Geophysical Journal International

Geophys. J. Int. (2018) 213, 2060-2070
Advance Access publication 2018 March 16
GJI Seismology

doi: 10.1093/gji/ggy104

Self-similar slip distributions on irregular shaped faults

A. Herrero and S. Murphy”

Istituto Nazionale di Geofisica e Vulcanologia, 00143 Rome, Italia. E-mail: andre.herrero@ingv.it
Accepted 2018 March 15. Received 2018 March 5; in original form 2017 November 24

SUMMARY

We propose a strategy to place a self-similar slip distribution on a complex fault surface that
is represented by an unstructured mesh. This is possible by applying a strategy based on the
composite source model where a hierarchical set of asperities, each with its own slip function
which is dependent on the distance from the asperity centre. Central to this technique is the
efficient, accurate computation of distance between two points on the fault surface. This is
known as the geodetic distance problem. We propose a method to compute the distance across
complex non-planar surfaces based on a corollary of the Huygens’ principle. The difference
between this method compared to others sample-based algorithms which precede it is the use
of a curved front at a local level to calculate the distance. This technique produces a highly
accurate computation of the distance as the curvature of the front is linked to the distance
from the source. Our local scheme is based on a sequence of two trilaterations, producing a
robust algorithm which is highly precise. We test the strategy on a planar surface in order to
assess its ability to keep the self-similarity properties of a slip distribution. We also present a
synthetic self-similar slip distribution on a real slab topography for a M8.5 event. This method
for computing distance may be extended to the estimation of first arrival times in both complex
3D surfaces or 3D volumes.

Key words: Numerical approximations and analysis; Self-organization; Theoretical seismol-
ogy.

1 INTRODUCTION

Following Hanks (1979) seminal paper linking the spectral compo-
sition of the stress drop with a self-similar power law, the problem
of how to distribute heterogeneous slip on a fault in a kinematic
model was primarily resolved in the Fourier space. The self-affine
or self-similar behavior observed in the seismic source radiation has
an implication for the spatial distribution of the slip and/or rupture
velocity (e.g. Andrews 1980). These variations are easy to model in
the Fourier space using a small number of parameters which are then
transformed into the spatial domain using a fast Fourier transform
(e.g. Herrero & Bernard 1994). Many methods have been proposed
to create slip distributions with more or less similar general spectral
features but which account for different nuanced observations. For
example Mai & Beroza (2002) use a Von Karman correlation while
Lavalle & Archuleta (2003) and Song & Somerville (2010) use a
correlation based on one/two points statistics. Some methods are
partly resolved in the Fourier space which requires the fault plane
to be described using an equi-distance grid of points. All techniques
require the computation of the distance between two points on the
surface.

*Now at IFREMER, Plouzané, France.

An alternative approach to generating a self-similar/self-affine
distribution is the composite source model. This technique involves
the creation of a large number of asperities whose size — number
distribution follows a fractal property (e.g. Frankel 1991; Zeng
et al. 1994). The spatial distribution of the asperities is based on a
probability density function which is generally taken to be uniform
(Ruiz et al. 2011) but has also been described as a sum of gaussian
functions (Cultrera et al. 2010; Murphy et al. 2016; Akinci et al.
2017). The slip on the fault is obtained by summing the many
circular asperities with different radii for each position on the fault.
The slip S in each asperity is described by a dislocation function
that depends on the distance d to the centre of the asperity of radius
r (Ruiz et al. 2011). It follows a square root shape (Eshelby 1957):

S(d) = K/r2 — a2,

where the dimension scaling K between the wavelength and the slip
amplitude, i.e. the stress drop, is constant for all the asperities.

Ruiz et al. (2011) showed that an analytical bridge exists between
the original Fourier transform-based technique and the composite
source model approach. While the composite model also requires
a small number of parameters, crucially it does not depend upon
Fourier transforms. Key to the composite model technique is the
calculation of distance between points on the fault plane in the
spatial domain (Fig. 1a).
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Figure 1. Graphical description of the problem we want to solve. (a) A k>
slip distribution as a topography computed on a flat and even surface. (b) The
fault topography for Scotia’s slab (Hayes ez al. 2012) using an unstructured
mesh. We want to compute a slip distribution similar to (a) on a surface
similar to (b).

To date, both Fourier transform-based techniques and the com-
posite source model rely on the assumption of a planar fault with
a regular discretization. However, improvements in both slip inver-
sion techniques and data allows scientists to look at fault surfaces
in more details with respect to their size. Many recent earthquakes,
well recorded on dense arrays, independently of their magnitude,
seem to exhibit complex faulting geometries (e.g. 2016 Amatrice
earthquake, 2016 Kaikoura earthquake). In such cases, the use of
a planar fault becomes a limiting factor. This has lead to the cur-
rent trend of using multiple planar segments with variable dip and
strike (e.g. the Standard Rupture Format of Graves & Aagaard 2011)
to model this complexity. This may be a correct approach in true
segmented events but if the geometrical complexity of the fault
increases and/or its shape varies continuously (e.g. listric faults,
subduction zone environments) the number of segments increases,
potentially to the level of linear strips of cells. In such cases, all the
parameters of the single sources have to be defined nearly by hand
for each cell. Thus, applying a particular parameter distribution
on a complex fault, formed by thousands of independent segments
become challenging. For example, in the case of large subduction
faults, in the framework of tsunami hazard, LeVeque et al. (2016)
uses a Karhunen—Loe¢ve expansion on a subfault grid to generate
the complexity patterns of slip (see also Sepulveda et al. 2017). In
this case, the first step in their approach was the computation of a
distance matrix on the fault surface. An alternative approach was
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taken by Murphy et al. (2016), where a finely discretized planar grid
was projected onto a slightly non-planar surface. Other authors have
just assumed that the curvature of the fault plane is small enough to
be neglected (e.g. Li et al. 2016).

