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Abstract. There is a growing need to easily describe and synthesize the dynamics of ecosystems’ compo-
nents in space and time. Most multivariate analyses provide ordination diagrams or biplots that are too
cluttered to allow simple reading and are unfamiliar to most users. To overcome such difficulties, a novel
application of principal response curves (PRCs) is proposed. Principal response curves are traditionally
used to assess treatment effects on community structure measured repeatedly over time. In this new appli-
cation, the tested factor and the repeated-observation axis are replaced by time and space, respectively. The
georeferencing of sampling sites permits to produce an easy-to-read map that summarizes both the tempo-
ral dynamics of the community and the contribution of each species to these dynamics at each sampling
site. A 24-yr-long time series of scientific surveys monitoring 77 fish and cephalopod species in the Eastern
English Channel is used to illustrate the novel application of the PRC method. This new application could
prove a relevant tool for the ecosystem approach to human activities management by providing spatialized
indicators of community changes, as spatial monitoring tools are increasingly recommended for measuring
the effectiveness of management actions.
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INTRODUCTION

Many ecosystems need to be monitored, nota-
bly those that provide services to human commu-
nities. Consequently, there is a growing need for
integrated assessment and ecosystem-based man-
agement (Pikitch et al. 2004, Link and Browman
2014). This objective requires methods to easily
describe and summarize the complexity of ecosys-
tems’ ecological components, and notably how
communities change over time and space. Classi-
cal ecological surveys provide species datasets
in three dimensions (a measure of presence or
abundance per species 9 sampling date 9 sam-
pling site) that are statistically analyzed and
summarized into straightforward representations.

Because of the multidimensional nature of
survey-based ecological datasets (the dimension-
ality could be enlarged beyond the three above-
mentioned basic dimensions by further consider-
ing individual traits such as size, sex, maturity),
several difficulties for interpretation are encoun-
tered when summarizing community structural
patterns and their spatio-temporal dynamics.
Many multivariate analyses are actually avail-

able to achieve such objective of describing and
summarizing community dynamics (Clarke 1993)
and have been popularly used for several dec-
ades. These statistical methods are useful for
reducing the number of dimensions of commu-
nity data and characterize both their structural
patterns and their spatio-temporal dynamics.
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Multivariate analyses are also commonly used to
identify factors that best explain species composi-
tion variation between samples. Among purely
descriptive methods, principal component analy-
sis is the most commonly used one (Jolliffe 1986,
Ter Braak 1995). Nevertheless, the majority of
these analyses provide ordination diagrams that
impede simple reading for most non-specialists
(Van den Brink and Ter Braak 1999). The problem
is also that craggy trajectories do not allow appre-
ciating differences between factor modalities’
effects (e.g., Figure 1 in Van den Brink and Ter
Braak 1999). A considerable number of studies
present temporal dynamics of communities/envi-
ronmental parameters on several sampling sites
by producing a list of numerous bidimensional
graphs/tables that prevents a global overview of
data. To overcome such difficulties and provide a
simple representation of complex datasets, we
propose a novel application of the principal
response curve (PRC) method initially developed
by Van den Brink and Ter Braak (1999).

The PRC analysis is a multivariate method ini-
tially developed in the field of ecotoxicology for
assessing the effect of toxicants on freshwater
communities, especially macroinvertebrates (Van
den Brink and Ter Braak 1999, Van Wijngaarden
et al. 2006, Brock et al. 2009). In this context, the
tested factor was the toxicant, while time was the
dimension along which repeated measures were
performed and patterns of change were identi-
fied. From both a methodological and a concep-
tual point of view, this method is not limited to
testing factors such as toxic chemicals or related
anthropogenic disturbances. In addition to pro-
viding community-level insights into the toxicant
effects, the original application of the PRC
method also enables a quantitative assessment of
its effects at the species level. In contrast with
classical multivariate methods, this analysis facil-
itates our understanding of communities’ tempo-
ral dynamics in response to the factor of interest
(typically a toxicant treatment) through an easy-
to-read graphical representation (Van den Brink
and Ter Braak 1999).

