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Abstract

1. Population genetics is used in a wide variety of fields such as ecology and biodiver-
sity conservation. How estimated genetic characteristics of natural populations can
be influenced by the sampling design has been a long-standing concern. Multiple
simulation and empirical studies illustrated the influence of both sample size and
polymorphism of markers. However, our review of studies on butterfly population
genetics indicates no consensus on sample size for the estimation of genetic diver-
sity or differentiation. Furthermore, other aspects of sampling design (sex ratio and
timing of sampling) were not addressed and their potential impact on genetic
parameter estimates rarely explored.

2. Using a large empirical dataset (with spatial and temporal replicates) collected on a
butterfly species, Boloria aquilonaris, as well as simulated datasets reflecting
(1) three scenarios of migration-genetic drift equilibrium and (2) one scenario of
parameter stabilization after 100,000 generations, we quantified the impacts of
three aspects of genetic sampling design (namely, sample size, sex ratio and timing
of sampling) on the estimation of allele frequencies and its potential downstream
impact on the estimation of genetic parameters.

3. With empirical data, we found that sample size and timing of sampling strongly af-
fected the accuracy of allele frequencies and the downstream analyses, while sex
ratio did not. Our results were consistent across spatial and temporal replicates.
Also, with simulated data, we showed that the genetic sampling design had limited
effect in systems where dispersal outweighs genetic drift, while it can have major
consequences on our understanding of the genetic diversity and population dif-
ferentiation in systems dominated by genetic drift (such as most study systems
with conservation concerns).

4. We advocate for careful consideration of all aspects of the sampling design in pop-
ulation genetics studies, that is a sufficient number of samples, while ensuring simi-
lar sex ratio among sampling locations and collecting with timing appropriate to the
question under study. This is particularly important when the study aims at species

conservation.
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1 | INTRODUCTION

Population genetics has been applied in various research fields such
as agronomy, ecology and biodiversity conservation. It is of ultimate
importance in conservation, as genetic variability is linked to the evo-
lutionary potential of populations (Frankham, Ballou, & Briscoe, 2002).
To estimate this variability, a wide variety of markers have been used,
such as amplified fragment length polymorphisms (AFLP), microsat-
ellites, allozymes or single nucleotide polymorphisms (SNP; Allan &
Max, 2010). One of the most used markers are microsatellite markers
(Selkoe & Toonen, 2006) because they are co-dominant, hypervariable,
reproducible and a priori selectively neutral (Jarne & Lagoda, 1996).
Furthermore, they are based on PCR, which allows the use of small
tissue samples (e.g. insect legs or wing clippings), which do not neces-
sarily require the capture of individuals (non-invasive sampling of fur
and faeces among others, see Taberlet et al., 1996; Taberlet, Waits, &
Luikart, 1999). These markers have been successfully used in research
on dispersal and gene flow (e.g. Keyghobadi, Roland, & Strobeck, 2005;
Richards, Bernard, Feldheim, & Shivji, 2016), on genetic differentiation
and the distribution in space of genetic diversity (e.g. in mammals,
Paetkau, Calvert, Stirling, & Strobeck, 1995; in insects, Keyghobadi
et al., 2005; in plants, Kikuchi & Isagi, 2002).

Butterflies are excellent study systems in ecology and conser-
vation biology, particularly for studies focusing on global change
(Warren et al., 2001) and metapopulation theory (e.g. Mousson, Néve,
& Baguette, 1999; Nieminen, Siljander, & Hanski, 2004; Nowicki
et al., 2007). They present relatively simple life cycles, often with
non-overlapping generations (preventing the blurring or alteration of
a genetic signal by mixing generations) and, they are relatively easy
to study and their ecology is well known (Boggs, Watt, & Ehrlich,
2003). Furthermore, many species are specialized at the larval stage
(Bink, 1992), facilitating the a priori delineation of habitat units in the
landscape (Dennis, Shreeve, & Van Dyck, 2003; Turlure, Choutt, Van
Dyck, Baguette, & Schtickzelle, 2010), a point essential for studies
implying a structuring among discrete populations in the landscape
such as in metapopulation ecology and population genetics (Hanski
& Gaggiotti, 2004). In the context of conservation, many studies have
focused on species facing some level of threat, often legally protected
(e.g. Boloria eunomia, Radchuk, Turlure, & Schtickzelle, 2013; Maculinea
arion, Thomas, 1995; Melitaea cinxia, Ehrlich & Hanski, 2004). Working
with such species entails that the genetic data collection must be opti-
mized, even more than for less threatened species. Indeed, in addition
to the usual trade-off between the costs (both in terms of time and
money) of acquiring genetic samples and the overall reliability of the
results, the potential harmful impact of sampling on the species and/or
its often fragile habitat must be limited as much as possible.

With this problem in mind, we reviewed the literature published
on butterfly species (Scopus database; keywords: butterfl* AND mi-
crosatellite*; 50 studies matched a population genetics context on 1
November 2016; Appendix S1). We found no standard practice for
genetic sampling design, even on the seemingly simple question of
the number of samples collected, which most of the time probably
resulted from logistic limitations and/or local population densities.