Irregular fault surfaces have been described in some studies (e.g.
Hayes et al. 2012). In these cases, the fault is not a rectangular
plane with a regular discretization but a 3D surface defined by a
two-manifold using an unstructured mesh (e.g. Fig. 1b). The surface
is thus represented by a polyhedron. In this paper, we represent this
polyhedron as a set of vertices which are connected by edges. Those
edges form the simplest possible face, a planar triangle. While the
combination of these numerous faces simplifies the description of a
complex fault geometry, it is challenging to define complex rupture
history across such a surface.

Thus, a synopsis of the aim of this paper is sketched in the Fig. 1.
Namely, we want to create a heterogeneous slip distribution, like
the one shown on Fig. 1(a) on a fault with a complex geometry, like
the one shown on Fig. 1(b). As the Fourier space solution cannot be
applied on a non-regular grid, we use the composite source model
which requires the accurate calculation of the distance from the
centre of asperities. Thus, all the complexity of the problem may
be reduced to the computation of a distance between two points on
a polyhedron. This is known as the geodesic distance problem in
computer geometry literature.

In the first part of this article, we present very rapidly the two main
approaches that are used to compute a distance on a two-manifold
and the reason why we have chosen to develop an alternative method.
We describe the new schemes we have developed to compute the
distance and compare our solution on a 2D plane to the analytical
solution. We then compute, using this technique, a slip distribution
on a unstructured planar mesh to test the method. Finally, we present
a self-similar slip distribution for a non-planar fault case, i.e. the
example of unstructured mesh presented on Fig. 1(b).

2 THE GEODESIC DISTANCE

The computation of distance along a path on a two-manifold in a
3D space has a rich literature in computer sciences. The goal of
this section is not to describe all the approaches which have been
proposed over time but to highlight pertinent examples. Bose et al.
(2011) provide an extensive overview of the different algorithms
that exist to solve this problem and may be a good starting point
to comprehend the problem. We are more interested here, as seis-
mologists, in highlighting the ties between some of the techniques
used to solve the geodesic distance estimation and the Huygens’
principle.

In a polyhedron, the curvature of the surface is concentrated on
the edges of the faces, as noted in Sharir & Schorr (1986). Thus,
the angle of the geodetic path with the edge is the same on both
its sides. As the geodesic path is defined by the shortest distance
between two points, it is possible to consider the distance as a
time in a constant unitary velocity medium. Therefore, common
seismological techniques used to compute first arrival times can also
be used in ascertaining the geodesic distance. For example, Mitchell
et al. (1987) proposed a method to find the geodesic path which may
be compared to a beam tracing technique; Kimmel & Sethian (1998)
applied a differential method of the eikonal equation using a fast
marching method (hereafter called FMM; Sethian 1996). This last
technique is also used in seismology to compute first arrival times in
complex media (Sethian & Popovici 1999; Rawlinson & Sambridge
2004). Podvin & Lecomte (1991) propose an algorithm to calculate
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Figure 2. Performance of the Dijkstra’s algorithm on a planar surface. The
perfect circles in (a) and (b) represent the loci of points at distance D from
the centre. The other curves are the same loci estimated with the Dijkstra’s
algorithm on two different meshes. (c) and (d) are the magnification of the
meshes, used, respectively, in (a) and (b), around the circle centre (grey dot).

the first arrival time in a model space with a regular discretization
based on the Huygens’ principle.

Bose et al. (2011) class the methods used to calculate the geodesic
distance in two different groups: the graph-based algorithms and
the sample-based algorithms. Algorithms in the first category are
usually very accurate while the algorithms in the second category are
faster and easier to implement. An exception to this characterisation
is Surazhsky et al. (2005), who proposed a graph-based algorithm
which has a run-time similar to the FMM. Generally in seismology,
the algorithms used belong to the second category. The exception
is Moser (1991), who proposed an algorithm based on a graph.

The father of all these algorithms is the graph algorithm proposed
by Dijkstra (1959). It is interesting to see the result of this partic-
ular algorithm because its structure and its behaviour have a lot in
common with all the techniques cited before. In essence, it is the
strict application of the Huygens’ principle on a discrete space.

The Fig. 2 illustrates some of the problems linked to the compu-
tation of the distance across surfaces that have been meshed. The
distance in this figure is computed on a planar surface allowing us
to calculate an analytical solution (i.e. the true distance) in order to
assess the accuracy of the techniques. The perfect circle in Figs 2(a)
and (b) represents the loci at a distance D from the centre of the
circle. By analogy with wave propagation, we will call the null dis-
tance the source, and the loci of the points which have the same
distance from a source, a distance front. The two other curves in
Figs 2(a) and (b) are estimates of the loci at the same distance D
computed using the Dijkstra’s algorithm on two different meshes.
This algorithm solves the shortest path problem on a graph using
only the edges of the available mesh. Thus, it is enough to assimilate
the mesh as a graph, computing the distances between the vertexes
only along the edges to apply this type of algorithm.