In this paper, we propose to apply the PRC
analysis in a new configuration where the tested
factor and the repeated-observation axes are
replaced by time and space, respectively. Here,
we aim to assess the temporal changes in com-
munities and species across space. In addition to

this statistical variable shift, we also propose to
map geographically the results of the PRC analy-
sis in order to produce an easy-to-read represen-
tation that summarizes both the temporal
dynamics of communities and the contribution
of each species to their global response at each
sampling site across the studied area.
This paper is organized as follows. We first

describe the principle of PRC analysis and its
original application. The new application of the
PRC to describe spatio-temporal community
dynamics is then introduced. As an illustration,
the new PRC application is used to analyze a
24-yr-long time series of scientific surveys moni-
toring 77 fish and cephalopod species in the East-
ern English Channel (EEC). The final section
summarizes advantages and limits of this new
application of the PRC.

THE PRC METHOD: PRINCIPLE, ORIGINAL,
AND NEWAPPLICATIONS

Principle and original application of PRCs
In its original application (Van den Brink and

Ter Braak 1998), the PRC method is meant to
assess the temporal response of community com-
position to toxicants relative to a control treat-
ment. Statistically, it is a special case of partial
redundancy analysis (RDA) where explanatory
variables are the chemical treatment and the inter-
action between treatment and time (treatment 9
time) and where time, along which repeated mea-
sures of community composition are performed,
is the covariable (or conditioning variable) whose
effect is partialled out. As time effect represents a
change in community composition in the control
treatment, it results that the treatment effects are
expressed as deviations from the control at each
point in time. In practice, the PRC method also
allows summarizing and plotting the partial RDA
results in a way that improves the readability and
the interpretation compared to traditional ordina-
tion biplots that are typically highly cluttered. In
the latter, differences between treatment effects
might indeed be difficult to assess because of
strong irregularities in trajectories, and their tem-
poral development might be masked because
time is not one of the ordination biplot axes (Van
den Brink and Ter Braak 1999). It results that,
although ordination biplots illustrate the temporal
changes in species composition in each treatment,

 ❖ www.esajournals.org 2 December 2017 ❖ Volume 8(12) ❖ Article e02023

AUBER ET AL.



they are difficult to interpret in terms of how the
difference between actual treatments and control
evolves through time. To overcome these illustra-
tion difficulties, the PRC extracts and illustrates
directly the differences in species compositions
between the treatments and the control at each
date (see Figure 3 in Van den Brink and Ter Braak
1999). In practice, this is achieved by plotting the
canonical coefficients of the treatment effects
along the first canonical axis of the partial RDA
against time. As a result, the vertical axis of a PRC
diagram contrasts each treatment effect on com-
munity composition with the control. These visual
advantages of the PRC can be appreciated by
comparing the partial RDA ordination biplot and
the corresponding PRC plot (e.g., Figures 1 and 3,
respectively, in Van den Brink and Ter Braak
1999).

The corresponding model is defined by Eq. 1
(Van den Brink and Ter Braak 1999)

ydðjÞtk ¼ �y0tk þ bkcdt þ edðjÞtk (1)

where yd(j)tk is the log-transformed abundance of
species k in replicate j of treatment modality d at
time t, �y0tk is the mean log-transformed abun-
dance of species k at time t in the control (d = 0),
cdt is the canonical coefficient of treatment
modality d at time t (i.e., the coefficient quantify-
ing the community response pattern relative to
the control) along the first canonical axis of the
partial RDA, bk is the multiple of the canonical
coefficient for species k and thus bkcdt gives the
response pattern of species k expressed relative
to the control, and ed(j)tk is an error term with
mean zero and variance r2

k . Only the first canoni-
cal axis is considered here, as it permits to pro-
duce an easy-to-read plot that contains the main
trend in communities’ response to treatments,
but a PRC can be generated for each canonical
axis of the partial RDA if needed. In terms of
visual display, instead of usual multivariate ordi-
nation diagrams, the PRC analysis plots the
canonical (regression) coefficients cdt (y-axis)
along a single axis corresponding to the dimen-
sion of repeated observations (i.e., time, x-axis)
and species weights bk on a separate vertical axis
(Fig. 1A). The representation of cdt values there-
fore permits a direct visual assessment of com-
munity response to treatments relative to control.
Note that c0t = 0 for every t because bkcdt is
defined as a deviation relative to the control

