LES RAPPORTS DE CAMPAGNES A LA MER

IPE

STITU

MD 136/VIGO à bord du R/V Marion Dufresne

La Réunion 3 janvier 2004 – La Réunion 9 février 2004

Chef de mission : Elisabeth MICHEL Chef des opérations : Yvon BALUT

<u>Rédaction</u> : Elisabeth Michel & Claire Waelbroeck

Avec la participation de : Audrey Baconnais-Rosez, Fabien Dewilde, Alain Dubreule, Paul Guennoc, Pascal Legrand, Nicolas Metzl, John Reijmer, Gwladys Theuillon, Christophe Verdier et toute l'équipe scientifique et IPEV embarquée.

TABLE DES MATIERES

1	INT	INTRODUCTION					
	1.1 CARTE DU TRAJET DE LA MISSION						
	1.2	PROGRAMMES SCIENTIFIQUES	. 12				
		1.2.1 Rapport du programme VT 64/BATHYMAY (Bathymétrie MAYotte)	12				
		1.2.2 Rapport du programme européen CABAMAY	13				
		1.2.3 Rapport du programme du SHOM	16				
		1.2.4 Rapport du programme VT 65/CARHOT BIS : Paléoclimatologie	17				
		1.2.5 Observatoire de l'Environnement : Carbone Austral CARAUS Service d'Observations de l'Océan Indien OISO LBCM-IPSL-IPEV-INSU	18				
		1.2.6 Rapport du programme VT 63/FLOSTRAL 2 (déploiement de flotteurs PROVOR)	19				
		1.2.7 Rapport du programme VT 66/GRACE	19				
		1.2.8 Rapport du programme de distribution des oiseaux pélagiques et étude des prospections alimentaires dans l'océan Indien	20				
		1.2.9 Rapport des opérations logistiques sur les îles Crozet et Kerguelen et relève des personnels scientifiques	21				
		1.2.10 MBC/TV Maurice a réalisé un film montré à plusieurs reprises à la télévision Mauricienne et à la télévision française	23				
		1.2.10.1 Rapport de Mr. L. MOOTOOSAMY	24				
		1.2.11 Rapport de Christophe VERDIER, peintre illustrateur	25				
	1.3	LISTE DES PARTICIPANTS	. 26				
		1.3.1 Scientifiques, techniciens	26				
		1.3.2 Equipage	28				
		1.3.3 Malgaches	28				
	1.4	LISTE DES OPERATIONS	. 29				
		1.4.1 Carottages Calypso, Casq et gravité	29				
		1.4.2 Box cores	29				
		1.4.3 Multinets	29				
		1.4.4 PROVOR (programme Flostral)	30				
		1.4.5 Bottom Pressure Recorders (programme GRACE)	30				
		1.4.6 CTD	30				
	1.5	JOURNAL DE BORD	. 31				
2	TRA	ITEMENT DES CAROTTES SEDIMENTAIRES	. 37				
	2.1	SONDEUR MULTIFAISCEAUX	. 37				
		2.1.1 Short description of the multibeam echosounder	37				
		2.1.1.1 Introduction	37				
		2.1.1.2 Bathymetry and imagery	37				
		2.1.1.3 Sub-bottom profiler	39				
		2.1.1.4 Post-processing	39				

		2.1.1.5 Surveys	40
		2.1.2 Appendix A: the data redundancy	42
		2.1.3 Appendix B: deep water sub-bottom profiling and high resolution	43
		2.1.4 Appendix C: system overview	45
		2.1.5 Appendix D: characteristics	45
	2.2	CORE HANDLING	
		2.2.1 Coring	46
		2.2.2 Core handling	47
		2.2.3 Core gaps / expanding sediment	47
		2.2.4 CTD	47
		2.2.5 Sedimentology	48
		2.2.6 MST (Fabien Dewilde)	48
		2.2.6.1 Sensors	
		2.2.6.2 Methods and calibrations of the sensors	49
		2.2.6.3 Image data	51
		2.2.6.4 Colour reflectance using the Minolta spectrometer	51
		2.2.7 Short description of the multinet sampling system	
2			
3	STA	A 110NS	
	3.1	STATION 1 : Carotte Calypso MD04-2710	
		3.1.1 Navigation	
		3.1.2 3.5 kHz	53
		3.1.3 Fiche de carottage	
		3.1.4 Photographie	
		3.1.5 Sédimentologie	
		3.1.6 MST	
		3.1.7 CID	
	3.2	STATION 2 : Carotte Calypso MD04-2711	
		3.2.1 Navigation	
		3.2.2 3.5 kHz	
		3.2.3 Fiche de carottage	
		3.2.4 Photographie	65
		3.2.5 Sédimentologie	
		3.2.6 MST	
		3.2.7 CTD	71
	3.3	STATION 3 : Carotte Calypso MD04-2712	
		3.3.1 Navigation	72
		3.3.2 3.5 kHz	72
		3.3.3 Fiche de carottage	
		3.3.4 Photographie	74
		3.3.5 Sédimentologie	

	3.3.6 MST	76
3.4	STATION 4 et 5: Carotte Calypso MD04-2713	79
	3.4.1 Navigation	79
	3.4.2 3.5 kHz	79
	3.4.3 Fiche de carottage	80
3.5	STATION 6	81
	3.5.1 CTD	81
	3.5.2 Multinet	82
3.6	STATION 7	83
	3.6.1 CTD	83
	3.6.2 Multinet	85
3.7	STATION 8 : Box core MD04-AT01	86
	3.7.1 3.5 kHz	86
	3.7.2 Sédimentologie	86
	3.7.3 CTD	87
	3.7.4 Multinet	89
3.8	STATION 9	90
0.0	3.8.1 CTD	90
	3.8.2 Multinet	92
39	STATION 10 · Carotte gravité	93
2 10	STATION 11 - Constra Columna MD04 2714C	02
3.10	2 10 1 Newigetier	93
	3.10.1 Navigation	93
	3.10.2 Piche de carottage	94
	3.10.4 Sádimentologie	95
	3 10 5 MST	90
0.11		100
3.11	2.11.1 Navigation	100
	3.11.2.3.5 kHz	100
	3.11.3 Fiche de carottage	101
	3 11 4 Photographie	102
	3.11.5 Sédimentologie	104
	3.11.6 MST	106
3 1 2	STATION 12 · Boy core MD04-AT02	100
J.14	3 12 1 3 5 kHz	100
	3 12 2 Sédimentologie	109
	3.12.3 CTD	
	3.12.4 Multinet	111
3 1 2	STATION 13 · Carotte Calvaso MD04-2716C	112
J.1J	5171101113 . Calvin Calypso 11100-2/100	••• 114

	3.13.1 3.5 kHz	112
	3.13.2 Fiche de carottage	112
	3.13.3 Photographie	113
	3.13.4 Sédimentologie	114
	3.13.5 MST	115
3.14	STATION 14 : BPR programme GRACE	117
3.15	STATION 15 : Box core MD04-AT03	117
	3.15.1 3.5 kHz	117
	3.15.2 Sédimentologie	117
	3.15.3 CTD	118
	3.15.4 Multinet	120
3.16	STATION 17	121
	3.16.1 CTD	121
3.17	STATION 18	
	3.17.1 CTD	122
3.18	STATION 19 : Carotte gravité MD04-2717G	
	3.18.1 Navigation	123
	3.18.2 3.5 kHz	124
	3.18.3 Fiche de carottage	124
	3.18.4 Photographie	125
	3.18.5 Sédimentologie	126
	3.18.6 MST	127
3.19	STATION 19 : Carotte Calypso MD04-2718	129
	3.19.1 Navigation	129
	3.19.2 3.5 kHz	129
	3.19.3 Fiche de carottage	130
	3.19.4 Photographie	131
	3.19.5 Sédimentologie	134
	3.19.6 MST	137
3.20	STATION 20 : Carotte gravité MD04-2719 G	
	3.20.1 Navigation	140
	3.20.2 3.5 kHz	140
	3.20.3 Fiche de carottage	141
	3.20.4 Photographie	141
	3.20.5 Sédimentologie	142
	3.20.6 MST	142
3.21	STATION 21 : Carotte Casq MD04-2720 C	
	3.21.1 Navigation	144
	3.21.2 3.5 kHz	144
	3.21.3 Fiche de carottage	145

	3.21.4 Sédimentologie	146
	3.21.5 MST	146
3.22	STATION 22 : Carotte Calypso MD04-2721	
	3.22.1 3.5 kHz	149
	3.22.2 Fiche de carottage	150
	3.22.3 Photographie	151
	3.22.4 Sédimentologie	152
	3.22.5 MST	153
3.23	STATION 23 : Box core MD04-AT04	157
	3.23.1 3.5 kHz	157
	3.23.2 Sédimentologie	157
	3.23.3 CTD	158
	3.23.4 Multinet	160
3.24	STATION 24 : Boxe core MD04-AT05	161
	3.24.1 3.5 kHz	161
	3.24.2 CTD	162
	3.24.3 Multinet	163
3.25	STATION 25	
	3.25.1 CTD	164
3 26	STATION 26	165
5.20	3 26 1 CTD	165
2.25		100
3.27	STATION 27	
	3.27.1 CID	
	3.27.2 Multinet	168
3.28	STATION 28	169
	3.28.1 CTD	169
	3.28.2 Multinet	170

AVANT PROPOS ET REMERCIEMENTS

Organisée dans le cadre des activités scientifiques de l'Institut Paul Emile Victor (IPEV), la campagne océanographique VIGO (Voyage Intégrant Géosciences et activités d'Observatoire), s'est déroulée sur le navire *Marion Dufresne* du 3 janvier au 5 février 2004. VIGO est une campagne pluridisciplinaire qui regroupe huit programmes scientifiques différents.

Parmi ces programmes, six d'entre eux se rapportent à l'étude du climat et de l'environnement. L'océan est une composante importante du système climatique terrestre de par son rôle dans les transferts de chaleurs et dans le cycle hydrologique, ainsi que dans le cycle du carbone.

En effet, l'océan absorbe chaque année la moitié du gaz émis par les activités humaines. Le programme OISO fait partie de l'observatoire international qui suit l'évolution du gaz carbonique dans les eaux de surface de l'océan. Au sein de ce programme international, OISO est en charge du suivi pour l'Océan Indien Sud et son secteur austral. Dans ce cadre un suivi continu des eaux de surface est effectué, pour mesurer leur gaz carbonique dissous ainsi que leur alcalinité et leur contenu en carbone inorganique total. A chaque station les profils verticaux des éléments nutritifs ont également été mesurés.

Le programme FLOSTRAL constitue la participation française du programme international ARGO. Afin d'étudier les caractéristiques hydrologiques de l'océan de surface et de la thermocline, ce programme prévoit un réseau de près de 3000 flotteurs sur les océans du globe. Au cours de la campagne VIGO, dix de ces flotteurs ont été largués.

La connaissance de l'intensité des courants profonds sera améliorée par le programme GRACE. En effet, deux enregistreurs ont été déposés de part et d'autre du couloir de circulation des eaux profondes, entre Crozet et Kerguelen. Ils vont échantillonner sur une année l'intensité du flux de l'eau antarctique de fond qui a plongé le long du talus antarctique.

Associé aux programmes FLOSTRAL et OISO, un programme d'observation original concernait la répartition des oiseaux marins en fonction des ressources alimentaires (notamment le krill), qui sont liées à la répartition des éléments nutritifs, eux-mêmes dépendant des courants océaniques.

L'étude des climats passés permet d'étudier la variabilité naturelle du système climatique terrestre et de comprendre les mécanismes internes du système climatique. De plus, l'étude des climats passés permet de valider les modèles climatiques numériques afin de rendre plus fiables leurs prédictions. Deux programmes visaient à reconstruire les variations climatiques passées à partir des sédiments marins. Trois grands carottages ont été réalisés autour de Mayotte, dans le cadre de CABAMAY. Ces carottages vont permettre de retracer l'histoire du lagon de Mayotte depuis la dernière remontée du niveau de la mer, il y a 15000 ans, due à la fonte des calottes de la période glaciaire. Elles retraceront aussi l'histoire des courants dans le canal du Mozambique, lesquels alimentent en partie le courant des aiguilles.

Dans le cadre du programme CARHOT, huit grands carottages ont permis d'extraire des fonds marins autour des îles Crozet et Kerguelen des carottes de 10 m à 50 m de longueur, au travers des fronts de l'océan austral. Ces sédiments permettront de reconstituer l'histoire de l'océan austral au quaternaire. Les études seront focalisées sur les variations rapides du climat qui résultent des interactions entre l'atmosphère et l'océan.

Pour le programme BATHYMAY, il s'agissait de cartographier les fonds marins de la marge externe du lagon de Mayotte grâce au sondeur multifaisceaux. Cette cartographie va permettre de compléter l'étude sur les risques naturels effectués par le BRGM (Bureau de Recherches Géologiques et Minières) à terre. Une carte détaillée des fonds océaniques autour du lagon a pu être réalisée en effectuant quatre tours autour de Mayotte.

La connaissance des fonds autour du lagon était également indispensable à une meilleure utilisation et gestion des ressources halieutiques.

Par ailleurs, deux ingénieurs du SHOM (Service Hydrographique de la Marine) ont cartographié les fonds marins autour de Geyser et Europa, dans le canal du Mozambique et autour des Kerguelen. Ces données seront exploitées dans le cadre de la nouvelle législation concernant l'étendue des zones économiques, elles permettront aussi de compléter et vérifier l'information nautique déjà existante.

Enfin, une équipe de Mauriciens et un aquarelliste ont préparé des reportages originaux, pour la télévision mauricienne d'une part et pour la réalisation d'un livre d'aquarelles d'autre part.

Tous ces programmes ont pu être réalisés pendant la campagne VIGO qui s'est déroulée de Mayotte, au Nord, à la latitude de 60° Sud. Le rapprochement de chercheurs de toutes disciplines constitue pour chacun d'entre eux une source d'intérêt mutuel et un enrichissement profitable à la science.

Nous sommes très reconnaissants envers le Commandant Jean-Marc Lefèvre et tout l'équipage pour toutes ces opérations menées à bien, dans des conditions parfois difficiles. Nous remercions chaleureusement l'OPEA et toute l'équipe de l'IPEV, qui ont permis la réalisation des différents programmes grâce à leurs grandes compétences, et qui réalisent leur travail avec une bonne humeur constante, malgré les demandes parfois saugrenues et de dernière minute des participants. Nos remerciements vont également à l'équipe malgache pour leur aide amicale et leur participation efficace à la réalisation des opérations.

1 INTRODUCTION

1.1 CARTE DU TRAJET DE LA MISSION

Scale: 1:36534552 at Latitude 0°

Source: GEBCO.

---- 4000 m ---- 3000 m ---- 2000 m ---- 0 m

1.2 PROGRAMMES SCIENTIFIQUES

1.2.1 <u>Rapport du programme VT 64/BATHYMAY (Bathymétrie</u> <u>MAYotte)</u>

Responsable : Pol GUENNOC (BRGM)

La campagne BATHYMAY du voyage VIGO avait pour objectif la cartographie bathymétrique par sondeur multifaisceaux de la marge insulaire externe au lagon de l'île de Mayotte. L'analyse géomorphologique et structurale de la bathymétrie doit permettre :

- d'une part, d'étendre les travaux menés à terre sur l'évaluation des risques naturels,
- d'autre part, de préciser la morphologie des zones potentielles des ressources halieutiques.

Dans le cadre de ses actions de Service Public et en partenariat avec la Collectivité Départementale de Mayotte, le BRGM mène un programme pluriannuel d'étude des risques naturels prenant en compte différents aléas : mouvements de terrain, inondations, sismicité, érosion de sols et surcôte cyclonique. Des glissements sous-marins peuvent être à l'origine de fortes variations du niveau de la mer (mini raz-de-marée) et les ruptures sur les failles peuvent générer des séismes qui existent à Mayotte. Une connaissance plus détaillée des zones immergées était donc nécessaire.

Pour la Direction de l'Agriculture et de la Forêt de Mayotte, partenaire du BRGM dans cette opération, il s'agissait de disposer de levés précis pour le développement de la pêche hauturière en positionnant de façon précise les dispositifs de concertation du poisson (DCP).

Les levés de bathymétrie et de géophysique réalisés sur une durée d'un peu plus de 80 heures (3,4 jours) ont permis de reconnaître l'ensemble de la zone prévue.

Ces levés représentent environ 750 milles de levés en mode mixte à 13 nœuds et 230 milles de sondeur à sédiments seuls à la même vitesse.

Au total, la superficie de la zone cartographiée dépasse 7500 km², ce qui représente la superficie d'un département métropolitain ; les dimensions de cette zone atteignent environ 100 km du N au S ainsi que d'E en W.

Cette carte bathymétrique permet de suggérer que l'appareil insulaire de Mayotte (comprenant une large partie immergée) est probablement formé de trois appareils volcaniques accolés les uns aux autres, et dont la base a un diamètre d'environ 100 km.

Le passage de la plate-forme récifale à la plaine abyssale se fait par l'intermédiaire de pentes faibles et continues (au Nord et à l'Est) ou bien via des escarpements subverticaux parfois importants (600 m). Plusieurs types de structures remarquables peuvent être observés en première analyse. Ce sont :

- de nombreuses vallées ou canyons sous-marins dont le chenal, qui peut atteindre 2 à 3 km de large et 350 m d'incision verticale, est suivi sur 20 à 30 km de long,
- des plateaux sub-horizontaux situés sous la base du récif barrière, dans le NO et le SO de Mayotte,
- des escarpements sub-verticaux, de 5 à 10 km d'extension horizontale, hauts de 600 à 700 m sur la pente orientale, correspondant probablement à des escarpements de failles,
- des zones de glissement,
- des cônes volcaniques hauts de 100 à 460 m environ au-dessus du plancher océanique,
- des rivières sous-marines et des chenaux.

Les levés complémentaires et un traitement fin des données de bathymétrie ont permis d'obtenir un modèle bathymétrique complet de la partie sous-marine de Mayotte, qui dépasse 4 000 mètres de hauteur au-dessus du plancher océanique.

D'ores et déjà les résultats préliminaires montrent que l'objectif visant à compléter les observations structurales réalisées sur la partie émergée a été atteint.

1.2.2 <u>Rapport du programme européen CABAMAY</u>

(Climate Archives in the BAsins surrounding the Island of MAYotte)

Responsible: John REIJMER (Research Center for Marine Geosciences (GEOMAR)

The Comoro Islands are situated at the northern entrance of the Mozambique Channel. Ocean currents flowing through the channel partly supply the strong Agulhas Current further south (DiMarco et al., 2002; Ridderinkhof and de Ruijter, 2003; Chapman et al., 2003; Schouten et al., 2003). This current is an important link of the global conveyor belt and may even be a driver of the conveyor belt's water masses on their way back into the southern Atlantic Ocean.

The large variability in the behaviour of the Gulfstream and the rapid changes observed in the current pattern might even depend on changes in the Agulhas Current. Up to now Heinrich Events are interpreted as a signal unique to the northern Atlantic realm. However, changes in the Indian Ocean, influencing the Algulhas Current might play an additional role in the occurrence of these events.

Periplatform sediments are ideal recorders of small-scale and large-scale climatic and oceanographic changes and thus form excellent deposits wherein the questions under consideration can be tested.

• <u>Sedimentary history of Mayotte (Indian Ocean)</u>:

What is known about the sedimentary history of the island of Mayotte, which forms part of the Comoros, an archipelago situated in the Northern Mozambique Channel? Hitherto only the lagoon to upper slope environment of the Island of Mayotte has been studied (Dullo et al., 1998; Zinke et al. 2001, 2003a, 2003b) intensively. In this project sediment records will be astudied obtained from the basins surrounding Mayotte. These new sediment records will extend our knowledge on the larger scale climatic and oceanographic history of the Western Indian Ocean.

• <u>Sea-level history of Mayotte</u>:

The sea-level curve for the island of Mayotte is based on the analysis of coral samples collected from the foreslopes using a submersible and by cores drilled into the eastern barrier reef at Pamandzi (Thomassin et al., 1993; Colonna et al. 1996; Camoin et al., 1997; Dullo et al., 1998). In total, four cores were used from the fringing reefs and four sediment cores from the lagoon, which reached the Pleistocene/Holocene boundary (Zinke, 2000; Zinke et al., subm.). The cores were used to re-examine and complete the postglacial sea-level curve, especially for the time interval between 11.6 to 8 kyr cal BP. Between 11.6 kyr cal BP until present the sea-level history near the island of Mayotte showed the following steps: 1) sealevel rose by about 19 mm/yr between 11 and 9.6 kyr cal BP, 2) 9 mm/yr between 9.6 and 8 kyr cal BP, 3) 3 mm/yr between 8-7 kyr cal BP and 4) 0.9 mm/yr after 7 kyr cal BP until stabilisation at present level at 2.5 kyr cal BP. In addition, a decline in the rates of sea-level rise to 2 mm/yr is observed for the time interval between 11.6 to 11.1 kyr cal BP. The flooding of the lagoon of Mayotte was controlled by the depth of the reefal passages, which were cut by rivers and/or erosion during time of emergence since the last interglacial. Differences in the shape of the sea-level curve from Mayotte to other sites located far from former glaciated regions are related to 1) the small size of the island, 2) the rapid downward movement of this small volcanic island with the oceanic plate into the mantle due to hydro-isostatic compensation after addition of melt water and 3) the location between large continents.

• <u>Sedimentation patterns in the lagoon of Mayotte</u>:

Twelve gravity cores taken from various settings within the Mayotte barrier reef-lagoon complex were analysed to determine the sedimentological variations of individual sequence stratigraphic systems tracts that formed associated with the Holocene transgression (Zinke et al., 2001, 2003a, 2003b). The core analysis comprised the determination of physical, chemical, mineralogical and biological parameters of sediments within Lowstand, transgressive and highstand systems tracts. These parameters showed that the thickness and facies of each systems tract is controlled by the rate and amplitude of sea-level rise, lagoonal topography and environmental changes. The lowstand systems tract (before 11.5 kyr BP) is composed of ferralitic, organic-rich paleosoils in the proximal and middle lagoon. In addition it shows karstified Pleistocene reefal carbonates (situated close to the present-day coastline). The transgressive systems tract (11.5-7 kyr BP) consists of a lower terrigenous and an upper mixed terrigenous-carbonate or carbonate dominated unit. Locally, mangrove muds are deposited. The highstand systems tract can be divided in an early highstand (7-1 kyr BP) and late highstand systems tract (after 1 kyr BP). In the proximal lagoonal wedge, the early highstand systems tract consists of terrigenous or mixed terrigenous-carbonate muds to sandy muds. In the middle lagoon it contains carbonate mud to sandy mud and in the distal lagoons.

carbonate gravel to reefal carbonates. Terrigenous muds dominate the late highstand systems tract in the proximal lagoonal wedge. In the mid-lagoonal plain it hold mixed terrigenous-carbonate or carbonate mud to sandy muds. In the distal lagoon, close to the present-day reef barrier, carbonate gravel to reefal carbonates.

For the last 9 kyr sedimentation in the lagoon of Mayotte is spatially divided in a proximal, near coastal terrigenous province and a distal, carbonate-dominated province that occurs in the vicinity of the presentday barrier reefs. Maximum carbonate concentrations between 4-1 kyr BP coincide with a time of maximum solar insolation. After 1 kyr BP a general decrease in carbonate concentrations can be observed. This coincides with increased terrigenous sediment input, which results from a reduction in accommodation space and to some extent is of anthropogenic origin.

The sedimentology of the individual systems tracts also demonstrates that the infill of accommodation space is facies-dependent and often incomplete producing an "empty bucket" topography sensu Schlager (1981).

