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Abstract
1.	 Population	genetics	is	used	in	a	wide	variety	of	fields	such	as	ecology	and	biodiver-
sity	conservation.	How	estimated	genetic	characteristics	of	natural	populations	can	
be	influenced	by	the	sampling	design	has	been	a	long-standing	concern.	Multiple	
simulation	and	empirical	studies	illustrated	the	influence	of	both	sample	size	and	
polymorphism	of	markers.	However,	our	review	of	studies	on	butterfly	population	
genetics	indicates	no	consensus	on	sample	size	for	the	estimation	of	genetic	diver-
sity	or	differentiation.	Furthermore,	other	aspects	of	sampling	design	(sex	ratio	and	
timing	 of	 sampling)	 were	 not	 addressed	 and	 their	 potential	 impact	 on	 genetic	
	parameter	estimates	rarely	explored.

2.	 Using	a	large	empirical	dataset	(with	spatial	and	temporal	replicates)	collected	on	a	
butterfly	 species,	 Boloria aquilonaris,	 as	 well	 as	 simulated	 datasets	 reflecting	
(1)	three	scenarios	of	migration–genetic	drift	equilibrium	and	 (2)	one	scenario	of	
parameter	 stabilization	 after	 100,000	 generations,	we	quantified	 the	 impacts	 of	
three	aspects	of	genetic	sampling	design	(namely,	sample	size,	sex	ratio	and	timing	
of	sampling)	on	the	estimation	of	allele	frequencies	and	its	potential	downstream	
impact	on	the	estimation	of	genetic	parameters.

3.	 With	empirical	data,	we	found	that	sample	size	and	timing	of	sampling	strongly	af-
fected	the	accuracy	of	allele	frequencies	and	the	downstream	analyses,	while	sex	
ratio	did	not.	Our	results	were	consistent	across	spatial	and	temporal	 replicates.	
Also,	with	simulated	data,	we	showed	that	the	genetic	sampling	design	had	limited	
effect	in	systems	where	dispersal	outweighs	genetic	drift,	while	it	can	have	major	
consequences	on	our	understanding	of	 the	genetic	diversity	and	population	dif-
ferentiation	 in	 systems	dominated	by	 genetic	 drift	 (such	 as	most	 study	 systems	
with	conservation	concerns).

4.	 We	advocate	for	careful	consideration	of	all	aspects	of	the	sampling	design	in	pop-
ulation	genetics	studies,	that	is	a	sufficient	number	of	samples,	while	ensuring	simi-
lar	sex	ratio	among	sampling	locations	and	collecting	with	timing	appropriate	to	the	
question	under	study.	This	is	particularly	important	when	the	study	aims	at	species	
conservation.
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1  | INTRODUCTION

Population	genetics	has	been	applied	 in	various	research	fields	such	
as	agronomy,	ecology	and	biodiversity	conservation.	 It	 is	of	ultimate	
importance	in	conservation,	as	genetic	variability	is	linked	to	the	evo-
lutionary	potential	of	populations	(Frankham,	Ballou,	&	Briscoe,	2002).	
To	estimate	this	variability,	a	wide	variety	of	markers	have	been	used,	
such	 as	 amplified	 fragment	 length	polymorphisms	 (AFLP),	microsat-
ellites,	 allozymes	 or	 single	 nucleotide	 polymorphisms	 (SNP;	Allan	&	
Max,	2010).	One	of	the	most	used	markers	are	microsatellite	markers	
(Selkoe	&	Toonen,	2006)	because	they	are	co-	dominant,	hypervariable,	
reproducible	and	a priori	 selectively	neutral	 (Jarne	&	Lagoda,	1996).	
Furthermore,	 they	are	based	on	PCR,	which	allows	 the	use	of	 small	
tissue	samples	(e.g.	insect	legs	or	wing	clippings),	which	do	not	neces-
sarily	require	the	capture	of	individuals	(non-	invasive	sampling	of	fur	
and	faeces	among	others,	see	Taberlet	et	al.,	1996;	Taberlet,	Waits,	&	
Luikart,	1999).	These	markers	have	been	successfully	used	in	research	
on	dispersal	and	gene	flow	(e.g.	Keyghobadi,	Roland,	&	Strobeck,	2005;	
Richards,	Bernard,	Feldheim,	&	Shivji,	2016),	on	genetic	differentiation	
and	 the	 distribution	 in	 space	 of	 genetic	 diversity	 (e.g.	 in	mammals,	
Paetkau,	 Calvert,	 Stirling,	 &	 Strobeck,	 1995;	 in	 insects,	 Keyghobadi	
et	al.,	2005;	in	plants,	Kikuchi	&	Isagi,	2002).

Butterflies	 are	 excellent	 study	 systems	 in	 ecology	 and	 conser-
vation	 biology,	 particularly	 for	 studies	 focusing	 on	 global	 change	
(Warren	et	al.,	2001)	and	metapopulation	theory	(e.g.	Mousson,	Nève,	
&	 Baguette,	 1999;	 Nieminen,	 Siljander,	 &	 Hanski,	 2004;	 Nowicki	
et	al.,	 2007).	 They	 present	 relatively	 simple	 life	 cycles,	 often	 with	
non-	overlapping	generations	(preventing	the	blurring	or	alteration	of	
a	 genetic	 signal	by	mixing	generations)	 and,	 they	are	 relatively	easy	
to	 study	 and	 their	 ecology	 is	 well	 known	 (Boggs,	Watt,	 &	 Ehrlich,	
2003).	Furthermore,	many	species	are	specialized	at	the	 larval	stage	
(Bink,	1992),	facilitating	the	a priori	delineation	of	habitat	units	in	the	
landscape	(Dennis,	Shreeve,	&	Van	Dyck,	2003;	Turlure,	Choutt,	Van	
Dyck,	 Baguette,	 &	 Schtickzelle,	 2010),	 a	 point	 essential	 for	 studies	
implying	 a	 structuring	 among	 discrete	 populations	 in	 the	 landscape	
such	 as	 in	metapopulation	 ecology	 and	population	 genetics	 (Hanski	
&	Gaggiotti,	2004).	In	the	context	of	conservation,	many	studies	have	
focused	on	species	facing	some	level	of	threat,	often	legally	protected	
(e.g.	Boloria eunomia,	Radchuk,	Turlure,	&	Schtickzelle,	2013;	Maculinea 
arion,	Thomas,	1995;	Melitaea cinxia,	Ehrlich	&	Hanski,	2004).	Working	
with	such	species	entails	that	the	genetic	data	collection	must	be	opti-
mized,	even	more	than	for	less	threatened	species.	Indeed,	in	addition	
to	the	usual	trade-	off	between	the	costs	 (both	 in	terms	of	time	and	
money)	of	acquiring	genetic	samples	and	the	overall	reliability	of	the	
results,	the	potential	harmful	impact	of	sampling	on	the	species	and/or	
its	often	fragile	habitat	must	be	limited	as	much	as	possible.

With	this	problem	in	mind,	we	reviewed	the	 literature	published	
on	butterfly	species	 (Scopus	database;	keywords:	butterfl*	AND	mi-
crosatellite*;	50	studies	matched	a	population	genetics	context	on	1	
November	 2016;	Appendix	 S1).	We	 found	 no	 standard	 practice	 for	
genetic	 sampling	 design,	 even	 on	 the	 seemingly	 simple	 question	 of	
the	 number	 of	 samples	 collected,	which	most	 of	 the	 time	 probably	
resulted	 from	 logistic	 limitations	 and/or	 local	 population	 densities.	