(d = 0) abundance of species k thanks to the par-
tialling out of the time covariable effect. In addi-
tion to the PRC diagram, a permutation test can
be performed in order to assess the significance
of the first canonical axis on the response matrix
(Borcard et al. 2011).
In the original PRC application to experimental

data based on repeated measures through time
such as those gathered in BACI (before-after-
control-impact) designs (Van den Brink and Ter
Braak 1998, Maccherini et al. 2014), the initial data
table has three dimensions, namely abundance per
species, factor modality, and time (Fig. 1A). From
this data table, the PRC provides a two-
dimensional graph (canonical coefficients cdt
against time) that describes the community
response to the factor of interest (typically a chemi-
cal treatment) over time. The absolute value of the
canonical coefficient cdt quantifies, at each sam-
pling date, the amplitude of the factor effect on the
global structure of the community compared to
the control situation represented by the x-axis
(Fig. 1). The corresponding curves (one curve per
modality of the tested factor) can be therefore
interpreted as the PRCs of the community.
The sign of the canonical coefficient cdt indi-

cates the type of community response and must
be interpreted by comparison with the signs of
species weights bk. Indeed, in addition to the
community level (cdt canonical coefficients), the
PRC analysis allows an interpretation at the spe-
cies level. The absolute value of the species
weight bk quantifies the contribution of each spe-
cies to the global change in community structure.
Species weights can then be plotted on a separate
vertical axis (Fig. 1A). Taxa with near-zero
weight correspond to those showing no response
to the tested factor and/or to those for which
abundance was anecdotic in the time series what-
ever the factor modality. The signs of bk and cdt
coefficients are identical (or opposite) for species
that are more (or less) abundant in treated sam-
ples than in control ones. For example, in
Fig. 1A, species 1, 3, and 4 were less abundant in
treated samples than in controls on dates 3, 4, 5,
and 6. Conversely, species 2, 6, 5, and 7 were
more abundant on these dates (Fig. 1A). Con-
cerning the amplitude of abundance changes, the
proportional change in species k in the tested fac-
tor modality d at time t relative to its geometric
mean abundance in the control is given by exp
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Fig. 1. Schematic description of the principal response curve (PRC) method and differences between its origi-
nal (A) and new (B) application. In the original application of the PRC, canonical coefficients cdt represent the
amplitude of treatment effect on communities over time, while in the new version, canonical coefficients cdt rep-
resent the effect of time on communities over space. Considering space as the repeated-measures axis allows
mapping the analysis’ results.
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(bkcdt). Most of the time, the high number of spe-
cies considered prevents a clear overall represen-
tation and, thus, requires the selection of a
species subset to solve this problem. For a com-
plete description and discussion of the PRC
method, the reader can refer to Van den Brink
and Ter Braak (1998, 1999).

New application of the PRC method
The new application of the PRC method aims

at describing a community’s temporal dynamics
across space. To do so, we shift the tested factor
to time and the repeated-measures axis to sam-
pling site or more broadly speaking space
(Fig. 1B). The tested factor time is at least com-
posed of two modalities: One modality called
baseline dates, which corresponds to a set of
dates characterized by a community structure
that is considered as a reference state, and one or
several modalities called tested dates that corre-
spond to dates at which the community structure
will be compared to the reference state (Fig. 1B).
Each modality of the factor time can correspond
to one or several dates characterized by a similar
community structure. The dates of each modality
can be either consecutive, when community
structure quickly switches from one stable state
to another or when community structure gradu-
ally changes, or non-consecutive, when the com-
munity structure alternates between stable states
several times during the studied period, typically
following a cyclic pattern. In the case of regime
shift or alternative community structure/ecosys-
tem states, the baseline date is relatively simple
to define/identify from responses following
abrupt changes. In contrast, the identification of
a baseline date in gradual changing states is less
straightforward since the PRCs impose separa-
tion of entities in the continuum.

