional to
the quality factor Q defined as the wave energy divided by the en-
ergy loss per cycle. Seismic attenuation is a frequency-dependent
phenomenon, and its effect during wave propagation is to modify
the amplitude and the shape of the seismic waveform, related to
dispersion (frequency-dependent wave velocity). As a consequence,
anelasticity may make theWR different from the CWTof the acous-
tic impedance properties, preventing the use of ridge functions as
accurate attributes to assess the geometry of seismic reflectors. The
present paper deals with extended developments of the WR method
to the case of anelastic media for which we establish an original
framework to analyze seismic reflectors by the use of broadband
seismic sources.
After a brief overview of the WR method established for elastic

media, we introduce the modification of the WR when dealing with
anelastic media characterized by an attenuation factor and a disper-
sive phase velocity. We consider seismic source wavelets defined as
Gaussian derivative functions (GDFs), commonly used in seismic
analysis. We show that the Gaussian character of such sources is
preserved by integration during propagation in a Kolsky-Futterman
(K-F) attenuating medium (Kolsky, 1956; Futterman, 1962). A de-
scription of a K-F medium, characterized by a linear dependency of
the attenuation with the seismic frequency, is provided in this paper
to briefly recall the key properties of such an anelastic medium. By
introducing a dimensionless parameter, it is possible to establish the
expression of the quality factorQ of the anelastic medium as a func-
tion of the GDF properties. Then, we consider a seismic propaga-
tion medium characterized by aQ factor constant with depth and an
acoustic reflectivity sequence defined by either step-like or thin-bed
discontinuities, and we illustrate how attenuation affects the WR
analysis. Finally, we take advantage of the quasi-conservation of
the Gaussian character of a GDF to design a time-varying shaping
filter, an original approach used to compensate the WR for attenu-
ation effects. We illustrate the approach on a synthetic data set
involving an in situ acoustic reflectivity sequence embedded in
an anelastic medium and a broadband seismic source signature.

WAVELET RESPONSE OF AN ANELASTIC
MEDIUM

The WR is a multiscale seismic probing of a medium based on the
properties of the wavelet transform (Le Gonidec et al., 2002). Instead

of using a single seismic source, the WR method uses a family of
source wavelets that are dilated or contracted versions of the same
signal called the mother analyzing wavelet ψ . The WR is thus a col-
lection of seismic traces obtained by a set of seismic sources forming
a wavelet family that enables a time-scale decomposition of the
acoustic impedance p of the medium. The expression of the WR re-
lated to a plane-wave propagation in 1D medium is given by

R½ψ ; p�ðt; aÞ ¼ DaψðtÞ � rðtÞ; (1)

where � stands for the convolution operator, rðtÞ is the reflectivity
sequence in the time domain, and Da is the dilation operator con-
trolled by the dilation a that enables to contract or dilate the mother
wavelet ψðtÞ according to DaψðtÞ ¼ ð1∕aÞψðt∕aÞ. When dealing
with one element of this wavelet family, wewill consider the reference
wavelet ψðtÞ for the sake of simplicity. The function R is the wavelet
transform of the reflectivity rðtÞ, and Le Gonidec et al. (2002) show
that it is strictly equivalent to the wavelet transform of p performed in
the traveltime domain t when the Born approximation is valid. The
mother wavelet ψðtÞ has to satisfy some necessary conditions, i.e., an
oscillating differentiable function with compact support and zero-
mean value (Mallat, 1998). In the present work, ψðtÞ is a GDF, such
as the Ricker wavelet commonly used in seismic imaging and dis-
cussed in the next section. The potential of GDF properties has been
used by Ker et al. (2012) to design a multiscale processing of high-
resolution seismic data, and it is now extended to study the propaga-
tion of multiscale seismic waves in anelastic media.
In an elastic homogeneous medium, the shape of a wavelet source

signal ψðtÞ generated by a seismic emitter remains unchanged and
the wavelet conserves the same features during its propagation at
depth z, where the seismic wave is ϕ0ðz; tÞ ≡ ψðtÞ. When the
medium is anelastic, the seismic wave experiences some changes,
including amplitude decrease, dispersion, and phase rotation. As a
consequence, the seismic wavelet becomes a time-depth-varying
wave defined as

ϕðz; tÞ ¼ 1

2π

Z
∞

−∞
ψ̂ðωÞûðz;ω; tÞdω; (2)

where ψ̂ðωÞ is the Fourier transform of ψðtÞ and ω is the angular
frequency. The term ûðz;ω; tÞ is the Fourier transform of the dis-
placement or the pressure (i.e., the waveform) which can be, in the
framework of plane-wave propagation in 1D anelastic media, ex-
pressed as

ûðz;ω; tÞ ¼ expð−βzÞ exp
�
iω

�
t −

z
γ

��
; (3)

where β is the attenuation of the wave amplitude and γ is the phase
velocity, which describes the velocity dispersion and the phase ro-
tation of the wave. The WR is thus modified and, noted ~R, it can be
described as a nonstationary process (Margrave, 1998), which can
be expressed, based on the superposition principle, as

~R½ψ ; p�ðt; aÞ ¼
Z

∞

0

Daϕðz; tÞrðzÞdz: (4)

In the following, ϕðz; tÞ is noted ϕτðtÞ, where τ stands for the time
of propagation in the anelastic medium, and we are reminded that
ϕ0ðtÞ corresponds to the elastic case.
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As a result, attenuation effects preclude the use of the properties
of the WR to study acoustic impedance discontinuities from multi-
scale seismic attributes. The aim of the present paper is to develop a
method to recover reliable properties of multiscale seismic attrib-
utes allowing quantitative description of the geometry of reflectors.
The approach is based on few assumptions described below.