We found substantial variation in the mean number of samples col-
lected across these studies with a median sample size per predefined
unit or population of 20 (range: 1-110, SD: 15.29). Moreover, most
studies neglected other potentially important features of the sampling
design: the sex ratio and the timing of sampling. The sex ratio was
explicitly considered in only six studies, with conservation concern
leading to the sampling of males only. However, this could be prob-
lematic as many butterfly species show sex-specific behaviours (e.g.
male mate-locating strategy, Rutowski, 1991; harassment of females
by males, Baguette, Vansteenwegen, Convi, & Néve, 1998), poten-
tially affecting the distribution in space of individuals by promoting
sex-biased movements or dispersal (e.g. Baguette et al., 1998; Ohsaki,
1980; Schtickzelle, Turlure, & Baguette, 2012). Sex-biased dispersal,
together with an unbalanced sampling of males or females, may also
lead to a substantial discrepancy between true and observed with-
in- and among-population genetic characteristics (e.g. sampling only
males after dispersal occurred in systems with male-biased dispersal
might lead to an underestimation of the genetic structure compared to
a female-only or balanced sampling). If genetic structure at the land-
scape scale is used to infer dispersal rates, such bias could be detri-
mental. Finally, only a third of the studies used samples collected on
a single generation and the timing of collection within the generation
was never mentioned. Yet, collecting newly emerged imagoes that
have had no chance to disperse or older individuals with a potential
dispersal history can strongly influence the measured genetic charac-
teristics of natural populations, and inferred dispersal rates. Therefore,
there are multiple ways through which changes in sampling scheme
could influence the measured genetic characteristics of the focal study
system and these impacts may be even stronger when genetic drift is
dominant as the homogenizing effect of dispersal will be low. Based on
a quick review of the ten last studies published on microsatellites using
mammals and birds, we observed very similar patterns, with varying
sample size (mammals: median sample size = 20.5, SD = 51.6; birds:
median = 29, SD = 26.7), sex ratio mentioned in one or two studies
and sampling done over several years in most cases.

Given the potential problems associated with the aforementioned
issues, our aim was to quantify the impact of these three components
of the sampling design (sample size, sex ratio and timing of sampling)
on the estimation of allele frequencies and genetic parameters. We
used empirical and simulated data to combine (1) the realism of em-
pirical genetic data, collected across temporal and spatial replicates
and (2) the possible generalization of the results across several levels
of dispersal-genetic drift equilibrium and parameter stabilization. In
a first step, we tested the effect of sampling design using a large ge-
netic dataset (four spatial replicates totalling 1,726 samples, and four
temporal replicates totalling 1,890 samples) collected on Belgian pop-
ulations of the cranberry fritillary, Boloria aquilonaris (Stichel 1908),
a specialist butterfly species. In a second step, we used simulated
datasets to explore the impact of parameter stabilization and three
levels of dispersal-genetic drift equilibrium: (1) genetic drift prevail-
ing, (2) dispersal-genetic drift equilibrium and (3) dispersal prevailing.

Most genetic parameters used in a diversity or differentiation
context are based on the estimation of allele frequencies (Hartl &
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Clark, 2007), and some authors argued that it is sufficient to focus
exclusively on obtaining reliable estimates of allele frequencies
(Hale, Burg, & Steeves, 2012). Indeed, if the local populations’ ge-
netic composition is characterized accurately, the downstream anal-
yses relying on it should produce robust and consistent results. Yet
the degree to which changes in allele frequencies can influence the
estimation of parameters commonly used in population genetics will
also depend on the number of loci and their level of polymorphism.
Moreover, fully understanding the effect of different sampling de-
signs on genetic parameters requires quantifying their effect not
only on the allele frequencies but also on the actual downstream
genetic parameter estimations. For this reason, we also focused on
genetic parameters describing (1) local-scale genetic diversity: allelic
richness (AR; El Mousadik & Petit, 1996), observed heterozygosity
(H,, Nei, 1987), expected heterozygosity (H,, Nei, 1987), and within-
population heterozygote deficit (F,; Nei, 1987), as well as (2) inter-
Jost, 2008;
Nei, 1987) and dispersal (number of first-generation migrants; Piry
et al., 2004).