Regarding the spatial component, each sam-
pling site is associated with a cdt value that charac-
terizes community change between baseline and
tested dates at this site and that can be interpreted
in terms of species composition by comparison
with the species weights bk as in the original
application (Fig. 1B). In addition, each sampling
site is characterized by its longitude and latitude,
which allows mapping the results. Such easy-to-
read maps summarize both the evolution of com-
munity structure compared to the baseline dates
and the contribution of each species to the

community’s response at each sampling site of the
studied area (Fig. 1B). More generally, sampling
sites can be characterized by any geographical or
environmental parameter considered relevant for
studying the potential implication of spatial struc-
ture, emerging from processes such as spatial
auto-correlation, or environmental gradients on
community structure change between baseline
and tested dates. Plotting canonical coefficients cdt
against the values of the geographical or environ-
mental parameter of interest instead of the sam-
pling site then allows identifying easily potential
spatial structure or environmental gradients in
community temporal change.
The new PRC application allows assessing

community composition changes between tested
and baseline dates at several sites, but it does not
provide a way to test the statistical significance
of change at each site (although a permutation
test on the first canonical axis of the correspond-
ing partial RDA provides a global test of commu-
nity change significance across sites; see
subsection Principle and original application of
PRCs). Significance of community structure
change between the tested and baseline dates can
be evaluated at each sampling site using Monte
Carlo permutation tests designed to correct for
the increase in the family-wise type I error rate
due to multiple comparisons (i.e., one per sam-
pling site). Community composition data are cor-
related across sites because of a spatial
correlation structure emerging from two pro-
cesses. First, the abundance of two species (or
more) can co-vary through space and thus be
spatially correlated. Second, the abundance of a
given species can be correlated with itself across
space, that is, spatially auto-correlated. The
resulting spatial correlation structure in commu-
nity composition data implies that data used for
tests of community structure change between the
tested and baseline dates at different sites are
correlated. The more correlated the data are
between tests, the weaker the correction for mul-
tiple comparisons needs to be (Bretz et al. 2011,
Groppe et al. 2011). This is better understood
when considering the extreme situation in which
data are perfectly correlated between tests: Then,
all tests are strictly identical and are effectively
equivalent to a single test, so that the test-wise
type I error rate, that is, the nominal type I
error rate for each single test, is equal to the
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family-wise type I error rate. Multiple compar-
ison methods that are based on the assumption
that tests are independent, such as the widely
used Bonferroni procedure, are too conservative,
that is, prone to declare an effect non-significant
when it is actually significant, when the data are
correlated between tests.

In order to integrate information about the
spatial correlation in the community composition
data, we corrected for multiple testing using the
maximum statistic/minimal P-value method that
accounts for the degree of correlation between
the multiple comparisons (Nichols and Hayasaka
2003, Bretz et al. 2011, Groppe et al. 2011). In
practice, we approximated the distribution of the
minimal P-value across sampling sites by repeat-
ing 1000 times (or more) the following two-step
procedure (see Data S1 for R script):

1. Outer permutation: Permute randomly factor
time modalities (baseline and tested dates,
z-axis, Fig. 1B) while leaving matrices of abun-
dance by species (x-axis, Fig. 1B) and sites
(y-axis, Fig. 1B) unchanged; this allows ran-
domizing any potential association between
time and the abundance of each species at
each site while preserving the spatial correla-
tion structure of community composition.

2. Inner permutations: Perform a RDA on com-
munity composition at each sampling site
using the permuted data with factor time as
an explanatory variable and test for its
significance using a Monte Carlo permuta-
tion test; record of the resulting minimum
P-value across sampling sites.

The resulting distribution of minimal P-values
(the number of minimum P-values being equal to
the number of outer permutations, typically
1000) can then be used as the empirical null dis-
tribution against which the observed P-values at
each sampling site are tested. The latter are com-
puted for each sampling site through a RDA of
the non-permuted abundance data with factor
time as an explanatory variable followed by a
Monte Carlo permutation test (equivalent to the
inner permutation test above). A change in com-
munity structure at a given site is then consid-
ered significant when <5% of the minimum
P-values in the empirical null distribution are
lower than the observed P-values. Notice that

outer permutations are the critical step for the
maximum statistic/minimal P-value method,
while the inner permutation is only the base sin-
gle-comparison test that can be replaced by any
other type of tests (even parametric) depending
on the nature of the data.
The PRC analysis generates a loss of informa-