QUASI-CONSERVATION OF THE GAUSSIAN
CHARACTER OF A SEISMIC WAVELET IN

ANELASTIC MEDIA

Kolsky-Futterman anelastic medium

A first assumption deals with the modeling of the anelastic propa-
gation medium. In numerous attenuation models, the attenuation
parameter β introduced in equation 3 may be expressed as a power
law of the frequency β ∝ ωδ (Wang, 2008). In particular, δ ¼ 1 cor-
responds to the Kolsky-Futterman model, which describes a linear
frequency dependency (Kolsky, 1956; Futterman, 1962). This
model is intensively used for attenuation analysis (Xintao et al.,
2014) or designing an inverse Q filter (Wang, 2008) because it
has a high degree of similarity to several Q models (Ursin and To-
verud, 2002; Wang, 2008). In the K-F model, the attenuation β and
phase velocity γ are defined by

β ¼ ω

2cQ
; (5a)

1

γ
¼ 1

c

�
1 −

1

πQ
ln

ω

ωh

�
; (5b)

where c is the reference phase velocity and ωh is a tuning parameter
corresponding to the highest possible seismic frequency and ensur-
ing compliance with the Kramers-Kröning dispersion relation
(Wang and Guo, 2004).
When Q tends to infinity, the attenuation β tends to zero and the

phase velocity γ tends to the reference velocity; i.e., the medium is
equivalent to an elastic medium: This is the reference case used in
the present work. In the following, a value ofQ ¼ 50 is selected for
numerical simulation purposes.

Gaussian derivative seismic source signal

A second assumption is to assimilate a seismic source signal with
a wavelet defined as a GDF, i.e., a derivative of order α of a Gaus-
sian function (Ker et al., 2012). This assumption is commonly used
in seismic analysis: The first (α ¼ 1) and second (α ¼ 2) derivatives
of a Gaussian function correspond to the wavelet erroneously called
minimum-phase Ricker (Hosken, 1988) used in seismic modeling,
for instance, and to the so-called Ricker wavelet (Ricker, 1953),
respectively. This second wavelet is a symmetric wavelet widely
used to model seismic source signals in seismic imaging, attenua-
tion estimation, and Q inverse filtering (Wang, 2008, 2015a).
Higher derivative orders α are used in acoustic logging to model
sources with a high number of cycles (Heigl, 2007); we note that
fractional derivative orders, which correspond to asymmetric GDF,
have been recently used to better represent seismic signals, such as
vertical seismic profile (VSP) data waveforms (Wang, 2015b) or to
process large frequency bandwidth seismic data (Ker et al., 2013).

The general expression of a reference wavelet ψ defined by a GDF
to model a seismic source signal in the time domain is given by

ψðtÞ ¼ Ω
dα

dtα
exp

�
−
ω2
0t

2

4

�
: (6)

The parameterΩ is the amplitude, the derivative order α can either be
an integer or be fractional, and the angular frequency ω0 is the recip-
rocal of the reference dilation defined by a0 ¼ 2∕ω0. Note that a
GDF can be written as the product of a Hermite polynomial and
a Gaussian potential (Heigl, 2007; Ker et al., 2012); i.e., the ampli-
tude spectrum ψ̂ of the GDF ψ is always derived from the Gaussian
function and is expressed in the frequency domain by (Wang, 2015b)

ψ̂ðωÞ ¼ Ω
ωα

ωα
0

exp

�
−
ω2

ω2
0

�
: (7)

In seismic analysis, a seismic wavelet is commonly characterized
by its peak frequency fp, which is the frequency associated with the
maximum of the amplitude spectrum; i.e., fp ¼ ωp∕2π, where the
peak angular frequency ωp is defined by ð∂ψ̂∕∂ωÞjωp

¼ 0. For a

GDF wavelet, ωp ¼ ω0

ffiffiffiffiffiffiffiffi
α∕2

p
(Ker et al., 2012; Wang, 2015b),

which means that fp depends on the derivative order α and the natu-
ral angular frequency ω0. In the following, α and fp will be the
quantified wavelet parameters.

Attenuated wavelet modeled by a GDF

In this section, we consider a Ricker seismic source, a GDF
wavelet ψ defined by a derivative order α ¼ 2 and a peak frequency
fp ¼ 180 Hz typical of a small airgun source (Piété et al., 2013).
We model the attenuated wavelet signal ϕτðtÞ according to equa-
tion 2, based on the K-F model withQ ¼ 50 and measured at differ-
ent times of propagation τ ¼ ½0; 25; 50; 75; 100� ms, where τ ¼ 0 s

corresponds to ϕ0ðtÞ ¼ ψðtÞ. The results, plotted in solid red lines
in the time domain (Figure 1a1–1a5) and in the frequency domain
(Figure 1b1–1b5), clearly highlight the dispersive character of the
seismic wave during its propagation in an anelastic medium; the
wavelet symmetry is broken and the frequency content is shifted
to lower frequencies, which means that there is no conservation
of α and fp when a seismic signal propagates in an anelastic
medium. Note that recently, Wang (2015b) observes a similar
behavior on VSP data and suggests attenuation as a plausible
mechanism, without exploring the possible relationship with the
wavelet-shape parameters.
The decrease of α and fp with τ suggests that the attenuated

wavelet signal ϕτðtÞ may be an integrated version of the wavelet
ψðtÞ: This means that we may approximate ϕτðtÞwith an equivalent
GDF wavelet ϕ 0