Our expectations concerning the impact of sampling features

group features: population differentiation (F¢; and D,

were as follows. First, we expected a strong impact of the sample
size on the precision of the allele frequencies estimates, with a
nonlinear increase in precision (faster increase in precision at lower
sample size than at larger sample size). This has been reported in
multiple studies (e.g. Hale et al., 2012) and this effect should affect
similarly the estimation of the derived genetic parameters (HO, H,.Fs
Fsr and D).
estimation of AR with increasing sample size, given that the probabil-

We also expected a nonlinear gain of accuracy in the

ity of sampling rare alleles increases with the number of individuals.
Second, we expected the sex ratio to have an effect on allele fre-
quencies and subsequent genetic parameter estimates in case there
is a strong genetic differentiation among sexes. This could be due
to sex-linked markers, sex-biased dispersal, strong selection pressure
acting on one sex and/or a biased sex ratio of the offspring produced
by dispersing individuals. Third, we expected the estimates of allele
frequencies and of genetic parameters to be affected by the timing
of sampling within the flight season. Indeed, an early sampling would
give a representation of demographic processes and dispersal that
took place over the previous generation(s), while the genetic charac-
teristics measured using a late sampling would result from past and
current dispersal processes (with the hypothesis that the probability
of sampling dispersing individuals increases during the flight period).
In particular, we expected this to lead to an increase in AR and H, due
to the introduction of “foreign” genotypes, and a decrease in Fis, Fst
and D,
these expectations regarding the effect of sample size, sex ratio and

due to a homogenization effect of potential dispersal. All

timing of sampling concern cases where populations are at disper-
sal-genetic drift equilibrium. We expect these effects to be stronger
when genetic drift prevails and weaker when dispersal prevails or
when the parameter value is stabilized. Finally, we conclude on rec-
ommendations for future sampling designs of population genetics in
general, and for further study of B. aquilonaris population health and
metapopulation structure in particular.

2 | MATERIALS AND METHODS

2.1 | Study species and system

The cranberry fritillary B. aquilonaris is a specialist butterfly inhabit-
ing peat bogs where its larval food plant, the cranberry Vaccinium
oxycoccos (L. 1753), grows. In Belgium, the species is restricted to
naturally fragmented habitats in uplands where climatic condi-
tions are cold and wet, allowing the development of its larval host
plant. Adults fly in one generation a year in June-July in this area,
showing a mild protandry as many other butterflies do (Wiklund &
Fagerstrom, 1977). The species occurs in thirty-nine sites in Belgium
(Figure 1) that are aggregated in space, with thirteen populations

in the “Hautes Fagnes” area (hereafter referred to as Group 1: G1),
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FIGURE 1 Sites sampled between 2010 and 2015 across
south-eastern Belgium, as represented in the bottom right frame.
We grouped the populations into four geographical clusters,
represented by black rectangles, from the Hautes Fagnes (G1),
Ardennes liégeoises (G2), Plateau des Tailles (G3) and Plateau de
Libin and Lorraine (G4). These clusters were used as spatial replicates.
Individuals from the populations represented with black and grey
dots were grouped to define four temporal replicates in 2010, 2013,
2014 and 2015. These were used to study the impact of sample size
and sex ratio. The populations represented by black dots were used
in the study of the impact of the timing of sampling. The grey surface
represents the Belgian territory
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eight populations in the “Ardennes liégeoises” area (G2), twelve pop-
ulations in the “Plateau des Tailles” area (G3) and six populations
spread throughout the “Plateau de Libin” and “Lorraine” areas (G4).
The groups were defined on a geographical basis, taking into account
the potential natural barriers between them (the sites are mostly
present on uplands separated by valleys). These groups present four
levels of habitat network fragmentation, with sites highly aggregated
(G3) to loosely distributed (G4). The species is able to disperse over
long distances, as revealed by capture-mark-recapture (up to 13 km
recorded in Baguette 2003, and up to 37 km recorded by ourselves
in 2014).

2.2 | Genetic data collection

DNA collection was based on the sampling of one leg per individual on
at least the 15 first males and 15 first females seen in each site (i.e. we
kept a balanced sex ratio). Individuals were sampled at the beginning
of the flight period (1) in fifteen populations present in G2 and G3 in
2010, 2013, 2014 and 2015 (temporal replicates), and (2) in all popu-
lations of the four groups defined above (G1-G4) in 2013 and 2014
(spatial replicates; see Figure 1 for details on sampling). These data
were used to test the effect of sample size and sex ratio. Additionally,
in six of the G3 populations, we sampled approximately 20 females
late in the 2010 flight season (i.e. sampling was performed after the
peak in population size), as mostly females were available at that pe-
riod due to protandry. These data were used to test the effect of tim-
ing of sampling. Each leg was immediately placed in a 1.5-ml labelled
tube filled with pure ethanol; tubes were kept at -20°C from the end
of the field day.

Genomic DNA was extracted from each leg separately using
a protocol which is a slightly modified version of the one used by
Vandewoestijne, Turlure, and Baguette (2012). The leg was first ho-
mogenized in 100 pl of extraction buffer (50 mM Tris-HCI pH 8.0,
20 mM EDTA pH 8.0, 2% SDS) and one unit of proteinase K. After
2 hr of incubation at 55°C, 40 pl of a 6 M NaCl and 150 pl of chlo-
roform were added and mixed vigorously. The sample was then spun
at 20,800 g at 4°C for 5 min. The collected supernatant was mixed
with an equal volume of ice-cold isopropanol. After a 15-min spin at
20,800 g, all the liquid was poured off and 150 pl of room temperature
ethanol added. The sample was spun again for 5 min and the ethanol
poured off and dried. RNAse treatment was applied after resuspension
in 20 pl of ultrapure water. Amplification of 16 microsatellite mark-
ers was conducted with QIAGEN® Multiplex PCR kits as described
in Vandewoestijne et al. (2012). The genotypes were scored using
Genemapper® 3.7 (Applied Biosystems®), and manually verified to
correct for automatic scoring errors when necessary. Four microsatel-
lite markers (Bag-30, Bag-44, Bag-74 and Baqg-77) were discarded due
to linkage disequilibrium.

