

Understanding the Population Structure of the European Anchovy (*Engraulis encrasicolus*) in the Black Sea, Mediterranean Sea and the Northeast Atlantic Ocean by using Otolith Shape Analysis

> Gizem Akkus¹, Sharif Jemaa^{2,3}, Ali Cemal Gucu¹, Paul Marchal⁴, Pierluigi Carbonara⁵, Mahmoud Bacha², Rachid Amara², Bruno Ernande⁴, Claire Saraux⁶, Kélig Mahé⁴

¹Middle East Technical University, Institute of Marine Sciences, P.O.Box 28, 33731, Erdemli-Mersin, Turkey ²Université Littoral Côte d'Opale, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, F 62930 Wimereux, France ³Conseil National des Recherches Scientifiques, Centre National des Sciences Marines, BP 534 Batroun, Lebanon ⁴Ifremer, Centre Manche Mer du Nord, Fisheries laboratory, BP 699, 62321 Boulogne-sur-mer, France ⁵COISPA Tecnologia & Ricerca - Stazione Sperimentale per lo Studio delle Risorse del Mare, Via dei Trulli 18/20 70126 Bari, Italy ⁶MARBEC, Ifremer, Université de Montpellier, CNRS, IRD, 34200 Sète, France

INTRODUCTION

- The European Anchovy is a small pelagic and coastal marine fish.
- Genetic methods may not be sensitive enough to detect population structure due to high gene flow
 otolith shape might be a useful tool to
 identify population structures as its geographical variation may be related to phenotypic local adaptation.

MATERIALS and METHODS

Area # Region sample Total length

potential different populations of European anchovies and their relationship between the Northeast Atlantic, the Eastern Western and Mediterranean and the Black Sea. The outlines of 2535 pairs of sagittal otoliths were collected from 20 regions by combining samples new (English Channel, Atlantic, the Mediterranean and the Black with existing Sea) ones available from a previous Elliptical study. Fourier Analysis (EFA) was used to otolith analyze shape variation locations. among Before examining geographical differentiation by Linear discriminant (LDA) and Hierarchical Clustering potentially Analysis, confounding sources Of variation (sex, fish length, side and sampling otolith year) were tested by partial RDA. Sex, sampling year and otolith side had no significant effect on otolith shape. However, after accounting for factors, the ontogenic geographical area had a significant effect on otolith shape. Three different groups of anchovies were identified: Atlantic-Southwestern Mediterranean, Northwestern Mediterranean and Eastern Mediterranean-Black Sea with a classification success of 91%. These results have implications for the stock European management Of anchovy populations from the

			size	(cm)
	1	English Channel	119	13.6
Atlantia	2	Bay of Biscay	55	12.8
Atlantic	3	Gulf of Cadiz	122	11.7
Jcean	4	Casablanca	50	12.4
	5	South Cap Blanc	38	12.9
North West	6	Gulf of Lion	296	10.8
Mediterrann	7	Catalan Sea	52	12.3
an Sea	8	Tyrrhenian Sea	45	11.6
South Most	9	Southern Alboran Sea	73	12.4
Mediterrann	10	Alboran Sea Ghazaouet	198	13.0
	11	Alboran Sea Benisaf	136	12.1
an Sea	12	Algero-Provençal Basin	112	11.2
	13	Alboran Sea Bejaia	466	12.7
East	14	Ionian Sea	54	12.5
Mediterrann	15	Adriatic Sea	80	11.7
ean Sea	16	Aegean Sea	41	11.5
	17	Marmara Sea	96	11.1
	18	Western Black Sea	190	11.0
lackSea	19	Middle Black Sea	169	10.8
	20	Eastern Black Sea	143	10.6
		Total Sample Size	2535	11.9

Table 1: European anchovy otolith samples by regions andaverage total length of sampled fish.

Left vs Right Side Otoliths

- Only mature anchovies were included in this study to avoid otolith shape variation related to sexual maturity.
- 2535 pairs of sagittal otoliths were collected from 20 different regions in 2014-2016.
- Images of the whole sagittal otoliths were scanned automatically by the image analysis system TNPC.
- The first 99 elliptical Fourier harmonics (Hi) were extracted to

TNPC Software www.tnpc.fr

describe individual otoliths' shape and normalized with respect to the first harmonic.

The number of Hi, n_k, required to bring the individual cumulated Fourier Power (PF) to 99% for each otolith was kept for further analyses

 $PF(n_k) = \sum_{HI=1}^{n_k} \frac{A_{HI}^2 + B_{HI}^2 + C_{HI}^2 + D_{HI}^2}{2}$

Figure 3: RDA for possible effects on shape analysis

- RDA with permutation test was applied for testing total length (TL) effect; then sex, sampling year and geographical area effects were tested.
- ✓ Geographical area has a

✓A mirror image of the left side otolith was used in order
Possible Effects of Total Fish Right Otolith

Possible Effects of Total Fish Length, Sex, Sampling year, Geographical Area

North Sea to the Black Sea.