tion as any other ordination method. Beyond
quantitative approximation, this may generate
misleading qualitative conclusions such as erro-
neous estimates of direction in species abun-
dance variation. We propose to assess the global
qualitative accuracy of the new application of the
PRC analysis by comparing the matrix of pre-
dicted directions of species abundance changes
between the tested and the baseline dates and
that of directions of change observed in the data.
More precisely, the first one or predicted direc-
tion matrix contains the sign of abundance
change for each species k (columns) at each site t
(rows) as predicted by the PRC, that is, obtained
by comparing the sign of cdt and bk. The second
one, or observed direction matrix, contains the
sign of abundance change as observed in the
original dataset by comparing average abun-
dance between the tested and the control dates.
The two matrices are then compared by comput-
ing their percentage of similarity, that is, the per-
centage of cells of the two matrices that have the
same sign. The similarity or qualitative accuracy
is expected to vary from 50% if the predicted
direction matrix is completely random compared
to the observed direction matrix to 100% if direc-
tions of changes are predicted perfectly.

ECOLOGICAL ILLUSTRATION:
SPATIO-TEMPORAL DYNAMICS OF THE
ENGLISH CHANNEL FISH COMMUNITY

Study area and data
The English Channel is one of the busiest mar-

itime areas in the world enduring intense and
diversified anthropogenic pressures: international
mixed fisheries (Jennings and Kaiser 1998, Bat-
sleer et al. 2013), intense commercial traffic, wind
farm settlements, and aggregate extractions. Since
1988, a bottom trawl survey (Coppin and Travers-
Trolet 1989) is conducted annually in October in
the EEC and the southern North Sea (areas VIId
and south of IVc defined by the International
Council for the Exploration of the Sea) in order to
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monitor the bentho-demersal fish community.
While this survey primarily aims at producing
abundance indices to be used in commercial fish
stock assessments, data are collected on all species
caught and thus allow following the spatio-
temporal dynamics of the local bentho-demersal
fish community (Appendix S1: Fig. S1). Based on
these data, Auber et al. (2015) documented a
regime shift in the fish community structure of
the EEC during the mid-1990. This regime shift
seemed likely triggered by a large-scale and mul-
tidecadal hydro-meteorological process in the
Atlantic Ocean, detected from the Atlantic Mul-
tidecadal Oscillation signal during the mid-1990s.
However, the regime shift was characterized at
the entire EEC basin scale without considering
potential spatial heterogeneity in community
change at smaller scale. The new application of
the PRC proposed here would provide better
understanding of the spatial distribution of tem-
poral changes, using the pre-regime shift period
as a reference state for community structure and
thus baseline dates.

Because weather conditions sometimes pre-
vented sampling, we chose to delete all sampling
sites that had not been visited for at least three
consecutive years. As a result, 79 sampling sites
were kept. Overall, 77 taxonomic groups of fish
and cephalopod were recorded since 1988. In this
paper, we loosely define fish communities as
encompassing fishes and cephalopods. The
abundance indices at each sampling site were
standardized to density (number of individuals/
km2), which we will refer to as abundance here-
after. Therefore, data consisted of a three-
dimensional table of abundance according to fish
species, sampling year, and sampling site
(Fig. 1B). Before applying the PRC analysis,
abundance data (x) were ln(Ax + 1)-transformed
(Van den Brink et al. 2000), where Ax must be
equal to 2 for the lower x value in the dataset. In
this case study, the coefficient Awas equal to 0.1.

Results
Since the regime shift in the fish community

was detected between years 1997 and 1998 (see
Auber et al. 2015 for details), the period (1988–
1997) was selected as the “baseline dates” and the
period (1998–2011) as the tested dates. The PRC
method was applied on the table of log-trans-
formed fish abundance data according to the new

scheme, that is, with time as the tested factor char-
acterized by two modalities (baseline dates and
tested dates) and sampling sites as the repeated-
measures axis (package vegan in R version 2.15.1;
Oksanen et al. 2015, R Core Team 2015).
Sampling sites explained 40.1% of spatio-

temporal variance in species abundance data (im-
plicitly displayed on the horizontal axis, Fig. 2A),
whereas time was responsible for 6.2%, 36.5% of
which is represented by the first canonical axis of
the PRC analysis (vertical axis, Fig. 2A), 10.9% by
the second one, and 7.1% by the third one (not
displayed). The variance explained by the factor
time corresponded to a significant difference in
terms of community structure between the two
periods corresponding to baseline and tested
dates (permutation test: P < 0.001). These first
results illustrate two points. First, one interest of
the new application of the PRC method is to allow
detecting temporal changes while accounting at
the same time for strong spatial variability (by
defining sampling sites as conditioning variable)
that in other analyses would either mask the tem-
poral effects or be neglected (analyses on spatially
averaged data). Second, they show that, in this
case study, the first PRC can be used alone to
assess the temporal changes in community com-
position as it represents more than one-third of
the temporal effect, while the second and third
PRCs represent one-tenth or less.
All sampling sites were characterized by nega-