2.3 | Simulated datasets

We simulated four datasets using easvpop 2.0.1 (Balloux, 2001)
characterized by (1) three levels of dispersal-genetic drift

equilibrium, created using three constant dispersal rates and (2)
a relative stabilization of the genetic parameters on the long run
(hereafter labelled as “parameter stabilization”). The dispersal rates
used to create the datasets were O (genetic drift prevailing), 0.01
(dispersal-genetic drift equilibrium and parameter stabilization),
0.05 (dispersal prevailing). First, to test the effect of sample size,
sex ratio (only in the case of long-term parameter stabilization) and
timing of sampling, we simulated five populations of 500 individu-
als linearly distributed at coordinates 1, 2, 4, 8, 16. The genotypes
were generated for 10 independent microsatellite markers (single-
step mutation) with 10 alleles, presenting a maximal original diver-
sity at the start of the simulations. Second, to test the effect of
sex ratio in the three dispersal-genetic drift equilibrium scenarios,
we simulated 10 populations of 250 individuals each, placed by
pairs at the previous coordinates to force the emergence of some
random levels of differentiation within pairs. All other simula-
tion specifications were identical to the previous case. After the
simulations, the populations with even labels were considered as
females, and the ones with odd labels were considered as males.
In each case, males and females were allowed to mate only once
per generation, the mean distance travelled by individuals was
four units, and simulations were run for 100 generations (disper-
sal-genetic drift equilibrium) or 100,000 generations (parameter
stabilization). The state of equilibrium was assessed graphically,
using the shape of the relation between pairwise F¢; and distance
(Appendix S2; Beebee & Rowe, 2008): (1) no relation between Fq;
values and distance with largely scattered values indicating genetic
drift prevailed, (2) positive correlation with cone-shaped scatter
indicating dispersal-genetic drift equilibrium and (3) no relation
between F; and distance with only low values indicating disper-
sal prevailed. For each state of dispersal-genetic drift equilibrium,
we produced 10 simulated datasets and selected the one showing
the best concordance with the criteria presented in Beebee and
Rowe (2008). The changes in genetic parameters along the gen-
erations were followed using the information provided by easypop
regarding allelic richness, observed and expected heterozygosity,
within-population heterozygote deficit and genetic differentiation

to confirm their stabilization (Appendix S3).

2.4 | Subsampling the datasets

We used a general subsampling approach to study the impact of
sampling quality on allele frequencies estimation and the sub-
sequent calculation of genetic parameters, except for timing of
sampling on empirical data (details below). The subsamples were
created by drawing samples out of the original datasets without re-
placement. The original datasets are (1) the four geographical rep-
licates (i.e. G1, G2, G3 and G4, each pooling samples collected in
2013 and 2014), (2) the four temporal replicates in the empirical
data (i.e. datasets collected in G2 and G3: 2010, 2013, 2014 and
2015) and (3) the populations present in the four scenarios in the
simulated data. First, to test for sample size effect in both the em-
pirical and simulated datasets, we subsampled the original datasets
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from four to 76 individuals, with an increment of four individuals,
keeping a balanced sex ratio and using only individuals collected
early in the flight season. Second, to test for sex ratio effect in the
empirical datasets, we subsampled a fixed sample size of 28 indi-
viduals while varying the sex ratio from O (no females) to 1 (females
only), by steps of 0.25 (seven individuals) again using samples col-
lected early in the season. In the simulated datasets, the individuals
were drawn from the two created subpopulations at each location
that we arbitrarily defined as male or female. Third, to test for the
timing of sampling effect, in empirical data, we compared two data-
sets comprising 20 females each collected either early or late (i.e.
before or after the demographic peak) in six populations within
the 2010 flight period. In the simulation analyses, we subsampled
a fixed number of 28 individuals, taking most of them from a focal
population (the population located at position 1) and up to seven
samples from the other populations (the populations located at po-
sitions 2-5), one population at a time. We did this to simulate the
increasing probability of sampling dispersing individuals along the
flight period, as the chances of successful dispersal should increase
with time. This allowed us to test the effect of an increasing origi-
nal differentiation between the populations as closer populations
were less genetically differentiated. Subsampling of the data was
performed 100 times independently each time it was involved. We
assessed the potential problems of overlap of individuals between
subsamples and found that this was not a major concern with our

empirical dataset (Appendix S4).

2.5 | Genetic and statistical analyses

We quantified the impact of sampling design at three levels: (1) the
estimation of allele frequencies, (2) the description of local genetic
variation and (3) the estimation of intergroup features.