τðtÞ defined by a derivative order α 0, a natural an-
gular frequency ω 0

0 associated with a peak frequency f 0
p, and an

amplitude Ω 0. This approach is expressed by assuming

ϕτðtÞ ∼ ϕ 0
τðtÞ ¼ Ω 0 d

α 0

dtα
0 exp

�
−
1

4
ω 02
0 t

2

�
: (8)

To evaluate this assumption, we apply the method developed by
Wang (2015b) to determine the ϕ 0

τðtÞ parameters from the centroid
frequency ωm and the standard deviation ωσ evaluated from the
power spectrum of ϕτðtÞ
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�
1

2α 0 þ 1

��
Γðα 0 þ 1∕2Þffiffiffiffiffi

α 0p
Γðα 0Þ

�
2

¼ ω2
σ

ω2
m
; (9a)

ω 0
0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
m þ ω2

σ

1þ 2α 0

s
; (9b)

where Γ is the gamma function (Abramowitz and Stegun, 1972).
For each ϕτðtÞ seismic wavelet plotted in solid red lines in Figure 1,

we determine the associated GDF approximation ϕ 0
τðtÞ according to

this method: The results, plotted in dashed black lines in Figure 1,
show a very good agreement between ϕτðtÞ and ϕ 0

τðtÞ.
Because the derivative order α is a key parameter to model the

shape of seismic source signatures (Heigl, 2007; Wang, 2015b) and
to analyze complex discontinuities (Le Gonidec et al., 2002), it is of
critical importance to evaluate the accuracy of the GDF approxima-
tion as a function of α. We study how different GDF wavelet sources
ψðtÞ with a similar peak frequency fp ¼ 180 Hz, but different in-

teger derivative orders α ¼ ½1; 2; 3; 4; 5� (Fig-
ure 2a1–2a5, solid black curves) are modified
after a propagation of τ ¼ 100 ms, correspond-
ing to a depth of 150 m for a sound velocity
of 1500 m∕s. We model the nonattenuated wave-
let ϕ0ðtÞ, which is equivalent to ψðtÞ and used as
a reference; the attenuated wavelet signal ϕτðtÞ
according to equation 2; and the approximated
attenuated wavelet signal ϕ 0

τðtÞ defined as a
GDF with the parameters given in equation 9a
and 9b. The results are plotted in the time domain
in Figure 2b1–2b5 and in the frequency domain
in Figure 2c1–2c5: The normalized solid black,
dashed black, and solid red curves correspond to
ϕ0ðtÞ, ϕτðtÞ, and ϕ 0

τðtÞ, respectively.
As a key result, we show that a GDF seismic

wavelet affected by a K-F attenuation model is an
attenuated wavelet signal, which can be modeled
by a specifically designed GDF ϕ 0

τðtÞ. The quasi-
conservation of the Gaussian character means
that attenuation effects can be approximated by
a filter FτðtÞ, which has Lévy alpha-stable prop-
erties (Ker et al., 2012) according to

ϕ 0
τðtÞ ¼ ψðtÞ � FτðtÞ; (10)

where the wavelet source ψðtÞ depends on the
parameters (Ω, α, ω0) according to equation 6
and the filter FτðtÞ depends on the anelastic
medium quality factor Q and is function of the
time of propagation τ. The attenuated GDF
wavelet ϕ 0

τðtÞ depends on the parameters (Ω 0,
α 0, ω 0

0), and the aim of the next section is to es-
tablish the explicit relationship between the
physical parameter Q, the propagation time τ,
and the wavelet parameters ω0, α, ω 0

0, and α 0.

QUANTITATIVE RELATIONSHIP
BETWEEN GDF PARAMETERS

AND ATTENUATION

Attenuation-dependent wavelet
parameters

The WR method involves a wavelet family
DaψðtÞ for which each member is defined by
the initial set of parameters (Ω, α, ω0), and it
is modified during propagation within an anelas-
tic medium characterized by a quality factor Q.
To characterize how each member of the wavelet
family is modified, we perform a quantitative
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Figure 1. Normalized attenuated seismic wavelets ϕτðtÞ, associated to a Ricker seismic
source (GDF derivative order α ¼ 2 and peak frequency fp ¼ 180 Hz), based on the
Kolsky-Futterman model with Q ¼ 50 and for τ ¼ ½0; 25; 50; 75; 100� ms, respectively
(solid red lines) and associated GDF models ϕ 0

τðtÞ (dashed black line): representation in
the time domain (a1-a5) and in the frequency domain (b1-b5).
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Figure 2. (a1-a5) Normalized GDF wavelet sources ψðtÞ associated to derivative orders
α ¼ ½1; 2; 3; 4; 5� and peak frequency fp ¼ 180 Hz, respectively. (b1-b5) Normalized
attenuated seismic wavelets ϕτðtÞ based on the Kolsky-Futterman model with
Q ¼ 50 and τ ¼ 100 ms (solid red curves) and associated GDF models ϕ 0