We	found	substantial	variation	 in	 the	mean	number	of	 samples	col-
lected	across	these	studies	with	a	median	sample	size	per	predefined	
unit	or	population	of	20	 (range:	1–110,	SD:	15.29).	Moreover,	most	
studies	neglected	other	potentially	important	features	of	the	sampling	
design:	 the	 sex	 ratio	 and	 the	 timing	 of	 sampling.	The	 sex	 ratio	was	
explicitly	 considered	 in	 only	 six	 studies,	with	 conservation	 concern	
leading	to	the	sampling	of	males	only.	However,	this	could	be	prob-
lematic	as	many	butterfly	species	show	sex-	specific	behaviours	 (e.g.	
male	mate-	locating	strategy,	Rutowski,	1991;	harassment	of	females	
by	 males,	 Baguette,	Vansteenwegen,	 Convi,	 &	 Nève,	 1998),	 poten-
tially	 affecting	 the	 distribution	 in	 space	 of	 individuals	 by	 promoting	
sex-	biased	movements	or	dispersal	(e.g.	Baguette	et	al.,	1998;	Ohsaki,	
1980;	Schtickzelle,	Turlure,	&	Baguette,	2012).	Sex-	biased	dispersal,	
together	with	an	unbalanced	sampling	of	males	or	females,	may	also	
lead	 to	 a	 substantial	 discrepancy	 between	 true	 and	 observed	with-
in-		and	among-	population	genetic	characteristics	 (e.g.	 sampling	only	
males	after	dispersal	occurred	in	systems	with	male-	biased	dispersal	
might	lead	to	an	underestimation	of	the	genetic	structure	compared	to	
a	female-	only	or	balanced	sampling).	If	genetic	structure	at	the	land-
scape	scale	 is	used	to	infer	dispersal	rates,	such	bias	could	be	detri-
mental.	Finally,	only	a	third	of	the	studies	used	samples	collected	on	
a	single	generation	and	the	timing	of	collection	within	the	generation	
was	 never	 mentioned.	 Yet,	 collecting	 newly	 emerged	 imagoes	 that	
have	had	no	chance	to	disperse	or	older	 individuals	with	a	potential	
dispersal	history	can	strongly	influence	the	measured	genetic	charac-
teristics	of	natural	populations,	and	inferred	dispersal	rates.	Therefore,	
there	are	multiple	ways	 through	which	changes	 in	sampling	scheme	
could	influence	the	measured	genetic	characteristics	of	the	focal	study	
system	and	these	impacts	may	be	even	stronger	when	genetic	drift	is	
dominant	as	the	homogenizing	effect	of	dispersal	will	be	low.	Based	on	
a	quick	review	of	the	ten	last	studies	published	on	microsatellites	using	
mammals	and	birds,	we	observed	very	similar	patterns,	with	varying	
sample	 size	 (mammals:	median	 sample	 size	=	20.5,	 SD	=	51.6;	 birds:	
median	=	29,	SD	=	26.7),	 sex	 ratio	mentioned	 in	 one	or	 two	 studies	
and	sampling	done	over	several	years	in	most	cases.

Given	the	potential	problems	associated	with	the	aforementioned	
issues,	our	aim	was	to	quantify	the	impact	of	these	three	components	
of	the	sampling	design	(sample	size,	sex	ratio	and	timing	of	sampling)	
on	the	estimation	of	allele	frequencies	and	genetic	parameters.	We	
used	empirical	and	simulated	data	to	combine	(1)	the	realism	of	em-
pirical	genetic	data,	collected	across	temporal	and	spatial	replicates	
and	(2)	the	possible	generalization	of	the	results	across	several	levels	
of	dispersal-	genetic	drift	equilibrium	and	parameter	stabilization.	 In	
a	first	step,	we	tested	the	effect	of	sampling	design	using	a	large	ge-
netic	dataset	(four	spatial	replicates	totalling	1,726	samples,	and	four	
temporal	replicates	totalling	1,890	samples)	collected	on	Belgian	pop-
ulations	of	 the	cranberry	 fritillary,	Boloria aquilonaris	 (Stichel	1908),	
a	 specialist	 butterfly	 species.	 In	 a	 second	 step,	we	 used	 simulated	
	datasets	 to	explore	the	 impact	of	parameter	stabilization	and	three	
levels	of	dispersal–genetic	drift	equilibrium:	(1)	genetic	drift	prevail-
ing,	(2)	dispersal–genetic	drift	equilibrium	and	(3)	dispersal	prevailing.

Most	 genetic	 parameters	 used	 in	 a	 diversity	 or	 differentiation	
context	 are	based	on	 the	estimation	of	 allele	 frequencies	 (Hartl	&	
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Clark,	2007),	and	some	authors	argued	that	it	is	sufficient	to	focus	
exclusively	 on	 obtaining	 reliable	 estimates	 of	 allele	 frequencies	
(Hale,	Burg,	&	Steeves,	2012).	 Indeed,	 if	 the	 local	populations’	ge-
netic	composition	is	characterized	accurately,	the	downstream	anal-
yses	relying	on	it	should	produce	robust	and	consistent	results.	Yet	
the	degree	to	which	changes	in	allele	frequencies	can	influence	the	
estimation	of	parameters	commonly	used	in	population	genetics	will	
also	depend	on	the	number	of	loci	and	their	level	of	polymorphism.	
Moreover,	 fully	understanding	 the	effect	of	different	 sampling	de-
signs	 on	 genetic	 parameters	 requires	 quantifying	 their	 effect	 not	
only	 on	 the	 allele	 frequencies	 but	 also	 on	 the	 actual	 downstream	
genetic	parameter	estimations.	For	this	reason,	we	also	focused	on	
genetic	parameters	describing	(1)	local-	scale	genetic	diversity:	allelic	
richness	 (AR;	El	Mousadik	&	Petit,	1996),	observed	heterozygosity	
(Ho,	Nei,	1987),	expected	heterozygosity	(Hs,	Nei,	1987),	and	within-	
population	heterozygote	deficit	(FIS;	Nei,	1987),	as	well	as	(2)	inter-
group	features:	population	differentiation	(FST and Dest;	Jost,	2008;	
Nei,	1987)	and	dispersal	 (number	of	first-	generation	migrants;	Piry	
et	al.,	2004).

Our	 expectations	 concerning	 the	 impact	 of	 sampling	 features	
were	 as	 follows.	First,	we	expected	a	 strong	 impact	of	 the	 sample	
size	 on	 the	 precision	 of	 the	 allele	 frequencies	 estimates,	 with	 a	
nonlinear	increase	in	precision	(faster	increase	in	precision	at	lower	
sample	 size	 than	 at	 larger	 sample	 size).	 This	 has	 been	 reported	 in	
multiple	studies	(e.g.	Hale	et	al.,	2012)	and	this	effect	should	affect	
similarly	the	estimation	of	the	derived	genetic	parameters	(Ho,	Hs,	FIS,	
FST and Dest).	We	also	expected	a	nonlinear	gain	of	accuracy	in	the	
estimation	of	AR	with	increasing	sample	size,	given	that	the	probabil-
ity	of	sampling	rare	alleles	increases	with	the	number	of	individuals.	
Second,	we	expected	 the	 sex	 ratio	 to	have	an	effect	on	allele	 fre-
quencies	and	subsequent	genetic	parameter	estimates	in	case	there	
is	 a	 strong	 genetic	 differentiation	 among	 sexes.	This	 could	 be	 due	
to	sex-	linked	markers,	sex-	biased	dispersal,	strong	selection	pressure	
acting	on	one	sex	and/or	a	biased	sex	ratio	of	the	offspring	produced	
by	dispersing	individuals.	Third,	we	expected	the	estimates	of	allele	
frequencies	and	of	genetic	parameters	to	be	affected	by	the	timing	
of	sampling	within	the	flight	season.	Indeed,	an	early	sampling	would	
give	 a	 representation	of	demographic	processes	 and	dispersal	 that	
took	place	over	the	previous	generation(s),	while	the	genetic	charac-
teristics	measured	using	a	late	sampling	would	result	from	past	and	
current	dispersal	processes	(with	the	hypothesis	that	the	probability	
of	sampling	dispersing	individuals	increases	during	the	flight	period).	
In	particular,	we	expected	this	to	lead	to	an	increase	in	AR	and	Hs due 
to	the	introduction	of	“foreign”	genotypes,	and	a	decrease	in	FIS, FST 
and Dest,	due	 to	a	homogenization	effect	of	potential	dispersal.	All	
these	expectations	regarding	the	effect	of	sample	size,	sex	ratio	and	
timing	of	 sampling	concern	cases	where	populations	are	at	disper-
sal–genetic	drift	equilibrium.	We	expect	these	effects	to	be	stronger	
when	 genetic	 drift	 prevails	 and	weaker	when	 dispersal	 prevails	 or	
when	the	parameter	value	is	stabilized.	Finally,	we	conclude	on	rec-
ommendations	for	future	sampling	designs	of	population	genetics	in	
general,	and	for	further	study	of	B. aquilonaris	population	health	and	
metapopulation	structure	in	particular.