In Fig. 2(a), we have used a repetitive pattern for the mesh,
illustrated by the Fig. 2(c) which shows a magnification of the mesh
around the source (grey dot). The discretization, i.e. the average
edge length, is small enough such that its influence on the result is
limited. In Fig. 2(a), the distance estimation is always overestimated
and suffers from a strong anisotropy linked to the repetitive pattern
of the mesh. When the mesh pattern is less regular, as in Fig. 2(b)
where a random orientation has been imposed on mesh elements,
the anisotropy in the misfit is reduced but the overestimation, even
if smaller, remains.

These examples illustrates two problems that need to be resolved:
the overestimation of the distance and the anisotropic error. For the
overestimation of the distance, whatever the method we choose,
the error on the distance estimation is not centred around the true
solution but always has the same sign (i.e. is asymmetrical). This
is partly true if locally the distance front is in expansion (see the

(d)

(a) (c)

Figure 3. The role of the local scheme is the estimation of the distance at
point C knowing the distance at point A and B. Sample-based methods need
supplementary information, i.e. the variation of the distance along the edge
AB. Usually, the choice is a linear variation, assuming a plane wave crossing
the face (left cartoon). But any other variations, linked to the front curvature
may also be chosen (right cartoon).

sub-section on the interaction between curvatures in the discussion).
Therefore, it is not possible that an error on the distance is going to
be cancelled on the mesh by another error of the opposite sign. Every
error remains and is propagated along the mesh. It is important then
to have an accurate method that reduces this error to a minimum.
For instance, in case of heterogeneous slip distribution where we
want to add thousands of small asperities, a systematic error on the
distance may be translated directly to an error on the slip scaling
law.

In the case of anisotropy error, the effect is strong in the examples
shown in the Fig. 2 because we have used the unstructured mesh as
a graph. Thus, it is important to take into account that the shortest
path between two vertices may pass through the faces and not simply
along its edges.

Usually, most sample-based methods use two schemes operating
at different levels: a local level where the time and/or distance is
solved in a single face, and a global one, which propagates the
local scheme through the entire mesh. To pass the information not
only along the edges but through the faces, an assumption on the
behavior of the distance along an edge has to be made at the local
level.

At the scale of the face, all the methods using a triangular tessel-
lation have to solve the extrapolation of a value (generally distance
or time), at a vertex of the face knowing the values at the other
two vertexes of the same face (Fig. 3). In the case of Dijkstra’s
algorithm, i.e. following a strict discrete Huygens’ principle, the
estimate of the distance D to point C is

D¢ = min(Da + Dac, D + Dgc).

The convention used in the previous expression is that a one letter
subscript relates to the computed distance to that vertex (e.g. D¢ is
the distance from the origin to vertex C); in the case where there
are two letter in the subscript, this refers to the distance between
two vertices’s (e.g. Dac is the length of the edge between vertices
A and C).

As previously mentioned, this does not account for the shortest
distance passing through an edge. Therefore, we have to know or
make an educated guess of what is the variation of the distance
along the edge AB. The FMM accounts for this by propagating a
time in an heterogeneous medium using the eikonal equation. At
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the local level it imposes the variation of the time and/or distance to
be linear along AB assuming a plane wave is crossing the face. For
time propagation, this hypothesis allows the analytical computation
of the arrival time at point C in a robust way. If the velocity field is
very heterogeneous, a null curvature of the front at the local level
may be a good approximation.

However, this hypothesis does not hold for singularities in the
distance/time front. The front is singular near the source (i.e. close
to the centre of the circle) but also on the border of the mesh
where concave shapes may create diffraction points in the distance
front. While these singularities are local effects, we have seen with
the example in Fig. 2 that errors in the estimated distance are not
cancelled but tend to propagate. Therefore, a planar front hypothesis
close to the source may generate an anisotropic error in the estimated
distance which is propagated at a global level. This is a known
problem in all the methods using a planar front at a local level
(e.g. Podvin & Lecomte 1991; Kimmel & Sethian 1998). A number
of different fixes have been proposed to correct this problem (see
Novotni & Klein 2002; Fomel et al. 2009; Noble et al. 2014 on this
topic).

In our case, we are not interested in calculating the traveltime but
the distance. Estimating the distance is equivalent to estimating a
time in a homogeneous velocity field. In this case, the curvature of
the distance front represented in the right cartoon of the Fig. 3 may
be calculated analytically by a trilateration scheme as was suggested
by Novotni & Klein (2002) to correct the source problem linked to
the FMM approach.

3 THE DOUBLE TRILATERATION
SCHEME

Trilateration is the technique of localization a point knowing its
radial distance relative to a set of known positions. It is the basic
principle used in earthquake localization or the global positioning
system. Fig. 4 explains how the trilateration technique can be used
to estimate the distance at the vertex C, knowing the distance D
and Dg at vertices A and B, respectively. We know the absolute
positions of A, B and C. If we consider only the face ABC, which
represents one element of the mesh, it is possible to transform the
distances from points A and B as distances to a virtual origin P on a
2D plane (see Fig. 4). This point is in the plane defined by the face
ABC and is located at the intersection of two circles of diameter Dy
and Dg centred, respectively, on vertices A and B. An intersection
of two circles in a plane may have 0, 1 or 2 solutions. Physically,
in our problem, the zero case does not exist. The case where only
one solution exists means that P is on the edge AB. The common
case is when there are two solutions: one either side of the line AB.
Thus, it is easy to chose the correct location for P , i.e. the one on
the opposite side to line AB with respect to vertex C. Therefore, the
distance at point C is simply the direct distance between P and C
(i.e. Dy in Fig. 4).

