

Laboratoire d'Océanographie Physique et Spatiale UMR6523 - CNRS-IFREMER-IRD-UBO http://www.umr-lops.fr

DELAYED MODE QUALITY CONTROL AND OXYGEN CORRECTION OF OVIDE ARGO DATA FLOAT WMO 1901206

Auteur(s) : Lagadec Catherine Thierry Virginie Cabanes Cécile

LOPS - Campus Ifremer – ZI de la Pointe du Diable – CS10070 – 29280 Plouzané Tél 33 (0)2 98 22 48 50 – Fax 33 (0)2 98 22 44 96 IUEM, Rue Dumont d'Urville, 29280 Plouzané

Référence : Rapport Interne LOPS 17-15

DELAYED MODE QUALITY CONTROL OF OVIDE ARGO DATA FLOAT WMO 1901206

Internal Report LPO 17-15

C. Lagadec - V. Thierry - C. Cabanes

November 8, 2017

Number	Deployment (cycle 1D)	Last cycle
	cycle 1D	199A
Provor	23/07/2011	
WMO 1901206	19h43	
CTS3 DO	N 42.408	
OIN-10-S3-DO-002	W 20.158	
Pcutoff	5	
Soft version	greater than 5816A00	
Date of control	Float status	Last cycle
October 2015	Active	11/09/2015
Coriolis	15/10/2015	
Date of last control	Float status	Last cycle
October 2017	DEAD	12/11/2016
Coriolis	10/10/2017	

1 Presentation and DMQC summary

Table 1: Status of the float

Warning : Note that all the figures are plotted with the latest QC flag values (the modifications mentionned table 2 are taken into account).

1.1 QC flag checks and interesting profiles

Cycle	Para-	Vertical level	Old	New	Comments	Scoop correction
	meter		flag	flag		
91A	PSAL	level 365	1	4		10/10/2015

Table 2: Float 1901206. Summary of the modifications of the real-time QC flags and of the interesting or suspicous data.

Warning : the resolution is equal to 10 dbar from the surface to 500 dbar, then 25 dbar from 500 to 2000 dbar. Salinity data between 0 and 5 dbar are suspicious because they are acquired when the pump of the CTD is turned off.

1.2 Salinity correction from the OW method

We cannot see any evidence of a drift or bias in the salinity measurement. We thus conclude that it is not necessary to correct the salinity data. Errors bars are maximum value between 0.01 and those determined from the OW method with parameters from the OW configuration 129.

2 Data

OW CONFIGURATION	129
CONFIG_MAX_CASTS	250
MAP_USE_PV	1
MAP_USE_PV_ELLIPSE	1
MAP_USE_FACTEUR	1
MAPSCALE_LONGITUDE_LARGE	3.2
MAPSCALE_LONGITUDE_SMALL	0.8
MAPSCALE_LATITUDE_LARGE	2
MAPSCALE_LATITUDE_SMALL	0.5
MAPSCALE_PHI_LARGE	0.1
MAPSCALE_PHI_SMALL	0.02
MAPSCALE_AGE	0.69
MAP_P_EXCLUDE	500
MAP_P_DELTA	250
Reference data base	CTD and ARGO

Table 3: Parameters of the OW method.

Figure 1: Profiles position and relationship between cycle number, date and color.

Figure 2: Battery Voltage and Surface Pressure

Figure 3: θ /S diagrams. (Left panel) Flags are not taken into account. (Right panel) Quality flags are taken into account.

Figure 4: Temperature section along the float trajectory. Quality flags are not taken into account.

Figure 5: Salinity section along the float trajectory. Quality flags are not taken into account.

Figure 6: Oxygen section along the float trajectory. Quality flags are not taken into account.

Figure 7: Pression as fonction of cycle number and vertical level index along the float trajectory. Quality flags are taken into account.

Figure 8: Potential temperature, salinity and potential density sections along the float trajectory (interpolated on standard levels). Quality flags are taken into account.

Figure 9: Oxygen and Saturation Oxygen sections along the float trajectory (interpolated on standard levels). Quality flags are taken into account.

Figure 10: Salinity, Potential Temperature, Potential Density and Oxygen profiles. Quality flags are taken into account.

Figure 11: Salinity, Potential Temperature, Potential Density and Oxygen profiles. Quality flags are not taken into account.

3 Comparison cycle 1A to the OVIDE 2011 nearest CTD profile

Figure 12: Comparison of the cycle 1A with the nearest CTD profile done after the float deployment.

4 Cycle 91 - Comparison to the nearest historical CTD profiles

Figure 13: Flotteur 1901206, cycle 91. Upper panel: Position of the analysed CTD profile (red) and of the nearest CTD profiles (black). The nearest CTD profile in time is in magenta while the nearest CTD profile in space is in blue. Lower panels: Temperature, salinity and potential density as function of pressure for the analysed CTD profile (stars) and for the nearest CTD profile in time (magenta line) and for the nearest CTD profile in space (blue line). The color of the analysed CTD profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4).

Figure 14: Float 1901206, cycle 91. The analysed CTD profile (stars) is compared to the nearest CTD profiles (black line) and to two specific profiles: the nearest CTD profile in time (magenta) and the nearest CTD profile in space (blue). The color of the analysed CTD profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4). (Upper panels) Temperature (left panel), salinity (middle panel) and potential density (right panel) as function of pressure. (Lower panels) θ/S diagrams.