2  | MATERIALS AND METHODS

2.1 | Study species and system

The	cranberry	fritillary	B. aquilonaris	is	a	specialist	butterfly	inhabit-
ing	peat	bogs	where	 its	 larval	 food	plant,	 the	 cranberry	Vaccinium 
oxycoccos	 (L.	1753),	 grows.	 In	Belgium,	 the	 species	 is	 restricted	 to	
naturally	 fragmented	 habitats	 in	 uplands	 where	 climatic	 condi-
tions	are	cold	and	wet,	allowing	the	development	of	 its	 larval	host	
plant.	Adults	fly	 in	one	generation	a	year	 in	June–July	 in	this	area,	
showing	a	mild	protandry	as	many	other	butterflies	do	(Wiklund	&	
Fagerström,	1977).	The	species	occurs	in	thirty-	nine	sites	in	Belgium	
(Figure	1)	 that	 are	 aggregated	 in	 space,	 with	 thirteen	 populations	
in	the	“Hautes	Fagnes”	area	(hereafter	referred	to	as	Group	1:	G1),	

F IGURE  1 Sites	sampled	between	2010	and	2015	across	
south-	eastern	Belgium,	as	represented	in	the	bottom	right	frame.	
We	grouped	the	populations	into	four	geographical	clusters,	
represented	by	black	rectangles,	from	the	Hautes	Fagnes	(G1),	
Ardennes	liégeoises	(G2),	Plateau	des	Tailles	(G3)	and	Plateau	de	
Libin	and	Lorraine	(G4).	These	clusters	were	used	as	spatial	replicates.	
Individuals	from	the	populations	represented	with	black	and	grey	
dots	were	grouped	to	define	four	temporal	replicates	in	2010,	2013,	
2014	and	2015.	These	were	used	to	study	the	impact	of	sample	size	
and	sex	ratio.	The	populations	represented	by	black	dots	were	used	
in	the	study	of	the	impact	of	the	timing	of	sampling.	The	grey	surface	
represents	the	Belgian	territory
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eight	populations	in	the	“Ardennes	liégeoises”	area	(G2),	twelve	pop-
ulations	 in	 the	 “Plateau	 des	 Tailles”	 area	 (G3)	 and	 six	 populations	
spread	throughout	the	“Plateau	de	Libin”	and	“Lorraine”	areas	(G4).	
The	groups	were	defined	on	a	geographical	basis,	taking	into	account	
the	 potential	 natural	 barriers	 between	 them	 (the	 sites	 are	 mostly	
present	on	uplands	separated	by	valleys).	These	groups	present	four	
levels	of	habitat	network	fragmentation,	with	sites	highly	aggregated	
(G3)	to	loosely	distributed	(G4).	The	species	is	able	to	disperse	over	
long	distances,	as	revealed	by	capture–mark–recapture	(up	to	13	km	
recorded	in	Baguette	2003,	and	up	to	37	km	recorded	by	ourselves	
in	2014).

2.2 | Genetic data collection

DNA	collection	was	based	on	the	sampling	of	one	leg	per	individual	on	
at	least	the	15	first	males	and	15	first	females	seen	in	each	site	(i.e.	we	
kept	a	balanced	sex	ratio).	Individuals	were	sampled	at	the	beginning	
of	the	flight	period	(1)	in	fifteen	populations	present	in	G2	and	G3	in	
2010,	2013,	2014	and	2015	(temporal	replicates),	and	(2)	in	all	popu-
lations	of	the	four	groups	defined	above	(G1–G4)	in	2013	and	2014	
(spatial	 replicates;	 see	Figure	1	 for	 details	 on	 sampling).	 These	data	
were	used	to	test	the	effect	of	sample	size	and	sex	ratio.	Additionally,	
in	six	of	 the	G3	populations,	we	sampled	approximately	20	females	
late	in	the	2010	flight	season	(i.e.	sampling	was	performed	after	the	
peak	in	population	size),	as	mostly	females	were	available	at	that	pe-
riod	due	to	protandry.	These	data	were	used	to	test	the	effect	of	tim-
ing	of	sampling.	Each	leg	was	immediately	placed	in	a	1.5-	ml	labelled	
tube	filled	with	pure	ethanol;	tubes	were	kept	at	−20°C	from	the	end	
of	the	field	day.

Genomic	 DNA	 was	 extracted	 from	 each	 leg	 separately	 using	
a	 protocol	which	 is	 a	 slightly	 modified	 version	 of	 the	 one	 used	 by	
Vandewoestijne,	Turlure,	and	Baguette	 (2012).	The	 leg	was	 first	ho-
mogenized	 in	 100	μl	 of	 extraction	 buffer	 (50	mM	Tris–HCl	 pH	 8.0,	
20	mM	EDTA	pH	8.0,	 2%	SDS)	 and	one	unit	 of	 proteinase	K.	After	
2	hr	of	 incubation	at	55°C,	40	μl	of	a	6	M	NaCl	and	150	μl	of	chlo-
roform	were	added	and	mixed	vigorously.	The	sample	was	then	spun	
at	 20,800	g	 at	 4°C	 for	 5	min.	The	 collected	 supernatant	was	mixed	
with	an	equal	volume	of	ice-	cold	isopropanol.	After	a	15-	min	spin	at	
20,800	g,	all	the	liquid	was	poured	off	and	150	μl	of	room	temperature	
ethanol	added.	The	sample	was	spun	again	for	5	min	and	the	ethanol	
poured	off	and	dried.	RNAse	treatment	was	applied	after	resuspension	
in 20 μl	 of	 ultrapure	water.	Amplification	 of	 16	microsatellite	mark-
ers	was	 conducted	with	QIAGEN®	Multiplex	 PCR	 kits	 as	 described	
in	 Vandewoestijne	 et	al.	 (2012).	 The	 genotypes	 were	 scored	 using	
Genemapper®	 3.7	 (Applied	 Biosystems®),	 and	 manually	 verified	 to	
correct	for	automatic	scoring	errors	when	necessary.	Four	microsatel-
lite	markers	(Baq-	30,	Baq-	44,	Baq-	74	and	Baq-	77)	were	discarded	due	
to	linkage	disequilibrium.