While trilateration equations have an analytical expression in
an absolute reference system, for computational programming it is
simpler to express them in the local reference system relative to the
mesh element face. This is because we know the absolute position
of A, B and C and therefore the lengths of the face edges Dag, Dpc
and Dac. We prefer to use the trilateration equation a second time to
transform the coordinates into local relative reference system rather
than perform rotations and translations of the faces. For this reason,
we have called this scheme a ’double trilateration’ technique. A
step-by-step description of the technique is now provided.

Slip distributions on irregular shaped faults 2063

Figure 4. Schematic of the proposed method at the local level where the
distance is being computed to point C. The element face is defined by
solid black lines. The grey dashed lines denote the two applications of the
trilateration technique.

First, let us assume a 2D reference system defined by axes x and
y (see Fig. 4). We place the vertex A at the origin of the system (0,0)
and the vertex B on the x-axis at the position (Dag, 0). The position
(xc, yc) of the vertex C is then (e.g. Weisstein):

_ (D3~ D + Do)
2Dap

Ye=y D/Z\c —xé

These equations are simple and robust. They produce no numer-
ical exceptions bar in the case of an ill-formed mesh. To compute
the position (x,, yp) of the point P, it is enough to apply the same set
of equations again:

_ (D/ZxB - D123 + Dzzx)
- 2Dg

yo=/Di —xp

As stated previously, the generic equation of a two circle inter-
section has two solutions. In our particular local reference system,
the vertex C may be positioned in two different locations (x., y.)
or (x., —).). By default, we have chosen the y positive solution for
the third vertex C of the face. Because the origin P has to be on the
other side of the line AB with respect to the vertex C, the position
of P is therefore (xp,, —);). Thus, the distance D, at the vertex C is
given as:

De = /(xc — xp2 + (yc + yo)?

Xc

Xp
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These equations can be applied to estimate the distance at the
point C only if the segment PC passes through the edge AB. In
other words, the 'ray’ has to enter the face through the edge AB. If
it does not, only the distances computed along the edges AC or BC
has to be tested, as in a graph algorithm; the equations for this test
are given in Appendix A.

4 THE GLOBAL SCHEME

Once the local scheme is defined, the distance front has to be prop-
agated throughout the whole mesh. While different methodologies
for doing this have been proposed in the literature, all the schemes
transmit the local scheme through a list of vertices which are up-
dated after the distance is estimated at a new vertex.

For regular grids, Podvin & Lecomte (1991) used a strategy
proposed by Vidale (1988) based on an expanding box. In this
technique, the transmission of time (or in our case distance) is done
element side after element side starting from the vertex on the side
that has the lowest time. Different conditions are then added to
treat particular problems, e.g. head waves or the propagation at the
corners of the box. In the ideal case, the global propagation scheme,
i.e. the dynamic list of vertices to be treated at a given step, should
follow as close as possible the isolines of the value being calculated
(i.e. time or distance). For instance, it should be an expanding circle
when calculating the shortest distance on a flat surface.

The FMM of Sethian (1996), computed on unstructured meshes,
follows the isolines which he compares to the propagation of a fire.
This analogy was made to point out that when the value at a vertex
has been estimated, this vertex will not be considered anymore, it
has been burnt. Their global scheme keeps track of the vertices that
are on fire, and tries to propagate them to the unburnt sections of
the mesh. Once a vertex has propagated its fire to other vertices,
its state becomes burnt and the new vertex(ices) enter(s) into the
list of the vertices that are ’on fire’. In the case of unstructured
meshes with strong variations in face size a second condition has to
be applied in order to keep the dynamic list as close as possible to a
distance front. Namely, in the list of the vertexes that are on fire at
a given step, the vertex with the smallest distance are chosen first
for propagation. This is the same reason why Podvin & Lecomte
(1991) used a search for the minimum distance on each side of their
transmission box. The global propagation process ends when the
list of vertices to be treated is empty.

We choose a similar approach for our global scheme. We operate
a dynamic list of vertexes where every vertex may re-enter the
list. Thus, with respect to the FMM scheme, we have only two
states: the active vertices listed through a dynamic list and the
other vertices which are currently not being considered. Vertex A is
chosen to propagate the distance front in the dynamic list based on
a minimum distance criteria. A schematic of the implementation of
our proposed global propagation is provided in Fig. 5. We retrieve
all the faces attached to A. In the first face ABC, we apply the local
scheme described in Fig. 4 in order to estimate the distance to C
using the information available at A and possibly also at B if it has
already been calculated. On the same face, we apply a second local
scheme to estimate the distance to B using the estimated distance
from points A and C this time. This operation is repeated on all the
faces attached to A with the distance being updated if it is less than
the previously calculated value. If the estimation of the distance at
a vertex is updated and is not already present in the active vertex
list, it is added to it.