τðtÞ (dashed
black curves) in the time domain, and (c1-c5) in the frequency domain, in which the
normalized solid black curve correspond to the nonattenuated wavelet ϕ0ðtÞ (equivalent
to ψðtÞ). Derivative order α 0 and peak frequency f 0

p stand for the GDF wavelet model.
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analysis of the variation of the set of parameters (Ω 0, α 0, ω 0
0) asso-

ciated with the GDF that models the attenuated wavelet signal.
We assess the range of these attenuation-related parameters for a
seismic propagation in an anelastic medium taking into account
the wavelet family source signals. To do so, we introduce the
dimensionless parameter Υ ¼ τfpQ−1. For a range of Υ as wide
as ½10−3 − 30� describing nonattenuating to highly attenuated seis-
mic signals, we determine (Ω 0, α 0, ω 0

0) according to equation 9a and
9b for the five GDF analyzing wavelets introduced in Figure 2, i.e.,
for α ¼ ½1; 2; 3; 4; 5�. The variations of the amplitude ratio (Fig-
ure 3a, in dB) are weak for ϒ < 10−1, with a decreasing trend when
ϒ increases: For ϒ > 1, the amplitude drops are more pronounced
for high derivative orders α. The derivative order α 0 (Figure 3b)
exhibits a hysteresis behavior: At low Υ values, which corresponds
in particular to short time of propagation and/or low attenuation,
the attenuation effects can be neglected and α 0 ∼ α as expected.
At highΥ values, α 0 tends toward much lower and fractional orders:
For α ¼ ½1; 2; 3; 4; 5�, we obtain α 0 ∼ ½0.2; 0.8; 1.3; 1.9; 2.4�, i.e.,
α 0 ∼ α∕2 as a rough estimate, which shows the significant integrat-
ing effects. The ratio ω 0

0∕ω0 (Figure 3c) also exhibits a hysteresis
behavior: The curve starts with a value close to one at low Υ values,
followed by a steep decrease and trend toward zero at highΥ values.
For a practical applicability of the method, the asymptotic behav-

ior of the derivative order and the frequency shift of a seismic wave
that propagates in a highly attenuating medium (ϒ ≫ 0.1) is sen-
sitive to noise conditions, as suggested by the strong decrease of the
amplitude (Figure 3a). As a consequence, even if signal-to-noise
ratio (S/N) issues affect not only this method but also many conven-
tional geophysical processing methods, it may be unlikely to ob-
serve this asymptotic behavior if the S/N is not high enough.

General Q expression from fractional integrated
wavelet parameters

We now demonstrate how the quality factor can be evaluated
from the parameters of the attenuated wavelet signal ϕτðtÞ. The
associated amplitude spectrum ϕ̂τðωÞ is first defined following
equations 2 and 7 for a time of propagation τ, which gives, based
on a K-F attenuating medium:

ϕ̂τðωÞ ≡ Ω
ωα

ωα
0

exp

�
−
ω2

ω2
0

�
exp

�
−
τω

2Q

�
: (11)

By definition, the peak angular frequency ωτ of the attenuated seis-
mic wavelet ϕτðtÞ can be obtained by solving ð∂ϕ̂τ∕∂ωÞ ¼ 0. As a
result, the expression of Q is given by

Q ¼ τωτω
2
0

2ðαω2
0 − 2ω2

τÞ
; (12)

which is a generalization to any fractional GDF wavelet source of
the result given by Zhang and Ulrych (2002) for a Ricker wavelet.
This highlights the usefulness of approximating a seismic signal,
the amplitude spectrum of which may be defined by several solu-
tions of ð∂ϕ̂τ∕∂ωÞ ¼ 0, by a GDF wavelet characterized by a unique
solution ωτ. As shown in the previous section, the approach based
on the centroid frequency and standard deviation of the seismic
signal ϕτðtÞ makes this assessment more robust compared with
peak-frequency detection (Tary et al., 2017). According to the

approximation of ϕτ by a GDF wavelet ϕ 0
τ , ωτ can be assimilated

to ω 0
p ¼ ω 0

0

ffiffiffiffiffiffiffiffiffiffi
α 0∕2

p
, resulting in the following approximation:

Q ∼Q 0 ¼
τω 0

0

ffiffiffiffi
α 0
2

q
ω2
0

2ðαω2
0 − α 0ω 02

0 Þ
: (13)

Interestingly, this can be rewritten Q 0 ¼ ðτπf 0
pf2pÞ∕αðf2p − f 02

p Þ,
which means that the quality factor can actually be assessed by only
determining the peak frequency f 0

p of the attenuated seismic
wavelet.
The accuracy of the quality factor estimated from equation 13 is