2.3 | Simulated datasets

We	 simulated	 four	 datasets	 using	 easypop	 2.0.1	 (Balloux,	 2001)	
characterized	 by	 (1)	 three	 levels	 of	 dispersal–genetic	 drift	

equilibrium,	 created	 using	 three	 constant	 dispersal	 rates	 and	 (2)	
a	 relative	 stabilization	of	 the	genetic	parameters	on	 the	 long	 run	
(hereafter	labelled	as	“parameter	stabilization”).	The	dispersal	rates	
used	to	create	the	datasets	were	0	(genetic	drift	prevailing),	0.01	
(dispersal–genetic	 drift	 equilibrium	 and	 parameter	 stabilization),	
0.05	 (dispersal	prevailing).	First,	 to	test	the	effect	of	sample	size,	
sex	ratio	(only	in	the	case	of	long-	term	parameter	stabilization)	and	
timing	of	sampling,	we	simulated	five	populations	of	500	individu-
als	linearly	distributed	at	coordinates	1,	2,	4,	8,	16.	The	genotypes	
were	generated	for	10	independent	microsatellite	markers	(single-	
step	mutation)	with	10	alleles,	presenting	a	maximal	original	diver-
sity	 at	 the	 start	 of	 the	 simulations.	 Second,	 to	 test	 the	 effect	 of	
sex	ratio	in	the	three	dispersal–genetic	drift	equilibrium	scenarios,	
we	 simulated	 10	 populations	 of	 250	 individuals	 each,	 placed	 by	
pairs	at	the	previous	coordinates	to	force	the	emergence	of	some	
random	 levels	 of	 differentiation	 within	 pairs.	 All	 other	 simula-
tion	 specifications	were	 identical	 to	 the	 previous	 case.	After	 the	
simulations,	 the	populations	with	even	 labels	were	considered	as	
females,	and	 the	ones	with	odd	 labels	were	considered	as	males.	
In	each	case,	males	and	females	were	allowed	to	mate	only	once	
per	 generation,	 the	 mean	 distance	 travelled	 by	 individuals	 was	
four	units,	and	simulations	were	run	for	100	generations	 (disper-
sal–genetic	 drift	 equilibrium)	 or	 100,000	 generations	 (parameter	
stabilization).	 The	 state	 of	 equilibrium	 was	 assessed	 graphically,	
using	the	shape	of	the	relation	between	pairwise	FST	and	distance	
(Appendix	S2;	Beebee	&	Rowe,	2008):	(1)	no	relation	between	FST 
values	and	distance	with	largely	scattered	values	indicating	genetic	
drift	 prevailed,	 (2)	 positive	 correlation	 with	 cone-	shaped	 scatter	
indicating	 dispersal–genetic	 drift	 equilibrium	 and	 (3)	 no	 relation	
between	FST	and	distance	with	only	 low	values	 indicating	disper-
sal	prevailed.	For	each	state	of	dispersal–genetic	drift	equilibrium,	
we	produced	10	simulated	datasets	and	selected	the	one	showing	
the	 best	 concordance	with	 the	 criteria	 presented	 in	 Beebee	 and	
Rowe	 (2008).	 The	 changes	 in	 genetic	 parameters	 along	 the	 gen-
erations	were	followed	using	the	information	provided	by	easypop 
regarding	allelic	 richness,	observed	and	expected	heterozygosity,	
within-	population	heterozygote	deficit	and	genetic	differentiation	
to	confirm	their	stabilization	(Appendix	S3).

2.4 | Subsampling the datasets

We	used	 a	 general	 subsampling	 approach	 to	 study	 the	 impact	 of	
sampling	 quality	 on	 allele	 frequencies	 estimation	 and	 the	 sub-
sequent	 calculation	 of	 genetic	 parameters,	 except	 for	 timing	 of	
sampling	 on	 empirical	 data	 (details	 below).	 The	 subsamples	 were	
created	by	drawing	samples	out	of	the	original	datasets	without	re-
placement.	The	original	datasets	are	(1)	the	four	geographical	rep-
licates	 (i.e.	G1,	G2,	G3	and	G4,	each	pooling	 samples	collected	 in	
2013	 and	 2014),	 (2)	 the	 four	 temporal	 replicates	 in	 the	 empirical	
data	 (i.e.	 datasets	 collected	 in	G2	and	G3:	2010,	2013,	2014	and	
2015)	and	 (3)	 the	populations	present	 in	the	four	scenarios	 in	the	
simulated	data.	First,	to	test	for	sample	size	effect	in	both	the	em-
pirical	and	simulated	datasets,	we	subsampled	the	original	datasets	
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from	four	to	76	 individuals,	with	an	 increment	of	 four	 individuals,	
keeping	 a	 balanced	 sex	 ratio	 and	 using	 only	 individuals	 collected	
early	in	the	flight	season.	Second,	to	test	for	sex	ratio	effect	in	the	
empirical	datasets,	we	subsampled	a	 fixed	sample	 size	of	28	 indi-
viduals	while	varying	the	sex	ratio	from	0	(no	females)	to	1	(females	
only),	by	steps	of	0.25	(seven	individuals)	again	using	samples	col-
lected	early	in	the	season.	In	the	simulated	datasets,	the	individuals	
were	drawn	from	the	two	created	subpopulations	at	each	location	
that	we	arbitrarily	defined	as	male	or	female.	Third,	to	test	for	the	
timing	of	sampling	effect,	in	empirical	data,	we	compared	two	data-
sets	comprising	20	females	each	collected	either	early	or	 late	 (i.e.	
before	 or	 after	 the	 demographic	 peak)	 in	 six	 populations	 within	
the	2010	flight	period.	 In	 the	simulation	analyses,	we	subsampled	
a	fixed	number	of	28	individuals,	taking	most	of	them	from	a	focal	
population	 (the	population	 located	at	position	1)	 and	up	 to	 seven	
samples	from	the	other	populations	(the	populations	located	at	po-
sitions	2–5),	one	population	at	a	time.	We	did	this	to	simulate	the	
increasing	probability	of	 sampling	dispersing	 individuals	 along	 the	
flight	period,	as	the	chances	of	successful	dispersal	should	increase	
with	time.	This	allowed	us	to	test	the	effect	of	an	increasing	origi-
nal	 differentiation	 between	 the	 populations	 as	 closer	 populations	
were	 less	 genetically	 differentiated.	 Subsampling	 of	 the	 data	was	
performed	100	times	independently	each	time	it	was	involved.	We	
assessed	the	potential	problems	of	overlap	of	individuals	between	
subsamples	and	found	that	this	was	not	a	major	concern	with	our	
empirical	dataset	(Appendix	S4).

2.5 | Genetic and statistical analyses

We	quantified	the	 impact	of	sampling	design	at	three	 levels:	 (1)	the	
estimation	 of	 allele	 frequencies,	 (2)	 the	 description	 of	 local	 genetic	
variation	and	(3)	the	estimation	of	intergroup	features.

First,	we	 calculated	 allele	 frequencies	 observed	 in	 each	 tempo-
ral	 and	 geographical	 replicates	 and	 each	 simulated	 populations,	 for	
each	dataset	with	different	 levels	of	 sample	 size,	 sex	 ratio	 and	 tim-
ing	of	sampling.	Calculations	were	made	using	the	R	package	hierfstat 
(Goudet,	2005;	R	version	3.2.0,	R	Core	Team,	2014).

Second,	 to	 highlight	 the	 consequences	 of	 potentially	 errone-
ous	 estimation	 of	 allele	 frequencies,	we	 estimated	 four	 parameters	
commonly	 used	 to	 describe	 the	 local	 genetic	 characteristics	 of	 a	
population.	Namely,	we	calculated	 the	observed	heterozygosity	 (Ho; 
Nei,	1987),	 the	expected	heterozygosity	 (Hs;	Nei,	1987),	 the	within-	
population	heterozygote	deficit	(FIS;	Nei,	1987)	and	the	allelic	richness	
(AR;	El	Mousadik	&	Petit,	1996)	for	each	dataset	with	different	levels	
of	sample	size,	sex	ratio	and	timing	of	sampling.	The	estimation	of	each	
parameter	was	done	at	the	locus	level	and	was	summarized	using	the	
mean	over	the	population	in	each	dataset.