Figure 5. Schematic of the proposed method at the global level. The dy-
namic list in our global scheme is a list of vertices. Assuming that vertex A
is the vertex in this list with the minimum distance, the aim is to propagate
its distance to all its neighbor vertices (i.e. the grey and white circles). A
list of faces attached to the vertex A is constructed. Taking face ABC as an
example, the different estimates for the distance to C are compared. There
are a maximum of three possibilities for this (1) the distance at C computed
using a different face (this may not exist); (2) the sum between the distance
at A and the length of the edge AC and (3) the distance at C estimated with
our double trilateration scheme from the edge AB. If the distance estimated
in cases (2) and (3) is smaller than (1), vertex C, if it is not present, is added
to the dynamic list. On the same face, the same operation is done for vertex
B. This operation is repeated for all the faces attached to A. The order in
which these faces are examined is nearly always random. Depending on the
incoming direction of the distance front, this first sweep of the faces may not
produce the correct distance estimation. Thus, we redo the same operation
on all the faces attached to A in a reverse order. The operation is repeated
until no update on the distance of the vertices attached to A is achieved
between sweeps. The last step is to remove A from the dynamic list.

Generally, the faces around the vertex A are not ordered. More-
over, even if they are ordered, the result also depends on how the
vertexes around A are located with respect to the passage of the
distance front. Thus, we repeat again the same operation but using
a reverse order for the faces around A. This sweeping is repeated
forward and backward until a stability in the distance estimation
is reached, i.e. the face sweep does not generate updates anymore.
The arrows around the faces in Fig. 5, which represent the sweeps,
may be misleading because the faces are not ordered and the face
succession is in practice random. Usually, two sweeps are often suf-
ficient. Very rarely, where there is an awkward configuration of faces
around one vertex, three sweeps are necessary. The last operation is
the cancellation of A from the list.

This global scheme is highly redundant but simple and stable.
The loci of the vertex list are mainly aligned with the ‘distance
front’. The propagation of process stops when the list of active
vertices becomes empty. The global scheme is initialized by putting
the vertex corresponding to the source in the dynamic list with a
null distance. All the other vertices are initialized with an infinite
distance. It is also possible to account for a source which is not on
a vertex but rather on a face. In this case, the initialization of the
dynamic list is done by prescribing the respective distance to the
source on the three vertices of the face containing the source.

As suggested by Podvin & Lecomte (1991), it is easy to take into
account a multisource initialization. But due to our local scheme
which is based on the hypothesis of a point source, our estimation
of the distance from a line source, i.e. a line of edges with a null
distance, is not correct. Forcing the distance to be zero at two vertices
of the same face renders the equations of the second trilateration
of the local scheme singular. If the intention is to simulate a line
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Figure 6. Distance isolines on an irregular mesh and its error. The inlet in
(a) represents a blow up of the central part of the surface around the origin
vertex. (b) is the percentage error in estimation of the distance versus the
distance normalized by the mean of the edge lengths.

source, i.e. two vertices and the edge between them set to a null
distance, the first trilateration provides an accurate estimate of the
distance in the immediate vicinity of the line source. The distance
of the third vertex (C in Fig. 4) to the null line (edge AB in Fig. 4)
would simply be its y-coordinate (yc in the equations of the first
trilateration) in the local reference system. This trick works only for
the faces closest to the line source. After the first elements which
have a face linked to the line source, the double trilateration scheme
will not be able to propagate the line source correctly. Consequently,
it is better to switch to a local scheme with a plane front hypothesis
(rather than a circular one as is the case when applying the second
trilateration). In order to address this issue we propose different
equations for a local scheme with a linear front based on three
trilaterations in Appendix B.

5 ACCURACY AND TESTING

5.1 Distance

The first accuracy test is the computation of the distance from a
given point, i.e. the source, on a planar surface which has been
discretized with an unstructured mesh. As it is trivial to calculate
the true distance to every vertex from the source on a planar fault,
it provides us with a means of assessing the accuracy of our pro-
posed technique. In Fig. 6(a), the black lines are the isolines of
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the estimated distance from the source using the double trilatera-
tion technique. The distance isolines forms perfect circles that are
equally spaced and do not contain anisotropy despite the random
variation in the element orientation used in the discretization.

Fig. 6(b) is a plot of the normalized error versus a normalized dis-
tance. The normalized error is the difference between the estimation
of the distance computed with our scheme and the true analytical
distance, divided by the true distance and multiplied by 100 in or-
der to give the error as a percentage. The normalized distance is
the distance divided by the average length of the edges. The min-
imum and maximum normalized error in the plot are —7.24 1073
and 1.40 1073 per cent, respectively. Close to the origin, the error
is both positive and negative. This is because the error is a nu-
merical noise due to computational numerical precision and it is
nearly a white noise. With increasing distance from the source, a
trend slowly emerges with the error becoming predominantly nega-
tive. This is contrary to what has been observed with the Dijkstra’s
example in Fig. 2, the distance estimation is lower (to varying de-
grees depending on the discretization) than the actual value. We
are uncertain what may be causing the negative error in Fig. 6(b);
it may be linked to our local scheme which is based on non-linear
functions (for instance in earthquake localization problem, using
trilateration techniques, the event outside the network tends to be
localized closer to the network than their real position), or it may
be due to the slow accumulation effect of a not perfect white nu-
merical noise. Regardless, the error is at a nearly irrelevant level
of — 1073 per cent — when compared with Dijkstra’s example which
reached an error of 41 per cent in some places.

5.2 Stochastic slip distributions

The next step is the use of the double trilateration scheme to pro-
duce a self-similar slip distribution using the composite model
method, i.e. summing a large number of round asperities. The result
should exhibit a & slip distribution similar to the slip distribution in
Fig. 1(a). In order to check the slope of the slip spectrum, we need
to be able to perform a Fourier transform. For this reason, we have
chosen an initial mesh which is similar to the one in Fig. 2(d), i.e.
an unstructured mesh with a regular alignment of the vertices.