Right side selected	
---------------------	--

Figure 2: Left vs Right side differences.

differences was found between the right and left otolith's shape.

significant effect on otolith shape

Linear Discriminant Analysis (LDA)

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Class.Succ. (%
Atl	1_English Channel	65	0	2	0	0	4	1	0	2	1	11	0	30	0	0	0	0	2	1	0	54
	2_Bay of Biscay	6	0	2	0	0	15	1	0	0	0	11	0	19	0	0	0	0	0	1	0	0
	3_Gulf of Cadiz	9	0	27	0	0	18	0	0	0	0	5	0	48	0	1	0	0	10	4	0	22
	4_Casablanca	2	0	2	0	0	18	0	0	0	0	5	0	22	0	0	0	0	0	1	0	0
	5_South Cap Blanc	0	0	2	0	0	2	0	0	1	0	1	0	32	0	0	0	0	0	0	0	0
NW-Med	6_Gulf of Lion	3	0	3	0	0	<mark>185</mark>	5	0	0	0	0	0	59	0	0	3	0	23	15	0	63
	7_Catalan Sea	0	0	0	0	0	30	8	0	1	0	0	0	7	0	0	1	0	1	4	0	15
	8_Tyrrhenian Sea	0	0	0	0	0	24	0	0	0	0	0	0	18	0	0	0	0	2	1	0	0
SW-Med	9_Southern Alboran Sea	0	0	0	0	0	5	0	0	5	4	12	0	47	0	0	0	0	0	0	0	6
	10_Alboran Sea_Ghazaoı	8	0	6	0	4	6	1	0	1	82	20	2	65	0	3	0	0	0	0	0	41
	11_Alboran Sea_ Benisaf	28	0	7	0	0	4	0	0	3	28	24	0	42	0	0	0	0	0	0	0	17
	12_Algero-Provençal Bas	3	0	5	0	0	20	0	0	1	4	1	0	70	0	0	0	0	5	3	0	0
	13_Alboran Sea_ Bejaia	13	0	8	0	1	45	0	0	2	41	5	0	337	0	0	0	0	10	3	0	72
E-Med	14_Ionian Sea	1	0	0	0	0	28	1	0	0	0	0	0	21	0	0	0	0	2	1	0	0
	15_Adriatic Sea	8	0	5	0	0	32	0	0	0	0	1	0	27	0	0	0	0	4	3	0	0
	16_Aegean Sea	0	0	0	0	0	27	3	0	0	0	0	0	8	0	0	3	0	0	0	0	7
	17_Marmara Sea	0	0	5	0	0	57	1	0	0	0	0	0	18	0	0	1	0	10	4	0	0
BlackSea	18_Western Black Sea	16	0	7	0	0	67	0	0	0	0	2	0	43	0	0	0	0	30	25	0	15
	19_Middle Black Sea	10	0	3	0	0	59	0	0	0	0	0	0	41	0	0	0	0	20	36	0	21
	20_Eastern Black Sea	2	0	7	0	0	34	0	0	0	1	0	0	20	0	0	0	0	13	18	0	0

Table 2: Table of LDA results, Jackknife Classification matrix of anchovy otolith shapes from 20 different sampling regions (N=2535).

> Jackknife Classification Success is 32% for 20 different regions.

	JACKKNIFED CLASSIFICATION	
TESTED SCENARIOS	SUCCESS (%)	
for 20 sampling location	32%	
Atl, NW-Med, SW-Med, E-Med. BS	54%	
ATL, NW-E Med, SW Med, and BS	57%	From the
ATL- SW Med , NW Med, E Med , and BS	67%	scenerio
ATL- SW Med , NW-E Med , and BS	68%	
ATL- SW Med . NW Med . and E Med-BS	91%	

LDA and Hierarchical Clustering Analysis for Atlantic-South Western Mediterranean, North Western Mediterranean and Eastern Mediterranean-Black Sea

LDA	Atl-SW	E Med- BS	NW Med	Class.Succ. %
Atl-SW Med	1346	0	22	98
E Med- BS	69	645	11	88
NW Med	97	0	296	75

✓ Jackknifed
 Classification
 Success 91%
 for 3 regions

Table 4: Table of LDA result, Jackknife Classification matrix of anchovy otolith shapes for 3 different groups.

Hierarchical

CONTACT

Gizem Akkuş Middle East Technical University, Institute of Marine Sciences, Email: gizemakkuss@gmail.com

Kélig Mahé Ifremer, Centre Manche Mer du Nord, Laboratoire Ressources Halieutiques, Email: kelig.mahe@ifremer.fr

Table 3. Jackknife Classification Success Percentage for different grouping scenarios.

- Three different groups of European anchovies were identified :
 - > Atlantic-Southwestern Mediterranean
 - > Northwestern Mediterranean
 - Eastern Mediterranean- Black Sea
- These results have implications for stock management from the North Sea to the Black Sea.
- Further study will focus on the Black Sea to investigate growth patterns and environmental effects on otolith shape.

Reference

Jemaa, S., Bacha, M., Khalaf, G., & Amara, R. (2015). Evidence for population complexity of the European anchovy (Engraulis encrasicolus) along its distributional range. Fisheries research, 168, 109-116.

Clustering	1	2	3	Total
Atl-SW Med	610	632	127	1369
E Med- BS	40	384	349	773
NW Med	6	168	219	393
Total	656	1184	695	2535
Table 5: Hierard for 3 different cl	hical Clu usters.	stering A	nalysis	results

0.0030

-> A scenario with three major groups of anchovies was favored.

CONCLUSIONS