• <u>Sedimentary patterns on the upper slope</u>:

Dullo et al. (1998) noted the presence of either a thin sediment cover on the northern shallow slopes or a cemented slope on the eastern and southern slopes surrounding Mayotte Island. The observed sediment cover and sedimentation patterns showed analogues to sedimentation patterns described from the slopes surrounding Great Bahama Bank (Grammer, 1991; Grammer and Ginsburg, 1992). They included steep slopes, reef terraces, the distribution of cipit boulders along the slope, as well as fast cementation of the aragonite rich periplatform sediments on the high-angle slopes (Grammer et al., 1993, 1999).

• <u>First results</u>:

Three cores were obtained from the slopes and basins surrounding Mayotte. As could be deduced from the site surveys, the sediment distribution on the slopes and within the basins around Mayotte is largely controlled by current activity at various water depths. Five sedimentation realms can be distinguished: (1) The shallow slopes directly attached to the barrier reefs, (2) the terraces at 600 m water depth that almost surround the entire island, (3) the second slope environment starting at 600 m reaching down to 2000 m, (4) the deep basins at 2000 m followed by (5) the transition to full pelagic basins with water depths exceeding 3000m.

Sediments were either located in small intraslope basins located at water depths around 1000 m or in deeper situated flat-floored basins with water depths of 2000 m or more.

The high-resolution analysis of the deep core MD042710 taken from the basin SW of Mayotte (Water depth 1976 m; core length 27,32 m) will provide us with a detailed climatic record of the Southern Indian Ocean. The two other cores obtained from small intraslope basins at the toe-slope of the Mayotte Atoll at shallow depths of 1000 m (MD042711 and MD042712) will give us information on the development of the atoll reefs surrounding the island. Several ash-layers present within the intra-slope cores may provide additional time lines with similar deposits found in some of the lagoonal cores (Zinke et al., 2001, 2003a, 2003b). These layers will also give further insight in the volcanic history of Mayotte.

The analysis of the sediments forming the Holocene sedimentary wedge on the western slopes of Great Bahama Bank (Roth, 2003; Roth and Reijmer, 2004) has shown that periplatform sediments combine independent climate proxies from the pelagic environments and the shallow-water realm. Hence, these sediments can provide information on global, large-scale oceanographic changes as well as small-scale local climate variability. Stable isotope measurements in combination with Mg/Ca ratios of the foraminifera will provide information on sea-surface temperatures and salinity variations. These proxies can be used to place short seasonal or annual resolved climatic reconstructions from corals and calcareous sponges in a long-term context of climate change.

In summary, the sediments will enable us to analyse the variability in large-scale oceanographic processes (Agulhas Current) and small-scale, high-resolution climate records comparable to climate archives derived from corals. The obtained climate record will also be used for a comparison with the climate history of the Bahamas found in similar periplatform deposits (Roth and Reijmer, 2004; Roth and Reijmer, subm.).

• <u>Literature</u>:

Camoin, G.F., M. Colonna, L.F. Montaggioni, J. Casanova, G. Faure, and B.A. Thomassin, Holocene sealevel changes and reef development in the southwestern Indian Ocean, Coral Reefs, 16, 247-259, 1997.

Chapman, P., S.F. Di Marco, R.E. Davis, and A.C. Coward, Flow at intermediate depths around Madagascar based on ALACE float trajectories, Deep-Sea Research II, 50: 1957-1986, 2003.

Colonna, M., J. Casanova, W.-C. Dullo, and G. Camoin, Sea-level changes and δ^{18} O record for the past 34,000 yr. from Mayotte reef, Indian Ocean, Quaternary Research, 46, 335-339, 1996.

DiMarco, S.F., P. Chapman, W.D. Nowlin Jr., P. Hacker, K. Donohue, M. Luther, G.C. Johnson, J. Toole, Volume transport and property distributions of the Mozambique Channel, Deep-Sea Research II, 49: 1481-1511, 2002.

Dullo, W.-C., G.F. Camoin, D. Blomeier, M. Colonna, A. Eisenhauer, A. Faure, J. Casanova, and B.A. Thomassin, Morphology and sediments of the fore-slopes of Mayotte, Comoro Islands: direct observations from a submersible, Spec. Publ. Int. Ass. Sediment, 25, 219-236, 1998.

Grammer, G.M., Formation and evolution of Quaternary carbonate foreslopes, Tongue of the Ocean, Bahamas. Ph.D. thesis, University of Miami, Miami, U.S.A., 315 pp, 1991.

Grammer, G.M. and R.N. Ginsburg, 1992. Highstand versus lowstand deposition on carbonate platform margins: insight from Quaternary foreslopes in the Bahamas, Marine Geology, 103: 125-136.

Grammer, G.M., R.N. Ginsburg, and P.M. Harris, Timing of deposition, diagenesis, and failure of steep carbonate slopes in response to a high-amplitude/high-frequency fluctuation in sea level, Tongue of the Ocean, Bahamas, American Association of Petroleum Geologists Memoir 57, Tulsa, OK, U.S.A., pp. 107-131, 1993.

Grammer, G.M., C.M. Crescini, D.F. McNeill, and L.H. Taylor, Quantifying rates of syndepositional marine cementation in deeper platform environments - new insight into fundamental process, Journal of Sedimentary Research, 69(1): 202-207, 1999.

Grammer, G.M., R.N. Ginsburg, P.K. Swart, D.F. McNeill, A.J.T. Jull, D.R. Prezbindowski, Rapid growth rates of syndepositional marine aragonite cements in steep marginal slope deposits, Bahamas and Belize, Journal of Sedimentary Petrology, 63(5): 983-989, 1993.

Ridderinkhof, H., and W.P.M. de Ruijter, Moored current observations in the Mozambique Channel, Deep-Sea Research II, 50: 1933-1955, 2003.

Roth, S., Holocene Climate Variations Recorded on the Western Flank of Great Bahama Bank, Ph.D. thesis, Christian-Albrechts-Universität, Kiel, 2003.

Roth, S., and J.J.G. Reijmer, Holocene Atlantic climate variations deduced from carbonate periplatform sediments (leeward margin, Great Bahama Bank), Paleoceanography, 19, doi: 10.1029/2003PA000885, 2004.

Roth, S., and J.J.G. Reijmer, High-resolution carbonate cyclicity recorded in the slope sediments of Great Bahama Bank and its climatic implications, Sedimentology, subm., 2003.

Schlager, W., The paradox of drowned reefs and carbonate platforms, Bulletin of the Geological Society of America, 92, 197-211, 1981.

Schlager, W., and R.N. Ginsburg, Bahama carbonate platform - the deep and the past, Marine Geology, 44, 1-24, 1981.

Schouten, M.W., W.P.M. de Ruijter, P.J. van Leeuwen, and H. Ridderinkhof, Eddies and variability in the Mozambique Channel, Deep Sea Research II, 50: 1987-2003, 2003.

Thomassin, B., J. Coudray, W.-C. Dullo, D. Blomeier, G. Camoin, J. Casanova, M. Colonna, A. Arnoux, A.M. Lezine, S. Elmoutaki, G. Kouyoumontzakis, J.-M. Maggiorani, A. Faure, and M. Fontugne, Construction récifale et sédimentation dans le lagon de Mayotte (S.W. Océan Indien) depuis 18.000 ans B.P., paper presented at Réun. spéc. géol. fr., Paris, 3-4 May, 1993.

Zinke, J., Development of the lagoon of Mayotte during the Holocene (Comoro Archipelago, SW Indian Ocean), Ph.D. thesis, Christian-Albrechts-Universität, Kiel, 204 pp, 2000.

Zinke, J., J.J.G. Reijmer, M. Taviani, W.-C. Dullo, and B.A. Thomassin, Faunal response to the Holocene transgression in the lagoon of Mayotte (Comoro Archipelago, SW Indian Ocean), Facies, in press.

Zinke, J., J.J.G. Reijmer, and B.A. Thomassin, Seismic architecture and sediment distribution within the Holocene barrier reef-lagoon complex of Mayotte (Comoro archipelago, SW Indian Ocean), Palaeogeography, Paleoclimatology, Palaeoecology, 175, 343-368, 2001.

Zinke , J., J.J.G. Reijmer, and B.A. Thomassin, Systems tracts sedimentology in the lagoon of Mayotte associated with the Holocene transgression, Sedimentary Geology, 160, 57-79, 2003a.

Zinke , J., J.J.G. Reijmer, B.A. Thomassin, W.-C. Dullo, P.M. Grootes, and H. Erlenkeuser, Postglacial flooding history of Mayotte lagoon (Comoro archipelago, southwest Indian Ocean), Marine Geology, 194, 181-196, 2003b.

1.2.3 <u>Rapport du programme du SHOM</u>

Les travaux hydrographiques ont été réalisés par un détachement de deux ingénieurs du SHOM (Service Hydrographique et Océanographique de la Marine), embarqué sur le *Marion Dufresne*, à l'occasion de la campagne VIGO.

L'équipe du SHOM a participé à la réalisation du projet BATHYMAY (BATHYmétrie MAYotte), visant à cartographier les abords de l'île de Mayotte, avec le sondeur multifaisceaux, le sondeur de sédiments, le gravimètre et le magnétomètre équipant le *Marion Dufresne*. Ce programme, piloté par le BRGM, avait pour objectif la détermination de la géomorphologie et structure de l'appareil volcanique de Mayotte, pour étudier les risques naturels potentiels : mouvements de terrain, sismicité, érosion des sols... L'intérêt principal du SHOM pour cette mission était de compléter la connaissance de la bathymétrie autour de l'île de Mayotte.

Les données ont été traitées intégralement par le SHOM avec le logiciel CARIS-HIPS. Le levé a montré une cohérence globale entre les sondes mesurées et les sondes portées sur la carte marine en vigueur, dont les données datent des années 70. L'insonification complète du fond jusqu'à la plaine abyssale, grâce à l'utilisation du sondeur multifaisceaux, a permis de tracer un Modèle Numérique de Terrain de la bathymétrie autour de Mayotte (représenté ci-après), mettant en évidence des structures sous-marines bien remarquables : canyons, vallées, volcans, falaises, plateaux...

D'autre part, les transits pendant la campagne VIGO ont été optimisés de manière à réaliser un profil au sud de l'île d'Europa, dans le canal du Mozambique et deux profils à l'ouest des îles Kerguelen, dans le cadre du projet EXTRAPLAC (EXTension Raisonnée du PLAteau Continental). Ce programme, piloté par le gouvernement français, vise à recueillir l'information nécessaire pour étayer une revendication de l'extension du plateau continental dans les zones sous juridiction française.

Au sud d'Europa et aux Kerguelen, la position du pied de talus permet une extension importante de la ZEE. Les trois profils effectués pendant la mission VIGO, ainsi que les levés bathymétriques qui seront réalisés pendant la campagne EXTRAPLAC (février-mars 2004), ont pour objectif d'apporter les preuves cartographiques et géophysiques nécessaires à la rédaction des dossiers de demande d'extension du plateau continental à présenter à la CLCS (Commission des Limites du Plateau Continental).

Enfin, les transits ont été systématiquement valorisés en enregistrant les données bathymétriques, lorsque les travaux de carottage et de bathysondage le permettaient. L'information nautique a également été contrôlée lors de l'arrivée à Crozet et aux Kerguelen.

• <u>Bathymétrie autour de Mayotte</u>

1.2.4 <u>Rapport du programme VT 65/CARHOT BIS :</u> <u>Paléoclimatologie</u>

<u>Responsables</u> : Elisabeth MICHEL (LSCE) Jean-Louis TURON (DGO) Nicole BUCHET (CEREGE)

Les enregistrements des climats passés sont une composante importante de l'étude du système climatique terrestre. Des évènements climatiques rapides ont été observés dans les enregistrements glaciologiques et sédimentaires couvrant les derniers cycles "glaciaires-interglaciaires". Ces évènements, dont l'échelle couvre la centaine aux milliers d'années, sont une clef pour la compréhension du système climatique terrestre. En effet, leur étude permet de connaître les réactions du climat global à certaines perturbations, qu'elles soient naturelles, comme ce fut le cas dans le passé, ou d'origine anthropique, comme cela semble bien être le cas actuellement. L'étude de ces évènements rapides est notamment importante pour la validation des modèles climatiques numériques. Certaines hypothèses, quant aux mécanismes qui sont à

l'origine de ces variations rapides, privilégient une instabilité de la circulation océanique, soit interne, soit liée aux changements du cycle hydrologique dus à la circulation atmosphérique ou à la cinétique des calottes de glace. Pour mieux appréhender ces mécanismes, il est nécessaire de documenter certaines régions stratégiques.

L'océan austral est le siège de formation d'eaux intermédiaires et profondes qui alimentent les bassins océaniques. Il faut donc disposer d'enregistrements sédimentaires haute résolution dans l'océan austral pour pouvoir étudier, lors des changements climatiques rapides, les variations hydrologiques de surface et celles de la circulation intermédiaire et profonde qui y sont liées. Par ailleurs l'océan austral, autour de 40-45° de latitude, est une source importante de la vapeur d'eau qui précipite en Antarctique, sous forme de neige. Les séries obtenues seront donc comparées de manière détaillée aux enregistrements glaciologiques prélevés dans la calotte antarctique.

Nous avons pu prélever au large des Kerguelen et de Crozet des carottes couvrant la dernière déglaciation et la période interglaciaire actuelle, l'Holocène, avec une grande précision. Ces carottes sont riches en matériel magnétique et ont également enregistré les évènements volcaniques de ces îles, ce qui permettra de corréler ces enregistrements avec les données obtenues à terre et dans d'autres régions océaniques. Par ailleurs la possibilité de coupler ce programme avec le programme OISO nous a conduit à valoriser les stations par des prélèvements de zooplancton à l'aide d'un filet à compartiments ouvrant-fermant, « multinet ». En effet, nos reconstitutions paléo-climatiques sont effectuées à partir de fossiles extrait des carottes de sédiment. Il est important de pouvoir améliorer la calibration des paramètres étudiés sur ces fossiles. Nous pourrons notamment étudier l'influence des concentrations en carbonates, mesurées dans le cadre du programme OISO, sur l'acquisition des paramètres étudiés sur ces fossiles.

Dans le cadre de la campagne VIGO, 8 grands carottages ont pu être réalisés et 9 traits de filets sur des stations OISO.

1.2.5 <u>Observatoire de l'Environnement : Carbone Austral CARAUS</u> <u>Service d'Observations de l'Océan Indien OISO LBCM-IPSL-IPEV-INSU</u>

Responsable : Nicolas METZL (LOCEAN)

Contexte général et stratégie d'observations " The Kyoto Protocole requires nations to monitor their "national" carbon sources and sinks, and that interannual and seasonal resolution is required to constraint both oceanic and terrestrial budgets versus emissions" (conclusions from OPPC, Ocean Observation Panel for Climate). L'augmentation du gaz carbonique (CO2) dans l'atmosphère due aux activités humaines depuis plus d'un siècle est une certitude. La régulation de cet accroissement reste toutefois très incertaine, ainsi que son impact sur le changement climatique futur. Chaque année, entre 6 et 7 milliards de tonnes de carbone (environ 1 tonne de carbone par habitant et par an) sont injectées dans l'atmosphère via les activités humaines (utilisation des combustibles fossiles, déforestation, ...). Or, grâce au réseau mondial de mesures de CO2 dans l'air, nous savons qu'en moyenne, la moitié des émissions anthropiques reste accumulée dans l'atmosphère. L'autre moitié doit être absorbée par la biosphère terrestre et par les océans. Cette répartition des "puits de carbone" régionaux est source d'incertitudes, même si des progrès significatifs ont été obtenus ces dernières années, notamment à l'aide de modèles numériques des échanges entre les différents réservoirs de carbone, l'atmosphère, la végétation continental et les sols, et l'océan. Mais au-delà de la connaissance des répartitions contemporaines des sources et puits de carbone, dont les incertitudes rendent également incertaines les décisions politiques au niveau international (la délicate signature du protocole de Kyoto), la compréhension du cycle du carbone global et son couplage avec les réservoirs atmosphérique, biosphériques et océanique, est fondamentale pour apprécier les conséquences de la perturbation anthropique sur le climat. L'effet possible de l'accroissement de l'effet de serre conduirait à la fin du siècle, à une augmentation de la température globale terrestre entre 1.5 et 6 °C. L'incertitude dépend en partie de la réponse du cycle du carbone océanique, les impacts et rétro-actions des cycles biogéochimiques marins, les échanges de CO2 à l'interface air-mer et donc simuler la capacité qu'aura l'océan à accumuler le carbone d'origine anthropique. Les travaux menés à bord du Marion Dufresne dans le cadre du Service d'Observation OISO ont pour objectif de réduire ces incertitudes. L'océan Indien Sud et son secteur austral est important car on y rencontre des vents intenses tout l'année, ce qui favorise la cinétique d'échange de gaz; de plus, la zone circumpolaire se caractérise par des productions primaires élevées qui contrôlent une forte diminution des concentrations de CO2 dans les couches de surface, ce qui favorise le potentiel d'échange de gaz. D'autre part, la région circumpolaire est le siège de formations de masse d'eaux antarctique, subantarctique et subtropicale, lesquelles depuis leur zone de formation deviennent isolées de tout contact avec l'atmosphère et sont candidates pour piéger le carbone d'origine anthropique. Sur cet aspect, les flotteurs PROVOR largués durant la campagne, renseigneront sur les caractéristiques dynamiques de ces eaux, leur temps de ventilation et leur mode de variabilité à l'échelle régionale. Outre ces questions scientifiques directement adressées dans le cadre du Service d'Observations, le S.O. OISO représente une plateforme d'accueil importante au niveau national et international pour y associer des programmes scientifiques d'opportunité.

1.2.6 <u>Rapport du programme VT 63/FLOSTRAL 2 (déploiement de</u> <u>flotteurs PROVOR)</u>

<u>Responsable</u> : Rosemary MORROW (LEGOS/GRGS)

Le programme international ARGO prévoit la création d'un réseau mondial de profileurs dérivants qui mesurent en temps réel la structure thermique et haline des océans, en synchronisme avec le satellite altimétrique Jason-1 lancé en 2001. Environ 3000 flotteurs doivent être répartis sur les océans du globe.

Les projets Mercator et Coriolis constituent la participation française à ce projet auxquels coopèrent CNES, CNRS, IFREMER, IPEV, IRD, Météo-France et SHOM. La France a programmé de déployer environ 200 de ces instruments d'ici 2005.

En 2000, l'INSU a décidé d'acquérir 21 flotteurs de type Provor et de participer à leur mouillage dans le secteur de l'océan Indien sud et de l'océan antarctique. Cette opération appelée Flostral est orchestrée par Madame Rosemary Morrow du LEGOS de Toulouse et l'installation des profileurs confiée à la Division Technique de l'INSU de Brest.

Cette campagne complète une série précédente de déploiement de 15 flotteurs Provor - CTF2 réalisée en janvier 2003 à bord du N/O *Marion Dufresne*.

Durant la mission VIGO divers types d'instruments ont été immergés :

- 5 profileurs de type CTF2 équipés de capteur FSI,
- 5 profileurs de type CTS2 équipés de capteur SeaBird,
- 5 autres profileurs CTS2 sont programmés pour être déployés durant une rotation TAAF en mars/avril 2004.

• <u>Rapport technique</u> :

A chaque mise à l'eau, effectuée sans aucune difficulté, a été associée une station hydrologique (CTD et bouteilles) afin de caler les paramètres hydrologiques.

1.2.7 <u>Rapport du programme VT 66/GRACE</u>

<u>Responsable</u> : Pascal LEGRAND (IFREMER)

Le programme GRACE est un projet de monitoring de l'Antarctic Bottom Water (ABW) à l'aide de deux enregistreurs de la pression de fond (Bottom Pressure Recorders, BPR). Ces BPRs sont déployés de part et d'autre d'une section allant de Crozet à Kerguelen, à une profondeur d'environ 4 000 m, de façon à échantillonner le flux d'ABW entre les deux archipels. La différence de pression mesurée à travers la section est en effet reliée à la vitesse moyenne des courants à la profondeur d'immersion des instruments. On peut donc en déduire une estimation quantitative du flux d'ABW à cette profondeur, en faisant l'hypothèse que les variations verticales de vitesses sont limitées.

Le programme GRACE comporte de plus un aspect technologique de validation de données satellitaires. En effet, le tandem de satellites GRACE, d'après lequel notre programme a été nommé, a été lancé en

mars 2002 afin de mesurer les variations temporelles de l'attraction de la gravité terrestre. Dans l'océan, ces variations sont directement reliées aux variations de la hauteur de la colonne d'eau et donc à la pression au fond de l'océan. La mesure satellitaire, qui est une mesure moyenne sur un rayon de quelques centaines de kilomètres, pourra donc être comparée aux mesures ponctuelles effectuées par les BPRs. Nous espérons utiliser les données in situ pour mieux comprendre et interpréter les mesures satellitaires.

Les BPRs sont mouillés pour une période de 1 an et permettront donc d'échantillonner un cycle annuel.

Le programme GRACE est un projet commun entre le Laboratoire de Physique des Océans, unité mixte IFREMER/CNRS/Université de Bretagne Occidentale, et le Proudman Oceanographic Laboratory à Liverpool. Les BPRs sont des prototypes développés à Liverpool. Le LPO assure la logistique des opérations de déploiement et de récupération des BPRs. Enfin, l'IPEV fournit les moyens à la mer.

1.2.8 <u>Rapport du programme de distribution des oiseaux pélagiques</u> <u>et étude des prospections alimentaires dans l'océan Indien</u>

<u>Responsables</u> : Richard Veit¹, K. David Hyrenbach² et Marie-Caroline Martin¹

1 Department of biology, CSI-CUNY, 2800 Victory Boulevard, Staten Island, NY, USA, 10 314 2 Duke University Marine Lab, Beaufort, NC, USA, 28 516

Lors de la campagne océanographique 2004 OISO/VIGO, nous avons étudié la distribution spatiale des oiseaux prédateurs marins. Notre objectif à long terme est de mieux comprendre comment les oiseaux pélagiques trouvent les zones abondantes en ressources alimentaires et plus spécifiquement les bancs de krill.

Durant la campagne, nous avons porté notre attention sur l'influence des facteurs physiques océaniques sur la distribution des oiseaux pélagiques prospectant en mer (foraging behavior).

Nous avons également collecté des données comportementales concernant les albatros à sourcils noirs (Thalassarche melanophrys) en mer afin d'effectuer un rapprochement avec les données récupérées par les balises GPS posées sur les albatros à sourcils noirs par David Hyrenbach au cours du mois de janvier 2004 à Kerguelen.

Nos différentes études ont été coordonnées en étroite collaboration avec Dr Henri Weimerskirch du Centre d'Etudes Biologiques de Chizé (C.N.R.S / C.E.B.C) et Dr Nicolas Metzl (Université Pierre et Marie Curie-Paris).

Nous avons pu également bénéficier de l'aide et des données du Dr. Claire Waelbroeck L.S.C.E de Gifsur-Yvette (récupération d'échantillons de plancton) et des données bathymétriques du SHOM (Audrey Baconnais-Rosez et Gwladys Theuillon).

Cette campagne s'est décomposée en deux parties :

Premièrement, du 3 au 13 janvier, le navire a réalisé une étude bathymétrique et des prélèvements sédimentaires autour de Mayotte au Nord-Ouest de Madagascar.

Ensuite, du 14 janvier au 9 février, le *Marion Dufresne* a réalisé une série de stations océanographiques aux abords de Crozet et Kerguelen.