Third,	we	calculated	 two	measures	of	overall	genetic	differen-
tiation	using	hierfstat	 (Goudet,	2005):	the	common	diversity	parti-
tioning	statistic	FST	and	the	real	differentiation	Dest.	This	was	done	
for	the	groups	of	temporal	and	spatial	replicates	and	the	group	of	
populations	 used	 to	 study	 the	 impact	 of	 the	 timing	 of	 sampling	
using	empirical	data.	This	was	done	for	each	simulation	scenario	by	

calculating	the	genetic	differentiation	between	the	total	focus	pop-
ulation	and	each	subsample,	that	is	composed	mainly	of	individuals	
of	the	focus	population	and	a	variable	number	of	dispersers.	FST is 
calculated	as	the	amount	of	gene	diversity	among	samples	divided	
by	 the	 overall	 gene	 diversity	 present	 in	 the	 dataset	 (Nei,	 1987).	
Dest	has	been	introduced	by	Jost	(2008)	as	an	unbiased	measure	of	
population	differentiation	based	on	the	effective	number	of	alleles	
(which	 corresponds	 to	 the	number	of	 alleles	of	 equal	 frequencies	
it	would	take	to	achieve	a	given	 level	of	gene	diversity;	Kimura	&	
Crow,	1964).	Furthermore,	and	only	for	the	dataset	containing	fe-
males	 collected	 early	 and	 late	 in	 the	2010	 season	 (in	 a	 subset	 of	
G3	 populations),	 we	 estimated	 the	 probability	 of	 each	 individual	
being	a	 first-	generation	migrant	using	 the	software	GENECLASS2	
(Piry	 et	al.,	 2004).	 We	 used	 the	 Bayesian	 criterion	 derived	 from	
Rannala	and	Mountain	(1997)	to	estimate	this	likelihood.	The	prob-
ability	estimation	has	been	done	using	Monte–Carlo	resampling	on	
10,000	simulated	individuals	and	a	type	I	error	rate	of	0.01,	follow-
ing	 Paetkau,	 Slade,	 Burdens,	 and	 Estoup	 (2004).	We	 used	 all	 the	
individuals	sampled	(both	early	and	late	in	the	flight	season)	to	dis-
criminate	the	individuals	identified	as	first-	generation	migrants	on	
a common basis.

A	“reference	value”	was	defined	for	each	replicate	(sample	size	
and	sex	ratio)	and	population	(timing	of	sampling)	in	empirical	data,	
and	 in	 each	population	 in	 simulated	data,	 as	 the	value	of	 a	 given	
genetic	parameter	calculated	for	the	full	dataset	(i.e.	presenting	the	
maximum	sample	size).	The	reference	value	for	genetic	differentia-
tion	in	simulated	data	was	calculated	as	the	differentiation	between	
the	focus	population	and	the	population	of	origin	of	the	“dispersers.”	
We	report	the	results	as	the	absolute	deviation	from	the	reference	
value	(calculated	as	|computed	−	reference|),	with	the	exception	of	
the	 detection	 of	 first-	generation	 migrants	 for	which	we	 give	 the	
raw	results,	because	we	were	mainly	 interested	 in	quantifying	the	
magnitude	of	the	error	in	the	estimation,	rather	than	its	direction.	
Whenever	we	considered	it	useful,	we	added	graphical	information	
about	the	direction	of	the	effect	in	appendices.	The	maximum	sam-
ple	sizes	of	our	empirical	genetic	datasets	were	as	follows:	(1)	in	the	
temporal	 replicates:	726	 individuals	 in	2010,	408	 in	2013,	372	 in	
2014,	384	in	2015;	(2)	in	the	spatial	replicates:	528	for	G1,	324	for	
G2,	658	for	G3	and	216	for	G4;	and	(3)	from	29	to	33	samples	taken	
early	in	the	flight	season	in	the	six	populations	of	G3	considered	to	
study	the	timing	effect.

3  | RESULTS

3.1 | Sampling design effects on allele frequencies

In	both	empirical	and	simulated	data,	 increasing	the	sample	size	 led	
to	 a	 clear	nonlinear	 reduction	 in	 the	 absolute	deviation	 from	 refer-
ence	value	(Figure	2	first	column).	Sample	sizes	of	about	40	(empirical	
data)	and	30	 (simulated	data)	 individuals	were	generally	 required	to	
estimate	allele	frequencies	with	an	error	<0.05	although	the	gain	 in	
precision	was	already	limited	above	20	individuals.	The	magnitude	of	
the	deviation	was	also	clearly	affected	by	the	original	allele	frequency	
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in	 the	group:	 the	more	 frequent	 the	allele,	 the	bigger	 the	deviation	
(Appendices	S5–S6).

Variation	in	the	sex	ratio	had	contrasting	effects	on	the	estimation	
of	allele	frequencies.	It	did	not	influence	the	absolute	deviation	from	
reference	frequency	in	empirical	data	(flat	pattern)	while	it	did	in	sim-
ulated	ones	 (U-	shaped	pattern;	Figure	2	second	column).	The	effect	
detected	 in	 simulated	data	was	especially	 strong	when	genetic	drift	
was	 stronger	 than	 dispersal,	 a	 situation	 creating	 strong	 differences	
between	sexes	(Appendix	S6).	In	simulations	where	no	genetic	differ-
ences	were	intentionally	forced,	we	also	detected	an	effect	of	sex	ratio	
in	several	populations	(Appendix	S6).

There	was	a	 clear	 effect	of	 the	 timing	of	 sampling	on	 the	es-
timated	 allele	 frequencies.	 In	 empirical	 data,	 the	 absolute	 devia-
tion	associated	with	an	early	sampling	was	smaller	(mostly	<	0.10)	
compared	 with	 a	 late	 sampling	 (mostly	 over	 0.15	 and	 some-
times	 up	 to	 0.25;	 Figure	2c).	 In	 simulated	 data,	 the	 more	 indi-
viduals	 arrive,	 the	 more	 divergent	 the	 allele	 frequencies	 of	 the	
reference	 dataset	 and	 the	 ones	 estimated	 for	 the	 subsamples	
will	 be	 (Figure	2f),	 which	 was	 exacerbated	 when	 genetic	 drift	
prevailed	 (Appendix	 S6).	 The	 complete	 results	 are	 provided	 in	 
Appendices	S5–S6.

3.2 | Sampling design effects on local genetic  
parameters

In	 both	 empirical	 and	 simulated	 data,	 the	 deviation	 from	 reference	
value	for	AR	decreased	with	sample	size,	while	the	range	of	observed	
values	was	practically	not	affected,	except	when	the	maximum	num-
ber	of	alleles	was	reached	(Figure	3a	for	empirical	data,	Figure	3m	for	
simulated	 data).	 The	 speed	 of	 saturation	 was	 positively	 associated	
with	 dispersal	 predominance	 (Appendix	 S8).	 The	 absolute	 deviation	
from	reference	values	decreased	substantially	along	the	sample	sizes	
considered	for	Ho,	Hs and FIS,	with	little	gain	in	precision	above	30	in-
dividuals	in	empirical	data	and	20–24	individuals	with	simulated	data	
(Figure	3b–d	for	empirical	data,	Figure	3n–p	for	simulated	data).	The	
deviation	from	reference	value	for	Ho,	Hs and FIS	was	greater	when	
genetic	drift	prevailed	(Appendices	S10,	S12	and	S14).