now assessed by modeling the attenuation of seismic wavelets
previously presented for typical Q values in the range [5–250]
and a seismic source wavelet peak frequency fp in the range
[50–1000 Hz] to consider the propagation of low to very high res-
olution seismic sources in strongly to weakly attenuating media. In
this fp-Q domain, we determine the error jQ −Q 0j∕Q (in %) for
five derivative orders α ¼ ½1; 2; 3; 4; 5� of the GDF source wavelet
(Figure 4). As a first observation, the distribution of errors shifts
toward the minimum error value as α increases and on average,
the error decreases with α: Its highest value is larger than 11%
for α ¼ 1, approximately 8.5% for α ¼ 2 (Ricker wavelet) and less
than 4% for α ¼ 5. The decreasing tendency of the mean error with
α is not linear, and a preliminary estimate suggests an exponential
behavior. At low frequencies (fp < 100 Hz), the error slightly in-
creases with Q but remains very small; i.e., estimating Q from the
GDF parameters is accurate at low frequencies for any Q values.
Note that for α ¼ 1, the error is minimum for Q < 50, when it is
maximum for α > 1. However, a general trend shows that the error
increases with fp and decreases with Q, remaining in a range lim-
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Figure 3. Variations of the attenuated seismic wavelet parameters
as a function of the adimensional parameter ϒ for source wavelets
defined by α ¼ ½1; 2; 3; 4; 5�, respectively: (a) amplitude Ω 0 normal-
ized by the reference source amplitude Ω0, (b) derivative order α 0,
and (c) peak frequency f 0

p normalized by the reference source peak
frequency fp.
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ited to approximately 2% independently of α. This means that the
error is mainly controlled by α and fp, and by Q to a lesser extent.
These results highlight the potential of the present approach in
quantifying the quality factor from a GDF approximation: The ef-
ficiency is particularly improved by considering a seismic source
wavelet defined by a high derivative order.

SEISMIC ATTENUATION AFFECTING
MULTISCALE REFLECTORS: QUANTITATIVE

INTERPRETATION BASED ON THE
WAVELET RESPONSE

Preliminary considerations

We now consider seismic reflection propagation in an anelastic
medium characterized by a homogeneous quality factor Q, using
the K-F model, and an acoustic impedance profile. In a first ap-
proximation, we consider seismic reflections induced by density
contrasts.
The analyzing wavelet ψðtÞ is an antisymmetric GDF of order

α ¼ 5 composed of six extrema: As introduced in previous papers,
this wavelet has been used to model high-resolution seismic sources
(Ker et al., 2013). The wavelet family is composed of 48 elements,
the peak frequency of which fp ranges between 100 and 1000 Hz.
The WR is thus a collection of seismic wavelets of different peak
frequencies, i.e., different dilations, acquired in normal incidence:
The WR corresponds to a time-dilation representation of the wave-
let amplitude. Following Ker et al. (2013), we consider the dilation

defined by the wavelet-dominant period (Gesret et al., 2010), called
the dominant dilation ad ¼ ffiffiffiffiffiffiffiffi

α∕2
p ðδ∕πfpÞ, where δ ∼ 1.75 for

α ¼ 5 (Ker et al., 2013). A ridge function is a multiscale seismic
attribute, which represents the evolution of an extremum amplitude
as a function of the dilation plotted in a log–log diagram: It is a
sparse support of the wavelet decomposition of the seismic reflec-
tivity, and that is why it has been proposed in seismic analysis as a
multiscale seismic attribute (Ker et al., 2011).
To assess the effect of attenuation on multiscale seismic attrib-

utes, we compute R (equation 1) and ~R (equation 4 and associated
equations 2 and 3), respectively, by setting Q ¼ ∞ (elastic case)
and 50 (anelastic case), respectively. According to the previous sec-
tions, we then approximate ~R by R 0 for which each element is mod-
eled by a GDF wavelet. Two seismic reflectors are considered
below as preliminary case studies, i.e., a step-like reflector and a
thin bed.

Step-like density contrast in an anelastic medium

The acoustic impedance profile of the medium is described by
a step-like density contrast located at the time of 37.5 ms, i.e.,
a homogeneous Heaviside-like reflector geometry Figure 5a. For
an elastic medium, R is the WR of a homogeneous reflector already
described by Le Gonidec et al. (2002). The WR is equivalent to the
wavelet family, scaled by the reflection coefficient and normalized
in Figure 5b, which points toward the position of the discontinuity.
In that case, the number of ridge functions is equal to the number of
extrema of the analyzing wavelet: As illustrated with the third ex-
tremum, the ridge function (Figure 5b, blue line) of the Heaviside
discontinuity is a flat straight line (Figure 5d, blue line).
For an anelastic medium, the global structure of the WR ~R looks

at a first glance barely changed, still being a cone-like structure
pointing toward the discontinuity (Figure 5c), but the third ridge
function (Figure 5c, red curve) now differs from a simple straight
line (Figure 5d, red curve). In addition, the last ridge function tends
to disappear at small dilations, as highlighted when plotting the
derivative order α 0 as a function of the dilation ad (Figure 5e,
red line). At large dilations, α 0 tends to α ¼ 5, which characterizes
the elastic case (Figure 5e, blue line), and decreases to four at small
dilations, which means a symmetric wavelet with five extrema only.
The dilation a 0

0 is very similar to the reference dilation a0 of the
elastic case (Figure 5f, red and blue lines, respectively), with a weak
divergence when ad decreases. Based on equation 13 expressed in
the wavelet-transform formalism, we use the wavelet parameters ex-
tracted from R 0 (Figure 5e and 5f) to assess Q, which gives a mean
value of 51.7� 0.5 in very good agreement with the expected value
of 50. It has to be noted that the error of 3.4% in Q determination is
in perfect agreement with results obtained in Figure 4 for α ¼ 5.
This simple case study illustrates the method to assess the quality

factor of an anelastic medium by the use of theWRmethod, but also
the misinterpretation of a seismic reflector geometry if only one
source signal is considered, and reciprocally. This is even worse
for complex seismic reflectors for which characteristic size quanti-
fication is not straightforward when it is embedded in an attenuating
medium, as discussed in the following section.