Autour de Mayotte, nous avons profité de l'opportunité de réaliser un transect (3 cercles autour de Mayotte) pour connaître la distribution des oiseaux se nourrissant en mer. A notre connaissance, ce serait la première fois qu'un transect ornithologique en mer a été réalisé autour d'une île tropicale. Les contacts avec les naturalistes de Mayotte (G.Rocamora/Service Agriculture et forêt) vont faciliter les échanges d'informations concernant les populations d'oiseaux marins. Cette étude pourra également soutenir le suivi ornithologique local. Nous avons identifié des larges groupes d'oiseaux se nourrissant (frégates, phaétons et 7 espèces de sternes) en association avec les classes de thons. En mammifères marins, nous avons

dénombré plus d'une centaine de dauphins de Fraser/Dauphins blancs et bleus, et un groupe également de 12 cachalots.

En région Subantarctique, nous avons remarqué comme durant la campagne 2003, que les oiseaux pélagiques sont regroupés en agrégats dans des régions à forts gradients thermiques telles que la convergence subtropicale. Il existe également un pic de « diversité » dans chaque zone. Cependant, des différences ont été notées cette année, incluant une diminution générale de la densité et de la diversité des oiseaux, et une tendance pour la distribution de certaines espèces tropicales comme le puffin cendré (Calonectris diomedea) à se diriger vers le Nord. A noter de manière remarquable, l'observation de 3 pétrels de Juan Fernandez (Pterodroma externa), observés pour la 1^{ère} fois par notre équipe dans l'océan Indien en janvier 2003 et environ 30 observations de labbes à longue queue (Stercorarius longicauda), également enregistrés pour la 1^{ère} fois sur la zone durant la campagne janvier 2003.

Les données que nous avons collectées du bateau sur les albatros à sourcils noirs, prospectant autour de Kerguelen peuvent justifier la faisabilité de suivis plus importants en mer de ce prédateur à haut niveau trophique autour du plateau de l'archipel.

Dans le futur, nous espérons continuer cette collaboration avec le Dr Weimerskirch et Dr Metzl, afin de se concentrer sur l'étude des albatros (voir autres oiseaux pélagiques et mammifères marins). Nous souhaitons également développer des modèles mathématiques pouvant prédire les quêtes alimentaires et la croissance de populations d'albatros, ainsi que les changements environnementaux.

1.2.9 <u>Rapport des opérations logistiques sur les îles Crozet et</u> <u>Kerguelen et relève des personnels scientifiques</u>

Le passage du *Marion Dufresne* près des îles Crozet et Kerguelen a été mis à profit pour effectuer une relève partielle des personnels scientifiques en mission sur ces îles. En assurant cette relève, la campagne VIGO a en effet permis à plusieurs laboratoires de mettre en place des campagnes d'été terrestres sur un laps de temps optimum.

Embarquement à Crozet : 10 personnes.

- Programme 109 Ornitho-Eco Relations entre variabilité environnementale, effort de reproduction et dynamique des populations de prédateurs marins. Suivi à long terme des populations d'oiseaux et mammifères marins.
- Programme 119 Metlip Métabolisme des lipides chez les animaux polaires : mécanismes d'utilisation ou de développement des réserves adipeuses lors de jeûnes ou de phases d'engraissement spontanés, métabolisme des acides gras n-3 polyinsaturés et leur rôle lors du développement pré- et post-natal, interactions entre réserves énergétiques et comportement reproducteur et alimentaire.
- Programme 137 Ecophy-Sratégie énergétique des prédateurs marins (oiseaux et mammifères plongeurs) et variabilité physique et trophique de l'océan austral : études à terre. Etude des adaptations physiologiques et comportementales permettant aux manchots de faire face aux contraintes majeures liées aux conditions climatiques, au déroulement du cycle reproducteur et aux conditions physiques et alimentaires en mer.
- Programme 354 Ethotaaf Ecologie comportementale des oiseaux marins. Etude du rôle des patterns colorés dans la communication et la reconnaissance du partenaire chez le manchot royal. Etude du lien entre structure sociale et génétique des populations de manchots et pétrels.
- 2 logisticiens IPEV.

Embarquement à Kerguelen : 16 personnes.

- Programme 109 Ornitho-eco Relations entre variabilité environnementale, effort de reproduction et dynamique des populations de prédateurs marins. Suivi à long terme des populations d'oiseaux et mammifères marins.
- Programme 276 Mammintro Biologie et gestion de mammifères introduits dans l'archipel de Kerguelen. Restauration des systèmes écologiques. Etude des réactions des communautés végétales

des invertébrés, suite à l'éradication du lapin sur 3 îles du Golfe du Morbihan. Etude de la biologie de population et de l'impact de la souris domestique sur ces communautés.

- Programme 312 SuperDARN (Super Dual Auroral Radar Network) réseau de radars cohérents HF fournissant des observations continues de la convection du plasma ionosphérique dans les régions de haute latitude, zones aurorales et calottes polaires. Mission de maintenance du radar de Kerguelen.
- Programme 354 Ethotaaf Ecologie comportementale des oiseaux marins. Etude de la reconnaissance olfactive chez les pétrels hypogés et des mécanismes d'orientation chez les oiseaux pélagiques.
- Programme 407 RiSCC-4-îles Effets des changements climatiques actuels en région subantarctique sur les écosystèmes terrestres. Etude simultanée sur les îles Marion-Prince Edward (Afrique du Sud), Heard (Australie) et Kerguelen (France) de la phénologie des plantes et de la morphologie des plantes et insectes communs aux trois îles, le long de gradients altitudinaux et latitudinaux mimant des conditions climatiques variées.
- Programme 415 Aerotrace Observatoire Aérosols et traceurs atmosphériques dans l'océan Austral. Mesure de la fréquence de photolyse de l'ozone.
- 2 personnels TAAF.

1.2.10 <u>MBC/TV Maurice a réalisé un film montré à plusieurs reprises</u> à la télévision Mauricienne et à la télévision française

<u>Responsable</u> : Rakesh GOOLJAR (Mauritius Broadcasting Corporation)

Ce Vendredi 06 Février 2004 *Ravin Joypaul Chief News Editor/Desk Coordinator MBC/Tv...Maurice* A bord du Marion Dufresne.

> A Yvon Balut Responsable Océanographie;Chef des Opérations. Institut Polaire Français Paul Emile Victor

> > Monsieur,

C'est suite aux négociations menées par le Conseiller de Coopération et d'Action Culturelle de l'Ambassade de France à Maurice, Mr Jean-Claude Le Gall et le Directeur Géneral de la Radio/Télévision de Maurice, la MBC, Mr Torriden Chellapermal, qu'une équipe de la télévision Mauricienne a été choisie et retenue pour participer à la campagne scientifique océanographique...La MD-136, montée à bord du Marion Dufresne, dans le Sub-Antarctique, *du 03 Janvier au 11 Février 2004*.

Nous tenons d'abord à remercier tous ceux concernés, et en premier lieu, L'IPEV, L'Institut Polaire Français et son Directeur, pour nous avoir donné cette chance unique de vivre une expérience enrichissante et sans précédent pour une télévision du Sud. D'abord, l'occasion nous a été donnée de vivre en communauté et de côtoyer pendant près de 40 jours, une équipe polyvalente internationale de chercheurs de très haut niveau, issus d'organisations de recherche *américaines et européennes* de renom. Des scientifiques, qui ont été appelés à exécuter des opérations d'observation, d'analyse et de recherche, utilisant une technologie très fine et très poussée en matière d'océanographie. C'était une occasion de rêve, pour les hommes de télévision, que nous sommes, pour saisir des clichés inoubliables, sur les différents aspects de la recherche océanographique, une palette assez méconnue, dans les pays du Sud.

Nous avons donc vécu, au quotidien, pendant cette mission, dans l'univers de l'avancée technologique du fond marin, oscillant entre **la cartographie, la bathymétrie, la géologie, la paléoclimatologie et la sédimentologie** entres autres. C'étaient des moments magiques, qui construisaient au fil des jours, une aventure exceptionnelle et formidable. Et tout cela, dans le décor de l'un des plus grands navires océanographiques du monde, avec un personnel hautement professionnel et qualifié. Les officiers, les Marins et l'équipage du Marion Dufresne nous ont beaucoup facilité le tournage et les prises de vue, parfois dans des conditions extrêmement difficiles. Le voyage, dans le sub-antarctique, nous a méné jusqu'au 60 ème parallèle mugissant en passant par les rugissants et les hurlants. Des régions extrêmes, abritant les <u>TAAF</u>, les Terres Australes et Antarctiques Françaises, dont *Crozet* au 46 ème parallèle, et *Kerguélen* au 49 ème, où nous sommes d'ailleurs descendus.

C'était une régale pour la lentille mauricienne.Là,où les mots n'ont plus de sens et là où les couleurs palissent.C'était le" merveilleux", à l'état pûr,qui défilait sous nos yeux ahuris.Une faune et une flore taillées dans l'irréél,qui se laissent filmer,....impassibles.Tout ceci sur fond de recherche et de technologie de l'homme,toujours avide dans sa quête de comprendre et d'expliquer la nature.Nous comptons ainsi à l'issue de ce périple océanographique,proposer <u>guatre(4) gros reportages</u>,à la Direction de la MBC/Tv.IIs seront disponibles,pour la diffusion,dans le courant du mois de Mars,sur le canal Mauricien et éventuellement après,sur l'espace francophone.Nous proposerons d'abord....(1) une émission de 52 minutes sur la MD-136...La campagne scientifique pluri-disciplinaire......(2)Une autre émission de 26 minutes sur le Marion Dufresne,racontant son aventure sur mer,dans les régions extrêmes....(3)Un reportage de 13 minutes sur l'Archipel de Crozet et celui de Kerguélen des TAAF......(4).Et puis enfin,un dernier reportage de 13 minutes sur un Peintre français, *Christophe Verdier*,qui a aussi voulu vivre l'expérience sur les mers extrêmes du Sub-antarctique,muni de son pinceau.II raconte son histoire sur l'eau ,à coups d'aquarelles.

A tous ceux qui nous ont côtoyés,pendant ces cinq semaines et demi, de labeur marin,nous vous en sommes extrêmement reconnaissants.L'occasion est désormais donnée,maintenant à une audience profane en la matiere, de goûter à la saveur Sub-antarctique et Antarctique, cette découverte des régions extrêmes ,menant vers le Pôle Sud.Cela a été une expérience originale,vécue par le viseur de la télévision Mauricienne.Merci à tous et bonne continuation.L'équipe de la MBC/Tv vous souhaite Bon Vent.

Quat

PB.Ravin Joypaul Chief News Editor/News Coordinator MBC-Forest/Side Maurice.

T.Rakesh Gooljar Cam**a**raman(sr)

1.2.10.1 <u>Rapport de Mr. L. MOOTOOSAMY</u>

Responsable : Louis Lindsay MOOTOOSAMY (Albion Fisheries Research Centre)

Dans quelques jours la campagne scientifique MD 136/VIGO tire à sa fin. Je tiens à remercier l'Institut Polaire Français Paul-Emile Victor (IPEV) ainsi que tous ceux qui ont fait de mon séjour à bord de ce grand navire, une réussite. L'accueil, le logement ainsi que le service étaient impeccables. Au tout début, j'avais une crainte, mais au fil des jours quand j'ai constaté l'ambiance qui régnait dans le travail ainsi que dans les moments de détente, je ne me suis pas aperçu que les jours passaient vite. Pour moi c'était une nouvelle expérience de pouvoir côtoyer tant de scientifiques dans divers domaines de l'océanographie. Pendant près de quarante jours, j'ai pu observer de près les différentes manœuvres scientifiques en mer. Ceux-ci ont été une expérience très enrichissante pour moi et c'est certain que cela va à l'avenir m'aider dans mes tâches quotidiennes. Mon pays étant une île, il est important pour nous les scientifiques de mieux connaître, comprendre et étudier l'océan qui nous entoure. Mon séjour à bord du *Marion Dufresne* va beaucoup m'aider en terme de connaissance océanographique. Comme c'était une campagne multidisciplinaire, j'ai eu l'occasion de voir les différentes activités liées à la bathymétrie, la géochimie, l'étude sur le gaz carbonique, le carottage pour les prélèvements des sédiments marins, les études sur les oiseaux de mer...

Je remercie aussi tous les responsables qui ont organisé des escales à terre. J'ai pu visiter les Terres Australes et Antarctiques Françaises (TAAF) à Crozet et Kerguelen. J'ai été émerveillé par les animaux, notamment les manchots royaux et les éléphants de mer qui s'y trouvent et l'environnement naturel. La marche à pied de plus de trois heures à Kerguelen fut très intéressante du fait qu'on croisait les animaux à tout bout de champs. Ces images des îles lointaines à l'autre bout du monde resteront à jamais graver dans ma mémoire.

J'étends aussi mes remerciements les plus profonds, à tous le personnel sans oublier le Commandant Jean-Marc LEFEVRE, la Chef de mission, Elisabeth MICHEL et à vous-même Monsieur Yvon BALUT qui nous a grandement facilités les choses.

Louis Lindsay MOOTOOSAMY Scientific Officer Albion Fisheries Research Centre Mauritius Tél : 2384829 Fax : 2384184 E-mail : <u>fish@intnet.mu</u>

1.2.11 <u>Rapport de Christophe VERDIER, peintre illustrateur</u>

La quarantaine de journées passées à peindre lors de la campagne océanographique MD 136/VIGO, m'a permis de produire une centaine d'aquarelles. Celles-ci seront réunies dans un livre à paraître chez Marines Edition.

La présence d'un aquarelliste à bord, s'inscrit dans la tradition des voyages de découverte du XVIII ^è siècle. Les moyens très simples utilisés, papier, eau, pigments, permettent de présenter à nouveau un regard moins « numérique » contrastant avec l'univers technologique embarqué sur le *Marion Dufresne*.

La multiplicité des sujets, les changements constants de latitudes et de climats ont stimulé quotidiennement le désir de peindre.

Le regard du peintre s'est trouvé confronté à celui du marin et du scientifique. Les images issues de ces échanges trouveront, je l'espère, un écho chez mes compagnons de voyage et les futurs lecteurs.

1.3 <u>LISTE DES PARTICIPANTS</u>

1.3.1 <u>Scientifiques, techniciens</u>

Nom	Prénom	Programme	Organisme	E-mail
ABELLARD	Olivier	Bathymay	Direction de l'Agriculture et de la Forêt	
AUDRU	Jean-Christophe	Bathymay	BRGM, BP 1398, 97600 Mamoudzou, Mayotte	jc.audru@brgm.fr
BACONNAIS-ROSEZ	Audrey	Shom	MOA, BP 61, 29240 Brest Armées	
BALUT	Yvon		IPEV, Technopôle Brest Iroise, BP 75, 29280 Plouzané	oceanopol@ipev.fr
BEGOVIC	Milena	Oiso	UPMC, 4 place Jussieu, 75252 Paris Cedex 05	begovic]ccr.jussieu.fr
BRETEL	Patrice	Carhot bis	DGO, Université de Bordeaux 1, Avenue des Facultés, 33405 Talence	p.bretel@epoc.u-bordeaux.fr
BRUNET	Christian	Oiso	UPMC, 4 place Jussieu, 75252 Paris Cedex 05	brunet@ccr.jussieu.fr
BUCHET	Noëlle	Carhot bis	CEREGE, Europôle Médit. de l'Arbois, BP 80, 13545 Aix-en-Povence Cedex 4	nbuchet@cerege.fr
CAREL	Nicole		Groupe hospitalier de La Réunion	
CLEMENT	Pierre	Carhot bis	MNHN, 43 rue Buffon, 75005 Paris	clement@mnhn.fr
DEWILDE	Fabien	Carhot bis	LSCE, Campus CNRS, Bât12, 91198 Gif-sur-Yvette	dewilde@lsce.cnrs-gif.fr
DUBREULE	Alain	Flostral	Antenne DT de Brest, bât. IPEV, 29280 Plouzané	adubreul@ipev.fr
DUSSAUZE	Morgan		IPEV, Technopôle Brest Iroise, BP 75, 29280 Plouzané	
FLÖGEL	Sascha	Cabamay	GEOMAR, Wischhofstr. 1-3, 24105 Kiel	sfloegel@geomar.de
GIANNESINI	Pierre-Jean	Carhot bis	MNHN, 43 rue Buffon, 75005 Paris	giannesi@mnhn.fr
GOOLJAR	Rakesh		Mauritius Broadcasting Corporation	
GUENNOC	Pol	Bathymay	BRGM, 3 avenue Cl. Guillemin, BP 6009, 45060 Orléans Cedex 2	p.guennoc@brgm.fr
GUICHARD	François	Carhot bis	LSCE, Campus CNRS, Bât12, 91198 Gif-sur-Yvette	Francois.Guichard@lsce.cnrs-gif.fr
HUMBLOT	Jean Paul		IPEV, Technopôle Brest Iroise, BP 75, 29280 Plouzané	
JAOUEN	Alain		IPEV, Technopôle Brest Iroise, BP 75, 29280 Plouzané	ajaouen@ipev.fr
JOYPAUL	Ravin			
LAMARNOU	Eric		IPEV, Technopôle Brest Iroise, BP 75, 29280 Plouzané	
LANTZSCH	Hendrik	Cabamay	GEOMAR, Wischhofstr. 1-3, 24105 Kiel	hlantzsch@geomar.de
LEFEVRE	Irène	Carhot bis	LSCE, Campus CNRS, Bât12, 91198 Gif-sur-Yvette	
LEGRAND	Pascal	Grace	IFREMER, 29200 Plouzané	Pascal.Le.Grand@ifremer.fr
LO MONACO	Claire	Oiso	UPMC, 4 place Jussieu, 75252 Paris Cedex 05	lomonaco@ccr.jussieu.fr
LONCARIC	Neven	Carhot bis	NIOZ, PO Box 59, 1790 Ab Den Burg-Texel, Netherlands	nevenl@nioz.nl
MARTIN	Marie Caroline	OrnithoEcologie		
MELLET	Martin		IPEV, Technopôle Brest Iroise, BP 75, 29280 Plouzané	mmellet@ipev.fr
METZL	Nicolas	Oiso	UPMC, 4 place Jussieu, 75252 Paris Cedex 05	metzl@ccr.jussieu.fr
MICHEL	Elisabeth	Carhot bis	LSCE, Campus CNRS, Bât12, 91198 Gif-sur-Yvette	Elisabeth.Michel@lsce.cnrs-gif.fr

Nom	Prénom	Programme	Organisme	E-mail
MOOTOOSAMY	Louis		Ministère de la pêche	
OLLIVIER	Bernard		IPEV, Technopôle Brest Iroise, BP 75, 29280 Plouzané	bernard.ollivier@ipev.fr
PEDEN	Olivier	Grace	IFREMER, 29200 Plouzané	Olivier.Peden@ifremer.fr
QUESNEL	Jean Charles	Bathymay		
REIJMER	John	Cabamay	GEOMAR, Wischhofstr. 1-3, 24105 Kiel	jreijmer@geomar.de
REUNING	Lars	Cabamay	GEOMAR, Wischhofstr. 1-3, 24105 Kiel	lreuning@geomar.de
ROTH	Sven	Cabamay	GEOMAR, Wischhofstr. 1-3, 24105 Kiel	sroth@geomar.de
RÜGGEBERG	Andres	Cabamay	GEOMAR, Wischhofstr. 1-3, 24105 Kiel	aruggeberg@geomar.de
SANGIARDI	Pierre		IPEV, Technopôle Brest Iroise, BP 75, 29280 Plouzané	psangiardi@ipev.fr
SCHAUER	Bernard	Oiso	UPMC, 4 place Jussieu, 75252 Paris Cedex 05	schauer@ccr.jussieu.fr
THEUILLON	Gwladys	Shom	MOA, BP 61, 29240 Brest Armées	gwladys.theuillon@shom.fr
THINON	Isabelle	Bathymay	BRGM, 3 avenue Cl. Guillemin, BP 6009, 45060 Orléans Cedex 2	i.thinon@brgm.fr
TURON	Jean Louis	Carhot bis	DGO, Université de Bordeaux 1, Avenue des Facultés, 33405 Talence	jl.turon@epoc.u-bordeaux1.fr
VAN DER PUTTEN	Nathalie	Carhot bis	Universiteit Gent, Krijglaan 281, S8/B2, 9000 Gent, Belgique	nathalie.vanderputten@Ugent.be
VAN TOER	Aurélie	Carhot bis	DGO, Université de Bordeaux 1, Avenue des Facultés, 33405 Talence	aurélie.vantoer@etu.u-bordeaux1.fr
VEIT	Richard	OrnithoEcologie	Collège de Staten Island (Etats-Unis)	
VERDIER	Christophe			
WAELBROECK	Claire	Carhot bis	LSCE, Campus CNRS, Bât12, 91198 Gif-sur-Yvette	claire.waelbroeck@lsce.cnrs-gif.fr

1.3.2 <u>Equipage</u>

Nom	Prénom	Fonction
BONFILS	Guillaume	Officier polyvalent
BOOT	Walter	Garçon
BRAY	Yannick	Ouvrier d'entretien
CARN	Joseph	Assistant d'entretien
COLIN	Eric	Assistant mécanicien
CONTENA	Bruno	Garçon
CROUZET	Nicolas	Ouvrier d'entretien
DE MONTGOLFIER	Guillaume	Elève officier
DELAPLACE	Richard	Lieutenant polyvalent
DUCHENE	François	Chef mécanicien
FADY	Thierry	Second cuisinier
FERAT	Serge	Second cuisinier
FOURNEAU	Benoît	Ouvrier d'entretien
GARGAM	Dominique	Garçon
GILLES	Davy	Ouvrier électricien
GOUBERT	Aymeric	Ouvrier d'entretien
LE DREAU	Jean-Marc	Maître d'entretien
LEDUNOIS	Sébastien	Ouvrier mécanicien
LEFEVRE	Jean-Marc	Commandant
LUCIANI	Yohann	Assistant chef cuisinier
MARIE	Richard	Lieutenant polyvalent
MARTIN	Sébastien	Second capitaine
MASSIAS	Estelle	Elève
MIQUEL	Bernard	Assistant électricien
PANNEKOUCKE	Régis	Maître d'entretien
PIOTEYRY	François	Second mécanicien
PORCHER	Mathieu	Lieutenant polyvalent
ROY	Henri	Officier radio
SCIAS	Jacques	Maître d'hôtel
URVOIS	Jean-Jacques	Maître d'entretien
YOUSSOUF	Ismaila	Ouvrier d'entretien

1.3.3 <u>Malgaches</u>

ARTHUR	Jean De Dieu	Qualifié
BABA CARDIA	Sulleman	Charpentier
ВАКО	Patrick	Qualifié
BERTHIN		Qualifié
CHOW	Emilien	Qualifié
LETODY	Etienne	Qualifié
MADI	Ali	Qualifié
RAFANOHARANA	Jean-Luc	Qualifié
RAJAOBELINA	Philippe	Qualifié
RAKOTOARIMANANA	Thierry	Qualifié
RAMANANKILANA	Soloniaina	Qualifié
RAOELIARIMANITRA	Marcel	Qualifié
RAVOLONA	Bernard	Qualifié
TOTOMENA	Jacques	Qualifié
VELO	Gilbert	Caporal