5 Cycle 91A - Comparison to the nearest ARGO profiles

Figure 15: Flotteur 1901206, cycle 91A. Upper panel: Position of the analysed Argo profile (red) and of the nearest Argo profiles (black). The nearest Argo profile in time is in magenta while the nearest CTD profile in space is in blue. Lower panels: Temperature, salinity and potential density as function of pressure for the analysed Argo profile (stars) and for the nearest Argo profile in time (magenta line) and for the nearest Argo profile in space (blue line). The color of the analysed Argo profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4).

Figure 16: Float 1901206, cycle 91A. The analysed Argo profile (stars) is compared to the nearest Argo profiles (black line) and to two specific profiles: the nearest Argo profile in time (magenta) and the nearest Argo profile in space (blue). The color of the analysed Argo profile represents the QC flag (green for a QC=1; blue for a QC=2; orange for a QC=3 and red for a QC=4). (Upper panels) Temperature (left panel), salinity (middle panel) and potential density (right panel) as function of pressure. (Lower panels) θ /S diagrams.

Figure 17: Float 1901206, cycle 91A. Oxygen data.

6 OW method, CONFIGURATION # 129

Figure 18: Figures from the OW method. (Left) Position of the historical and float data. (Right) Comparison, on various θ levels, between the float data and the historical data interpolated at the float position.

Figure 19: Figures from the OW method. Compararison of the θ /S diagram of the float with the historial database. (left) raw data; (right) corrected data using the OW correction.

Figure 20: Figures from the OW method. Salinity anomaly:(left) raw data; (right) corrected data using the OW correction.

Figure 21: Correction proposed by the OW method.

Figure 22: Chosed levels by the OW method.

Number	Deployment (cycle 1D)	Last cycle
	cycle 1D	199A
Provor	23/07/2011	
WMO 1901206	19h43	
CTS3 DO	N 42.408	
OIN-10-S3-DO-002	W 20.158	
Date of oxygen control	Float status	Last cycle
October 2017	DEAD	12/11/2016
Coriolis tr	23/10/2017	

1 Oxygen correction with LOCODOX

Table 1: Status of the float

This software is used to correct Oxygen data (parameter DOXY) contained in the files BR(real time) and/or BD(Delayed Mode) associated to files R (Real Time T/S) and/or D(Delayed Mode T/S).

PI suggests : The Oxygen corrections have been done only when Salinity and Temperature were available in Delayed Mode (D files). Theorically, the corrections should be done from adjusted values (TEMP and PSAL). However, when there is a few bad values in salinity (of about few tens of PSU), and if there is no bias in salinity (OW method), PSAL data can be used instead of PSAL_ADJUSTED, because the impact of those values on the oxygen correction is not significant.

To correct Oxygen data, LOCODOX software gives 3 choices to work :

- from a reference profile

- from WOA climatology

- from in air measurements

The reference profile for this float is the station 9 of Ovide 2011 Discovery cruise (ov11di).

LOPS options are :

Options	Choice
Unit DOXY	Mumol/kg
Suppress hooks	YES
Drift correction with	PRES
Vertical scale	PRES
Apply drift correction	NO
Correction using : PSAT/DOXY	PSAT
kind of error	RELATIVE

Table 2: LOCODOX Options

Applied DOXY correction

 $\label{eq:psat_formula} PSAT=f(DOXY); PSAT_ADJUSTED=A*PSAT+B; DOXY_ADJUSTED=f(PSAT_ADJUSTED) \\ with A=0.988; B=5.418$

Percent saturation corrected as a linear function of PSAT; Comparison to a single reference profile (isobaric match as in Takeshita et al. (2013)) on cycle 1; PSAT converted from DOXY and DOXY_ADJUSTED converted from PSAT_ADJUSTED.

Figure 1: QC controls of Pressure, Temperature and Salinity. No bias in salinity for this float. Correction done with PSAL (flags = 1 to 4) and TEMP_ADJUSTED.

Figure 2: The first 50 meters from the bottom are suppressed because data are incertain; Only data in cyan are taken for the correction.

Figure 3: Plots produced by LOCODOX

Float 1901206 was corrected based on a comparison of the first ascending profile of the float with an in situ reference profile acquired at float deployment. The correction is done in considering the percentage of saturation (PSAT).

Upper panels : The three panels show the regression between the Argo profile and the reference profile.

Middle left panels : PSAT in the upper 10m from the raw data (black curve) and the corrected data (red curves). PSAT estimated from the World Ocean Atlas at the float position is also provided for comparison (blue curves).

Middle center panel : PSAT values from the raw data (black curves), the adjusted data (red curves) and the reference profile (blue curve).

Middle right panel : Same as the center panel but for dissolved oxygen concentration value (DOXY et DOXY_ADJUSTED) in mumol/kg.

Lower panels : Same as the middle panels but when LOCODOX proposes a constant correction.

Figure 4: Comparison in the deeper levels (below 1500m) between the float data and WOA data interpolated at the float position (horizontal and vertical). The temporal evolution of the difference is used to estimate a possible sensor drift.

Figure 5: Profiles float 1901206 (black), O2 hydro reference (blue), O2 float cycle 1 (red)

1.1 Corrected data float

Figure 6: Oxygen section along the float trajectory (interpolated on standard levels). Quality flags are taken into account. Left plot: Raw data - Right plot : corrected data

Figure 7: PSAT section along the float trajectory (interpolated on standard levels). Quality flags are taken into account. Left plot: Raw data - Right plot : corrected data

1.2 Examples of corrected profiles with LOCODOX

Figure 8: Oxygen profiles. Left plot: Raw data - Right plot : corrected data

Figure 9: Float 1901206 : Corrected profiles in green.