Two strategies may be used to combine the double trilateration
scheme with the composite source model: the distance computation
may be done for each asperity or a distance matrix may be computed
initially for the whole mesh. The choice depends essentially on the
ratio between the number of asperities used for the slip distribution
to the number of vertices in the mesh. The first strategy — one
computation per asperity — is the most precise but may be costly in
terms of computation time. The second strategy — use of a distance
matrix — does not depend on the asperity number anymore and takes
advantage of the reciprocity properties of the distance between
two points in order to half the computation time. However, large
meshes with many elements require a large amount of memory.
Additionally, the interpolation needed, with a distance matrix, to
take into account the correct radius of the asperities whose centre
may not be on a vertex, can compromise the slope of the spectrum
at small wavelengths.

In the following test, we have used the distance matrix approach
(calculating the distance matrix for the whole mesh). The compos-
ite source programme is similar to the one used on a rectangular
planar fault with a regular spacing (e.g. Cultrera et al. 2010; Akinci
et al. 2017; Murphy et al. 2016 and Fig.1a). We redo exactly the
same example presented in Fig. 1(a), using the same seed for the
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of (a).

AN
K] .

Slip (m)
15.00

o

o

eeazaaa RS IRRTERR R AR Raaana

0.00

Figure 8. Example of slip distribution on a complex surface. The colour
scale represents the slip value in metre. The green dots are the border of the
rupture area while the green isolines represents the distance to this border
inside and outside the rupture area.

random values, i.e. having the same asperities at the same places
with the same radii. The only difference is in the meshing and the
computation of the distance for the asperities. The resulting slip
distribution is given in Fig. 7(a), which produces a similar trend
to that produced using a structured grid in Fig. 1(a). Computing
the fast Fourier transform of the slip distribution and plotting the
module versus the inverse of the radial wavelength in a log—log
graphic (Fig. 7b), the slope of the spectrum envelope is —2, nearly
up to the Nyquist value. The degeneracy of the spectrum with the
wavenumber is a classic behavior for this type of spectrum.

The last test is the application of the method to a generic surface,
like the one presented at the beginning of this paper in Fig. 1(b). We
follow the same strategy used in the last test to build the composite
source model. The particularity of this test, apart from the geometry,
is that we want to limit the slip in a given area of the slab in order
to preserve the scaling law between magnitude, rupture area and
stress drop. The total surface of the slab in Fig. 8 is @@@@198,
191 km’> @@@@. We want to simulate a magnitude 8.5 with a
stress drop of 0.3 MPa. Following Strasser et al. (2010), their scal-
ing law implies a surface for this earthquake of @@@@62, 787
km?.@@@@ Once the slipping surface on the slab is defined, each
asperity centre has to be put at least at the distance of'its radius from
the border slipping zone (green dots on Fig. 8) in order to avoid sin-
gularities in the slip distribution along this border. To assert this, we
estimate the distance to a closed line representing the border of the
ruptured area using the line source scheme described earlier. This

distance function is represented in Fig. 8 and allows us to insure
that the slip tends slowly to zero at the border of zone.

6 DISCUSSION

6.1 Limitations of the double lateration technique

In this paper, we have described a technique for computing the
distance on a unstructured mesh with the primary aim of computing
slip on a complex fault surfaces. For this reason we have promoted
precision over computational efficiency and that our scheme may
appear to employ excessive checking on a single vertex when it is
compared to other techniques.

Our algorithm belongs to the sample-based family (see Bose e al.
2011) where we have chosen to centre our global scheme around the
vertices of the mesh. It is possible also to create algorithms based on
the faces or the edges which are very efficient in terms of checking
vertices. We have tested such a face-based alternative and found that
for certain mesh arrangements, the global scheme has a tendency
to miss zones of the mesh. Therefore, such global schemes require
additional checks to be at least functional. Consequently, the level
of checking in our scheme is necessary to achieve a high level of
precision.

Despite our focus on precision there are certain mesh config-
urations which are not solved precisely by our scheme. It is also
important to note that these configurations are not solved properly
by any of other sample-based techniques either. To understand bet-
ter the problem, it is useful to introduce, R,,, the local curvature
radius of the distance front at a distance D from the source (this is
the inverse of the curvature y). In an infinite plane, we have simply:

R, =D.

However, if the surface is very complex (e.g. fig. 3 in Mitchell
etal. 1987), or it contains holes and/or complex edge shapes, diffrac-
tions may occur. On discrete meshes, diffraction points (i.e. a sec-
ondary sources), are always created on a vertex. The practical effect
of these diffraction points is to reset R, to zero. Thus, in the cone
of diffraction, the distance and the curvature radius are no longer
the same. As our local scheme is based on this equality, the scheme
loses its precision in the diffraction cone as noted by Novotni &
Klein (2002). The diffraction problem also affects local schemes
that use planar distance front as they have difficulties accurately
dealing with the singularity of the distance front curvature close to
sources, be they primary or secondary. This problem is less pro-
nounced in Podvin & Lecomte’s (1991) approach because the cubic
nature of their mesh reduces the problem for distance fronts that
propagate in the diagonal direction.