1.4 LISTE DES OPERATIONS

Latitude Sud		Longitude Est		Profondeur	Longueur	Opérations
(deg)	(min)	(deg)	(min)	(m)	(m)	
-13	3,95	44	46,85	2060	27,32	Carottier Calypso MD 04-2710
-12	52,31	45	18,71	1035	22,04	Carottier Calypso MD 04-2711
-12	32,94	44	53,32	1080	15,89	Carottier Calypso MD 04-2712
-12	28,96	44	54,03	1244	1 bag	Carottier Calypso MD 04-2713
-43	23,86	49	49,22	2289	10,69	Carottier CASQ MD 04-2714 C
-43	23,86	49	49,35	2306	36,8	Carottier Calypso MD 04-2715
-46	9,87	52	55,60	3320	10,92	Carottier CASQ MD 04-2716 C
-48	57,61	65	55,54	1500	4,32	Carottier Calypso MD 04-2717 G
-48	53,31	65	57,42	1428	50,54	Carottier Calypso MD 04-2718
-49	44,50	72	10,84	639	4,29	Carottier Calypso MD 04-2719 G
-49	7,60	71	22,09	754	4,99	Carottier CASQ MD 04-2720 C
-48	57,16	71	8,41	845	41,47	Carottier Calypso MD 04-2721

1.4.1 Carottages Calypso, Casq et gravité

1.4.2 Box cores

Latitude Sud		Longitude Est		Profondeur	Longueur	Opérations
(deg)	(min)	(deg)	(min)	(m)	(cm)	
-35	30,00	44	34,34	3396	20	Box Core MD 04-AT01 (20 cm prélevés)
-44	57,81	51	46,03	3273	20-30	Box Core MD 04-AT02 (20-30 cm prélevés)
-47	41,35	57	57,58	4144	64	Box-Core MD 04-AT03 (64 cm)
-50	40,11	68	20,61	1675	60	Box Core MD 04-AT04 (60 cm prélevés)
-44	56,47	67	48,98	3842	76	Box-Core MD 04-AT05 (76 cm prélevés)

1.4.3 <u>Multinets</u>

Latitude		Longitude		
Sud		Est		Opérations
(deg)	(min)	(deg)	(min)	
-28	58,73	42	30,22	multinet st 6 (all)
-32	0,21	43	43,67	multinet st 7 (deep)
-32	4,31	43	46,59	multinet st 7 (shallow)
-35	29,90	44	30,02	multinet st 8 (deep)
-35	29,26	44	30,20	multinet st 8 (shallow)
-38	3,22	44	57,01	multinet st 9 (deep)
-38	7,63	44	52,57	multinet st 9 (shallow)
-44	59,79	51	50,26	multinet st 12 (all)
-47	41,49	57	59,44	multinet st 15 (all)
-50	40,34	68	23,61	multinet st 23 (all)
-44	59,66	67	50,98	multinet st 24 (all)
-28	59,66	59	14,08	multinet st 27 (deep)
-28	59,20	59	19,90	multinet st 27 (shallow)
-26	0,09	57	30,09	multinet st 28 (all)

Lati Sı	tude 1d	Long E	itude st	Profondeur	Opérations	Numéro	
(deg)	(min)	(deg)	(min)	(m)		d'identification	
-28	58,91	42	29,82	4700	PROVOR 1 - st 6	1900224	
-35	30,00	44	34,33	3468	PROVOR 2 - st 8bis	1900312	
-38	1,76	44	58,14	3140	PROVOR 3 - st 9	1900313	
-56	29,81	63	1,87	4820	PROVOR 4 - st 17	1900314	
-38	0,49	64	12,62	4897	PROVOR 5 - st 25	1900315	
-35	0,04	62	20,54	4741	PROVOR 6 - st26	1900316	
-35	0,04	62	20,54	4741	PROVOR 7 - st26	1900317	
-28	58,85	59	24,31	3916	PROVOR 8 - st 27	1900318	
-28	58,85	59	24,31	3916	PROVOR 9 - st 27	1900319	
-25	58,62	57	29,93	5032	PROVOR 10 - st 28	1900320	

1.4.4 **PROVOR (programme Flostral)**

1.4.5 Bottom Pressure Recorders (programme GRACE)

Lati Sı	tude 1d	Long E	itude st	Profondeur	Opérations
(deg)	(min)	(deg)	(min)	(m)	
-47	6,94	54	54,26	3950	BPR 1
-48	49,88	61	16,84	3925	BPR 2

1.4.6 <u>CTD</u>

Latitude		Longitude		Profondeur	СТД	Opérations		
Sud		E	st	Tiolollucui	Profondeur max	operations		
(deg)	(min)	(deg)	(min)	(m)	(m)			
-13	3,96	44	46,85	2083	2000	CTD	VIGO-01	
-28	58,94	42	30,19	980	2000	CTD	VIGO-06	
-31	59,90	43	44,00	4700	1500	CTD	VIGO-07	
-35	29,99	44	30,39	1570	2000	CTD	VIGO-08	
-38	0,44	44	59,76	3260	2000	CTD	VIGO-09	
-44	59,91	51	50,49	3096	1000	CTD	VIGO-12/OIS0-6	
-47	40,09	58	0,77	3278	1000	CTD	VIGO-15/OISO-7	
-56	29,85	63	1,41	3278	4730	CTD	VIGO-17/OISO-11	
-56	29,83	63	1,20	4793	1000	CTD	VIGO-17/OISO-11	
-59	59,14	63	0,12	4793	1000	CTD	VIGO-18/OISO-60	
-50	39,95	68	25,30	4000	1600	CTD	VIGO-23/OISO-10	
-44	59,86	67	51,15	1651	1000	CTD	VIGO-24	
-38	0,23	64	11,83	3900	2000	CTD	VIGO-25	
-35	0,09	62	19,94	4900	2000	CTD	VIGO-26	
-29	59,86	59	12,26	3916	4400	CTD	VIGO-27	
-26	0,38	57	30,09	5032	2000	CTD	VIGO-28	

1.5 JOURNAL DE BORD

MBES: Multi Beam Echo Sounder SBP: Sub Bottom Profiler BPR: Bottom Pressure Recorder

	Station.	Time	Lat (S is -)		Long (W is -)		Water	
Date	Station	(GMT)	(deg)	(min)	(deg)	(min)	depth (m)	Operation
03-janv-04		14:00					()	Departure from La Réunion
04-janv-04		02:00						Arrival at Maurice (fuel)
04-janv-04		18:30						Departure from Maurice
06 jany 04		12.27	11	40.05	40	20.07		Way point 1 Program SHOM (Coheo): MRES
00-janv 04		21.21	-11	49,95	49	29,97		Way point 2 Program SHOM (Gebco)
00-janv 04		21.21	-11	39,39 25 18	47	30,57		Way point 2 - Frogram SHOM (Gebco)
06 janv 04		22.21	-11	23,10 14 13	47	21.56		Way point 4 Program SHOM (Gebco)
00-janv-04		00.37	-11	17.04	47	0.30		Way point 5 - Program SHOM (Gebco)
07-janv-04		01.27	-11	28.33	47	5.66		Way point 6 - Program SHOM (Gebco)
07-janv-04		01.27	-11	12 50	47	23.01		Way point 7 - Program SHOM (Gebco)
07-janv-04		10.34	-12	20.18	40	23,01 8.47		Way point 8 - Program SHOM (Gebco)
07-jany-04		10.34	-12	20,10		0,47		Beginning of bathymetry (program Bathymay):
07-janv-04		10.50						MBES+SBP
07-janv-04		14:10						End of bathymetry: arrival of 4 participants on pilotine
07-janv-04		15:30						Beginning of bathymetry (Bathymay): MBES+SBP,
5								gravimetry, magnetometry
07-janv-04		16:19	-12	28,02	45	14,95		Way point 1 (Bathymay)
07-janv-04		17:40	-12	39,56	45	28,07		Way point 2 (Bathymay)
07-janv-04		19:48	-13	6,02	45	20,17		Way point 3 (Bathymay)
07-janv-04		21:03	-13	11,13	45	5,07		Way point 4 (Bathymay)
07-janv-04		22:23	-13	6,19	44	48,36		Way point 5 (Bathymay)
07-janv-04		23:01	-12	58,63	44	45,97		Way point 6 (Bathymay)
08-janv-04		00:20	-12	43,93	44	53,96		Way point 7 (Bathymay)
08-janv-04		00:59	-12	36,21	44	50,62		Way point 8 (Bathymay)
08-janv-04		01:48	-12	26,58	44	54,43		Way point 9 (Bathymay)
08-janv-04		02:46	-12	27,89	45	7,10		Way point 10 (Bathymay)
08-janv-04		03:04	-12	29,83	45	10,38		Way point 17 (Bathymay)
08-janv-04		04:22	-12	40,96	45	23,19		Way point 18 (Bathymay)
08-janv-04		04:28	-12	42,11	45	23,59		Way point 19 (Bathymay)
08-janv-04		06:10	-13	3,42	45	16,65		Way point 20 (Bathymay)
08-janv-04		06:11	-13	3,62	45	16,57		Way point 21 (Bathymay)
08-janv-04		07:10	-13	6,60	45	4,76		Way point 22 (Bathymay)
08-janv-04		08:16	-13	3,26	44	51,15		Way point 23 (Bathymay)
08-janv-04		08:40	-12	58,24	44	50,32		Way point 24 (Bathymay)
08-janv-04		09:54	-12	44,49	44	57,86		Way point 25 (Bathymay)
08-janv-04		10:38	-12	36,21	44	53,95		Way point 26 (Bathymay)
08-janv-04		11:51	-12	29,26	44	55,70		Way point 27 (Bathymay)
08-janv-04		12:33	-12	30,38	45	4,40		Way point 28 (Bathymay)
08-janv-04		12:54	-12	32,99	45	8,11		Way point 29 (Bathymay)
08-janv-04		13:32	-12	37,62	45	14,70		Way point 30 (Bathymay)
08-janv-04		14:00	-12	41,94	45	20,00		Way point 31 (Bathymay)
08-janv-04		14:17	-12	45,40	45	20,50		Way point 32 (Bathymay)
08-jany 04		15.08	-12	50.02	43	17,95		Way point 35 (Bathymay)
08 jany 04		15.41	-12 12	0.62	43	15,57		Way point 34 (Bathymay)
08-jany 04		15:49	-13 12	2,05	43	13,17		way point 35 (Dathymay) Way point 36 (Bathymay)
08-janv-04		15.50	-13	2,00 2 64	43	14,97		way point 30 (Damymay) Way point 37 (Bathymay)
08-janv-04		16.04	-13	∠,04 4 06	45	0 21		Way point 37 (Damymay) Way point 38 (Bathymay)
08-janv-04		18.20	-15	7,70	45	2,51		Reginning survey for coring site
08-janv-04	1	21.50	_13	3.06	11	46 95	2083	Arrival at Station 1
00-janv-04	T	21:50	-13	3,90	44	40,00	400 J	Airiyai at Stativii I

	Station	n Time (GMT)	Lat (S is -)	Long (W is -)		Water	Operation	
Date			(deg)	(min)	(deg)	(min)	depth (m)	Operation	
08-iany-04		21:52	-13	3.96	44	46.85	(111)	Beginning CTD (1976 m)	
08-janv-04		23:30	-13	3.90	44	46.79		End CTD	
09-janv-04		01:10	-13	3,95	44	46,85	2060	Triggering - Calypso core MD 04-2710: 27.32 m	
09-iany-04		02:39		- ,		-)		retrieved Departure from station	
• · · · · ·									
09-janv-04		04:00						Beginning of bathymetry (Bathymay): MBES+SBP, gravimetry, magnetometry	
09-janv-04		09:02	-12	30,82	45	1,32		Way point 11 (Bathymay)	
09-janv-04		09:15	-12	31,82	45	3,95		Way point 12 (Bathymay)	
09-janv-04		09:32	-12	33,80	45	7,01		Way point 13 (Bathymay)	
09-janv-04		09:41	-12	35,02	45	8,52		Way point 14 (Bathymay)	
09-janv-04		09:56	-12	36,94	45	11,09		Way point 15 (Bathymay)	
09-janv-04		09:58	-12	37,20	45	11,42		Way point 39 (Bathymay)	
09-janv-04		10:42	-12	43,65	45	18,16		Way point 16 (Bathymay)	
09-janv-04		10:37	-12	42,98	45	17,32		Way point 40 (Bathymay)	
09-janv-04		10:46	-12	44,27	45	18,75		Way point 41 (Bathymay)	
09-janv-04		11:25	-12	52,47	45	17,73		Way point 42 (Bathymay)	
09-janv-04		11:35	-12	53,90	45	16,16		Way point 43 (Bathymay)	
09-janv-04		11:47	-12	56,07	45	14,89		Way point 44 (Bathymay)	
09-janv-04		11:57	-12	58,05	45	14,30		Way point 45 (Bathymay)	
09-janv-04		12:14	-13	1,03	45	16,26		Way point 46 (Bathymay)	
09-janv-04		12:12						End of bathymetry, beginning of site survey	
09-janv-04	2	16:51	-12	52,00	45	18,00	1046	Arrival at Station 2	
09-janv-04		17:26	-12	52,33	45	18,70		Coring, 1rst attempt: no triggering	
09-janv-04		19:33	-12	52,31	45	18,71	1035	Triggering - Calypso core MD 04-2711: 22.04 m retrieved	
09-janv-04		20:52						Beginning CTD (950 m)	
09-janv-04		22:02						End CTD	
09-janv-04		22:12						Departure from station	
09-janv-04		22:15						Beginning of bathymetry (Bathymay): MBES+SBP	
09-janv-04		23:14	-12	57,54	45	28,89		Way point 47 (Bathymay)	
09-janv-04		23:59	-13	5,34	45	26,51		Way point 48 (Bathymay)	
10-janv-04		00:28	-13	10,66	45	22,82		Way point 49 (Bathymay)	
10-janv-04		01:48	-13	15,22	45	5,35		Way point 50 (Bathymay)	
10-janv-04		03:22	-13	9,94	44	44,70		way point 51 (Bathymay)	
10-janv-04		03:39	-13	/,11	44	42,35		Way point 52 (Bathymay)	
10-janv-04		04:13	-13	0,15	44	40,81		Way point 53 (Bathymay)	
10-janv-04		04:41	-12	54,45	44	42,00		Way point 54 (Bathymay)	
10-janv-04		05:34	-12	43,90	44	48,09		way point 55 (Bathymay)	
10-janv-04	2	00:30	10	22.04	44	52 22	1000	A mixed at Station 3	
10-janv-04	3	10.22	-12 12	32,94	44	53,54	1000	Arrival at Station 5 Triggering Columno core MD 04 2712: 15 80 m	
10-janv-04		11:43	-12	32,94	44	55,52	1000	retrieved Departure from station	
10-janv-04		11:50						Beginning of bathymetry (Bathymay): MBES+SBP,	
10 : 04		10.00	10	25.01				gravimetry, magnetometry	
10-janv-04		12:33	-12	35,91	44	44,66		Way point 56 (Bathymay)	
10-janv-04		13:48	-12	22,22	44	51,09		Way point 57 (Bathymay)	
10-janv-04		14:14	-12	21,18	44	56,46		way point 58 (Bathymay)	
10-janv-04		15:06	-12	22,04	45	7,64		Way point 59 (Bathymay)	
10-janv-04		15:38	-12	22,85	45	14,57		Way point 60 (Bathymay)	
10-janv-04		16:09	-12	25,10	45	20,78		Way point 61 (Bathymay)	
10-janv-04		17:19	-12	37,00	45	29,79		Way point 62 (Bathymay)	
10-janv-04		17:34	-12	39,57	45	31,74		Way point 63 (Bathymay)	
10-janv-04		18:26	-12	50,72	45	29,74		Way point 64 (Bathymay)	
10-janv-04		19:00		_				Beginning transverse profiles (Bathymay): SBP	
10-janv-04		19:55	-12	56,76	45	15,64		Way point 65 (Bathymay)	

	<i>a</i>	Time	Lat (S is -)	Long (W is -)	Water	
Date	Station	(GMT)	(deg)	(min)	(deg)	(min)	depth (m)	Operation
10-janv-04		20:04	-12	57,43	45	17,17	(III)	Way point 66 (Bathymay)
10-janv-04		21:19	-13	12,73	45	22,75		Way point 67 (Bathymay)
10-janv-04		21:39	-13	14,71	45	19,08		Way point 68 (Bathymay)
10-janv-04		22:37	-13	5,21	45	10,99		Way point 69 (Bathymay)
10-janv-04		22:49	-13	5,90	45	8,50		Way point 70 (Bathymay)
10-janv-04		22:53	-13	5,44	45	7,76		Way point 71 (Bathymay)
11-janv-04		00:02	-13	17,62	44	58,98		Way point 72 (Bathymay)
11-janv-04		00:31	-13	15,78	44	53,29		Way point 73 (Bathymay)
11-janv-04		01:48	-12	59,93	44	54,79		Way point 74 (Bathymay)
11-janv-04		02:19	-12	53,62	44	54,53		Way point 75 (Bathymay)
11-janv-04		03:07	-12	43,98	44	57,77		Way point 76 (Bathymay)
11-janv-04		04:12	-12	44,11	44	43,73		Way point 77 (Bathymay)
11-janv-04		04:34	-12	48,08	44	41,98		Way point 78 (Bathymay)
11-janv-04		05:39	-12	55,30	44	54,25		Way point 79 (Bathymay)
11-janv-04		05:54	-12	58,46	44	54,12		Way point 80 (Bathymay)
11-janv-04		07:23	-13	0,28	44	35,33		Way point 81 (Bathymay)
11-janv-04		07:26	-12	59,77	44	35,02		Way point 82 (Bathymay)
11-janv-04		07:54	-12	54,21	44	37,35		Way point 83 (Bathymay)
11-janv-04		08:50	-12	43,02	44	42,56		Way point 84 (Bathymay)
11-janv-04		09:22	-12	36,29	44	43,23		Way point 85 (Bathymay)
11-janv-04		10:00				,		End of transverse profiles, beginning of site survey
11-janv-04	4	12:55	-12	28,96	44	54,03	1247	Arrival at Station 4
11-janv-04		13:25	-12	28,96	44	54,03	1244	Triggering - Core MD 04-2713: 1 m rocks
0				,		,		retrieved
11-janv-04								Departure from station
11-janv-04		15:18						Beginning transverse profiles (Bathymay): SBP
11-janv-04		15:18	-12	31,22	44	55,73		Way point 88 (Bathymay)
11-janv-04		16:03	-12	25,07	44	48,36		Way point 89 (Bathymay)
11-janv-04		16:31	-12	21,18	44	52,82		Way point 90 (Bathymay)
11-janv-04		17:20	-12	30,83	44	55,50		Way point 91 (Bathymay): MBES + SBP
11-janv-04		17:27	-12	31,63	44	54,43		Way point 92 (Bathymay): MBES + SBP
11-janv-04		17:42	-12	28,56	44	55,03		Way point 93 (Bathymay): MBES + SBP
11-janv-04		17:42						End of bathymetry, beginning of site survey
11-janv-04	5	18:08	-12	27,33	44	54,75	1660	Arrival at Station 5
11-janv-04		18:55	-12	27,32	44	54,77	1630	Triggering - empty core
11-janv-04		20:38						Departure from station
11 . 04		20.45						
11-janv-04		20:45	10	20.27	15	2 00		Were resist 04 (Dethemate)
11-janv-04		21:30	-12	29,37	45	5,90 15 22		Way point 94 (Bathymay)
11-janv-04		22:34	-12	35,72	45	15,32		way point 95 (Bathymay)
11-janv-04		23:04	-12	41,49	45	17,98		Way point 96 (Bathymay)
11-janv-04		25:21	-12	44,95	45	19,10		Way point 97 (Bathymay)
12-janv-04		00:28	-12	44,87	45	31,85		way point 98 (Bathymay)
12-janv-04		00:57	-12	38,70	45	30,38 20,76		Way point 99 (Bathymay)
12-janv-04		01:40	-12	42,40	45	20,76		Way point 100 (Bathymay)
12-janv-04		01:50	-12	40,55	45	20,08		way point IOI (Bathymay)
12-janv-04		02:20						End of profiles
12-janv-04		03:00						End of bathymetry, anchoring
12-janv-04		20:00						Departure from Mayotte
12 jany 04		22.22	12	25 40	15	11.26		Way point 104 (Pathymay); MPES + SPD
12-janv 04		22.32	-12 _12	25,49	4J 15	10.75		Way point 104 (Bathymay), MBES + SDF
12-janv-04		25.23 00.22	-12 12	20,09 18 00	43	17,1J 32 /1		Way point 105 (Bathymay).
13-janv-04		00:25	-12	10,22	43 15	33,41 25 64		way point 110 (Daulymay) Way point "105" (Bathymay)
13-janv-04		01:10	-12	21,01 37 17	43 15	23,04 33 20		way point 105 (Daulymay) Way point 111 (Bathymay): SPD
13-janv-04		01:59	-12	37,47 40.00	43	55,20 24.62		way point 111 (Dathymay), SDF Way point 120 (Bathymay), MDES
13-jallv-04		02:52	-12	40,00	43	24,02		way point 120 (Dathymay): NIDES Way point 121 (Bathymay): SDD
13-janv-04		02:48	-12	30,42	45	23,23 28 24		way point 121 (Dathymay): SDP Way point 102 (Bathymay): MDES
13-janv-04		05:14	-12	52,34	43	20,34		way point 102 (Datilyinay). MDES

	Station	Time	Lat (S is -)		Long (W is -)		Water	
Date		(GMT)	(deg)	(min)	(deg)	(min)	depth (m)	Operation
13-jany-04		03:53	-12	40.90	45	34.28	(111)	Way point 112 (Bathymay)
13-janv-04		05:26	-13	5,04	45	28,38		Way point 113 (Bathymay)
13-janv-04		06:04	-13	12,50	45	21,89		Way point 115 (Bathymay)
13-janv-04		06:52	-13	16,54	45	10,17		Way point 116 (Bathymay)
13-janv-04		08:35	-13	10,50	44	43,68		Way point 117 (Bathymay)
13-janv-04		09:30	-12	59,43	44	35,83		Way point 119 (Bathymay)
13-janv-04		10:22	-13	8,18	44	44,67		Way point 119b (Bathymay)
13-janv-04		22:59	-15	5,04	42	31,83		SHOM way point 1 (WP3): MBES
14-janv-04		01:04	-15	30,63	42	31,64		SHOM way point 2 (WP4)
14-janv-04		11:34	-17	45,08	41	41,97		SHOM way point 3 (WP5)
14-janv-04		17:35	-19	1,65	41	45,59		SHOM way point 4 (WP6)
15-janv-04		09:21	-22	16,16	40	21,06		SHOM way point 5 (WP7)
15-janv-04		10:05	-22	21,68	40	28,08		SHOM way point 6 (WP8)
15-janv-04		10:43	-22	27,03	40	20,91		SHOM way point 7 (WP9)
16-janv-04		03:31	-26	45,88	39	29,23		SHOM way point 8 (WP10)
16-janv-04	6	16:17	-28	59,00	42	30,10	4700	Arrival at Station 6
16-janv-04		16:26	-28	58,94	42	30,19		Beginning CTD (2000 m)
16-janv-04		18:49	-28	58,71	42	30,36		End CTD
16-janv-04		19:20	-28	58,73	42	30,22		Beginning multinet
16-janv-04		20:20	-28	58,81	42	29,88		End multinet
16-janv-04		20:25	-28	58,91	42	29,82		PROVOR 1 (FLOSTRAL Program)
16-janv-04		20:33	-28	59,17	42	29,83		Departure from station
17-janv-04	7	09:10	-31	58,20	43	43,81	1577	Arrival at Station 7
17-janv-04		09:35	-31	59,90	43	44,00		Beginning CTD (1492 m)
17-janv-04		11:19	-32	0,01	43	43,71		End CTD
17-janv-04		11:37	-32	0,21	43	43,67		Beginning multinet
17-janv-04		13:14	-32	2,66	43	41,96		End multinet
17-janv-04		14:40	-32	4,31	43	46,59		Beginning multinet
17-janv-04		15:58	-32	6,78	43	44,41		End multinet
17-janv-04		16:13	-32	7,77	43	44,55		Departure from station
18 jany 04		03.42	34	58.81	44	30.17		Searching for sediment
18-janv-04	8	05.42	-34	30.01	44	30,17	3370	Arrival at Station 8
18-jany-04	0	06.10	-35	29.99	44	30,39	5570	Beginning CTD (1973 m)
18-jany-04		08.32	-35	29,95	44	30,55		Fnd CTD
18-janv-04		09.09	-35	29,90	44	30.02		Beginning multinet
18-janv-04		10.52	-35	29,50	44	25 57		End multinet
18-janv-04		12:20	-35	29,36	44	30.20		Beginning multinet
18-janv-04		13.45	-35	29,20	44	27.63		End multinet
18-janv-04	8his	15.13	-35	30.00	44	34 32	3377	Arrival at Station 8his
18-janv-04	0015	16.24	-35	30.00	44	34 34	3396	Triggering - Box Core MD 04-AT01
18-janv-04		18:14	-35	30.00	44	34.33	5570	PROVOR 2 (FLOSTRAL Program)
18-janv-04		18:25	-35	29,97	44	34,03		Departure from station
19-janv-04	9	04:35	-38	0,44	44	59,76	3370	Arrival at Station 9
19-janv-04		04:36	-38	0,44	44	59,76		Beginning CTD (2000 m)
19-janv-04		07:30	-38	3,01	44	57,32		End CTD
19-janv-04		07:48	-38	3,22	44	57,01		Beginning multinet
19-janv-04		10:14	-38	9,48	44	51,55		End multinet
19-janv-04		11:58	-38	7,63	44	52,57		Beginning multinet
19-janv-04		13:33	-38	12,26	44	48,58		End multinet
19-janv-04		16:03	-38	1,76	44	58,14		PROVOR 3 (FLOSTRAL Program)
19-janv-04		16:05	-38	1,76	44	58,21		Departure from station
20-janv-04		00:14	-40	7.81	45	32.33		Searching for sediment
20-janv-04	10	02:33	-40	7.73	45	28.89	2850	Arrival at Station 10
20-janv-04	10	03:30	-40	7.37	45	29.40		Triggering - empty gravity core
20-janv-04		05:20	-40	7.32	45	30.47		Departure from station
				.,02		, • •		1