tive cdt values (Fig. 2A), which indicates a quali-
tatively identical type of fish community change
between time periods at all sites in the sense that
the direction of species abundance variation
between the two periods was the same whatever
the considered site. However, because cdt values
were different from one site to another, the
amplitude of the community’s structure variation
was relatively heterogeneous in space. Species
weights bk indicated that the common response
pattern across sites was mainly characterized by
a diminution in the density of horse mackerel
(Trachurus trachurus) and poor cod (Trisopterus
minutus; strongly positive bk values for negative
cdt values, which corresponds to a diminution of
about 20,000 individuals/km2 between the peri-
ods [1988–1997] and [1998–2011]; Fig. 2A). These
two dominant species were the main ones
involved in the mid-1990 regime shift as docu-
mented in Auber et al. (2015). The PRC also
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Fig. 2. Distribution of cdt values across sampling sites. (A) Principal response curve, only species for which the
bk coefficient was in the first or the last decile were included in the graph (36.5% of the inertia is explained by the
first canonical axis). Sampling sites are ordered from south to north, and labeled by three characters as follows:
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revealed a moderate decrease (i.e., a diminution
ranging from 1000 to 6000 individuals/km2 on
average according to species) in mackerel (Scom-
ber scombrus), sardine (Sardina pilchardus), pout-
ing (Trisopterus luscus), sprat (Sprattus sprattus),
herring (Clupea harengus), and sandeel (Hypero-
plus genus) abundance (moderately positive bk
values for negative cdt values; Fig. 2A), and a
very low increase (i.e., rise of about 60 individu-
als/km2 between the periods [1988–1997] and
[1998–2011]) in the abundance of some species
such as red mullet (Mullus surmuletus) and black
seabream (Spondyliosoma cantharus; Fig. 2A). The
bk coefficients of the 32 other species were close
to zero, indicating that these species’ abundance
was similar between the two periods and/or
anecdotal throughout the time series.

Since all sampling sites were georeferenced, cdt
values could be mapped for easier inspection of
the temporal variation in fish community over
space (Fig. 2B). The resulting map clearly demon-
strates the relative spatial heterogeneity in the
amplitude of community change already sus-
pected from the raw PRC itself (Fig. 2A). This
representation suggests that sampling sites with
the highest cdt values are globally located close to
the coast. However, no significant correlation
between cdt values and three different environmen-
tal parameters characterizing sampling sites, dis-
tance to the nearest coast, longitude, and latitude,
was detected, suggesting the absence of environ-
mental gradient in community change associated
with these parameters (Table 1, Fig. 2C–E).

Monte Carlo permutation tests correcting for
multiple comparisons showed that changes in
community structure were significant at 13 out
of the 79 sampling sites (Fig. 2B). In addition to

community-level patterns, the resulting map
facilitates comparison of the amplitude of tempo-
ral variation in each species’ abundance between
sites (i.e., by looking simultaneously at the cir-
cles’ size representing cdt absolute value and the
absolute value of bk; Fig. 2B).
The PRC analysis estimated the correct direc-

tion of species abundance change for 4824 out of
the 6083 (79 sampling sites 9 77 species) cases
observed, which corresponds to a qualitative
accuracy of 79.3%. As explained before, the qual-
itative accuracy is expected to vary between 50%
(random prediction) and 100% (perfect predic-
tion). The observed accuracy therefore indicates
that PRC predictions are much better than ran-
dom but also not perfect. The good degree of
qualitative accuracy is probably related to the
amplitude of the regime shift observed in this
ecosystem in the mid-1990s.

GENERAL DISCUSSION

We proposed here a new application of the
PRC analysis for studying community temporal

Table 1. Results from regressions and quantile regres-
sions between cdt values and the distance to the nearest
coast, longitude, and latitude.