Thin bed in an anelastic medium

The geometry of a thin bed is a window function defined as two
successive step-like discontinuities: The distance between them
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Figure 4. Error on the evaluation of the quality factor (equation 13)
for anelastic media characterized by Q in the range [5–250] and for
seismic peak frequencies in the range [50–1000 Hz], for different
shapes of the seismic source defined by a derivative order α.
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corresponds to the window aperture, which is the characteristic size
of the thin bed (Figure 6a). In the elastic case, the structure of the
WR R is symmetric (Figure 6b) (for a full description, see Le Go-
nidec et al., 2002). At large dilations compared with the window
aperture, the WR has a cone-like structure pointing toward the
center of the discontinuity and is composed of five ridge functions:
Note that the second and fourth ridge functions (Figure 6b, the solid
and dashed blue lines, respectively) are similar in a log–log diagram
(Figure 6d) and are characterized by a slope −1 at large dilations,
where the window function is equivalent to a Dirac-like reflector. At
small dilations, the WR is composed of two subconical structures:
Each one points toward a step-like discontinuity composing the
window function and is characterized by six ridge functions as dis-
cussed in the previous section. At intermediate dilations, the WR is
characterized by a coalescence structure with an amplitude ex-
tremum related to seismic wave interferences between the edges
of the internal structure of the reflector: The associated character-
istic dilation is related to the characteristic size of the reflector.
In the anelastic case, the global symmetry of the WR is lost

(Figure 6c), as shown by the two selected ridge functions (the solid

and dashed red lines, respectively) which strongly differ from
each other when plotted in a log–log diagram (Figure 6e) and can-
not be used to properly characterize the reflector geometry. Ac-
tually, the slope of the ridge function analysis is not −1 at
large dilations, which would mean a reflector not equivalent to
a Dirac-like discontinuity as expected. At small dilations, the
slope is not zero, which would not allow us to conclude to internal
step-like structures of the complex reflector. And more critically,
the characteristic dimension of the reflector, which should be iden-
tified at intermediate dilations, cannot be assessed with con-
fidence.
These analyses clearly highlight that a quantitative characteriza-

tion of a seismic reflector embedded in an anelastic medium is not
straightforward when the reflector has a complex structure. Recip-
rocally, assessing the quality factor of a complex seismic reflector is
not straightforward because of the multifrequency dependency of
the seismic wavelets reflected by the multiscale discontinuities
of the propagating medium, including layering effects and interfer-
ence patterns that may induce apparent attenuation and frequency
tuning effects (Tary et al., 2017).
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Figure 5. (a) The WR associated to a step-like reflector in an
(b) elastic and (c) anelastic medium: The blue and red lines, respec-
tively, stand for the ridge functions plotted in (d) as a function of the
dominant dilation ad. The variations of the derivative orders α and
α 0, and the variations of the dilations a0 and a 0

0 of the WR wavelets
as a function of ad are plotted in (e and f), respectively.
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Figure 6. (a) The WR associated to a thin-bed reflector in an
(b) elastic and (c) anelastic medium: the blue and red lines, respec-
tively, stand for ridge functions plotted in (d and e), respectively, as
a function of the dominant dilation ad. Note that for the elastic case
(d), the two ridge functions (solid and dashed lines) are identical,
but they differ for the anelastic case (e).
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TIME-VARYING SHAPE FILTERING TO RECOVER
MULTISCALE SEISMIC ATTRIBUTES

Principles of the method

When embedded in an elastic medium, a seismic reflector can be
identified in terms of morphology and characteristic dimensions by
quantitative analyses of its multiscale seismic attributes based on the
WR R properties. This can no longer be achieved when the medium
is anelastic, as illustrated in the previous section in which the attenu-
ated WR ~R is obtained with Q ¼ 50: Actually, each time-varying
seismic wavelet related to ~R can be accurately approximated by a
GDF wavelet ϕ 0

τðtÞ with a particular shape (defined by α 0), which
deviates more from the shape of the source wavelet ψðtÞ the greater
ω 0
0 and/or τ are (see Figure 3). We introduce a new method to com-

pensate for this deviation to restore the properties of the WR analy-
sis: The aim is to define a compensated WR R̄ for which each
element ϕ̄τðtÞ is a dilated version of a common GDF wavelet
ψ̄ðtÞ defined by a derivation order ᾱ and a natural frequency ω̄0,
associated to a peak frequency f̄p as previously discussed. The ap-
proach consists of a time-varying filtering method that enables the
transformation of a time-varying seismic wavelet ϕ 0

τðtÞ into a wave-
let ϕ̄τðtÞ of constant shape (given by ᾱ), taking advantage of the
mathematical properties of the GDF. The choice of the reference
constant shape is based on the attenuated wavelet most affected
by seismic attenuation, i.e., which corresponds to the smallest di-
lation of the wavelet source family and the largest propagation
time τ̄. Note that τ̄ controls not only the derivative order but also
the natural angular frequency ω̄0, i.e., the peak frequency f̄p of the
wavelet ϕ̄τðtÞ. With this method, we do not aim at recovering the
frequency content lost or reduced by seismic attenuation, such as Q
inverse filtering or other resolution enhancement techniques would
do (Wang, 2008; van der Baan, 2012), but rather at obtaining a con-
stant shaping of wavelets, regardless of the global frequency content
reduction of the seismic wavelets. In practice, considering ᾱ as an
integer value facilitates the ridge functions analysis, but this is not
mandatory.
We now define the so-called time-varying shape-filtering method.