	Station	tation Time (GMT)	Lat (S is -)		Long (W is -)		Water		
Date			(deg)	(min)	(deg)	(min)	depth (m)	Operation	
							(111)		
20-janv-04		21:15	-43	18,16	49	41,23		Searching for sediment	
20-janv-04	11	22:50	-43	23,79	49	49,19	2306	Arrival at Station 11	
21-janv-04		00:28	-43	23,86	49	49,22	2289	Triggering - CASQ core MD 04-2714C: 10.69 m retrieved	
21-janv-04		04:07	-43	23,86	49	49,35	2306	Triggering - Calypso core MD 04-2715: 36.80 m	
21-janv-04		05:37	-43	24,07	49	49,43		Departure from station	
21 iany 04	12	15.05	44	50.02	51	50.39		Aminal at Station 12	
21-janv-04	12	15:05	-44 -44	59,92	51	50,58 50,49		Arrival at Station 12 Beginning CTD (1000 m)	
21-janv-04		16.31	-44	59,91	51	50,49		End CTD	
21-janv-04		16.31	-44	59 79	51	50,05		Beginning multinet	
21-janv-04 21-janv-04		18.18	-44	58 47	51	46 67		End multinet	
21 janv 04 21_janv-04	12his	18.39	-44	58,47 58,12	51	46,07		Arrival at Station 12bis	
21-janv-04 21-janv-04	12013	19.52	-44	57 81	51	46 03	3273	Triggering - Box Core MD 04-AT02	
21-janv-04		21:20	-44	58,07	51	46,41	5215	Departure from station	
				,		,			
22-janv-04		00:30	-45	46,34	51	52,37		Arrival at Crozet	
22-janv-04		16:00	-46	23,63	52	2,90		Departure from Crozet	
22-jany-04		20.00	-46	10.07	53	5.08		Searching for sediment	
22-janv-04	13	20.00	-46	9 90	52	55 54	3330	Arrival at Station 13	
22-janv-04 23-janv-04	15	00.36	-46	9.87	52	55 60	3320	Triggering - CASO core MD 04-2716C	
23-janv-04 23-janv-04		01:45	- 4 0	9.85	52	55.44	5520	Departure from station	
25 juii 01		01.15	10	,,05	52	55,11		Station 14	
23-jany-04	14	09.28	-47	6 94	54	54 26	3950	BPR 1	
23-janv-04	11	12:35	-47	10,45	54	58,25	5750	Departure station	
				,				L.	
23-janv-04	15	21:30	-47	40,36	58	0,22	4150	Arrival at Station 15	
23-janv-04		21:46	-47	40,09	58	0,77		Beginning CTD (1000 m)	
23-janv-04		23:31	-47	41,45	58	0,72		End CTD	
24-janv-04		00:00	-47	41,49	57	59,44		Beginning multinet	
24-janv-04		01:13	-47	41,37	57	57,14		End multinet	
24-janv-04		03:51	-47	41,35	57	57,58	4144	Triggering - Box Core MD 04-AT03	
24-janv-04		05:26	-47	40,86	58	1,43		Departure from station	
24-janv-04		01:15	-47	41,35	57	57,05		Searching for site	
24-janv-04	16	17:24	-48	49,83	61	16,90		Arrival at Station 16	
24-janv-04		17:26	-48	49,88	61	16,84	3925	BPR 2	
24-janv-04		19:40	-48	50,14	61	17,00		Departure from station	
26 ionr 04	17	07.15	56	20.96	()	1 37		Annival at Station 17	
20-janv-04	1/	07:15	-50	29,80	03	1,57		Arrival at Station 17	
20-janv-04		07:25	-30	29,85	63	1,41		Beginning CTD (5000 m)	
26-janv-04		11:45	-30	29,90	63	1,47		End CID DROVOD 4 (ELOSTRAL Drogram)	
20-Janv 04		12.00	-50	29,01	63	1,07		Reginning CTD (1000 m)	
20-janv-04		12.34	-56	29,03	62	57.65		Departure from station	
20-janv-04		15.10	-50	20,12	02	57,05		Departure from station	
27-janv-04	18	09:27	-59	59,17	62	59,93		Arrival at Station 18	
27-janv-04		09:32	-59	59,14	63	0,12		Beginning CTD (1000 m)	
27-janv-04		11:00	-59	59,75	63	0,88		End CTD	
27-janv-04		13:06	-60	7,06	63	2,56		Departure from station	
20	10	18 40	40			<u> </u>		Auritral of Station 10	
29-janv-04	19	17:19	-48	57,54	65 45	33,39 55 5 A	1500	ATTIVALAL STATION 19 Thiogening - Chevity over MD04 0717C: 4 22	
29-janv-04		17:30	-48	57,01	00	55,54	1300	retrieved	
29-janv-04		21:47	-48	53,31	65	57,42	1428	Triggering - Calypso core MD04-2718: 50.54 m retrieved	

	<i>a</i>	Time	Lat (S is -)		Long (W is -)		Water	
Date	Station	(GMT)	(deg)	(min)	(deg)	(min)	depth	Operation
29-jany-04		23:33	-48	53.12	65	57.76	(III)	Departure from station
		20100		00,12	00	01,10		
31-janv-04	20	09:00	-49	44,43	72	10,86		Arrival at Station 20
31-janv-04		10:23	-49	44,50	72	10,84	639	Triggering - Gravity core MD04-2719G: 4.29 m
-								retrieved
31-janv-04		11:09	-49	44,63	72	11,01		Departure from station
		4 - 40	40					
31-janv-04	21	17:40	-49	7,63	71	22,14	751	Arrival at Station 21 Triaganing Costs and MD04 2720C: 4.00 m
31-janv-04		18:02	-49	7,60	/1	22,09	/54	retrieved
31-janv-04		19:09	-49	7,20	71	22,78		Departure from station
01.64 04		04.00	40	01.50	70	10 (1		
01-levr-04		14:00	-49	21,52	70	12,01		Arrival at Kerguelen
01-1611-04		14:20	-49	21,43	70	3,38		Departure from Kergueien
01-févr-04	22	20:37	-48	57.16	71	8.41		Arrival at Station 22
01-févr-04		21:12	-48	57.16	71	8.41	845	Triggering - Calvpso core MD04-2721: 41.47 m
				,		-,		retrieved
01-févr-04		22:07	-48	57,07	71	8,54		Departure from station
	••		-					
02-févr-04	23	09:20	-50	40,03	68	25,52		Arrival at Station 23
02-fevr-04		09:29	-50	39,95	68	25,30		Beginning CID (1600 m)
02-fevr- 04		11:00	-50	40,39	68	24,51		End CID
02-revr-04		11:21	-50	40,34	68 29	23,61		End multinet
02-levi-04 02 fávr 04		12:55	-50	40,08	68	20,65	1675	End multimet
02-16v1-04 02-févr-04		13.22	-50	40,11	68	20,01	1075	Departure from station
02-101-04		14.07	-50	40,20	00	20,37		Departure from station
03-févr-04	24	15:16	-44	59,89	67	51,15		Arrival at Station 24
03-févr-04		15:18	-44	59,86	67	51,15		Beginning CTD (1000 m)
03-févr-04		16:30	-44	59,78	67	51,22		End CTD
03-févr-04		16:52	-44	59,66	67	50,98		Beginning multinet
03-févr-04		18:00	-44	57,24	67	49,33		End multinet
03-févr-04		19:27	-44	56,47	67	48,98	3842	Triggering corer - Box-Core MD 04-AT05 (76 cm
02 fárm 04		21.00	4.4	56 19	(7	40.49		retrieved)
05-1611-04		21:00	-44	30,18	07	49,48		Departure station
05-févr-04	25	01.46	-38	0.32	64	11 86		Arrival at Station 25
05-févr-04	20	01.40	-38	0.23	64	11,00		Beginning CTD (2000 m) Sonde 3900 m
05-févr-04		03:47	-38	0.43	64	12.40		End CTD
05-févr-04		03:58	-38	0.49	64	12.62	4897	PROVOR 5 (FLOSTRAL Program)
05-févr-04		04:18	-38	0,61	64	13,20		Departure station
								*
05-févr-04	26	18:40	-35	0,04	62	19,73		Arrival at Station 26
05-févr-04		18:49	-35	0,09	62	19,94		Beginning CTD (1967 m) Sonde 4900 m
05-févr-04		21:07	-34	59,87	62	20,09		End CTD
05-févr-04		21:32	-34	59,93	62	20,11	4741	PROVOR 6 (FLOSTRAL Program)
05-févr-04		21:37	-35	0,02	62	20,43	4741	PROVOR 7 (FLOSTRAL Program)
05-févr-04		22:00	-35	0,43	62	21,93		Departure station
	~=			50.04	=0	11 = 4		
07 fárm 04	27	03:27	-28	59,84	59	11,74		Arrival at Station 27 Paginning CTD (1967 m) Sanda 2016 m
07 - 16VI - 04		05:43	-28 29	50 70	39 50	11,84		End CTD
07 - 1001 - 04 07 - févr-04		00:47	-20 -28	59,19 59,66	39 50	12,93		End CID Beginning multinet (deen)
07-févr-04		07.14	-20	57,00	57	14,00		End multinet
07-févr-04		10.13	-28	59.20	59	19 90		Beginning multinet (shallow)
07-févr-04		11:47	-28	58.84	59	23.50		End multinet
07-févr-04		12:09	-28	58,85	59	24,37	3916	PROVOR 8 (FLOSTRAL Program)
07-févr-04		12:13	-28	58,85	59	24,51	3916	PROVOR 9 (FLOSTRAL Program)
				,		,		
	<i>a.</i>	Time	Lat (S is -)	Long (W is -)	Water	
------------	-----------	-------	-------	---------	--------	---------	--------------	-------------------------------------
Date	Station	(GMT)	(deg)	(min)	(deg)	(min)	depth (m)	Operation
07-févr-04		12:15	-28	58,85	59	24,58		Departure station
08-févr-04	28	04:55	-26	0,39	57	30,21		Arrival at Station 28
08-févr-04		05:00	-26	0,42	57	30,21		Beginning CTD (1967 m) Sonde 5032 m
08-févr-04		06:30	-26	0,34	57	30,07		End CTD
08-févr-04		07:00	-26	0,09	57	30,09		Beginning multinet (All)
08-févr-04		07:55	-25	58,62	57	29,93		PROVOR 10 (FLOSTRAL Program)
08-févr-04		08:53	-25	57,30	57	29,97		End multinet
08-févr-04		09:00	-25	57,15	57	29,99		Departure station
09-févr-04		10:00	-21	20	55	40		Arrival at La Reunion

2 TRAITEMENT DES CAROTTES SEDIMENTAIRES

2.1 SONDEUR MULTIFAISCEAUX

2.1.1 Short description of the multibeam echosounder

2.1.1.1 Introduction

The deep water echosounder Thalès Seafalcon 11 was installed on board the oceanographic research vessel *Marion Dufresne* in 1995. It has since then become an essential instrument, which is intensively used for cartography (bathymetry and imagery) and sediment profiling.

The multibeam echosounder (MBES) Thalès Seafalcon 11 runs two modes of operation: the "bathymetry and imaging" mode and the "sub-bottom profiler" mode. Both modes can be ran simultaneously.

2.1.1.2 <u>Bathymetry and imagery</u>

Bathymetry and imagery are simultaneous information derived by the echosounder. Bathymetry provides the depth, travel time and propagation direction of a huge number of created soundings, regarding the ship's attitude and sound velocity profile. Imagery is the reflectivity derived from the soundings signals and is related to backscattered energy. A seabed image is produced from this information, where grey levels are dependent of the sea floor nature.

In this operating mode (bathymetry and imagery), the echosounder uses transmitted frequencies around a 12 KHz carrier. The range of depths on which this mode can operate is 50 to 11000 metres. Five spatially separated cross-track swaths are simultaneously created in order to generate a data redundancy (as if five multibeam echosounders were simultaneously used). These swaths are separated in the frequency domain by the use of digital active filters.

Thus, measurement gaps are avoided. These five swaths are separated (along the boat-track axis) from each other by a 1.4 degree angle (cf. appendix A). The central swath is vertical. The large antenna 3 dB attenuation level (at transmission) and beam forming at reception allow images to be built and measure bathymetry at 120 degrees from the track axis of the boat (60 degrees to starboard and 60 degrees to portside). Actually, the swath angle depends on the depth and on the signal-to-noise ratio. It is always comprised between 120° and 140° .

Concerning bathymetry, the across-track resolution depends upon the measured depth H. The across-track length of a resolution cell is typically equal to H/100. The number of created soundings for one measurement is typically equal to 2000 (400 per swath).

Fig 1: Example of a part of a simple bathymetric map created during the Page cruise (July 2002), processed using Caraïbes software

The imaging system uses the reflectivity extracted from the five separated frequency swaths. This representation is useful for the study of the seafloor texture and composition. In order to build images, a mosaic is created, geographically representing sea bottom level in the studied area. This mosaic is fed by the five sets of backscattered signal. The huge number of data for each swath (around 20.000 for a complete cycle of 5 emitted frequencies) and their redundancy allow a large geographic coverage and the relative increase of the signal-to-noise ratio.

Fig 2: Representation of an image measured with Seafalcon 11 echosounder (raw image without post-processing)

2.1.1.3 <u>Sub-bottom profiler</u>

The Seafalcon 11 echosounder also includes a sub-bottom profiler. This system is able to create reflectivity slices of the sub-bottom sea floor as a function of the geographical position of the boat.

As described in the preceding paragraph, beam forming from many signals received on each sensor provides a very narrow antenna diagram (high directivity), during transmission (7.4 degrees) and reception (5.6 degrees). This beam formation also achieves a high acoustic signal level. Indeed, one of the main features of this profiler is the use of a large dedicated transmission array, and the use of the large bandwidth and long size multibeam reception array in order to create a high acoustic level signal and a very narrow beamwidth. While classical profilers beamwidths are usually wide (20° to 30°), the Seafalcon 11 echosounder produces a 7.4° width beam. This feature prevents from interferences between different objects located in the illuminated scene, and achieves a very good along-track resolution.

The central frequency used for this system is equal to 3.75 KHz. As for the "bathymetry and imaging" mode, the transmitted wave is linearly frequency modulated. The corresponding correlation gain is equal to 23 dB. The large transmitted bandwidth (1.6 KHz) achieves a small vertical resolution (0.45 metres).

Five beams are created on reception (the central beam is vertical), separated from each other by 5 degrees. This diversity provides an opportunity to record good quality profiles when the across-track slope is steep. Typically, 100 metres penetrations are achieved for a 4 000 metres depth. The maximal observed penetrations are around 200 metres.

Fig 3: Example of a sub-bottom profiling chart created during the Images 7 cruise (may 2001)

In any case, the ship's attitudes are used in order to determine the exact location of each sounding. Two high performances. Heading and Vertical Reference Unit (HVRU) are installed on the *Marion Dufresne* to measure the ship's attitudes.

2.1.1.4 Post-processing

The post-processing of bathymetry and imaging data is carried out with the "Caraïbes" software, which has been developed by I.F.R.E.M.E.R. This image processing software enables:

• The creation of geographical digital data grids for bathymetry. Contour extraction, "spline" curves filtering and bi-dimensional digital filtering are examples of tools that can be used to remove any possible artefact. 3-D representations are possible. The resolution cell size of the digital terrain Model

can be chosen, as well as the vertical depth resolution. For instance, the map on figure 1 has a 40 metres cell resolution and a 0.5 metre vertical depth resolution.

• The creation of reflectivity mosaics for images. Filtering and contrast enhancement can then be applied for instance.

A version for real time display is also installed aboard the *Marion Dufresne* vessel. This tool is very useful, since it clearly shows the multibeam coverage during surveys. The ship's routes can be adapted in real time in order to achieve the goals of the survey.

• In order to *a posteriori* view the sub-bottom profiles, the French Polar Institute has developed a unixbased software. This software uses gmt and is freely available to any scientist team who would ask for it.

Fig 4: Example of a 3-D processed bathymetric map using GMT

2.1.1.5 Surveys

Prior to any coring operation, a site survey is often achieved on a rectangular area around the desired position. The ship's speed during survey can be up to 17 knots. A bathymetric map (and also a reflectivity map) is shown to the scientific team, using the real time Caraïbes software, on the screen of a workstation. These maps give the opportunity to take into account the side-scan seafloor topology in order to find the best position for coring. Any position on the screen is available to the operator simply through the movement of the mouse.

The bathymetric map is then processed. The following figure shows a survey bathymetric map processed during the Geosciences cruise in September 2001.

Fig 5: *Example of a bathymetric contour plot created from a coring site survey (September 2001)*

On figure 5, the ship's navigation is superimposed. Also, the real positions of the two core sampled in this area (named MD012473 and MD012474) are marked by square boxes.

Fig 6: Example of a bathymetric colour plot created after a coring site survey (September 2001)

Figure 6 shows the same digital terrain model as figure 5, but instead of a simple contour plot, a colour scale is used in order to clearly show the depth amplitude.

2.1.2 Appendix A: the data redundancy

One important feature of the Sea Falcon 11 multibeam echo-sounder is its ability to create and process simultaneously five cross-track swaths, in order to generate a data redundancy (as if five multibeam echo-sounders were simultaneously used). A frequency diversity is used among the five transmitted signals, while the corresponding received signals are separated by the use of digital active filters.

The Seafalcon 11 is the first (among two) deep water echo-sounder in the world which achieves five beams frequency diversity (actually, there is a second Seafalcon 11 installed on Thalès Venturer). The advantages of this multi-frequency technique are the absence of floor-projected gap measurements, and also an important reduction of the noise level, since the DTM construction processes the average of soundings.

Fig 7: Frequency diversity of the transmitted signal

Along the ship's track axis, the beams are separated by 1.4°. In the frequency domain, the carriers are separated by 300 Hz. This system allows ship's speed up to 17 knots with full coverage.

Fig 8: Simultaneous use of five transmission beams

The five simultaneous multibeam echosounder analyses, at the same time, distinct adjacent areas. Each acoustic beam is steered in specific directions separated by adequate intervals. The sector covered by this principle is five times greater than the conventional sector. This feature suppresses seabed gaps due to ship's motion and provides higher operating speeds.

2.1.3 <u>Appendix B: deep water sub-bottom profiling and high</u> <u>resolution</u>

One major quality of the Seafalcon 11 echosounder is the high resolution beamwidth of the antenna array used for sub-bottom profiling. In order to achieve this high resolution, wide antenna beam forming and crossbeam techniques are used to provide a narrow footprint. Classical sub-bottom profilers usually generate a 30° beamwidth needing high ping rates for image integration. Narrow beams improve the sub-bottom analysis by suppressing interferences between seabed backscattered first layer signals and the sub-bottom layers. The crossbeam technique is not based on non linear or parametric effects, and therefore

does not suffer from a reduction in acoustic power as in such techniques (typically -30 dB). The transmitted power is maximised, and combined with narrow beams (5°), typical penetrations of 100 metres are achieved for a 4000 metres depth.

Fig 9: Wide (left) and narrow (right) sub-bottom profilers. Using a wide antenna beam, the echoes are averaged in the final image

Fig 10: The use of a very narrow beam on the Marion Dufresne achieves a very small footprint on the sea-floor. Therefore, the spatial resolution is very good. Moreover, the energy is focused on a very small area, leading to deep penetrations with a very good vertical resolution (large transmitted bandwidth)

2.1.4 Appendix C: system overview

Figure 11 shows an overview of the system: the antennas (wet end) are flush mounted underneath the bow. The front end electronics are located close to the antennas, while the processing and operation computers can be found in the scientific operational centre.

Fig 11: System overview

2.1.5 <u>Appendix D: characteristics</u>

• <u>System</u>:

- Operating depth
- Typical speed
- Maximum sea state
- Maximum roll
- Maximum pitch

50 metres to 11000 metres 12 - 17 knots 7 (depends on ship's draught) +/- 15° +/- 10°

	• <u>Daurymetry</u> :	
\triangleright	Accuracy for typical noise of 51 dB/ \sqrt{Hz}	Less than 1 % of depth
\triangleright	Medium frequency	12 KHz
\triangleright	Number of simultaneous independent pulses	5
\triangleright	Typical coverage	140° at 2000 metres / 120° at 5000 metres
\triangleright	Number of soundings per swath	2000 (400 per pulse)
\triangleright	Transmission beams	5 pulses at 1.4° x 140°
	Reception beams	3.6° x 24°
	• <u>Reflectivity</u> :	
\triangleright	Principle	5 transmitted pulse merging
\triangleright	Number of elementary pixels before mosaicing (ping	rate: 20 seconds) 18,000
	• Sub-bottom profiling:	
\triangleright	Medium frequency	3.75 KHz
\triangleright	Typical penetration	100 metres
\triangleright	Number of created beams	5
۶	Beam width	4.8° x 5.6°
	MBES transmission array:	
\triangleright	Size	6 metres x 0.6 metre
\triangleright	Weight	1500 Kg
	Number of acoustic modules	13
	• Sub-bottom profiler transmission array:	
\triangleright	Size	6 metres x 0.4 metre
\triangleright	Weight	200 Kg
۶	Number of acoustic modules	16
	• Reception array:	
≻	Module size	1.1 metre x 0.4 metre
≻	Module weight	125 Kg
≻	Number of modules	5 in "U" shape
\triangleright	Possible installation modes	« U » or « V » shape

2.2 <u>CORE HANDLING</u>

Dethumeture

2.2.1 <u>Coring</u>

- **Piston Cores:** The Calypso piston corer, developed on board *Marion Dufresne*, can be fitted with a tube up to 75 m in length. The corer is deployed with an Aramide cable, virtually weightless in water, which significantly enhances the traction security margin and weight lifting capacity of the winch.
- **Gravity Cores:** The tube used for gravity cores is the same then the one used for Piston coring, just shorter and without the trigger-arm.
- CAlypso SQuare cores (CASQ): The calypso square-core system combines the piston coring mechanism of the calypso system with the huge core diameter (25 * 25 cm) of a boxcore. Cores gained with this system reach lengths up to twelve meters and collect a huge amount of sediment. These cores contained nearly undisturbed core top with very little sediment missing, and the large surface of the opened core allows improved studies of structures and textures.