The	sex	ratio	did	not	affect	the	absolute	deviation	from	reference	
value	for	any	parameter	in	empirical	data	(Figure	3e–h),	while	it	clearly	
did	for	AR,	Hs and FIS	(but	not	on	Ho)	in	simulated	data	(Figure	3q–t).	 
In	 the	 latter	 case,	 the	most	 accurate	 estimates	were	 obtained	with	
a	balanced	sex	 ratio.	These	effects	were	greater	 in	 scenarios	where	
genetic	drift	was	 stronger	 than	dispersal,	 and	were	detectable	even	

F IGURE  2 Effects	of	the	sampling	design	on	the	estimation	of	allele	frequencies	(empirical	data:	first	line;	simulated	data:	second	line):	
sample	size	(first	column),	sex	ratio	(second	column)	and	timing	of	sampling	(third	column).	In	all	panels,	each	line	represents	the	mean	(over	
the	100	subsampled	datasets)	absolute	(|computed	−	reference|)	deviation	from	reference	frequency	(full	dataset)	calculated	for	one	allele.	In	
panel	c,	each	circle	represents	the	absolute	deviation	from	reference	frequency	calculated	for	one	allele.	The	effects	were	consistent	across	
the	temporal	(i.e.	in	all	years	of	G3)	and	spatial	(i.e.	in	all	spatial	groups)	replicates	(empirical	data),	and	populations	(simulated	data),	so	only	
representative	examples	are	displayed	here	(2010	dataset	for	sample	size	and	sex	ratio;	Mirenne	population	for	timing	of	sampling).	We	show	
only	the	figure	for	the	dispersal–genetic	drift	equilibrium	(simulated	data).	Results	for	all	datasets	are	available	in	Appendices	S5,	S6.	The	ticks	
on	the	Y	axes	are	separated	by	0.05	units	to	ease	comparison
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F IGURE  3 Effects	of	the	sampling	design	on	local	genetic	parameters	(empirical	data:	a–l;	simulated	data:	m–x):	sample	size	(first	column),	
sex	ratio	(second	column)	and	timing	of	sampling	(third	column).	Each	point	represents	the	absolute	(|computed	−	reference|)	deviation	from	
reference	value	(full	dataset)	for	each	individual	subsampled	dataset.	The	effects	were	consistent	across	temporal	and	spatial	replicates	
(empirical	data),	and	populations	(simulated	data)	so	only	representative	examples	are	displayed	here	(2010	dataset	for	sample	size	and	sex	
ratio;	all	populations	for	timing	of	sampling).	We	show	only	the	data	when	populations	are	at	dispersal–genetic	drift	equilibrium	(simulated	data).	
Results	for	all	datasets	and	scenarios	are	available	in	Appendices	S7–S14
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F IGURE  3 Continued
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when	no	genetic	differences	were	intentionally	forced	by	the	simula-
tion	protocol	(Appendices	S8,	S12	and	S14).

In	empirical	data,	the	timing	of	sampling	affected	the	absolute	devi-
ation	from	reference	value	for	AR,	Ho,	Hs and FIS	estimates,	with	smaller	
deviations	associated	with	an	early	sampling	(Figure	3i–l).	Nevertheless,	
these	deviations	always	lay	in	the	range	of	values	observed	across	the	
spatial	and	temporal	replicates	when	the	sample	size	was	20	individu-
als,	with	the	exception	of	FIS	(see	Appendix	S13).	In	simulated	data,	the	
timing	of	sampling	affected	the	absolute	deviation	of	AR,	Hs,	and	FIS 
estimates	(but	no	effect	on	Ho),	with	higher	deviations	associated	with	
more	 immigrants	 in	the	population.	The	magnitude	of	the	effect	was	
positively	associated	with	genetic	drift	dominance,	and	 totally	disap-
peared	when	dispersal	prevailed	(Figure	3u–x;	Appendices	S8,	S12,	and	
S14).	The	complete	results	are	provided	in	Appendices	S7–S14.

3.3 | Sampling design effects on genetic 
differentiation and assessment of first- generation  
migrants

The	estimators	of	intergroup	genetic	differentiation	(i.e.	FST and Dest)	
showed	similar	behaviours	concerning	 the	sampling	design	 in	both	
empirical	 and	 simulated	 data.	 The	 decrease	 in	 absolute	 deviation	
from	reference	value	was	very	slow	above	30	 (empirical	data)	and	
20	 individuals	 (simulated	data;	Figure	4a,d).	These	deviations	were	

greater	when	the	initial	differentiation	was	high	(i.e.	in	empirical	data	
when	considering	the	spatial	replicates;	in	simulated	data	when	drift	
prevailed;	 Appendices	 S15	 and	 S16).	 Changes	 in	 sex	 ratio	 did	 not	
affect	the	absolute	deviations	from	reference	value	in	empirical	data	
(Figure	4b)	while	they	did	 in	simulated	data	 (Figure	4e).	This	effect	
was	 visible	 at	 all	 levels	 of	 dispersal–genetic	 drift	 equilibrium	 and	
was	 detectable	 even	when	no	 genetic	 differences	were	 intention-
ally	forced	by	the	simulation	protocol	(Appendix	S16).	The	timing	of	
sampling	affected	estimated	genetic	differentiation,	with	higher	de-
viations	from	reference	value	associated	with	a	late	sampling	in	em-
pirical	data	and	with	more	immigrants	in	simulated	data	(Figure	4c,f),	
always	with	a	clear	decrease	in	genetic	differentiation.	Finally,	a	late	
sampling	allowed	the	detection	of	 first-	generation	migrants	 in	 two	
populations	that	did	not	receive	individuals	early	in	the	flight	season	
(Table	1).

4  | DISCUSSION

In	any	research	field,	the	sampling	design	quality	directly	influences	
the	measure	quality,	and	consequently	 the	 reliability	of	 the	statis-
tics	and	the	resulting	conclusions.	In	population	genetics,	the	aspect	
of	sampling	design	that	has	received	much	attention	 in	the	past	 is	
sample	size,	in	both	simulation	(e.g.	Kalinowski,	2005)	and	empirical	

F IGURE  4 Effects	of	the	sampling	design	on	the	genetic	differentiation	measured	as	Dest	(empirical	and	simulated	data):	sample	size	
(first	column),	sex	ratio	(second	column)	and	timing	of	sampling	(third	column).	In	all	panels	except	for	c,	each	circle	represents	the	absolute	
(|computed	−	reference|)	deviation	from	reference	value	(full	dataset)	for	each	group	of	populations	within	a	given	dataset	(four	temporal	
replicates	in	empirical	data	and	the	pair	composed	of	the	focus	and	fourth	populations	in	simulated	data).	In	panel	c,	the	circles	represent	the	
same	values,	but	obtained	for	the	group	of	six	populations.	The	results	for	FST	were	similar	and	are	available	in	Appendices	S15,	S16
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studies	 (e.g.	 Hale	 et	al.,	 2012;	 Miyamoto,	 Fernández-	Manjarrés,	
Morand-	prieur,	 Bertolino,	 &	 Frascaria-	Lacoste,	 2008;	 Pruett	 &	
Winker,	2008).	Our	study,	based	on	empirical	and	simulated	genetic	
datasets,	contributes	to	the	existing	evidence	of	sample	size	 influ-
ence	on	estimated	genetic	parameters.	With	the	empirical	data,	we	
found	that	 the	timing	of	sampling	also	strongly	affected	the	accu-
racy	of	allele	 frequencies	and	the	downstream	analyses,	while	 the	
sex	ratio	did	not.	The	effects	of	sampling	design	described	hereafter	
were	 consistent	 across	 temporal	 and	 spatial	 replicates	 for	 sample	
size	 and	 sex	 ratio,	 and	 across	 populations	 for	 the	 timing	 of	 sam-
pling.	With	simulated	data,	we	showed	that	the	sampling	design	had	
limited	effect	on	genetic	measures	in	systems	where	dispersal	out-
weighs	genetic	drift,	while	 it	can	have	major	consequences	on	our	
understanding	 of	 the	 genetic	 diversity	 and	 differentiation	 of	 local	
populations	 in	 systems	 dominated	 by	 genetic	 drift	 (such	 as	 most	
study	systems	with	conservation	concerns).	We	also	showed	the	im-
portance	of	the	sampling	design,	even	when	the	genetic	parameter	
values	were	stabilized.	We	discuss	those	results	in	details	hereafter	
and	conclude	with	integrative	guidelines	for	future	sampling	design	
in	population	genetic	studies.