First, we calculated allele frequencies observed in each tempo-
ral and geographical replicates and each simulated populations, for
each dataset with different levels of sample size, sex ratio and tim-
ing of sampling. Calculations were made using the R package HIERFSTAT
(Goudet, 2005; R version 3.2.0, R Core Team, 2014).

Second, to highlight the consequences of potentially errone-
ous estimation of allele frequencies, we estimated four parameters
commonly used to describe the local genetic characteristics of a
population. Namely, we calculated the observed heterozygosity (H;
Nei, 1987), the expected heterozygosity (H; Nei, 1987), the within-
population heterozygote deficit (FIS; Nei, 1987) and the allelic richness
(AR; El Mousadik & Petit, 1996) for each dataset with different levels
of sample size, sex ratio and timing of sampling. The estimation of each
parameter was done at the locus level and was summarized using the
mean over the population in each dataset.

Third, we calculated two measures of overall genetic differen-
tiation using HIErRFSTAT (Goudet, 2005): the common diversity parti-
tioning statistic F¢; and the real differentiation D,,. This was done
for the groups of temporal and spatial replicates and the group of
populations used to study the impact of the timing of sampling
using empirical data. This was done for each simulation scenario by

calculating the genetic differentiation between the total focus pop-
ulation and each subsample, that is composed mainly of individuals
of the focus population and a variable number of dispersers. F; is
calculated as the amount of gene diversity among samples divided
by the overall gene diversity present in the dataset (Nei, 1987).
D, has been introduced by Jost (2008) as an unbiased measure of
population differentiation based on the effective number of alleles
(which corresponds to the number of alleles of equal frequencies
it would take to achieve a given level of gene diversity; Kimura &
Crow, 1964). Furthermore, and only for the dataset containing fe-
males collected early and late in the 2010 season (in a subset of
G3 populations), we estimated the probability of each individual
being a first-generation migrant using the software GENECLASS2
(Piry et al., 2004). We used the Bayesian criterion derived from
Rannala and Mountain (1997) to estimate this likelihood. The prob-
ability estimation has been done using Monte-Carlo resampling on
10,000 simulated individuals and a type | error rate of 0.01, follow-
ing Paetkau, Slade, Burdens, and Estoup (2004). We used all the
individuals sampled (both early and late in the flight season) to dis-
criminate the individuals identified as first-generation migrants on
a common basis.

A “reference value” was defined for each replicate (sample size
and sex ratio) and population (timing of sampling) in empirical data,
and in each population in simulated data, as the value of a given
genetic parameter calculated for the full dataset (i.e. presenting the
maximum sample size). The reference value for genetic differentia-
tion in simulated data was calculated as the differentiation between
the focus population and the population of origin of the “dispersers.”
We report the results as the absolute deviation from the reference
value (calculated as |computed - referencel), with the exception of
the detection of first-generation migrants for which we give the
raw results, because we were mainly interested in quantifying the
magnitude of the error in the estimation, rather than its direction.
Whenever we considered it useful, we added graphical information
about the direction of the effect in appendices. The maximum sam-
ple sizes of our empirical genetic datasets were as follows: (1) in the
temporal replicates: 726 individuals in 2010, 408 in 2013, 372 in
2014, 384 in 2015; (2) in the spatial replicates: 528 for G1, 324 for
G2, 658 for G3 and 216 for G4; and (3) from 29 to 33 samples taken
early in the flight season in the six populations of G3 considered to
study the timing effect.

3 | RESULTS

3.1 | Sampling design effects on allele frequencies

In both empirical and simulated data, increasing the sample size led
to a clear nonlinear reduction in the absolute deviation from refer-
ence value (Figure 2 first column). Sample sizes of about 40 (empirical
data) and 30 (simulated data) individuals were generally required to
estimate allele frequencies with an error <0.05 although the gain in
precision was already limited above 20 individuals. The magnitude of
the deviation was also clearly affected by the original allele frequency
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FIGURE 2 Effects of the sampling design on the estimation of allele frequencies (empirical data: first line; simulated data: second line):
sample size (first column), sex ratio (second column) and timing of sampling (third column). In all panels, each line represents the mean (over
the 100 subsampled datasets) absolute (Jcomputed - referencel) deviation from reference frequency (full dataset) calculated for one allele. In
panel ¢, each circle represents the absolute deviation from reference frequency calculated for one allele. The effects were consistent across
the temporal (i.e. in all years of G3) and spatial (i.e. in all spatial groups) replicates (empirical data), and populations (simulated data), so only
representative examples are displayed here (2010 dataset for sample size and sex ratio; Mirenne population for timing of sampling). We show
only the figure for the dispersal-genetic drift equilibrium (simulated data). Results for all datasets are available in Appendices S5, Sé. The ticks

on the Y axes are separated by 0.05 units to ease comparison

in the group: the more frequent the allele, the bigger the deviation
(Appendices S5-S6).