Variables
Regression

(P)

Quantile
regression (P)

First
decile

Last
decile

cdt ~ distance to the nearest
coast

0.06 0.06 0.64

cdt ~ longitude 0.65 0.62 0.54
cdt ~ latitude 0.37 0.32 0.71

The first character corresponds to the latitudinal row of the sampling grid from south to north (see B), the second
character corresponds to the longitudinal column of the sampling grid from east to west, and the third character
corresponds to the number of the sampling site within a given cell defined by a row and a column (each cell of
the sampling grid contains a maximum of two sampling sites). (B) Map showing the amplitude of the fish com-
munity change between the baseline [1988–1997] and the tested period [1998–2011] at each sampling site and
trend (positive or negative) in abundance for each species. Sampling sites for which a significant change in the
community structure occurred are shown by asterisks (���P < 0.001; ��0.001 < P < 0.01; �0.01 < P < 0.05). This
map was produced using ArcGIS version 9.3.1 (ESRI, 2009). (C) Relationship between cdt values and distance to
the nearest coast (in km) with the first/last decile lines and smooth curve. (D) Relationship between cdt values
and longitude with the first/last decile lines and smooth curve. (E) Relationship between cdt values and latitude
with the first/last decile lines and smooth curve.

(Fig. 2. Continued)
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dynamics across space. As shown here, applying
the PRC on species abundance tables, with time as
the tested factor and site as the repeated-measures
axis, is well adapted for providing a simple and
rapid overview of community structure changes
and for simultaneously qualifying and quantify-
ing site-specific community structure and species
abundance temporal changes. This new applica-
tion clearly provides a highly accurate synthesis of
community-level dynamics at numerous sampling
sites as illustrated for the EEC fish community.
The geographical representation of canonical coef-
ficients (cdt) allows a rapid identification of sites
where community changes occur, as well as of the
type and the magnitude of community response
at each site. Complementary to cdt coefficients, bk
coefficients are very useful to assess the direction
and amplitude of species abundance changes at
each sampling site and thus to rapidly identify
species that can be considered as indicator species.
We must note that the new application of the PRC
proposed here does not rely directly on the spatial
location of data points as sampling sites are identi-
fied as factor modalities and not through their
geographical coordinates. This means that the
PRC must be completed by additional analyses to
investigate potential spatial patterns in commu-
nity temporal changes. Hence, the novel PRC
application could be useful in revealing spatial
structures or environmental gradients in temporal
community changes by evaluating spatial auto-
correlation in cdt values or by relating them to
environmental parameters. Although no environ-
mental gradient has been evidenced for the EEC
example, the canonical coefficient cdt representing
community changes could still be related to abi-
otic or biotic parameters that characterize sam-
pling sites but that we did not consider (e.g.,
bathymetry, temperature, salinity, productivity).
Beyond community data, the PRC analysis could
be applied in its new configuration to environ-
mental parameters data in order to easily charac-
terize and quantify the spatio-temporal dynamics
of ecosystems’ abiotic conditions.

The newly proposed application of the PRC is
particularly well adapted for describing regime
shifts or cyclic successions of alternative stable
states (Collie et al. 2004). Such cases are charac-
terized by low variability between replicates
within each modality of the tested factor (time
period or set of dates) relative to that between

modalities and are thus well accommodated by a
discretized representation of time as the tested
factor. However, when community/ecosystem
dynamics are characterized by a gradual change,
the PRC is less adapted since the community ref-
erence state is composed of a series of different,
although contiguous, community structures that
will complicate the determination of baseline
dates and more generally the discretization of
time. In this case, the accuracy of the assessment
of time effect is likely to be reduced since the level
of variation within each modality of the tested
factor (i.e., time) relative to that between modali-
ties will be higher than in cases of regime shifts or
alternative stable states. As a consequence, cau-
tion must be exercised when aiming to apply the
novel PRC configuration on biotic/abiotic com-
partments that do not present abrupt shifts. A
critical prerequisite of the proposed application
of the PRC method is that the number of sets of
tested dates and the specification of dates in each
set must be determined before applying the PRC
itself. Several statistical methods exist for defining
dates where abrupt changes occur in time series
such as constrained/unconstrained hierarchical/
non-hierarchical clustering methods (e.g., kmeans,
multiple regression trees), but also piecewise
regressions. The identification of the baseline
period and the tested period was straightforward
in the EEC example, as a regime shift occurred in
this ecosystem. For gradual changes in com-
munities, care must be taken when identifying
the different periods or set of dates to be used.
Options include subdividing the time series
into two or an arbitrary number of contiguous
periods, each consisting of a fixed number of
dates, or using only the first (few) date(s) as a
baseline and the last (few) dates as tested dates.
When doubt exists about the definition of the
sets of dates, an analysis of sensitivity to the
discretization of time should be performed in
order to assess uncertainty in the results due to
these choices. In any case, we discourage the use
of the new PRC application in case of gradual
shift of community structure. It is also worth
noting that considering several periods or sets of
dates results in the production of several maps
(one for each tested period or set of dates show-
ing changes from the reference state).
In this study, only the first PRC (corresponding