4.1 | Sample size effect

Our	results	from	empirical	and	simulated	data	are	in	 line	with	those	
of	previous	studies	regarding	the	estimation	of	allele	frequencies.	The	
larger	the	sample	size,	the	better	the	estimates	of	allele	frequencies.	
Nevertheless,	 as	 stated	 by	 Hale	 et	al.	 (2012),	 the	 gain	 of	 precision	
may,	 at	 some	 point,	 become	 negligible	 compared	 to	 the	 increased	
cost	of	processing	more	samples	(i.e.	financial	and	labour	cost,	as	well	
as	the	impact	of	invasive	sampling	on	species	with	conservation	con-
cerns	inhabiting	fragile	habitats).	Here,	the	greatest	gains	in	precision	
occurred	below	20	samples,	and	most	of	the	allele	frequencies	were	
estimated	with	an	average	deviation	less	than	0.05	at	approximately	
40	samples	 in	the	empirical	data	and	30	 in	simulated	data.	This	dif-
ference	 probably	 arises	 from	 uncontrolled	 difference	 between	 the	
two	sets	of	markers:	the	simulation	data	are	homogenous	and	highly	
polymorphic	while	the	empirical	dataset	 is	more	heterogeneous	and	

less	polymorphic.	The	original	allele	frequency	greatly	influenced	the	
magnitude	of	the	deviation,	the	absolute	deviation	being	more	impor-
tant	 for	more	 common	 alleles,	 that	 is	 the	 ones	 that	 have	 the	most	
important	 impact	on	the	genetic	parameter	estimation.	These	 larger	
deviations	at	small	sample	sizes	are	primarily	due	to	a	lack	of	accuracy	
(Hale	et	al.,	2012;	Pruett	&	Winker,	2008).

These	deviations	directly	led	to	an	important	uncertainty	in	the	
estimation	of	 local	genetic	parameters,	although	some	parameters	
seem	less	sensitive	than	others.	Indeed,	we	did	not	observe	any	im-
portant	gain	of	precision	above	30	samples	in	empirical	data	and	20	
in	 simulated	data	 for	Ho,	 and	 above	20	 samples	 in	 both	 empirical	
and	simulated	data	for	Hs.	This	represents	additional	evidence	that	
Hs	is	a	more	robust	measure	of	diversity	compared	to	Ho,	especially	
with	empirical	data	(as	in,	e.g.,	Beebee	&	Rowe,	2008).	Alternatively,	
30–40	 individuals	 are	 needed	 to	 observe	 similar	 patterns	 in	 FIS 
with	empirical	 data,	 and	24	 individuals	with	 simulated	data,	while	
it	depends	directly	on	the	two	previous	parameters.	The	deviation	
from	the	reference	value	may	still	reach	0.1	units	at	76	samples	in	
empirical	 data,	 and	 0.05	 units	 in	 simulated	 data.	 In	 the	 empirical	
case,	it	must	be	kept	in	mind	that	this	deviation	may	be	due	to	the	
grouping	of	populations	presenting	some	levels	of	genetic	differen-
tiation.	AR	was	always	estimated	with	an	increasing	accuracy	and	a	
similar	 precision	 along	 the	explored	 range	of	 sample	 sizes,	 except	
when	the	maximum	richness	was	reached	(only	 in	simulated	data).	
The	 rates	at	which	accuracy	 increased	depended	 largely	upon	 the	
diversity	present	in	the	group	in	both	empirical	and	simulated	data.	
It	was	also	reached	faster	as	the	importance	of	dispersal	increased	
in	simulation	data.	Indeed,	a	plateau	is	already	reached	at	approxi-
mately	25	samples	in	a	smaller	and	a priori	less	diverse	group	as	G4	
(Appendix	S7.A.h),	but	not	reached	at	sample	sizes	of	76	samples	in	
large	and	diverse	populations	(in	G3	mainly;	Appendix	S7.A.a–d;g).	
Hence,	if	the	objective	is	to	detect	most	of	the	alleles,	the	required	
sample	sizes	would	largely	depend	on	the	inherent	diversity	of	the	
studied	populations.

As	for	the	local	genetic	parameters,	the	inaccuracies	in	allele	fre-
quency	 estimation	 evidently	 affected	 the	 estimation	 of	 genetic	 dif-
ferentiation,	 and	 the	 deviation	 from	 the	 reference	value	 seemed	 to	
be	affected	by	 the	expected	existing	differentiation.	 Indeed,	we	did	
not	observe	much	increase	in	precision	above	30	(low	differentiation;	
temporal	 replicates)	 to	 40	 (high	 differentiation;	 spatial	 replicates)	 in	
empirical	data	and	20	individuals	in	simulated	data.	The	behaviour	of	
FST and Dest	were	very	similar,	with	regard	to	precision:	the	only	dif-
ference	is	that	the	values	obtained	for	FST	are	smaller	than	Dest,	which	
is	due	to	the	differences	in	the	upper	bounds	of	the	metrics	(Dest	has	
an	upper	bound	of	1	while	FST	will	nearly	always	have	an	upper	bound	
lower	than	1;	Jost,	2008).

4.2 | Sex ratio effect

Sex	ratio	has	received	little,	if	any,	attention	in	the	sampling	design	
of	genetic	 studies	probably	because	 it	 is	a priori	 difficult	 to	know	
the	 real	 sex	 ratio	 of	 a	 given	 population.	 In	 addition,	 researchers	
may	consider	sex	ratio	unimportant	because	microsatellite	markers	

TABLE  1 Detection	of	first-	generation	migrants	in	six	populations	
when	sampling	early	and	late	in	the	flight	season,	using	GENECLASS2	 
(Piry	et	al.,	2004).	The	acceptance	threshold	to	identify	the	migrants	
was	set	to	0.01

Population of arrival

Number of first- generation 
migrants

Early Late

Commanster 1 1

Crépale 1 1

Grand	Passage 0 0

Mirenne 1 1

Nazieufa 0 1

Sacrawé 0 1
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found	on	sex	chromosomes	would	be	discarded	as	they	hold	high	
proportions	of	null	 alleles	 for	one	 sex.	 Still,	 sex-	biased	processes,	
such	as	dispersal,	are	detectable	through	the	use	of	“usual”	micros-
atellite	markers	(Prugnolle	&	De	Meeûs,	2002).	Sex	ratio	can	there-
fore	affect	the	genetic	estimates	not	because	of	an	inherent	genetic	
difference	 among	 sexes,	 but	 because	 sexes	 behave	 differently,	
which	 affects	 genetic	 parameters	 in fine,	 as	 if	 males	 and	 females	
were	two	subpopulations	diverging	along	the	flight	season.	We	did	
not	 observe	 such	 a	 phenomenon	with	 our	 empirical	 data.	 This	 is	
what	was	expected	as	the	samples	were	collected	on	individuals	as	
soon	as	possible	after	they	emerged,	leaving	very	little	time	for	sex-	
specific	behaviours,	if	any,	to	create	variation	in	genetic	parameters	
among	 sexes.	 However,	 when	 some	 levels	 of	 differentiation	 are	
present,	as	in	our	simulated	data,	we	showed	that	an	uncontrolled	
sex	 ratio	 can	 affect	 the	 estimation	 of	 allele	 frequencies	 and	 local	
and	global	genetic	parameters.	As	expected,	this	effect	was	exacer-
bated	when	genetic	drift	prevailed	(i.e.	when	genetic	differentiation	
between	sexes	within	a	population	was	stronger),	but	was	still	de-
tectable	in	some	populations	although	no	genetic	differences	were	
intentionally	forced	by	the	simulation	protocol	(i.e.	in	the	simulated	
dataset	in	which	the	parameters	value	was	stabilized).	We	are	aware	
that	our	empirical	dataset	was,	by	design,	limited	to	the	study	of	the	
impact	of	the	sex	ratio	early	in	the	flight	season.