2.2.2 Core handling

The core liners of the piston and gravity cores were cut into sections of 1.5 m length, starting at the top. Each section was cut lengthwise into a working half and an archive half. The surface of the sediment of each half was cleared of plastic splinters (from sawing the liners) and then covered with plastic film. Each core half was stowed in a plastic D-tube and stored in a cooled container at ~9°C.

Labelling of core liners and D-tubes

The top and base of each section were marked with a "T" and "B", respectively, and the continuous depth of the core. Moreover, liners and D-Tube caps contain the following information:

- core number (MD04-27xx for piston cores; appendix G for gravity cores, appendix C for CASQ cores)
- section number (circled)
- "A" for archive half, "W" for work half.

CASQ cores were sampled by pressing D-tubes in the sediment. 4 sets of tubes were taken from each core, labeled with core number, section number and an appendix (A-D), identifying the set.

2.2.3 <u>Core gaps / expanding sediment</u>

Core gaps were filled with styrofoam and documented in both technical and sedimentological core description sheets.

2.2.4 <u>CTD</u>

CTD deployments were made during the VIGO cruise with the SEA BIRD SBE 911Plus System, which is equipped with a 24x12l bottles carousel water sampler (SBE32). The data acquisition rate is 24 scans/s, the cable vertical linear speed was 1 m/s. Bottles were only closed during upward profiles. Water was sampled at selected depths through the water column, depending on the temperature gradient and chlorophyll content.

Sensors of the IPEV/Marion Dufresne SBE CTD (Serial Number: 09P11670-0402):

- Pressure: Sensor Paroscientific Inc. Digiquartz (Serial Number: 59934)
 - With incorporated temperature sensor (to correct pressure measure)
 - Range: 0 6885 d-Bar

•

- Accuracy: 0.015% full scale (1 d-Bar)
- Stability: 0.1 d-Bar / Month
- Resolution: 0.001 % full scale 0.068 d-Bar
- Time response: 0.06 Sec
- **Temperature:** SBE Model 3-04/F (Serial Number: 031820)
 - Range: -5.0 to +35 °C
 - Accuracy/ Stability: 0.01 °C / 6 Months
 - Resolution: 0.0003 °C at 24 scans / Second
 - Time response: 0.072 Sec
 - Last calibration: 15 April 2000 (see calibration report)
- Conductivity: SBE Model 4-04/O (Serial Number: 041491)
 - Range: 0 7 Siemens/Meter (S/M)
 - Accuracy: 0.001 S/M / Month
 - Resolution: 0.00004 S/M at 24 scans/Sec
 - Time response: 0.04 Sec
 - Last calibration: 20 April 2000 (see calibration report)
- Dissolved O2: SBE Model 13-02-B (Serial Number: 130380).
 - With Beckman sensor N° 97017 UPMC
 - Time response: 2 Sec (25°C)/5 Sec(0°C) Range: 0 15 mL/L.
 - Accuracy: 0.1 mL/L.
 - Resolution: 0.01 mL/L
 - Time response: 2 Sec $(25^{\circ}C)/5$ Sec $(0^{\circ}C)$

2.2.5 <u>Sedimentology</u>

Lithology, sedimentary structures, texture and coring disturbances where described for each core section. All original sedimentology descriptions were scanned after cruise and are available as PDFfiles on CDs. A generalized stratigraphic description for each core based on the individual core-section descriptions was then compiled, using Adobe Illustrator 8.0.

Fig 12: Sedimentary symbols used for the description

2.2.6 MST (Fabien Dewilde)

High-resolution logging of physical properties was carried out on half cores (working half sections) on board the R/V *Marion Dufresne* using a GEOTEK Ltd Multi Sensor Core Logger (or MST, Multi Sensor Track). Plots of selected MST data are shown for each core in this report.

The Multi-Sensor-Core-Logger used is the split core logging system that is floor mounted and measures P-Wave Velocity and Gamma Density vertically through split cores. It features a moving vertical slide onto which is mounted the upper P-Wave transducer. The split core version enables a number of geophysical measurements to be made on split sediment cores encased in semi-cylindrical plastic core liners. Core sections (with plastic end caps sometimes for liquid sediments) up to 150 cm long and from 50 to 100 mm diameter can be used. The system is designed to be operated under computer control. The sampling interval chosen is 2 cm.

2.2.6.1 Sensors

- Ultrasonic Transducers measures the velocity of compressional waves in the core.
- A Gamma Ray Source and Detector measure the attenuation of gamma rays through the core, providing density and porosity values.
- A Magnetic Susceptibly Sensor determines the amount of magnetically susceptible material present in the sediment.
- A secondary measurement sensor enables measurements to be corrected for changes in core diameter. The core diameter of the core is measured with a pair of displacement transducers connected to the spring loaded compressional wave transducers. This enables the compressional wave velocity and density to be calculated, and in addition, allow for changes in core diameter.

• A spectrophotometer measures color reflectance along the core.

2.2.6.2 Methods and calibrations of the sensors

Gamma density: A gamma ray source and detector are mounted across the core on a sensor stand that aligns them with the centre of the core. A narrow beam of gamma rays (5 mm diameter) is emitted from a Cs-137 source with energies principally at 0.662 Mev. These photons pass through the core and are detected on the other side. The small Cs capsule is securely housed inside a 150 mm diameter lead filled chamber. The gamma ray detector comprises a scintillator and integral photo multiplier tube. The tube also contains the internal voltage supply and electronics to window the primary gamma rays. Pulses from the detector unit are sent continuously to a counter board in the main electronics rack. The counting period and count rate are determined through the software control and the internal microprocessor.

The basic equation for calculating bulk density is $\rho = (1/\mu * d) * \ln(I0/I)$ where

- ρ = sediment bulk density
- d = sediment thickness
- μ = Compton attenuation coefficient
- I0 = gamma source intensity
- I = measured intensity through the sample.

Beam spreading, attenuation through the liner or the effect of the water have a significantly different attenuation coefficient for sediment minerals. The technique relies on calibrating the system using both the liner in which the core is contained and the fluid which the sediment contains. For example, when using a split core, the calibration should be done with pieces of aluminum of varying thickness surrounded completely by water in a sealed liner. Gamma counts should be taken through the calibration sample at different aluminum thicknesses and plotted as a graph of average ρ *d versus ln(I) where ln(I) is the natural log of the measured intensity counts per second and ρ *d is the average density * thickness of aluminum and water.

The resulting graph may deviate from the theoretical straight line because of the factors cited above. To accommodate for this, a second order polynomial equation can be fitted to the graph:

Y = AXX + BX + C where $X = \rho *d$ and y = ln(I).

The counting time for gamma attenuation is 2 seconds. Porosity can be calculated directly from sediment density if the following is known or can be assumed:

- the sediment is fully saturated
- mineral grain density (MGD = 2.75)
- fluid density (WD = 1.026)

Then the fractional porosity is $FP = (MGD-\rho)/(MGD-WD)$

Problem with soft sediment: the gamma ray sensor is situated before the core diameter sensor. When the sediment is soupy, the core diameter sensor goes through the sediment and the calculated thickness is not the same as the thickness prevailing during the gamma ray attenuation. This can create jumps in density. NB: the gamma ray density is very sensitive to temperature.

Pwave Velocity System: The upper P-Wave transducer (PWT) is raised or lowered by the motor 1. When logging split cores, the upper PWT is lowered onto the split core surface to take a measurement and raised prior to the core moving to the next increment along the track. The transducers used are oil filled Acoustic Rolling Contact transducers. The active element is a piezo-electric crystal. A short P-wave pulse is produced at the transmitter. This pulse propagates through the core and is detected by the receiver. Pulse timing circuitry is used to measure the travel time of the pulse with a resolution of 50 ns. After suitable calibration procedures have been followed, the P-Wave velocity can be calculated with a resolution of about 1.5 m/s. The accuracy of the measurements largely depends on any variations in sediment or liner thickness. For horizontally split cores, it is necessary for the upper PWT to be lowered onto the split surface at each measurement increment. To avoid any contamination along the core, it is normal to cover the split surface with a layer of thin plastic film. A few drops of water spread along the surface of this film will provide the acoustic contact if necessary.

The P Wave velocity of the pulse through the sediments inside the core liner is given by:

V = X / TT where X is the sediment thickness and TT the pulse travel time in the sediment.

The measured total travel time in the sediment is TOT = TT + PTO, where PTO is the P Wave Travel time Offset which represents all the additional time delays. PTO includes the pulse travel time through the liner and the transducers faces, the delay caused by picking a point on the wave curve, which is about one cycle after the onset, as well as a small electronic delays in the system circuitry.

For most of the cores the signal amplitude decreases in the last sections. The reason may be the presence of gas in the sediment.

The velocity measurement is good when the signal amplitude is high. The problem is to determinate the minimum amplitude for a good signal. We decided to choose PWamp = 80. The minimum signal amplitude was sometime 50 instead of 80, due to a problem with the settings.

Determining PTO: In a short liner of the type being logged, we put distilled water and place it between the P wave transducers as if logging a normal core. The upper transducer should be inserted just beneath the water surface. The following numbers should be recorded:

T = water temperature

D = distance between the transducers faces and W = liner thickness

TOT = total travel time recorded

The velocity V of the distilled water at the given temperature T should be looked up from a standard reference source.

PTO = TOT - (D-W)/V

Sediment velocity can be processed with salinity, temperature and depth corrections. GEOTEK uses an empirical formulation to apply a factor to the measured P Wave velocity. All the data provided are processed with:

T=20°, S=0 and D=0 where T is temperature, S salinity and D depth.

The acoustic impedance (= the product of the P Wave velocity and density) can also be obtained.

Core Thickness Measurements: Core thickness is the distance between the active faces of the two P Wave transducers (PWT). This is measured by mounting a rectilinear displacement transducer (DT) on each of the PWT mountings. Each DT precisely follows the movement of each PWT. In practice the core thickness is measured with respect to a known thickness (RCT = reference core thickness) and it is the deviation from that reference that is recorded.

The sediment thickness is calculated using the following equation:

X=RCT-W+CTD/10

where W is the total liner thickness (0.7 cm) and CTD is core thickness deviation (raw data, mm). To calibrate the DT, we select two suitable round calibration bars of known diameter (with a difference of about 20 mm). We place the smaller one between the transducers and adjust the zero. Then the larger piece is inserted and the span is adjusted to obtain the difference of diameter.

Magnetic Susceptibility: The Bartington loop sensor is mounted in such a way that no magnetic or metallic component comes close to the sensor. An oscillator circuit in the sensor produces a low intensity alternating magnetic field. Any material in the near vicinity of the sensor, which has a magnetic susceptibility, will cause a change in the oscillator's frequency. The electronics convert this pulsed frequency information into magnetic susceptibility values.

This system is calibrated absolutely. A calibration sample (stable iron oxide, tested and analysed by the manufacturer) is provided which can be used to check the long-term consistency of the calibration. The value of our standard sample of a stable iron oxide is 252*10-6 CGS at 20°C. We obtained 320*10-6 CGS. This value remained constant during the whole campaign.

To obtain the corrected volume specific magnetic susceptibility, K, the data must be corrected for the effect of the core and the size of the loop sensor being used. This effect has been determined experimentally. The volume specific magnetic susceptibility takes no account of the density of the sample being measured. It is possible to have variations in K down the length of a core that reflect changes in density. Mass specific magnetic susceptibility overcomes this problem by taking into account the density.

 $\chi = K / \rho$

The sampling time is 10 seconds. A zero is made 10 cm before core.

The data provided do not take into account the density.

Color reflectance: GEOSCAN Digital Imaging (adapted from the GEOTEK MSCL Manual): The GEOSCAN color line scan camera is a 3 CCD device using 3 * 1024 pixel CCD 39 arrays. Light from the object passes through the lens and is split into 3 paths by the beam splitter to fall on the red, green and blue detectors which, when combined, reproduce a conventional color image. All CCD detectors are sensitive to light in the 400 to 950 nm waveband. However they are relatively less sensitive to light at shorter wavelengths (400-500 nm - the blue end of the spectrum) than at the longer wavelengths of the visible spectrum wavelengths (600-700nm - the red end of the spectrum). Consequently, the beam splitter is designed to direct 50% of the light towards the blue detector while 25% each is directed at the red and the green sensors. To ensure that there is minimal overlap between the wavebands in the 3 channels (red, green and blue), the light leaving each exit face of the splitter passes through a dichroic color interference filter before falling on the detector which is located at the focal plane of the lens. For normal RGB imaging the Geoscan system uses high frequency fluorescent lamps which produce light in 3 main wavebands corresponding to the red, green and blue parts of the spectrum.

The light unit uses 2 fluorescent tubes that illuminate the core evenly from both sides of the image line. This provides a flooded illumination that minimizes any shadow effects that could be caused from micro-topographic effects. The camera is arranged directly above the light and "looks" through a slot in the top surface of the light unit. Spurious reflections are eliminated by black anodizing both the camera and light units.

Synchronization between the camera and the track is achieved by using the stepper motor pulses to trigger the line acquisition of the camera with no optical distortion from the lens in the down-core direction. Motor speed defines the time between pulses and hence the integration period (exposure time). The software-controlled pulse divider allows the distance between scans, i.e. down-core resolution, to be defined. A software convergence routine applies a correction that compensates for any minor mechanical differences between the 3 sensor arrays. Offset correction ensures that the 3 channels are referenced to a true black level. This is achieved by measuring the signal level of the black reference pixel for each sensor. Gain correction compensates for pixel-to-pixel response variation, uneven lighting, and lens effects. Lenses tend to darken the edges of the field of view, an effect which becomes more pronounced with increasing aperture. To correct for all of these the camera images a white tile and software gain correction is calculated for each pixel. This correction is then applied to subsequently acquired image data.

The camera did not work for the last core MD04-2721

2.2.6.3 Image data

The corrected data are stored in a BMP format with appended depth and calibration information that can then be read by the image replay software. The files created by the GEOTEK Digital Imaging software are in the Windows bitmap format. RGB data were retrieved from the data files using the Geotek software: Images tools. The spectra were defined from a band of 2 cm width at the center of each section and stored as a text file: RGBX. Then, a composite data file was made using Microsoft excel and the edge effects cleaned. The data were plotted together with the reflectance data (L*, a*, b*) obtained 40 using the Minolta Spectrometer (see below). The Images are then reported in a template so that 15 sections are shown at the same time.

2.2.6.4 <u>Colour reflectance using the Minolta spectrometer</u>

Diffuse spectral reflectance measurements on sediment surfaces provide a rapid, high-resolution and noninvasive tool for estimating sediment compositions such as calcium-carbonate, organic carbon, and opal concentrations, which are essential information for high-resolution paleoceanographic research. The Minolta 2002 spectrophotometer was used. This instrument is compact, handheld, sea-going instruments for measuring spectral reflectance. This device measures spectral data 1) by flashing light from an internal, pulsed, xenon arc lamp through a circular aperture (diameter of aperture = 11 mm, measurement area diameter = 8 mm) at the base of the instrument off the surface of the specimen protected by a plastic wrap, and 2) by recording the levels of light reflected back through the aperture to its sensor at various wavelengths within the visible range of the electromagnetic spectrum (400-700 nm). During the cruise, measurements were taken from the sediment surface of split working halve core sections at 2 cm intervals. Before measuring reflectance data for sediment cores, the spectrophotometer was first calibrated against open space for a minimum reflectance reading and then against a white standard (Spectralon) covered by a plastic wrap for a maximum reflectance reading. Sediment measurements result in sixteen 20-nm wavelength intervals ranging from 400 to 700 nm for Minolta 2002. Each interval corresponds to the averaged percentage reflectance along the range. These reflectance data can be interpreted as compositional changes of sediment through calibration against ground truth core measurements of sediment compositions.

The spectrophotometer also automatically calculates five parameters: L* (lightness), a* (red/green attributes), b* (yellow/blue attributes), C* (chroma/saturation), and h (Hue-angle). The output Excel files of the color reflectance data measured in this cruise contain data of measurement depths (in cm), values for these five parameters and every channels of percentage reflectance value.

2.2.7 Short description of the multinet sampling system

This equipment was loaned to us by the Royal Netherlands Institute for Sea Research (NIOZ). It is composed of 5 opening-closing nets (Figure 1) allowing one to retrieve living plankton (planktonic foraminifera) at known water depths. Closing and opening of successive nets is operated from the ship via a computer. The structure includes temperature and pressure measurement system, so that the operator can follow the temperature profile versus depth, while sampling different water depth ranges. The structure is also equipped with a flux measuring system so that the volume of water filtered by each net is known. Routine procedure involves CTD measurements at the sampling site first, so that the fluorescence (an index of chlorophyll water content), salinity and temperature profiles can be used to determine the depths ranges at which plankton will be sampled with the multinet. At each site, we sampled seawater from the CTD bottles in order to measure its oxygen and carbon isotopic composition at depths corresponding to those at which planktonic foraminifera were collected.

Figure 13: Multinet scheme

The multinet was lowered to the predefined water depths at a cable speed of 0.5 m/s from the rear side of the ship, remained at each depth for the time necessary to filter a sufficiently large water volume (about 100 to 200 m3, according to the chlorophyll content) and was finally raised at low speed. During the deployment, time of the net the ship sailed with a constant speed of 0.5-1 knots.

On board, samples were collected over a 150 μ m sieve, then rinsed with sea water before deep freezing at -20°C.

3 STATIONS

3.1 STATION 1 : CAROTTE CALYPSO MD04-2710

3.1.1 <u>Navigation</u>

3.1.2 <u>3.5 kHz</u>

3.1.3 Fiche de carottage

INSTITUT PAUL EMILE VICTOR

MARION DUFRESNE

NOM DE LA CAMPAGNE	
MD 136 VIGO	

CAROTTE (N°):
MD 04-2710
(MD - année - milles - centaines)

CAROTTIER (type)	CALYPSO II			
Poids total (air) :		6.8	t	
Poids total (eau) :	surf	6.3	t t	

27,32m						
RE	GLAGES :					
Tubes (longueur) :	30.50	m				
Câbles : Chute libre :	1.50	m				
Boucle :	1.60	m				
LC poids :	35.20	m				

9/1/04

VIGO 1

Date :

N° de station :

PARAMETRES ME	SURES :	
Sonde corrigée :	2,072	m
Ligne filée :	2,036	m
Arrachement/total (tonne) :	11.40	t
Arrachement/différentiel (tonne) :	4.60	t
Pénétration/apparente (m) :	quasi complète	m
Pénétration/tensiomètre (m) :	totale	m

HEURES (GMT)						
En station : 0z12		GMT				
Début manœuvre :	0z14	GMT				
Déclenchement :	1z10	GMT				
Fin de manœuvre :	2z23	GMT				
<u>Durée de manœuvre</u> :	02:09					
Départ station :	2z39	GMT				

Latitude :	13°03.95 S	13°03.95 S				
Longitude :	044°46.85 E					
Type (2) :	CONTREPOIDS : CYLINDER 100 KG					
Longueur PVC :		m				
Pénétration :		m				
Longueur de car + Ogive (+ 0,15	rotte : m)	m				

POSITION :

Météo : (force) / Direction Vent : 5nds Mer : Variation tension (maxi) : 6,9t

INSTRUMENTATION OPERATIONS ANNEXES					
CTD (hydro) :	oui				
CTD (bouteilles)	: oui				
Filet à plancton :	non				
Autres :	1				

Description / incidents : 19 tronçons

1 sac "core catcher"

0		150	300	450	600	750	900	1050
	1	I	III	IV	v	VI	VII	
1050		1200	1350	1500	1650	1800	1950	2100
	VIII	IX	x	XI	×II	XIII	XIV	
2100		2250	2400	2550	2700 2732	2850	3000	3150
	XV	XVI	XVII	XVIII	XIX			
								-
3150		3300	3450	3600	3750	3900	4050	4200
4200		4350	4500	4650	4800	4950	5100	5250
5250		5400	5550	5700	5850	6000		
L		1	1	1	1			

(1) CALYPSO - CALYPSO GRAVI/FLUX - BOX CORER 1/4m ou carré géant

(2) Cylindrique 100 kg / Plat / Préleveur

3.1.4 <u>Photographie</u>

➤Terriers

- 1720

1800 5Y7/2+D 1885 5Y5/2 1900 7 1920 5Y7/2+D 2000 5Y7/2 2035 5Y7/2+D 2100 2115 10Y7/2 2131 2163^{5Y7/2+D} 5Y7/2 2200 — 2210 5Y7/2+D 5Y5/2+L 5Y7/2+D 2300 -2308 5Y7/2 5Y7/2 - 2350 = 2368 2381 5Y7/2+L 5Y5/2 2400 2435 5Y5/2 2500) Bioturbations