to the first canonical axis of the partial RDA) was
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presented in order to illustrate the use and utility
of the new PRC application to describe commu-
nities’ spatio-temporal dynamics. However,
according to the level of information required by
users, additional PRCs can be generated and
plotted using additional canonical axes. The first
PRC provides the leading-order term in the spa-
tio-temporal dynamics of the considered data
(communities, environmental parameters, etc.),
but more detailed information can be accessed
using additional PRCs and canonical axes. What-
ever their number, PRCs are still useful com-
pared to standard ordination biplots since PRCs
are much more efficient to assess and interpret
the effect of the tested factor relative to its refer-
ence level (treatment vs. control, tested vs. base-
line dates, etc.).

The ecosystem approach incorporates a range
of objectives geared to maintaining healthy or
sustainable environments (Pikitch et al. 2004,
Convention on Biological Diversity, 1992) and
offers schemes for integrated management
(Busch et al. 2003). In this context, the achieve-
ment of ecosystem-based management objectives
requires the use of quantitative indicators. Some
of these indicators are general measures of
ecosystem health, while others have potential to
underlie decision rules such that a particular
indicator value may trigger specific management
action (Gislason et al. 2000, Rombouts et al.
2013). In the case of the novel PRC application,
cdt and bk coefficients correspond to measures of
community and species changes, respectively.
This makes the PRC an interesting tool for imple-
menting the ecosystem approach, in both marine
and terrestrial ecosystems management. For
instance, the new application of the PRC analysis
could be useful for providing a rapid assessment
of potentially sensitive areas that may contribute
to endangered species extinction or invasive spe-
cies proliferation. Likewise, it could be useful to
describe spatio-temporal dynamics of functional
rather than taxonomical community structure.
Functional approaches based on species traits or
ecological roles could indeed be more effective
than traditional methods that only consider
taxonomic community structure, especially for
understanding mechanisms behind community
dynamics and biodiversity–ecosystem function-
ing relationships (Dumay et al. 2004, Culp et al.
2010).

Our study illustrates the flexibility and versatil-
ity of this novel PRC application for a more
straightforward representation and interpretation
of temporal variations in communities, or more
generally in multiple ecosystem components, at
different spatial scales. Despite some limitations,
it has the benefit of being an efficient monitoring
tool for describing sequential and/or alternative
changes in community/ecosystem states (e.g., sea-
sonal patterns of biotic and abiotic components).
It is also a potentially useful tool for ecological
studies in either controlled (Van den Brink and
Ter Braak 1999) or wild environments and it can
be used to assess diverse biological responses to
climate change as well (Heegaard and Vandvik
2004). Moreover, the geographical projection of
PRC results on maps offers ease in readability and
interpretation of spatial patterns in temporal
changes possibly useful to environmental man-
agers and conservationists for spatial manage-
ment decisions such as the definition of
preferential protected areas (Fogarty and Mur-
awski 1998). This last advantage reinforces the
relevance of the new PRC application for the
ecosystem approach since spatial management
tools are increasingly recommended in this con-
text (Sainsbury et al. 1997, Babcock et al. 2005)
and because decision-support tools are needed for
designing and measuring the effectiveness of
management actions. To conclude, this new PRC
application is an efficient method for providing
an initial and simplified overview of the temporal
dynamics of communities and populations at var-
ious sites and we strongly encourage its applica-
tion for future synecology research where time
and space matter.
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