4.3 | Timing of sampling effect

The	timing	of	sampling	has	received	little	attention	in	the	past,	with	
the	exception	of	Basset,	Balloux,	and	Perrin	 (2001)	and	Balloux	and	
Lugon-	Moulin	(2002),	to	the	best	of	our	knowledge.	Using	empirical	
data,	we	 showed	 an	 effect	 of	 the	 timing	of	 sampling	 (early	 vs.	 late	
sampling	 in	 the	 season),	with	 an	 increase	 in	 the	deviation	 from	 the	
reference	 allele	 frequency	 for	 later	 sampling.	 This	 translated	 into	 a	
general	and	consistent	increase	in	the	deviation	for	all	genetic	param-
eters.	 The	most	 likely	 explanation	 for	 this	 effect	 is	 the	 progressive	
arrival	of	immigrants	from	other	populations	along	the	season.	The	ar-
rival	of	a	few	individuals	may	induce	profound	changes	in	the	genetic	
variability	of	inbred	populations	over	only	a	few	generations	(Madsen,	
Shine,	 Olsson,	 &	Wittzell,	 1999).	 Our	 results	 suggest	 that	 even	 in	
well-	connected	natural	populations,	 the	progressive	arrival	of	 immi-
grants	from	other	populations	along	the	season	can	induce	substantial	
changes	in	allelic	frequencies	and	genetic	parameter	estimates.	With	
our	 simulated	data,	 at	 the	 local	 scale,	 the	progressive	adjunction	of	
immigrants	increased	the	deviation	from	reference	frequencies,	espe-
cially	for	alleles	rare	in	the	focus	population.	This	led	to	changes	in	the	
estimation	of	local	genetic	parameters	(particularly	Hs and FIS)	when	
drift	 prevailed	 and	when	 the	populations	were	 at	 dispersal–genetic	
drift	 equilibrium.	This	 effect	was	much	weaker	when	dispersal	 pre-
vailed,	but	was	still	observable	in	relatively	homogenous	systems	such	
as	the	one	simulated	over	100,000	generations.

At	the	intergroup	scale,	the	deviation	of	genetic	differentiation	in-
creased	with	later	sampling	in	empirical	data	and	with	the	adjunction	
of	immigrants	in	simulated	data,	with	a	reduction	in	genetic	differenti-
ation.	Basset	et	al.	(2001)	showed	similar	results.	In	empirical	data,	this	

is	again	likely	linked	to	the	arrival	of	dispersing	individuals,	as	showed	
by	the	results	of	first-	generation	migrant	detection.	The	two	popula-
tions	receiving	a	migrant	only	when	the	sampling	was	done	 late	are	
well-	connected	populations	in	an	area	where	the	individuals	emerge	
later	in	the	flight	season,	allowing	the	arrival	of	individuals	from	pop-
ulations	with	earlier	emergences.	This	result	also	illustrates	the	risk	of	
not	 considering	 the	 timing	of	 sampling,	 as	 those	populations	would	
be	considered	isolated	in	the	case	of	an	early	sampling.	Hence,	even	
though	 assignment	methods	 allow	 the	 study	 of	 dispersal	 on	 a	 very	
short	time-	scale,	which	is	of	great	interest	in	ecology,	one	clear	draw-
back	is	that	the	results	will	be	directly	affected	by	the	timing	of	sam-
pling.	Another	 drawback,	 seemingly	more	 important	 (in	 populations	
confined	to	discrete	and	relatively	well-	separated	sites),	is	that	females	
could	mate	in	their	natal	population,	disperse	and	lay	their	eggs	in	a	
new	population,	thereby	introducing	non-	admixed	genotypes	that	did	
not	actually	disperse.	This	potential	behaviour	has	been	shown	to	be	
evolutionary	competitive	compared	to	dispersal	right	after	emergence,	
so	that	its	consequences	should	not	be	neglected	(Lakovic,	Poethke,	
&	Hovestadt,	2015).

4.4 | An optimal sampling design?

If	 it	 is	obvious	 that	 the	number	of	 samples	will	 affect	 the	precision	
of	 the	genetic	parameter	estimates,	 it	 is	 impossible	 to	derive	a	 sin-
gle	minimum	number	of	samples	that	will	guarantee	their	 reliability.	
With	our	set	of	markers,	a	minimum	of	30	samples	(20	in	simulated	
data)	 are	 sufficient	 as	 not	 much	 information	 will	 be	 gained	 above.	
Determining	the	optimal	sample	size	 is	 then	ultimately	an	optimiza-
tion	problem	depending	on	the	marker	polymorphism	and	the	costs	of	
acquiring	and	processing	genetic	samples.	Sex	ratio	also	had	an	effect,	
in	cases	where	a	relatively	 important	 level	of	differentiation	existed	
between	the	sexes,	irrespective	of	the	process	creating	this	differenti-
ation.	Males	and	females	should	be	used	interchangeably	only	in	cases	
where	the	phenomenon	of	interest	is	not	reasonably	affected	by	sex,	
and	one	should	not	assume	this	or	elude	the	problem.	Therefore,	we	
advise	future	research	to	at	least	aim	for	consistent	sex	ratio	(i.e.	sam-
pling	only	one	sex	or	considering	a	balanced	design).	Regarding	 the	
timing	of	sampling,	our	results	clearly	show	that	individuals	should	be	
sampled	within	a	single	generation	before	dispersal,	as	it	may	alter	the	
genetic	composition	of	the	unit(s)	under	study.	However,	conducting	
two	periods	of	sampling	within	the	same	generation	is	appropriate	to	
investigate	dispersal	based	on	genetic	assignment	methods.	Overall,	
the	various	aspects	of	sampling	design	are	to	be	considered	as	a	whole	
as	their	effects	may	be	interactive.

We	strongly	believe	 those	 recommendations	 to	be	generalizable	
at	 least	 for	 insects	and	sexual	organisms	producing	non-	overlapping	
generations	as	we	accounted	for	the	four	following	points.	First,	we	
explicitly	 considered	 the	 problem	 of	 overlap	 between	 subsampled	
datasets	 from	empirical	datasets	of	 limited	size.	Second,	we	consid-
ered	 in	 a	 single	 study	 the	 impact	of	 sampling	design	on	 several	 ge-
netic	 parameters,	 both	 at	 the	 local	 and	 intergroup	 scales.	Third,	we	
explored	the	temporal	and	spatial	repeatability	of	our	empirical	results.	
Fourth,	we	 explicitly	 considered	 the	 state	 of	 dispersal–genetic	 drift	
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equilibrium	and	the	 long-	term	parameter	stabilization	 in	our	simula-
tions.	Nevertheless,	 specific	 aims	 and/or	 estimation	methods	might	
require	 different,	 more	 elaborate	 or	 specific	 sampling	 designs.	 We	
therefore	encourage	the	explicit	description	and	justifications	of	the	
sampling	design,	and	if	needed,	an	acknowledgement	of	the	sampling	
limitations	in	further	genetic	studies.
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