For each dilation and propagation time, the attenuated seismic wave-
let has to be transformed into a dilated version of the analyzing wave-
let ψ̄ involving (1) an amplitude correction term κ; (2) a fractional
integration of order η to remove the variations of the seismic wave
derivative order; (3) a Gaussian term, where ωs compensates for the
frequency shift of the seismic wave; and (4) an exponential term,
where τs compensates for the time shift. In the Fourier domain,
the expression of the shaping filter is thus given by

ĥðωÞ ¼ κðiωÞ−η exp
�
−
ω2

ω2
s

�
expð−iωτsÞ; (14)

with

η ¼ α 0 − ᾱ; (15a)

ωs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω̄2
0 − ω 02

0

q
: (15b)

We perform the shape filtering by using a nonstationary convolution
approach: To do so, we define the impulse response of the filter by
using the definition of the fractional derivation of a Gaussian function

in the time domain (Caputo, 1967) and the Laplace convolution of
causal functions Wang (2015b). According to this approach, we can
express the impulse response in the time domain by

hðtÞ ¼
(
0 if t < 0;
κ tη−1
ΓðηÞ � exp

�
− 1

4
ω2
sðt − τsÞ2

�
if t ≥ 0: (16)

The numerical implementation of the shape filtering relies on the
multiplication of (1) a matrix, in which each row contains the
time-varying filter computed for each traveltime sample, by (2) a
row vector containing the seismic trace.
In practice, the parameters ᾱ and f̄p of the constant-shape wave-

let are defined for the attenuated seismic wavelet associated with the
smallest dilation for a reference propagation time τ̄ related to the
depth position of the seismic reflector. This is done by performing
on the attenuated seismic wavelets the fractional integration oper-
ation expressed in equation 15a. The parameters of the shaping filter
are obtained from the relationships governing the wavelet parame-
ters variation and the relationship describing the attenuation-
induced time-shift variations.

Application to the step-like and thin-bed seismic
reflectors embedded in an anelastic medium

The WR analysis of the step-like reflector has been developed
above (Figure 5b): The WR of the anelastic case is characterized
by a frequency-dependent α 0, which tends to four at small dilations
(Figure 5d, red line). According to the principles of the method de-
scribed above, we determine the time-varying shape-filtered WR R̄
by considering an analyzing wavelet ψ̄ defined by ᾱ ¼ 4. Note that
this arbitrary integer value corresponds to the less dilated wavelet
(f̄p ∼ 550 Hz) for a reference time τ ¼ 41.5ms larger than the two-
way traveltime of the seismic reflector. As a result, the method
allows the recovery of the symmetric cone-like structure of the
WR for the anelastic case, which is now defined by dilated wavelets
with a constant-shape ᾱ, in very good agreement with the WR per-
formed with the same analyzing wavelet in the elastic case (Fig-
ure 7a, black and green curves, respectively): We then retrieve
the correct morphology of the seismic reflector from the ridge func-
tion (Figure 7a, magenta line), which is now properly defined by a
flat, straight line (Figure 7c, magenta line).
The efficiency of the time-varying shape filter is clearly demon-

strated when assessing the characteristic dimension of a complex
reflector in an anelastic medium, such as the thin bed. Similarly
to the previous analysis performed on a step-like reflector, we de-
termine the same time-varying filtering with ᾱ ¼ 4. The compen-
sated WR R̄ has a global complex structure (Figure 7b, black
curves) in very good agreement with the characteristic WR R of
a window discontinuity (Figure 7b, green curves): In particular,
the compensated ridge function (Figure 7b, black line) now allows
an accurate estimation of the window aperture from the dilation as-
sociated with the maximum amplitude (Figure 7d). The compensa-
tion of the attenuation-induced shape effects enables the recovery of
the shape of the ridge functions but involves a GDF derivative order
ᾱ ¼ 4, which differs from α ¼ 5 of the seismic source wavelet: This
explains the slight difference between the thin-layer ridge functions
plotted in Figures 7d (magenta and black lines) and 6d (blue line),
respectively. It has to be noted that until the GDF wavelet has sev-
eral vanishing moments (which is related to the derivative order)
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greater than the regularity of the reflector discontinuity, this has no
consequence on the quantitative descriptions based on the multi-
scale seismic attributes.