1700

2600

2700

PLEISTOCENE

	MD 04 2710 : Smear slides								
		1645	10	1655					
	XII		50	1695					
		1795	Pear slides 10 50 120 90 120 22 60 140 25 45 145 23 90 126 145 23 90 126 145 23 90 126 145 30 146 12 30 146	1765					
	VIII	1795	90	1885					
	V 111	1945	120	1915					
		1945	22	1967					
	XIV		60	2005					
		2095	140	2085					
		2095	25	2120					
	XV		45	2140					
	~~		85	2180					
		2245	145	2240					
		2245	23	2268					
	XV/I		90	2335					
2			126	2371					
		2395	146	2391					
		2395	22	2417					
	XVII		47	2442					
		2545	90	2485					
		2545	40	2585					
	XVIII		75	2620					
			130	2675					
		2695	146	2691					
	XIX	2695	12	2707					
	~~~	2727	30	2725					

Bioturbations____ 2665 5Y7/2

2725 5Y7/2+L

#### MD04_2710

File MD04_2710a: section 01 to section 10 File MD04_2710b: section 11 to section 13 File MD04_2710c: section 14 to section 15 File MD04_2710d: section 16 to section 19

<u>MST :</u>

	MST length	Metric Tape	T sediment	Remarks
	(cm)	(cm)		
section 1	151.2	0 - 150	20.5	PW and Mag. Susc.: no contact with sediment (0 - 36 cm)
section 2	151.3	150 - 300	20.5	PW and Mag. Susc.: no contact with sediment (150 - 212 cm)
section 3	149.5	300 - 450	19.6	
section 4	150.3	450 - 600	22.1	
section 5	150.1	600 - 750	21.8	Hole (polystyrene) 668 cm
section 6	149.8	750 - 900	21.6	
section 7	150	900 - 1050	21.2	
section 8	149.8	1050 - 1200	21	
section 9	149.6	1200 - 1350	20.5	
section 10	149.6	1350 - 1500	21.6	
section 11	151	1500 - 1650	20.9	
section 12	150.7	1650 - 1800	21.2	
section 13	151.5	1800 - 1950	21.4	
section 14	150.5	1950 - 2100	21.1	Sandy layer (2130 - 2162 cm)
section 15	150.4	2100 - 2250	20.9	
section 16	150.9	2250 - 2400	21.3	
section 17	149.9	2400 - 2550	21.4	
section 18	150	2550 - 2700	21.3	
section 19	35.5	2700 - 2732	21.3	Last 3 cm empty

Drift with magnetic susceptibility data ?

#### CAMERA :

Calibration:	aperture $= 16$
Data:	aperture $= 11$





3.1.7 <u>CTD</u>



### 3.2.1 <u>Navigation</u>







INSTITUT PAUL EMILE VICTOR

MARION DUFRESNE

NOM D	E LA CAMPAGNE	D	ate : s	9/1/04	Météo : (force) / D	irection		
MD [,]	136 VIGO	N	° de station :	/IGO 2	Mer : Variation tension (	maxi)∶ ≤1t		
CAI	ROTTE (N°) :					POSITIO	N :	
MD	04-2711		22,0	Latitude :	Latitude : 12°52.31 S			
(MD - ann	ée - milles - centaines)				Longitude :	045°18.7	1 E	
			REGLA	GES :		CONTREPO	IDS :	
CAROTTIER (type) (1): CALYPSO II		Ти	bes (longueur) :	<b>Type (2) :</b>	(2): CYLINDER 100 KG			
Poids total (air) :	6.8	t <u>Câ</u>	bles :		Longueur PVC :			m
		Ch	utelibre :	1.50 m	Pénétration :			m
Poids total (eau) :	surf 6.3 bottom	t Bo	ucle :	1.60 m	Longueur de carol + Ogive (+ 0,15 m	tte: 1)		m
		LC	poids :	38.12 m (3m50 lest)				
PARAM	ETRES MESURES :		HEURES	(GMT)	I	NSTRUMENT	ATION	
		En	station :	16z45 GMT	OPERATIONS ANNEXES			
Sonde corrigée : (1060 at the	1,035 beginning, steep slope)	m Dé	but manœuvre :	16z51 GMT	CTD (hydro) :	yes		
Ligne filée :	1,104	m Dé	clenchement :	19z03 GMT	CTD (bouteilles):	yes		
Arrachement/total (tonne)	: 13.90	t Fin	i de manœuvre :	20z13 GMT	Filet à plancton :	no		
Arrachement/différentiel (to	onne) : 7.60	t Du	rée de manœuvre :	03:22	Autres :	/		
Pénétration/apparente (m)	: ~20	m Dé	part station :	22z12 GMT				
Pénétration/tensiomètre (n	): bended	m						
Description / incidents :	Core bended, 3	m of basaltic black	sand. Core catcher da	maged				
	The core was empty be	tween 1888 and 23	38. Depth have been a	ippend 1	bag core catcher			
First try, the core did not	trigger. The corer arrived a	it the bottom at 1106r	n. No apparent technical	problem. Could it be the co	ourant taking away the t	rigger weigh	t from the slo	pe?
0 60	150	300	450	600	750	900	)	1050
la Ib	П	III	IV	v	VI		VII	
1050 VIII	1200	1350 ¥	1500	1650	1800 1888 XIIIa	195 XIIID	50 XIV	2100
		~	A		Alla			
2100 2204	2250	2400	2550	2700	2850	300	00	3150
xv								
3150	3300	3450	3600	3750	3900	405	50	4200
			I					
4200	4350	4500	4650	4800	4950	510	00	5250

5250 5400 5550 5700 5850 6000

(1) CALYPSO - CALYPSO GRAVI/FLUX - BOX CORER 1/4m ou carré géant

(2) Cylindrique 100 kg / Plat / Préleveur



## 3.2.4 Photographie





#### MD04_2711

File MD04_2711a: section 1 to section 13a File MD04_2711b: section 13b to section 15

MST :

<u>MIG1 .</u>				
	MST length	Metric Tape	T sediment	Remarks
	(cm)	(cm)		
section 1a	58	0 - 60	20.4	Very soft sediment
section 1b	92.4	60 - 150	20.3	
section 2	150.2	150 - 299	19.5	
section 3	150.5	300 - 450	23.5	
section 4a + 4b	150.8	450 - 510	22.6	3 pieces of sediment on the deck and replaced (510 - 553 cm)
section 5	150.3	600 - 750	22.3	
section 6	150.3	750 - 900	21.9	
section 7	149.5	900 - 1050	22.3	
section 8	150.4	1050 - 1200	22.5	
section 9	150.1	1200 - 1350	21.7	
section 10	150.4	1350 - 1500	21.8	
section 11	150	1500 - 1650	21.4	
section 12	150	1650 - 1800	21.6	
section 13a	89.3	1800 - 1888.5	20.9	
section 13b	62.5	1888.5 - 1950	20.9	
section 14	150.7	1950 - 2100	21.2	
section 15	105	2100 - 2204	20	

#### CAMERA :

Calibration:aperture = 16Data:aperture = 110.2 cm missing at the beginning of section 11 and at the end of section 13Section 13b, 14 and 15 with aperture 8 and 11.







## 3.3 STATION 3 : CAROTTE CALYPSO MD04-2712



#### 3.3.1 Navigation

3.3.2 <u>3.5 kHz</u>


## 3.3.3 <u>Fiche de carottage</u>

INSTITUT PAUL EMILE VICTOR

#### MARION DUFRESNE

	NOM DE LA CAI	MPAGNE		Date		10/1/04			Météo : (force) / I Vent :	Direction		
_				NIG J.		1400			Mer :			
l V	/ID 136 \	VIGO		n de	station :	VIGO .			variation tension ≤ 1t	(maxi) :		
r												
	CAROTTE (	N°):								POSIT	rion :	
	MD 04-2	2712			15	,89m			Latitude :	12°32.	.94 S	
	(MD - année - milles -	centaines)							Longitude :	044°53	3.32 E	
CAROTTIE	R (type) ⁽¹⁾ :	CALYPS	0		REG	LAGES :			Tupo (2) (		EPOIDS : ER 100 KG	
	-(-)			<u>Tubes</u> (I	ongueur) :	30.86	m		Type (2) .	CILIND	LIX 100 KG	
Poids total (a	air) :	6.8	t	Câbles :					Longueur PVC :			m
				Chute lib	re :	1.50	m		Pénétration :			m
Poids total (e	au): surf	6.3	t	Boude :		1.60	m		Longueur de caro	otte :		m
	bottom		•	LC poids	:	35.56	m (3m50 lest)		+ Ogive (+ 0, 15	1)		
	PARAMETRES M	ESURES :			HEUR	ES (GMT)			OF	NSTRUM	ENTATION	
		4 00 4		En statio	n:	9z	35 GMT		OTD (h. h.)			
Sonde corrige	<u>e</u> :	1,084	m	Début m	anœuvre :	9z	I9 GMT		CTD (nyaro) :	по		
Ligne filée :		1,267	m	Déclen	chement :	102	23 GMT		CTD (bouteilles)	: no		
Arrachement/total	(tonne) :	12.50	t	Ein de m	anceuvre :	11-	37 GMT		Filet à plancton :	no		
Arrachement/diffé	rentie <b>l</b> (tonne) :	6.20	t				40		Autres :	1		
Pénétration/appar	ente (m) :		m	<u>Duree d</u>	<u>e manœuvre</u> :	01:	48					
Pénétration/tensio	mètre (m) :	15-20m, bende	d m	Départ s	tation :	112	43 GMT					
Description / inci	dents :	2 cm polystyre	ne at the tor	Core is em	oty from 1064 t	o 1526 an	d from 1552 to 1	1589				
		acro bondod a	t approx 10	m from ooro	otobor							
		core pended a	( approx. 10	m nom core (	auner							
		1 bag core cat	cher									
0-2 <b>100</b>	192		300		450		600		750		900	1050
I I	II	11		IV	v		VI		VI		VIII	
15 I			-						1		1	

1200	1350	1526 1589	1650	1800	1950	2100
mpty empty	empty	x				
•		ł		ŀ	·	
2250	2400	2550	2700	2850	3000	3150
3300	3450	3600	3750	3900	4050	4200
		L				
4350	4500	4650	4800	4950	5100	5250
	L	L				
5400	5550	5700	5850	6000		
	1200 mpty empty  2250  3300  4350  5400	1200         1350           mpty         empty         empty           2250         2400           3300         3450           4350         4500           5400         5550	1200         1350         1526         1589           mpty         empty         empty         empty         X         X           2250         2400         2550	1200     1350     1526     1589     1650       mpty     empty     empty     X        2250     2400     2550     2700       3300     3450     3600     3750       3300     3450     3600     3750       4350     4500     4650     4800       5400     5550     5700     5850	1200       1350       1526       1589       1650       1800         mpty       empty       empty       X       Implement       X       Implement         2250       2400       2550       2700       2850         3300       3450       3600       3750       3900         4350       4500       4650       4800       4950         5400       5550       5700       5850       6000	1200       1350       1526       1589       1650       1800       1950         mpty       empty       empty       X       Impty       1800       1950         2250       2400       2550       2700       2850       3000         3300       3450       3600       3750       3900       4050         4350       4500       4650       4800       4950       5100         5400       5550       5700       5850       6000

(1) CALYPSO - CALYPSO GRAVI/FLUX - BOX CORER 1/4m ou carré géant

(2) Cylindrique 100 kg / Plat / Préleveur



3.3.4 <u>Photographie</u>



## 3.3.6 <u>MST</u>

#### MD04_2712

File MD04_2712a: section 1 to section 9 File MD04_2712b: section 12

<u>MST :</u>

	MST length	Metric Tape	T sediment	Remarks
	(cm)	(cm)		
section 1	102	0 - 100	21	Soft sediment. Polystyren (0 - 2 cm)
section 2	92.4	100 - 192	21.3	
section 3	107.3	192 - 300	21.5	
section 4	150.4	300 - 450	22	Problem with Pwave contact (373 - 395 cm)
section 5	149.9	450 - 600	20.5	
section 6	149.9	600 - 750	20.2	
section 7	149.7	750 - 900	19.8	
section 8	150.9	900 - 1050	18.6	
section 9	150.8	1050 - 1200	18.6	Empty (1064 -1200 cm)
section 10	150	1200 - 1350		Empty
section 11	150	1350 - 1500		Empty
section 12	89	1500 - 1589	20.2	Sediment only (1526 - 1552 cm)

CAMERA :Calibration:aperture = 16Data:aperture = 11





### 3.4.1 Navigation



3.4.2 <u>3.5 kHz</u>



INSTITUT PAUL EMILE VICTOR

#### MARION DUFRESNE

NOM DE	LA CAMPA	GNE		Date	:	11/1/04		Météo : (force) / Vent : 5nds	Direction	
MD 1	36 VI	GO		N° de	N° de station : VIGO 4			Variation tension (maxi) : 1,2t		
CAR	OTTE (N°)								POSITION :	
MD	04-27	3			1	bag		Latitude :	12°28.96 S	
(MD - anné	ie - milles - centa	ines)						Longitude :	044°54.03 E	
CAROTTIER (type)	ω <u>.</u>	CALYPS	o II		REG	ILAGES :		Tupe (2) :	CONTREPOIDS :	
				<u>Tubes</u> (I	ongueur) :	29.50	m	Longueur PVC :	STEINBER 100 KG	m
Poids total (air) :		6.8	t	<u>Câbles</u> : Chute <b>l</b> it	: pre :	1.50	m	Pénétration :		m
Poids total (eau) :	surf	6.3	t	Boucle :		1.60	m	Longueur de care	otte :	m
	bottom		τ	LC poids	3:	34.20	<b>m</b> (3m50 lest)	+ Ogive (+ 0,15	m)	
PARAME	TRES MESUR	ES :			HEUR	ES (GMT)			INSTRUMENTATION	
				En statio	on :	12z55	GMT	OF	PERATIONS ANNEXES	
Sonde corrigée :		1,244	m	Début m	anœuvre :	12z55	GMT	CTD (hydro) :	no	
<u>ligne filée</u> :		1,275	m	Déclen	chement :	13z35	GMT	CTD (bouteilles)	: no	
Arrachement/total (tonne) :		7.50	t	Fin de m	ianœuvre :		GMT	Filet à plancton :	no	
Arrachement/differentiel (to)	nne) :	1.20	t	Durée d	e manœuvre :			Autres :	1	
Pénétration/apparente (///)		bended	m	Départ s	tation :	14z47	GMT			
Description / incidents :	cor		with diff	erent curves						
	1 ba	ag basaltio	rocks							
	150		300		450	600		750	900	1050
			-		1					
1050	1200		1350		1500	1650		1800	1950	2100
2100	2250		2400		2550	2700		2850	3000	3150
3150	3300		3450		3600	3750		3900	4050	4200
1200	4250		4500		4650	4900		4050	5100	5250
1200	4555		4000		4000	4000		4000	0,000	5250
5250	5400		5550		5700	5850	1	6000		
					1	1		]		

(1) CALYPSO - CALYPSO GRAVI/FLUX - BOX CORER 1/4m ou carré géant

(2) Cylindrique 100 kg / Plat / Préleveur

Station 5 : tube tordu, ogive perdue, pas de sédiment

## 3.5.1 <u>CTD</u>



### 3.5.2 <u>Multinet</u>



3.6 <u>STATION 7</u> 3.6.1 <u>CTD</u>

> Ea1709D1.dat: 0.00 voltage, number 3 [V] 3.00 0.00 30.00 temperature 0 Φ н Þ Ø Ø ወ н д 200 34.00 36.00 salinity

STATION 7







station 7 (shallow)_upcast



### 3.7.1 <u>3.5 kHz</u>



3.7.2 <u>Sédimentologie</u>



3.7.3 <u>CTD</u>





## 3.7.4 <u>Multinet</u>





## 3.8.1 <u>CTD</u>





### 3.8.2 <u>Multinet</u>





#### 3.9 STATION 10 : CAROTTE GRAVITE

40°07.73'S 45°28.9'E carottier gravité vide et tordu

## 3.10 STATION 11 : CAROTTE CALYPSO MD04-2714C

### 3.10.1 Navigation



## 3.10.2 Fiche de carottage

NOM DE LA CAMPAGNE MD 136 VIGO			Date : N° de station :	21/1/04 VIGO 11	Météo: (force) / Direction 68° Vent: 20 nds Mer: Variation tension (maxi): 7 t		
CAROTTE (N MD 04-27 (MD - année - milles - c	°): 14 C antaines)		10,	.69 m	POSITION :           Latitude :         43°23.86 S           Longitude :         049°49.24 E		
CAROTTIER (type) ⁽¹⁾ : Poids total (air) : Poids total (eau) : surf bottom	CASQ 7.3 6.7	t t	REG Tubes (longueur) : Descente : au fond	LAGES : 12.00 m 1.20 m/s 1m/s	CONTREPOIDS : Type (2) : Longueur PVC : Pénétration : Longueur de carotte : + Ogive (+ 0,15 m)	m m m	
PARAMETRES MES Sonde corrigée : Ligne filée : touché, 2289, Arrachement/total (tonne) : Arrachement/différentiel (tonne) : Pénétration/apparente (m) : Pénétration/tensiomètre (m) :	SURES : 2,306 totale 2303 13.2 6.2 7t remontée	m m t t m m	HEUR En station : panne Début manœuvre : Touché Fin de manœuvre : Durée de manœuvre : Départ station :	ES (GMT) 22246 GMT de propulsuer 23247 GMT 00228 GMT 2205 GMT 2h18 5z37 GMT	INSTRUMENTATION OPERATIONS ANNEXE CTD (hydro): no CTD (bouteilles): no Filet à plancton : no Autres : CALYPSO	ĒS	
Description / incidents :	Série A Série B	et C : 8 tronçons et D: 7 tronçons	1 sac ogive 2 séries U-chanr	nel			

3.10.3 <u>Photographie</u>



3.10.4 <u>Sédimentologie</u>



Sable gris biosiliceux à foraminifères (ogive).

## 3.10.5 <u>MST</u>

#### MD04_2714C

File MD04_2714C: section 1 to section 7

<u>MST :</u>

	MST length	Metric Tape	T sediment	Remarks
	(cm)	(cm)		
section 1	149.9	0 - 150	10.5	Very soft sediment at the beginning.
section 2	150.4	150 - 300	10.1	
section 3	150.3	300 - 450	10.1	
section 4	150.2	450 - 600	12.2	
section 5	150	600 - 750	10.8	Lack of sediment at the end
section 6	151.1	750 - 900	11.2	Lack of sediment (768 - 792 cm)
section 7	150.5	900 - 1050	11	Irregularities of filling
section 8	19	1050 - 1069		

No magnetic susceptibility data because of an electronic problem.

#### CAMERA :

Calibration:	aperture $= 16$
Data:	aperture $= 11$





#### 3.11 STATION 11 : CAROTTE CALYPSO MD04-2715

#### 3.11.1 Navigation



3.11.2 <u>3.5 kHz</u>



### 3.11.3 Fiche de carottage

INSTITUT PAUL EMILE VICTOR

#### MARION DUFRESNE

# NOM DE LA CAMPAGNE

CAROTTE (N°) : MD 04-2715 (MD - année - milles - centaines)

CAROTTIER (type	CALYPSO II			
Poids total (air) :		7.2	t	
Poids total (eau) :	surf bottom	6.5	t t	

PARAMETRES MESURES :						
Sonde corrigée :	2,307	m				
Ligne filée :	2,250	m				
Arrachement/total (tonne) :	9,4t	t				
Arrachement/différentiel (tonne) :	~3t	t				
Pénétration/apparente (m) :		m				
Pénétration/tensiomètre (m) :	totale	m				

Date : 21/1/04 N° de station : VIGO 11 bis



REG	REGLAGES :							
Tubes (longueur) :	42.80	m						
<u>Câbles</u> : Chute libre :	1.50	m						
Boucle :	1.60	m						
LC poids :	47.50	<b>m</b> (3m50 lest)						

HEURES (GMT)							
En station :	2z33 (CASQ)	GMT					
Début manœuvre :	3z19	GMT					
<u>Déclenchement :</u>	4z07	GMT					
Fin de manœuvre :	5z30	GMT					
Durée de manœuvre :	2h11						
Départ station :	5z37	GMT					

Météo : (force) / Direction		
Vent: 15nds		
Mer :		
Variation tension (maxi) :		
6,5t		

	POSITION :	
_atitude :	43°23.87 S	
_ongitude :	049°49.34 E	

Туре (2) :	CONTREPOIDS : CYLINDER 100 KG	
Longueur PVC :		m
Pénétration :		m
Longueur de carol + Ogive (+ 0,15 m	ite : n)	m

INSTRUMENTATION OPERATIONS ANNEXES				
CTD (hydro) :	no			
CTD (bouteilles) : no				
Filet à plancton :	no			
Autres :	CASQ			

Description / incidents :

0	150	300	450	600	750	900 1	050
1	II	III	IV	v	VI	VII	
1050	1200	1350	1500	1650	1800	1950 2	2100
VIII	IX	x	XI	XII	XIII	XIV	
2100	2250	2400	2550	2700	2850	3000 3	1150
xv	XVI	XVII	XVIII	XIX	XX	XXI	
3150	3300	3450	3600 3680	3750	3900	4050 4	200
XXII	XXIII	XXIV	XXV				
4200	4350	4500	4650	4800	4950	5100 5	5250
5250	5400	5550	5700	5850	6000		

(1) CALYPSO - CALYPSO GRAVI/FLUX - BOX CORER 1/4m ou carré géant

(2) Cylindrique 100 kg / Plat / Préleveur

3.11.4 Photographie









#### Faciès identique à celui de la première partie.

MD 042715 : Smear slides				
SEC- TION	Top and Base Section (cm)		Levelin Core (cmbsf)	
XIII	1800-1950	80	1877	
XIV	1950	30	1977	
	2100	110	2057	
xv	2100	60	2157	
	2250	120	2217	
XVI	2250	50	2297	
	2400	105	2352	
xvii	2400	50	2447	
	2550	100	2497	
XVIII	2550	50	2597	
	2700	102	2649	
ХІХ	2700	50	2747	
	2850	100	2797	
хх	2850	3	2850	
	3000	100	2947	
XXI	3000-3150	100	3097	
xxII	3150	20	3167	
	3300	100	3247	
XXIII	3300	50	3347	
	3450	100	3397	
XXIV	3450-3600	80	3527	
XXV 3600-3682		80	3677	

## 3.11.6 <u>MST</u>

#### MD04_2715

File MD04_2715a: section 1 to section 7 File MD04_2715b: section 8 to section 14 File MD04_2715c: section 15 to section 25

MST :

<u></u>				
	MST length	Metric Tape	T sediment	Remarks
	(cm)	(cm)		
section 1	148.1	3 - 150	12.1	Metric Tape begins at 3 cm!
section 2	149.8	150 - 300	12.3	Stone on the surface (174 cm)
section 3	150.3	300 - 450	11.5	
section 4	150.3	450 - 600	12.8	Section not entirely filled
section 5	150.3	600 - 750	12.7	Section not entirely filled
section 6	150.7	750 - 900	12.5	
section 7	150.4	900 - 1050	12.4	
section 8	150.3	1050 - 1200	11.8	
section 9	150.3	1200 - 1350	12.3	
section 10	151.3	1350 - 1500	12.2	Big nodule on the sediment (1438 - 1443 cm)
section 11	151.8	1500 - 1650	10.2	
section 12	150.3	1650 - 1800	10.4	
section 13	151.1	1800 - 1950	10.5	
section 14	150.3	1950 - 2100	10.8	
section 15	150.9	2100 - 2250	10.5	
section 16	150.1	2250 - 2400	9.3	Hole on the metric tape side
section 17	149.1	2400 - 2550	9.4	Hole (polystyren) on the metric tape side
section 18	150.9	2550 - 2700	6.4	Hole (polystyren) on the metric tape side (2550 - 2640 cm)
section 19	149.7	2700 - 2850	8.4	Hole on the opposite side (2700 - 2730 cm)
section 20	150.5	2850 - 3000	8.5	Archive. Hole (polystyren) on the metric tape side (2880 - 2980 cm)
section 21	149.2	3000 - 3150	9.5	
section 22	149.8	3150 - 3300	8.1	
section 23	150.2	3300 - 3450	7.5	
section 24	150.0	3450 - 3600	8.1	
section 25	82.6	3600 - 3682	8.4	

#### CAMERA :

Calibration:aperture = 16Data:aperture = 11Archive section for section 1 to 13 and section 20.Section 1 to 3, 5 and 10 not well filled.




### 3.12 STATION 12 : BOX CORE MD04-AT02

### 3.12.1 <u>3.5 kHz</u>



3.12.2 <u>Sédimentologie</u>



# 3.12.3 <u>CTD</u>





3.12.4 <u>Multinet</u>



### 3.13 STATION 13 : CAROTTE CALYPSO MD04-2716C

### 3.13.1 <u>3.5 kHz</u>



### 3.13.2 Fiche de carottage



Description / incidents :

Série A et C : 8 troncons

Plusieurs sacs et étuis pour l'ogive (5cm cendres sommet)

Série B et D: 7 tronçons (C petite largeur pour MST)

2 séries U-channel

3.13.3 <u>Photographie</u>



3.13.4 <u>Sédimentologie</u>



# 3.13.5 <u>MST</u>

### MD04_2716C

File MD04_2716C: section 1 to section 8

MST :

	MST length	Metric Tape	T sediment	Remarks
	(cm)	(cm)		
section 1	150.1	0 - 150	15.1	First magnetic susceptibility data to remove
section 2	150	150 - 300	15.2	
section 3	150	300 - 449	14.3	
section 4	149.9	449 - 599	13.4	
section 5	149.9	599 - 749	12.6	
section 6	149.8	749 - 899	13.2	
section 7	150	899-1049	12.9	
section 8	43	1049 - 1092	14.2	

### CAMERA :

Calibration:aperture = 16Data:aperture = 11





### 3.14 STATION 14 : BPR PROGRAMME GRACE

### 3.15 STATION 15 : BOX CORE MD04-AT03

### 3.15.1 <u>3.5 kHz</u>

REJEU - REEL	24/01/20	04:26:40	z 47'41.3	9°S 057°5	8.47°E 03	8.7* 01.7 nd	4112 m rec 9	3157
PORT 5012	900- 905 010- 000		~~~~					
DECONNECTER	8 180- 000-	Mundage	whather his	MUMAYA	anhanh	e Makenda	man MALL	
		03:23:27 z 47*41.335 057*57.48E	03:33:48 z 47°41.425 057°57.59E	03:44:09 z 47*41.375 057*57.60E	03:54:30 z 47*41.345 (057*57.68/E	04:04:51 z 47*41.295 057*58.15E	04:15:12 z 04:25:50 z 47*41.345 47*41.415 (057*58.62*57*58.46)	04100
	1			10000	피하게			-04150
2000 g 4100	10.000	わらの変更	5.351.03 (C)	CHARGE H	10 EV 11			-04200
ignal Min LUT L0 🗐 0 ignal Max LUT								-04250
5 g 70 Vidéo reverse								-04350
rs 🗃								-04400
HISTORIQUE								-04500
73'E	LUT 0/70							-04550
tap delay rib trames 0.32 484	24/	01/2004 à 02 38 36	2: 47'41.225 057'5	7.66%   cog 306.6'   1	log: 01.9 ndi   tec: 637	4   curreux =4145 m		-04600

3.15.2 <u>Sédimentologie</u>



### 3.15.3 <u>CTD</u>





# 3.15.4 <u>Multinet</u>



# 3.16 <u>STATION 17</u>

# 3.16.1 <u>CTD</u>



# 3.17 <u>STATION 18</u>

## 3.17.1 <u>CTD</u>





### 3.18.1 Navigation

### 3.18.2 <u>3.5 kHz</u>



### 3.18.3 Fiche de carottage

NOM DE LA CAMPAGNE MD 136 VIGO			Date : N° de station :	29/1/04 VIGO 19		Météo : (force) / Direction Vent : 15nds Mer : Variation tension (maxi) : 6,5t	
CAROTTE (N MD 04-27 (MD - année - milles - ce	°): 17G antaines)		4,3	2 m		POSITION :   Latitude : 48°57,62 S   Longitude : 065°55.53 E	
CAROTTIER (type) ⁽¹⁾ :	gravit	é	REGL Tubes (longueur) :	AGES : 16.40	m	CONTREPOIDS : Type (2) :	
Poids total (air) :	6.2	t	<u>Câbles</u> : Chute libre :		m	Longueur PVC : Pénétration :	m m
Poids total (eau) : surf bottom	5.6	t t	Boucle : LC poids :		<b>m</b> (3m50 lest)	Longueur de carotte : + Ogive (+ 0,15 m)	m
PARAMETRES MES	SURES :		HEURE	S (GMT)		INSTRUMENTATION OPERATIONS ANNEXES	
<u>Sonde corrigée</u> :	1,500	m	En station : Début manœuvre :	17z21 17z21	GMT GMT	CTD (hydro) : no	
Ligne filée : touché1498 Arrachement/total (tonne) :	totale 1512 10.20	m t	<u>Touché</u>	17z56	GMT	CTD (bouteilles) : no Filet à plancton : no	
Arrachement/différentiel (tonne) :	4.60	t m	Durée de manœuvre :	1h34		Autres : CALYPSO	
Pénétration/tensiomètre (m) :	totale	m	Départ station :	19z06	GMT		
Description / incidents :	II Archive, 5ci sac ogive	n base pert	ubée: tombée.				

3.18.4 <u>Photographie</u>



### 3.18.5 <u>Sédimentologie</u>



## 3.18.6 <u>MST</u>

### MD04_2717G

File MD04_2717G: section 1 to section 3

<u>MST :</u>

	MST length	Metric Tape	T sediment	Remarks
	(cm)	(cm)		
section 1	149.8	0 - 150	9.9	Problem with temperature probe
section 2	150.4	150 - 300	??	Problem with temperature probe
section 3	131.5	300 - 431	??	Problem with temperature probe

No PWave velocity data available.

<u>CAMERA :</u> Calibration: aperture = 16 Data: aperture = 11





### 3.19.1 Navigation



3.19.2 3.5 kHz



# 3.19.3 Fiche de carottage

INSTITUT PAUL EMILE VICTOR

### MARION DUFRESNE

NOM DE LA CAMPAGNE MD 136 VIGO			Date : N° de station :	29/1/04 VIGO 19 I	pis	Météo : ( <u>force) / D</u> irection Vent : Mer : Variation tension (maxi) :	
CAROTTE (N ⁴ MD 04-2 (MD - année - milles - ce	"): 718 ^{ntaines)}		50,	54 m		POSITION :   Latitude : 48°53,30 S   Longitude : 065°57,42 E	
CAROTTIER (type) ⁽¹⁾ :	CALYP	so II	REGL	AGES :		CONTREPOIDS : Type (2) : CYLINDER 100Kg	
Poids total (air) :	7.7	t	Câbles : Chute libre :	1.50	m	Longueur PVC : Pénétration :	m m
Poids total (eau) : surf bottom	7.0 7.2	t t	Boucle : LC poids :	1.60 64.86	m (3m50 lest)	Longueur de carotte : + Ogive (+ 0,15 m)	m
PARAMETRES MES	URES :		HEURE	S (GMT)		INSTRUMENTATION OPERATIONS ANNEXES	
onde corrigée :	1,428	m	En station :	19z59	GMT	CTD (hydro) : no	
gne filée :	1,365	m	Début manœuvre :	20z55	GMT	CTD (bouteilles) : no	
rachement/total (tonne) :	10.50	t	Déclenchement :	21z47	GMT	Filet à plancton : no	
rachement/différentiel (tonne) :	3.50	t	Fin de manœuvre :	23z26	GMT	Autres : GRAVITE	
énétration/apparente (m) :		m	Durée de manœuvre :	2h31			
	totale	m	Départ station :	23z39	GMT		

0		150	300	450	600	750	900	1050
	I.		III	IV	v	VI	VII	
1050		1200	1350	1500	1650	1800	1950	2100
	VIII	IX	x	XI	XII	×III	XIV	
2100		2250	2400	2550	2700	2850	3000	3150
	XV	XVI	XVII	XVIII	XIX	XX	XXI	
			1			1		
3150		3300	3450	3600	3750	3900	4050	4200
	XXII	XXIII	XXIV	XXV	XXVI	XXVII	XXVIII	
4200		4350	4500	4650	4800	4950 5054	5100	5250
	XXIX	XXX	XXXI	XXXII	XXXIII	XXXIV		
			·			· · ·		
5250		5400	5550	5700	5850	6000		

(1) CALYPSO - CALYPSO GRAVI/FLUX - BOX CORER 1/4m ou carré géant

(2) Cylindrique 100 kg / Plat / Préleveur

3.19.4 Photographie







# 3.19.5 <u>Sédimentologie</u>

		MD 04 2718 ( 1ère partie)							)	
			STATION: 19 bi Latitude : 48°. 5 Longitude : 65°. Core length : 50 Water depth : 14	s 3 30 S 57 42 E .54 m 428 m	: Flar	nc Ouest o	du Platea	au de Ke	ergueler	n.
Per	iod	Length cm	Graphic lithology							
			_ _ _ _ 	] 10YR8/2+D		м	042718 : :	Smear slide	s	
				- 100 5Y4/1		SEC-TION	Top and Base Section (cm)	Level in Section (cm)	Levelin Core (cmbsf)	
				265 <b>\</b> Тас	heté +	1	0	40 140	40 140	
				5Y6/1+D ) so	mbre	2	150	75	225	
				5Y6/1 368 410 N7		2	300	50	350	
		1 ³		5Y2/1+L		3	450	140	440	
		500-11	、 ¹ · · · · · · · · · · · · · · · · · · ·	<u> </u>		4	450-600	90	540	
		11F	៶ ¹ /2, ¹ /	5Y5/2		5	600	13	613	
		山枝		_ 585		_	750	80 50	680 800	
				5Y6/1		6	750	110	860	
		#		015			900	10	910	
		700	، ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۱۰۰۰ ۲۰۰۰ ۲۰۰۰	-		_	500	40	940	
		- 0,	、	5Y6/1+D		1		100	1000	
		<b>1</b> ⊻					1050	125	1025	
ш		800 1		845 .		8	1050	70	1120	
Z		<u>∔₹</u>		5Y5/25Y6/1 Lita	ges	-	1200	145	1195	
Ü		900		10YR5/4		9	1200	90 105	1295	
12			<u>`````````````````````````````````````</u>	- 920 576/4 6/1			1350	30	1380	
S		<u></u>		- 965		10	1500	130	1480	
1				- 1015			1500	80	1580	
		मिं ।		- 1040		11	1650	130	1630	
				5Y5/2						
		1		1140	BOI			SES CA		TEES
		<u>_</u> +	- VAVAVAVA	5Y5/2	500	montran	t des alf	ernanc	es.	LU
			+ + <u>*</u> 4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	] 🖌		mondu	it des un	ernano		
				N9	- Clá	aires (5Y8	3/1, 5Y6/	1): fora	minifèr	es,
				1300 N7 Litages	silic	e biogèn	e. Présen	, ce de dét	ritique fin	
				5Y5/2 1360	Nanr	ofossiles p	eu abonda	nts.		
				-1400 5Y6/1 5Y5/2	- For	ncées (5) aminifère	(4/1) à te s et détr	exture s itique. I	ableus Rares na	e: nno-
				1460 5Y5/1 1475 5Y5/2 1495 5Y4/1 5Y6/1	fossil fréqu abon	es. Glauco ents. (sable dants. Prés	nie et com es glauconi ence de p	posés am ieux). Rac vrite.	orphes liolaires	
			T + 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	- 1570 1595 5Y4/1 - 1595 5Y6/1 - 1644	- Gr fréqu	ises (N5 lentes vers	N6 N7) à la base da	<b>blanch</b> la série.	es (N8)	plus
				J 5Y4/1	- Nive	eaux plus ra	ares riches	en nanno	oflore.	

# MD 04 2718 (2ème partie)

indurés





м	MD 042718 : Smear slides						
SEC-TION	Top and Base Section (cm)	Level in Section (cm)	Levelin Core (cmbsf)				
40	1650	85 105	1735				
12	1000	105	1755				
	1800	73	1873				
13	1950	135	1935				
	1950	55	2005				
14		110	2060				
	2100	130	2080				
15	2100	40	2140				
15	2250	120	2220				
16	2250	70	2320				
10	2400	140	2390				
17	2400	85	2485				
	2550	140	2540				
10	2550	30	2580				
18	0700	100	2650				
	2700	20	2090				
19	2/00	70	2730				
	2850	40	2890				
20	3000	120	2970				
~	3000	85	3085				
21	3150	140	3140				
22	3150	15	3165				
22	3300	100	3250				
23	3300-3450	60	3360				



MD 042718 : Smear slides						
SEC-TION	Top and Base Section (cm)	Level in Section (cm)	Levelin Core (cmbsf)			
24	3450	70	3510			
24	3600	108	3558			
25	3600-3750	105	3705			
26	3750-3900	50	3800			
27	3900-4050	100	4000			
28	4050-4200	130	4180			
~~~~	4200	45	4245			
29	4350	90	4290			
	4350	40	4390			
30		90	4440			
	4500	120	4470			
21	4500	60	4560			
31	4650	110	4610			
32	4650-4800	90	4740			
	4800	40	4840			
33		60	4860			
	4950	90	4890			
24	4950	50	5000			
- 34	5054	75	5025			