Variation in the sex ratio had contrasting effects on the estimation
of allele frequencies. It did not influence the absolute deviation from
reference frequency in empirical data (flat pattern) while it did in sim-
ulated ones (U-shaped pattern; Figure 2 second column). The effect
detected in simulated data was especially strong when genetic drift
was stronger than dispersal, a situation creating strong differences
between sexes (Appendix Sé). In simulations where no genetic differ-
ences were intentionally forced, we also detected an effect of sex ratio
in several populations (Appendix S6).

There was a clear effect of the timing of sampling on the es-
timated allele frequencies. In empirical data, the absolute devia-
tion associated with an early sampling was smaller (mostly < 0.10)
compared with a late sampling (mostly over 0.15 and some-
times up to 0.25; Figure 2c¢). In simulated data, the more indi-
viduals arrive, the more divergent the allele frequencies of the
reference dataset and the ones estimated for the subsamples
will be (Figure 2f), which was exacerbated when genetic drift
prevailed (Appendix S6). The complete results are provided in
Appendices S5-5S6.

3.2 | Sampling design effects on local genetic
parameters

In both empirical and simulated data, the deviation from reference
value for AR decreased with sample size, while the range of observed
values was practically not affected, except when the maximum num-
ber of alleles was reached (Figure 3a for empirical data, Figure 3m for
simulated data). The speed of saturation was positively associated
with dispersal predominance (Appendix S8). The absolute deviation
from reference values decreased substantially along the sample sizes
considered for H_, H, and F,¢, with little gain in precision above 30 in-
dividuals in empirical data and 20-24 individuals with simulated data
(Figure 3b-d for empirical data, Figure 3n-p for simulated data). The
deviation from reference value for H , H, and F,; was greater when
genetic drift prevailed (Appendices S10, S12 and S14).

The sex ratio did not affect the absolute deviation from reference
value for any parameter in empirical data (Figure 3e-h), while it clearly
did for AR, H and F ¢ (but not on H ) in simulated data (Figure 3q-t).
In the latter case, the most accurate estimates were obtained with
a balanced sex ratio. These effects were greater in scenarios where

genetic drift was stronger than dispersal, and were detectable even
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when no genetic differences were intentionally forced by the simula-
tion protocol (Appendices S8, S12 and S14).

In empirical data, the timing of sampling affected the absolute devi-
ation from reference value for AR, H_, H, and F,¢ estimates, with smaller
deviations associated with an early sampling (Figure 3i-I). Nevertheless,
these deviations always lay in the range of values observed across the
spatial and temporal replicates when the sample size was 20 individu-
als, with the exception of F ¢ (see Appendix S13). In simulated data, the
timing of sampling affected the absolute deviation of AR, H, and F¢
estimates (but no effect on H_), with higher deviations associated with
more immigrants in the population. The magnitude of the effect was
positively associated with genetic drift dominance, and totally disap-
peared when dispersal prevailed (Figure 3u-x; Appendices S8, 512, and
S14). The complete results are provided in Appendices S7-514.

3.3 | Sampling design effects on genetic
differentiation and assessment of first-generation
migrants

The estimators of intergroup genetic differentiation (i.e. Fe; and D)
showed similar behaviours concerning the sampling design in both
empirical and simulated data. The decrease in absolute deviation
from reference value was very slow above 30 (empirical data) and

20 individuals (simulated data; Figure 4a,d). These deviations were

greater when the initial differentiation was high (i.e. in empirical data
when considering the spatial replicates; in simulated data when drift
prevailed; Appendices S15 and S16). Changes in sex ratio did not
affect the absolute deviations from reference value in empirical data
(Figure 4b) while they did in simulated data (Figure 4e). This effect
was visible at all levels of dispersal-genetic drift equilibrium and
was detectable even when no genetic differences were intention-
ally forced by the simulation protocol (Appendix S16). The timing of
sampling affected estimated genetic differentiation, with higher de-
viations from reference value associated with a late sampling in em-
pirical data and with more immigrants in simulated data (Figure 4c,f),
always with a clear decrease in genetic differentiation. Finally, a late
sampling allowed the detection of first-generation migrants in two
populations that did not receive individuals early in the flight season
(Table 1).

4 | DISCUSSION

In any research field, the sampling design quality directly influences
the measure quality, and consequently the reliability of the statis-
tics and the resulting conclusions. In population genetics, the aspect
of sampling design that has received much attention in the past is

sample size, in both simulation (e.g. Kalinowski, 2005) and empirical
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TABLE 1 Detection of first-generation migrants in six populations
when sampling early and late in the flight season, using GENECLASS2
(Piry et al., 2004). The acceptance threshold to identify the migrants
was set to 0.01

Number of first-generation
migrants

Population of arrival Early Late
Commanster
Crépale

Grand Passage
Mirenne

Nazieufa

O O »r O r
R P PO P -

Sacrawé

studies (e.g. Hale etal., 2012; Miyamoto, Fernandez-Manjarrés,
Morand-prieur, Bertolino, & Frascaria-Lacoste, 2008; Pruett &
Winker, 2008). Our study, based on empirical and simulated genetic
datasets, contributes to the existing evidence of sample size influ-
ence on estimated genetic parameters. With the empirical data, we
found that the timing of sampling also strongly affected the accu-
racy of allele frequencies and the downstream analyses, while the
sex ratio did not. The effects of sampling design described hereafter
were consistent across temporal and spatial replicates for sample
size and sex ratio, and across populations for the timing of sam-
pling. With simulated data, we showed that the sampling design had
limited effect on genetic measures in systems where dispersal out-
weighs genetic drift, while it can have major consequences on our
understanding of the genetic diversity and differentiation of local
populations in systems dominated by genetic drift (such as most
study systems with conservation concerns). We also showed the im-
portance of the sampling design, even when the genetic parameter
values were stabilized. We discuss those results in details hereafter
and conclude with integrative guidelines for future sampling design
in population genetic studies.