Extended application to seismic data reflected by
complex geologic reflectors in an anelastic medium

To extend the analysis to a more realistic seismic data set, we now
consider the complex reflectivity sequence defined from the in situ
impedance log introduced in Ker et al. (2011), embedded in a K-F
anelastic medium defined by a quality factor Q. We model the syn-
thetic data set by using (1) a real seismic source signature related to
the deep-towed seismic device SYstème SIsmique Fond de mer/
Deep-towed Seismic System (SYSIF) (Marsset et al., 2010) and
(2) the nonstationary convolution of the Green’s function. The
SYSIF source signature consists in a broadband chirp signal
(220–1050 Hz). Applying the source-correction developed by
Ker et al. (2013) to compute a WR from a broadband seismic source
signature, we associated GDF wavelets of derivative order α ¼ 5 for

the SYSIF seismic source in the dilation range (logarithm values)
[−6.6;−5.7], equivalent to a peak-frequency range [315–830 Hz].
As a first step, we perform R and ~R, which stand for the WR of

the complex acoustic impedance profile embedded in an elastic
medium (Figure 8a) and in an anelastic medium (Figure 8b), respec-
tively. The two particular reflectors extensively studied by Ker et al.
(2013) are identified by a solid (A) and a dashed (B) line, respec-
tively. The associated ridge functions are plotted in a log–log dia-
gram (Figure 8c and 8d, respectively, where the blue and red curves
correspond to the elastic and anelastic cases, respectively). As in-
troduced in the section presenting the WR background, the aim is
not to describe these multiscale seismic attributes, but to highlight
the efficiency of the time-varying shape filtering compensation in
recovering the WR properties required to assess the geometry of the
realistic complex seismic reflectors.
In a second step, we apply the time-varying shape filtering com-

pensation to the realistic seismic data set associated with ~R. We still
consider the derivative order ᾱ ¼ 4 for the sake of simplicity in the
interpretation of the ridge function and the time τ̄ ¼ 41.5 ms, which
is larger than the two-way traveltimes of the analyzed reflectors A
and B. The less dilated SYSIF wavelet corresponds to a reference
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Figure 7. The WR of (a) a step-like and (b) a thin-bed reflectors
embedded in an anelastic medium, processed by the time-varying
shaping filter (black curves), in comparison with the WR performed
for an elastic medium (green curves). The black and magenta lines
stand for the ridge functions extracted from the corrected WR and
the elastic WR respectively plotted in (c and d) for the step-like and
thin-bed reflectors.
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for the ridge functions of reflectors A (solid line) and B (dashed
line), plotted in (c and d), respectively.
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peak frequency f̄p ¼ 468 Hz. Based on these parameters, the result
is the compensated WR R̄, which is in very good agreement with the
WR R related to the reference case with α ¼ 4 (Figure 9a, the black
and green curves, respectively). The agreement is particularly high-
lighted when plotting the ridge functions in a log–log diagram (Fig-
ure 9a, black and magenta lines, respectively) with an error in the
reconstruction lower than 5% for reflector A (solid lines) and 10%
for reflector B (dashed lines): The time-varying shape filtering ap-
proach is thus very accurate to allow further quantitative analyses of
broadband SYSIF data of complex reflectors in anelastic media.

CONCLUSION

We have studied the effects of the intrinsic attenuation on a seis-
mic source signal during its propagation into an anelastic medium.
The analysis considers a seismic source signal defined as a GDF
wavelet of derivative order α and peak frequency fp, and a K-F
anelastic medium, whose attenuation is β ∝ ωδ, with δ ¼ 1 and
the proportionality factor is related to the reciprocal of the quality
factor Q, considered constant with depth in the present study. We
have shown that a GDF source wavelet that propagates into this
anelastic medium is modified according to a fractional integration
operation and a frequency shift; i.e., the attenuated signal is equiv-
alent to another GDF. We have also demonstrated the dependency
between the wavelet parameters and Q, by establishing an expres-
sion of their relationship.
As a consequence of these attenuation-related effects, the multi-

scale seismic attributes analysis based on the WR of a seismic re-
flector embedded in an anelastic medium is not straightforward. In
particular, the ridge functions cannot be used to characterize the
geometry of the reflector. To go further into this study, in which
a complex acoustic reflectivity induces tunning effects, for instance,
and attenuation also modifies the shape of the seismic source wave-

let, we took advantage of the quasi-conservation of the Gaussian
character of a GDF to compensate for these effects and to recover
properly the quantitative properties of the multiscale seismic attrib-
utes. We designed a time-varying shaping filter based on fractional
integration that enables to substitute the time-varying wavelet by a
constant-shape wavelet. We demonstrated this approach first on a
step-like and a thin-bed related reflectors, widely analyzed in the
framework of the WR in elastic media, and then on realistic syn-
thetic data modeled by using a deep-towed SYSIF source signature
and in situ acoustic-impedance log. The multiscale seismic attrib-
utes are accurately corrected from their attenuation-related distor-
tions, while spanning in a smaller dilation range. The proposed
approach allows extending the use of multiscale seismic attributes
to anelastic media enabling us to properly analyze the geometry of
the seismic reflector.
These results have been performed for an anelastic medium char-

acterized by δ ¼ 1 and Q homogeneous in space. It is interesting to
note that similar developments should be extended to other models,
such as power-law attenuation model with 1 < δ < 2. The potential
of the approach in developing attenuation analysis methods such as
Q estimation has been introduced in the present work from the var-
iations of the GDF parameters and deserves to be tested with in situ
seismic transmission measurements, such as VSP data. The interest
also deals with seismic source signature deconvolution, by provid-
ing a simple model for the seismic wavelet based on only three
parameters that describe the time-varying shape of the seismic
wavelet and can be used to extend the ongoing work dedicated
to seismic wavelet modeling.
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