MD 04 2718 (3ème partie)

3.19.6 <u>MST</u>

MD04_2718

File MD04_2718: section 1 to section 2 File MD04_2718: section 3 to section 17 File MD04_2718: section 18 to section 34

<u>MST :</u>

	MST length	Metric Tape	T sediment	Remarks
	(cm)	(cm)		
section 1	149.9	0 - 150	10	Polysytyren (0 - 8cm)
section 2	150.1	150 - 300	9.8	
section 3	148.4	300 - 450	9.6	
section 4a	46.1	450 - 495	9.8	
section 4b	104.9	495 - 600	9.8	
section 5	150.4	600 - 750	10.2	
section 6	149.8	750 - 900	9.8	
section 7	150.1	900 - 1050	11.3	
section 8	149.9	1050 - 1200	10.5	
section 9	150.1	1200 - 1350	9.5	
section 10	150.7	1350 - 1500	8.8	
section 11	150.3	1500 - 1650	8.5	
section 12	150.5	1650 - 1800	7.8	
section 13	151.8	1800 - 1950	7.6	
section 14	150.2	1950 - 2100	9.1	
section 15	150.3	2100 - 2250	9.5	
section 16	150.2	2250 - 2400	8.5	
section 17	150	2400 - 2550	7.8	
section 18	150.3	2550 - 2700	6	
section 19	150.1	2700 - 2850	6	
section 20	149.9	2850 - 3000	6	
section 21	149.7	3000 - 3150	6	
section 22	148.1	3150 - 3300	6.3	
section 23	150.1	3300 - 3450	5.6	
section 24	149.9	3450 - 3600	5.9	
section 25	150.3	3600 - 3750	6.5	
section 26	??	3750 - 3900	5.7	
section 27	149.9	3900 - 4050	5.8	
section 28	150.3	4050 - 4200	7.3	
section 29	151.1	4200 - 4350	7.6	
section 30	150.2	4350 - 4500	8.2	
section 31	151.5	4500 - 4650	7.3	
section 32	150.8	4650 - 4800	??	
section 33	149.6	4800 - 4950	9	
section 34	105	4950 - 5054	9.7	

Unexplained dritf with density around 35 meters. electronical problem ?

CAMERA :

Calibration: aperture = Data: aperture = 11 for section 1 to Data: aperture = 16 for section 17 to Section 8 and 9 with aperture 11 and 16.

E72°11' 10.95' 10,75' E72°10.8' 10,85' 10,9' 11.05' Echelle : 1/2100 o S49 Ellipsoide : WGS-84 Projection : MERCATOR . . Por : coroïbe Le 02/02/2004 a 20:46:51 136_VIGO Station 20 Carotte MD04_2719g Carottier gravite 609:00:00 Logiciel CARAIBES (c) IFREMER 44.45 44.45 00:00 44.5' 44.5 MD042719 44.55 44.55 31/01/04 S49° 44.6' S49° 44.6' E72°10.8' 10.85' 10.9 10.95' E72°11' 11.05' 1 10.75

3.20.1 Navigation

3.20.2 <u>3.5 kHz</u>

3.20.3 Fiche de carottage

3.20.4 Photographie

3.20.5 Sédimentologie

3.20.6 <u>MST</u>

MD04 2719G

File MD04_2719G: section 1 to section 3

MST :

	MST length	Metric Tape	T sediment	Remarks
	(cm)	(cm)		
section 1	149.4	0 - 150	6.1	
section 2	150.5	150 - 300	7	
section 3	131.8	300 - 429	6.5	

75

430

375

CAMERA :

Calibration:	aperture = 16
Data:	aperture $= 11$

3.21 STATION 21 : CAROTTE CASQ MD04-2720 C

3.21.1 Navigation

3.21.2 <u>3.5 kHz</u>

BEAM 3	X0						and the surface of		
	180-144444	hunderin	mailti	Williamannia	whether the	New Mill	www.han	power haven	
		17:51 49*1 071*1	1:03 z 7.61% 22.12%	17:55:24 z 49* 7.61'5 071*22.12E	17:59:45 z 49* 7.60'5 071*22.11'E	18:04:05 z 49* 7.58'5 071*22.09'E	18:08:27 z 49° 7.575 071°22.04'E	18:12:48 z 49* 7.55'5 071*22.02'E	
	1			and I		intrad	T.L.	1	-00660
-1000 PROF MIN 2000 9 660									-00700
nal Min LUT							-		-00720
nal Mar LUT									-00740
									-00790
Sbp/VsEa31174									-00800
									-00820
16'E 10'2	2								
3.21.3 Fiche de carottage

NOM DE LA CAMPAGNE

Date : 31/1/04 N° de station : VIGO 21

5m

REGLAGES : 12.00

> 1.20 1m/s

m

m/s

CAROTTE (N°) : MD 04-2720 C (MD - année - milles - centaines)

CAROTTIER (type) ⁽¹⁾ :	CAS	Q	
Poids total (air) :		7.3	t	
Poids total (eau) :	surf bottom	6.7	t t	

PARAMETRES MESURES :		
Sonde corrigée :	744	m
Ligne filée :	732	m
Arrachement/total (tonne) :	11.2	t
Arrachement/différentiel (tonne) :	4.5	t
Pénétration/apparente (m) :		m
Pénétration/tensiomètre (m) :	6.8t remontée	m

Description / incidents :

Série A et E : 7 tronçons

Série B, C et D: 8 tronçons (C petite largeur pour MST) HEURES (GMT)

<u>Tubes</u> (longueur) :

Descente : au fond

Г

panne de	propulsuer	
En station :	17z40	GMT
Début manœuvre :	17z42	GMT
<u>Touché</u>	18z02	GMT
Fin de manœuvre :	18z56	GMT
Durée de manœuvre :	1h14	
Départ station :	19z09	GMT

Plusieurs sacs et étuis pour l'ogive

2 séries U-channel

Météo : (force) / Direction
Mer:
Variation tension (maxi) :
5.9t

	POSITION :
Latitude :	49°07.60 S
Longitude :	071°22.09 E

CONTREPOIDS :	
Туре (2) :	
Longueur PVC :	m
Pénétration :	m
Longueur de carotte : + Ogive (+ 0,15 m)	m

INSTRUMENTATION OPERATIONS ANNEXES		
CTD (hydro) :	no	
CTD (bouteilles):	: no	
Filet à plancton :	no	
Autres :	no	

3.21.4 <u>Sédimentologie</u>

3.21.5 <u>MST</u>

MD04_2720C

File MD04_2720C: section 1 to section 5

MST:

	MST length	Metric Tape	T sediment	Remarks
	(cm)	(cm)		
section 1	152	0 - 48	19.8	Section 1 and 2 measured together
section 2		48 - 148		
section 3	149.9	148 - 299	19	
section 4	150	299 - 449	19.5	
section 5	??	449 - 491	17.8	

CAMERA :

Calibration:	aperture = 16
Data:	aperture $= 11$

3.22 STATION 22 : CAROTTE CALYPSO MD04-2721

3.22.1 <u>3.5 kHz</u>

3.22.2 Fiche de carottage

INSTITUT PAUL EMILE VICTOR

MARION DUFRESNE

NOM DE LA CAMPAGNE

CAROTTE (N°) : MD 04-2721 (MD - année - milles - centaines)

CAROTTIER (type	:) ⁽¹⁾ :	CALYP	so II	
Poids total (air) :		7.2	t	
Poids total (eau) :	surf bottom	6.5 6.7	t t	

PARAMETRES MESURES :		
Sonde corrigée :	840	m
Ligne filée :	798	m
Arrachement/total (tonne)	10.90	t
Arrachement/différentiel (tonne) :	4.20	t
Pénétration/apparente (m) :		m
Pénétration/tensiomètre (m) :	totale	m

Date :	1/2/04
N° de station :	VIGO 22

41,47 m

REGLAGES :		
<u>Tubes</u> (longueur) :	42.80	m
Câbles : Chute libre :	1.50	m
Boucle :	1.60	m
LC poids :	47.50	m (3m50 les

HEURES (GMT)			
En station :	20z37	GMT	
Début manœuvre :	20z40	GMT	
Déclenchement :	21z12	GMT	
Fin de manœuvre :	22z00	GMT	
Durée de manœuvre :	1h20		
Départ station :	22z07	GMT	

Météo : (force) / Direction Vent : <10nds Mer : calme Variation tension (maxi) : 2t

	POSITION :	
Latitude :	48°57,16 S	
Longitude :	071°08,41 E	

	Туре (2) :	CONTREPOIDS : CYLINDER 100Kg	
	Longueur PVC :		m
Pénétration :			m
Longueur de carotte : + Ogive (+ 0,15 m)			m

INSTRUMENTATION OPERATIONS ANNEXES				
CTD (hydro) :	no			
CTD (bouteilles) : no				
Filet à plancton :	no			
Autres :	proche CASQ MD 04-2720C			

Description / incidents :

I 1/2 section vide, pas d'archive, Il 1/2 tronçcons + sacs de 4cm à la base, de 268 à 300cm (15-20cm liquides perdus) sac et 1/2 cylindre ogive.

0	150	300	450	600	750	900	1050
I	II	III	IV	v	VI	VII	
				L.		L	
1050	1200	1350	1500	1650	1800	1950	2100
VIII	IX	x	XI	XII	XIII	XIV	
2100	2250	2400	2550	2700	2850	3000	3150
xv	XVI	XVII	XVIII	XIX	XX	XXI	
				k			
3150	3300	3450	3600	3750	3900	4050 4147	4200
XXII	XXIII	XXIV	XXV	XXVI	XXVII	XXVIII	
4200	4350	4500	4650	4800	4950	5100	5250
5250	5400	5550	5700	5850	6000		

3.22.3 Photographie

3.22.5 <u>MST</u>

MD04_2721

File MD04_2721: section 2 to section 5 File MD04_2721: section 6 to section 11 File MD04_2721: section 12 to section 28

MST :

<u></u>				
	MST length	Metric Tape	T sediment	Remarks
	(cm)	(cm)		
section 1		0 - 150		
section 2	150.9	150 - 300	7.3	
section 3	150.2	300 - 450	8.3	
section 4	150.2	450 - 600	8.4	
section 5	150.4	600 - 750	8.3	
section 6	149.6	750 - 900	7.6	
section 7	150.3	900 - 1050	7	
section 8	150.1	1050 - 1200	7.6	
section 9	150.2	1200 - 1350	7.3	
section 10	151.6	1350 - 1500	6.6	
section 11	151.7	1500 - 1650	7	
				2 days later because of problems with the core logger
section 12	149.9	1650 - 1800	20.8	
section 13	150.1	1800 - 1950	21	
section 14	150.4	1950 - 2100	19.9	
section 15	150.4	2100 - 2250	18.9	
section 16	150.4	2250 - 2400	19	
section 17	150.4	2400 - 2550	19.6	
section 18	150.8	2550 - 2700	18.5	
section 19	150.6	2700 - 2850	18.5	
section 20	150	2850 - 3000	18.9	
section 21	150.3	3000 - 3150	18.5	
section 22	150.5	3150 - 3300	19.3	
section 23	150.3	3300 - 3450	19.2	
section 24	150.2	3450 - 3600	18.3	
section 25	150.2	3600 - 3750	18.3	
section 26	149.8	3750 - 3900	18.2	
section 27	150.4	3900 - 4050	18.7	
section 28	97.5	4050 - 4147	18.5	

CAMERA :

Calibration:	aperture = 16
Data:	aperture $= 11$

3.23 STATION 23 : BOX CORE MD04-AT04

3.23.1 <u>3.5 kHz</u>

3.23.2 <u>Sédimentologie</u>

Period

?

60

détritique.

3.23.3 <u>CTD</u>

3.23.4 <u>Multinet</u>

3.24 STATION 24 : BOXE CORE MD04-AT05

3.24.1 <u>3.5 kHz</u>

3.24.3 <u>Multinet</u>

3.25.1 <u>CTD</u>

3.26.1 <u>CTD</u>

3.27.1 <u>CTD</u>

3.27.2 Multinet

3.28 STATION 28

3.28.1 <u>CTD</u>

3.28.2 <u>Multinet</u>

Dépôt légal 4^{ème} trimestre 2017 ISSN : 1246-7375 ISBN°: 2-910-180-81-6