It is possible to adjust our local scheme in order to improve the
performance in the diffraction cone by mimicking the scheme of
Podvin & Lecomte (1991). To do this, We need to consider four
vertices rather than three thus rendering our mesh quadrilateral and
add in the global scheme a additional test with the distance from the
fourth vertex (for example, considering the distance from vertex D
to C in Fig. 5). This is a partial solution but it has the advantage of
keeping the computation to a single run of the global scheme

An alternative approach is an iterative technique, i.e. a repetitive
application of the global scheme, which accounts for diffraction.
This involves an initial computation of the distance for all the ver-
tices from a given source. Then, with increasing order of distance,
the distance computation is rerun using every vertex as secondary

Downl oaded from https://acadenic.oup.com gji/article-abstract/213/3/2060/4939268
by | FREMER user
on 20 April 2018



sources with an initial distance equal to the one computed previ-
ously. In the case of a diffraction, this new distance is shorter than
the one computed in the first run. This technique would be more ac-
curate than the single run quadrilateral technique that was proposed
previously; however, this would come at a computational cost.

In the version of the code we have made available, we have imple-
mented the second solution as an option. However, fault surfaces,
even very complex ones, do not generally have diffraction points
except at their edge. Therefore, this feature only affects the largest
asperities and this effect would be partial in a worse case scenario.
Thus, it should be negligible in the application of slip to a fault.
Consequently, the default is to perform the fast computation of the
distance (i.e. without explicitly accounting for diffraction).

In order to quantify the accuracy versus computational cost, we
have applied our technique to a standard benchmark, i.e. the Stan-
ford’s bunny mesh (Turk & Levoy 1994). This mesh is composed
of 35 834 vertices and 69 451 faces. On an old CPU (i5 760 at
2.80 GHz) without optimization, for a source on the back of the
bunny, the fast solution (i.e. not explicitly accounting for diffrac-
tion ) is solved in 0.35 s. The shape of the bunny is complex, and
diffractions are expected. The iterative version of our technique,
which correctly takes into account diffraction, requires 9 min to
run. The maximum difference across the whole bunny surface be-
tween the two computations is 0.7 per cent. This test is available,
aside to the code on Github (see ’Resources’ section below).

The second problem is the interaction between the distance front
and the curvature of the mesh. We stated at the beginning that our
scheme is accurate for a polyhedron, i.e. a surface composed of flat
faces. For example, if we use our scheme on the surface of a cube,
our estimation will be accurate. However, it will not be accurate if
the volume is a sphere that has been discretized with a polyhedron.
Even if we correct the estimation to take into account the shorter
distance due to discretization, there is still a discrepancy. As with
the diffraction problem, on a sphere, the distance front curvature
radius is not equal to the distance, as is the case on a cube. For
example, with a source located at the pole of a sphere, the local
distance front curvature at its equator is infinite, i.e. a plane front.
In fact the curvature vector of the front at the equator is normal to
the surface, i.e a null transverse component.

Mesh refinement may help to reduce the problem of curvature
interactions in the sense that a finer mesh itself reflects better a
potential curved topography. The refinement of the mesh may also
improve the result in case of diffraction when the border of a diffrac-
tion zone passes through a face, i.e. the virtual centres estimated
through trilateration on the three edges of a same face do not coin-
cide.

In summary, solving the problem of curvature interactions, i.e.
propagating not only the distance but also the local curvature of
the front and resolving the two problems above on the same run is
challenging both in terms of parametrization and equations. This
challenge is beyond the scope of this paper. We may conclude that
the accuracy of our scheme is guaranteed when the equality between
R, and D is verified.

6.2 Heterogeneous slip

For the computation of heterogeneous slip, at a technical level, we
have listed two possibilities for the use of the distance computation:
one where the computation is performed per asperity and the second
where we first generate a distance matrix. In the example presented
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in this paper, we have used the second approach. But a third pos-
sibility may be implemented specifically for the composite source
method. Computing the distance for each asperity may seem ineffi-
cient if the number of asperities is of the order of thousands. As the
distribution of the asperity radius is fractal (e.g. Zeng et al. 1994),
for the most part, the asperities have very small surfaces compared
to the whole fault surface. Therefore, it is possible to introduce a
new condition in the algorithm to stop the global scheme based
on the radius 7 of the asperity. That is, when the minimum of the
distance associated to all the vertices in the dynamic list is higher
than r, the process is stopped. With this scheme the computation
becomes very fast for the majority of the asperities.

On a theoretical level, the choice of a strict k-square model may
be debatable. In fact, the k-square model is an end-member model,
where the whole radiation of the source is interpreted only by a
slip distribution. Many other factors, such as variations in rupture
velocity, may generate radiation. This is also the case for the com-
plex geometry of fault planes. However, the scope of this paper is
not the validity of the k-square model for the seismic source or the
study of the radiation generated by a rough fault, but is to propose a
framework to easily build a self-affine distribution of source param-
eters which may be correlated in space and frequency on a complex
surface.

In fact, the composite source model provides a straightforward
means to introduce this spatial and spectral variation in the con-
struction of complex kinematic rupture. For instance, the rigidity
on the fault may be varied spatially or the stress drop can be scale-
dependent with the asperity’s radius.

In the present format of our code, the slip function at the pre-
scribed borders of the rupture area goes naturally to zero without
the need of a taper. However, in certain circumstances it may be
necessary that rupture propagates to the surface. Mimicking this
phenomena requires slip to be non-zero along the surface. This
feature can be introduced by removing the border condition for
elements at this boundary.