4.1 | Sample size effect

Our results from empirical and simulated data are in line with those
of previous studies regarding the estimation of allele frequencies. The
larger the sample size, the better the estimates of allele frequencies.
Nevertheless, as stated by Hale et al. (2012), the gain of precision
may, at some point, become negligible compared to the increased
cost of processing more samples (i.e. financial and labour cost, as well
as the impact of invasive sampling on species with conservation con-
cerns inhabiting fragile habitats). Here, the greatest gains in precision
occurred below 20 samples, and most of the allele frequencies were
estimated with an average deviation less than 0.05 at approximately
40 samples in the empirical data and 30 in simulated data. This dif-
ference probably arises from uncontrolled difference between the
two sets of markers: the simulation data are homogenous and highly

polymorphic while the empirical dataset is more heterogeneous and

less polymorphic. The original allele frequency greatly influenced the
magnitude of the deviation, the absolute deviation being more impor-
tant for more common alleles, that is the ones that have the most
important impact on the genetic parameter estimation. These larger
deviations at small sample sizes are primarily due to a lack of accuracy
(Hale et al., 2012; Pruett & Winker, 2008).

These deviations directly led to an important uncertainty in the
estimation of local genetic parameters, although some parameters
seem less sensitive than others. Indeed, we did not observe any im-
portant gain of precision above 30 samples in empirical data and 20
in simulated data for H_, and above 20 samples in both empirical
and simulated data for H,. This represents additional evidence that
H, is a more robust measure of diversity compared to H_, especially
with empirical data (as in, e.g., Beebee & Rowe, 2008). Alternatively,
30-40 individuals are needed to observe similar patterns in F¢
with empirical data, and 24 individuals with simulated data, while
it depends directly on the two previous parameters. The deviation
from the reference value may still reach 0.1 units at 76 samples in
empirical data, and 0.05 units in simulated data. In the empirical
case, it must be kept in mind that this deviation may be due to the
grouping of populations presenting some levels of genetic differen-
tiation. AR was always estimated with an increasing accuracy and a
similar precision along the explored range of sample sizes, except
when the maximum richness was reached (only in simulated data).
The rates at which accuracy increased depended largely upon the
diversity present in the group in both empirical and simulated data.
It was also reached faster as the importance of dispersal increased
in simulation data. Indeed, a plateau is already reached at approxi-
mately 25 samples in a smaller and a priori less diverse group as G4
(Appendix S7.A.h), but not reached at sample sizes of 76 samples in
large and diverse populations (in G3 mainly; Appendix S7.A.a-d;g).
Hence, if the objective is to detect most of the alleles, the required
sample sizes would largely depend on the inherent diversity of the
studied populations.

As for the local genetic parameters, the inaccuracies in allele fre-
guency estimation evidently affected the estimation of genetic dif-
ferentiation, and the deviation from the reference value seemed to
be affected by the expected existing differentiation. Indeed, we did
not observe much increase in precision above 30 (low differentiation;
temporal replicates) to 40 (high differentiation; spatial replicates) in
empirical data and 20 individuals in simulated data. The behaviour of
Fsrand D

ference is that the values obtained for F¢ are smaller than D

were very similar, with regard to precision: the only dif-
which

is due to the differences in the upper bounds of the metrics (D, has

est

est?

an upper bound of 1 while F¢; will nearly always have an upper bound
lower than 1; Jost, 2008).

4.2 | Sex ratio effect

Sex ratio has received little, if any, attention in the sampling design
of genetic studies probably because it is a priori difficult to know
the real sex ratio of a given population. In addition, researchers
may consider sex ratio unimportant because microsatellite markers
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found on sex chromosomes would be discarded as they hold high
proportions of null alleles for one sex. Still, sex-biased processes,
such as dispersal, are detectable through the use of “usual” micros-
atellite markers (Prugnolle & De Mee(s, 2002). Sex ratio can there-
fore affect the genetic estimates not because of an inherent genetic
difference among sexes, but because sexes behave differently,
which affects genetic parameters in fine, as if males and females
were two subpopulations diverging along the flight season. We did
not observe such a phenomenon with our empirical data. This is
what was expected as the samples were collected on individuals as
soon as possible after they emerged, leaving very little time for sex-
specific behaviours, if any, to create variation in genetic parameters
among sexes. However, when some levels of differentiation are
present, as in our simulated data, we showed that an uncontrolled
sex ratio can affect the estimation of allele frequencies and local
and global genetic parameters. As expected, this effect was exacer-
bated when genetic drift prevailed (i.e. when genetic differentiation
between sexes within a population was stronger), but was still de-
tectable in some populations although no genetic differences were
intentionally forced by the simulation protocol (i.e. in the simulated
dataset in which the parameters value was stabilized). We are aware
that our empirical dataset was, by design, limited to the study of the
impact of the sex ratio early in the flight season.

4.3 | Timing of sampling effect

The timing of sampling has received little attention in the past, with
the exception of Basset, Balloux, and Perrin (2001) and Balloux and
Lugon-Moulin (2002), to the best of our knowledge. Using empirical
data, we showed an effect of the timing of sampling (early vs. late
sampling in the season), with an increase in the deviation from the
reference allele frequency for later sampling. This translated into a
general and consistent increase in the deviation for all genetic param-
eters. The most likely explanation for this effect is the progressive
arrival of immigrants from other populations along the season. The ar-
rival of a few individuals may induce profound changes in the genetic
variability of inbred populations over only a few generations (Madsen,
Shine, Olsson, & Wittzell, 1999). Our results suggest that even in
well-connected natural populations, the progressive arrival of immi-
grants from other populations along the season can induce substantial
changes in allelic frequencies and genetic parameter estimates. With
our simulated data, at the local scale, the progressive adjunction of
immigrants increased the deviation from reference frequencies, espe-
cially for alleles rare in the focus population. This led to changes in the
estimation of local genetic parameters (particularly H, and F ;) when
drift prevailed and when the populations were at dispersal-genetic
drift equilibrium. This effect was much weaker when dispersal pre-
vailed, but was still observable in relatively homogenous systems such
as the one simulated over 100,000 generations.

At the intergroup scale, the deviation of genetic differentiation in-
creased with later sampling in empirical data and with the adjunction
of immigrants in simulated data, with a reduction in genetic differenti-
ation. Basset et al. (2001) showed similar results. In empirical data, this

is again likely linked to the arrival of dispersing individuals, as showed
by the results of first-generation migrant detection. The two popula-
tions receiving a migrant only when the sampling was done late are
well-connected populations in an area where the individuals emerge
later in the flight season, allowing the arrival of individuals from pop-
ulations with earlier emergences. This result also illustrates the risk of
not considering the timing of sampling, as those populations would
be considered isolated in the case of an early sampling. Hence, even
though assignment methods allow the study of dispersal on a very
short time-scale, which is of great interest in ecology, one clear draw-
back is that the results will be directly affected by the timing of sam-
pling. Another drawback, seemingly more important (in populations
confined to discrete and relatively well-separated sites), is that females
could mate in their natal population, disperse and lay their eggs in a
new population, thereby introducing non-admixed genotypes that did
not actually disperse. This potential behaviour has been shown to be
evolutionary competitive compared to dispersal right after emergence,
so that its consequences should not be neglected (Lakovic, Poethke,
& Hovestadt, 2015).

4.4 | An optimal sampling design?

If it is obvious that the number of samples will affect the precision
of the genetic parameter estimates, it is impossible to derive a sin-
gle minimum number of samples that will guarantee their reliability.
With our set of markers, a minimum of 30 samples (20 in simulated
data) are sufficient as not much information will be gained above.
Determining the optimal sample size is then ultimately an optimiza-
tion problem depending on the marker polymorphism and the costs of
acquiring and processing genetic samples. Sex ratio also had an effect,
in cases where a relatively important level of differentiation existed
between the sexes, irrespective of the process creating this differenti-
ation. Males and females should be used interchangeably only in cases
where the phenomenon of interest is not reasonably affected by sex,
and one should not assume this or elude the problem. Therefore, we
advise future research to at least aim for consistent sex ratio (i.e. sam-
pling only one sex or considering a balanced design). Regarding the
timing of sampling, our results clearly show that individuals should be
sampled within a single generation before dispersal, as it may alter the
genetic composition of the unit(s) under study. However, conducting
two periods of sampling within the same generation is appropriate to
investigate dispersal based on genetic assignment methods. Overall,
the various aspects of sampling design are to be considered as a whole
as their effects may be interactive.

We strongly believe those recommendations to be generalizable
at least for insects and sexual organisms producing non-overlapping
generations as we accounted for the four following points. First, we
explicitly considered the problem of overlap between subsampled
datasets from empirical datasets of limited size. Second, we consid-
ered in a single study the impact of sampling design on several ge-
netic parameters, both at the local and intergroup scales. Third, we
explored the temporal and spatial repeatability of our empirical results.
Fourth, we explicitly considered the state of dispersal-genetic drift
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equilibrium and the long-term parameter stabilization in our simula-
tions. Nevertheless, specific aims and/or estimation methods might
require different, more elaborate or specific sampling designs. We
therefore encourage the explicit description and justifications of the
sampling design, and if needed, an acknowledgement of the sampling
limitations in further genetic studies.
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