7 CONCLUSION

In this paper, we have proposed a solution for the distribution of a
complex slip function on a complex surface. To achieve this goal,
we have developed a new strategy to compute the distance between
two points on a polyhedron. As it has been noted before in this
paper, the distance computation is a particular case of the time
computation when the velocity is homogeneous and is equal to
unity. Thus, in theory, it is possible to apply the same scheme to the
estimation of first arrival times on a 3D surface. This problem has
been encountered in the estimation of rupture time on a fault with
heterogeneous rupture velocities, in the estimation of the tsunami
traveltime accounting for the curvature of the earth, in the first time
arrival on a seismic section with heterogeneities both in velocities
and cell sampling for seismic migration, etc. With respect to the
distance problem, it will be interesting to test the behaviour of the
scheme we have proposed in terms of refraction and head waves.
It is possible to use the trilateration scheme to apply a back ray
tracing to compute the path. It is also conceivable to extent the local
scheme to 3D for time estimation passing from elementary faces to
elementary volumes and using trilaterations with spheres in place
of circles.
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8 RESOURCES

The code to estimate the distance on a polyhedron is written in
Fortran90. It is available on Github at this address https://github
.com/andherit/trilateration. The code to compute the slip is also
on github at this address https://github.com/s-murfy/k223d. Both
codes have been put in the public domain. The geometry of the
slab for Figs 1 and 8 comes from the Slab1.0 database (Hayes et al.
2012) and may be found at this address https://earthquake.usgs.go
v/data/slab/. The Stanford’s bunny mesh is available at the Stanford
3D scanning repository at this address http://graphics.stanford.ed
u/data/3Dscanrep/.
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Figure Al. Calculating the point where the line defined by vertex C and P
crosses the element face (i.e. the line defined by the line |4B|).

21, 725-728.

APPENDIX A: GOING THROUGH THE
GATE

Drawing a right angle triangle based on the points (x, y) which gives
the location of vertex C and (x., y.) which defines the location of
the virtual point P (see Fig. Al).

The slope of the line between these two points is given by m, as

Yyt
X =X

my

Note y. is an absolute distance from the origin and is therefore
positive in all the equations. The large triangle is now bisected along
the line y = 0 creating a second, smaller triangle with the coordinates
(x, ), (x, 0) and (a, 0). Therefore, the slope m, is given as

y

X —a

my =
As the angle for the top and bottom triangle is the same, this implies
m; = m, and therefore

y :y+y°
X—a x-—x

which can be rearranged to

X — X¢

=x - —
1+ y/y

This assumes that x. < x, there is also the possibility that x. > x,
in this case the equation switches to:

. X =X
L+ ye/y
If a < 0 or a > |4B| (where |[AB| is the length of the line between
points A and B) then the line between P and C in Fig. A1 does not

pass through the element edge but rather one of the vertices. In such
cases the distance through element face is not considered.
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APPENDIX B: A LOCAL SCHEME FOR
PLANE FRONT

We present a set of equations in order to apply a planar local scheme
onto a face of an unstructured grid defined by its three vertices v1,
v2 and v3 (Fig. B1). d1 and 42 are the known distance at vertices v1
and v2, respectively. The problem is to extrapolate these distance
to vertex v3 in order to compute the distance d3. The hypothesis is
that the variation of the distance along the edge [v1, v2] of length
d12 is linear. We assume in this case that the iso-distance contours
inside the face are straight lines.

Similar to the curved local scheme presented in this paper, we
first use a lateration technique to compute the coordinates (x3, y3) of
the v3 vertex in a local reference system centred on v1 and having
v2 on the x-axis (Fig. B1 first trilateration).

_(d12? —d23? 4 d13?)
- 2.d12

3 =,/d132—)€§

A second lateration is used to compute the centre of a new ref-
erence system for the third lateration. In the example presented in
Fig. Bl(second trilateration) this is valid for d1 smaller than 2. The
same set of equations, with some adjustments may also be written
when d2 is smaller than d1. The distance dn between the point vi
and vl is

dn =+/d12? — dd?

where dd is the difference between the distances at the vertexes v1
and v2. The coordinates of v are

_ (d12% — dn® + dd*)
= 2412

Yu =/dd?* — x?

y, may be instable only if dn is null, i.e. the iso-distance contour are
perpendicular to the x-axis. In this case, the solution to compute d3
is not through the edge [v1, v2].

Next, we change reference system with an origin at vu with an
x-axis passing through v2 and the y-axis passing through v1. This is
depicted in Fig. B1(third trilateration). The distance dn3 is needed
and is given by:

dn3 = /(x3 — x,) + (3 — yn)?.

The last trilateration is done in this new reference system. The
x coordinate x3n of the vertex v3 is used to make the ’gate’ test
(which is discussed in Appendix A). The y coordinate y3n is given
directly by the distance estimate at vertex v3.

(dn* — d23% 4+ d13?)
x3n =
2.dn

x3n must be positive and smaller than dn to pass the ’gate’ test. If
it is not, it means that the solution for estimating ‘d3” does not pass
through the edge [v1, v2].

Finally,

y3n = +/dn3? — x3n?,

and the estimate of the distance d3 at the vertex v3 is given by

X3

d3 =d2 + y3n.

Downl oaded from https://acadenic.oup.com gji/article-abstract/213/3/2060/4939268
by | FREMER user
on 20 April 2018



2070  A. Herrero and S. Murphy

y
y3

A

vl di2 x3 v2

First trilateration Second trilateration

Third trilateration

Figure B1. The three trilaterations for the planar local scheme.
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