GNSS Transpolar Earth Reflectometry exploriNg System (G-TERN): Mission Concept

Type Article
Date 2018
Language English
Author(s) Cardellach Estel1, Wickert Jens2, Baggen Rens3, Benito Javier4, Camps Adriano5, Catarino Nuno6, Chapron BertrandORCID7, Dielacher Andreas8, Fabra Fran1, Flato Greg9, Fragner Heinrich8, Gabarro Carolina10, 11, Gommenginger Christine12, Haas Christian13, Healy Sean14, Hernandez-Pajares Manuel5, Hoeg Per15, Jaggi Adrian16, Kainulainen Juha17, Khan Shfaqat Abbas18, Lemke Norbert M. K.19, Li Weiqiang1, Nghiem Son V.20, Pierdicca Nazzareno21, Portabella Marcos10, 11, Rautiainen Kimmo22, Rius Antonio1, Sasgen Ingo13, Semmling Maximilian2, Shum C. K.23, Soulat Francois24, Steiner Andrea K.25, Tailhades Sebastien19, Thomas Maik2, Vilaseca Roger26, Zuffada Cinzia20
Affiliation(s) 1 : CSIC, Inst Space Sci, Cerdanyola Del Valles 08193, Spain.
2 : GFZ German Res Ctr Geosci, D-14473 Potsdam, Germany.
3 : IMST GmbH, D-47475 Kamp Lintfort, Germany.
4 : Airbus DS Space Syst Espana, Madrid 28022, Spain.
5 : UPC, IEEC, Barcelona 08034, Spain.
6 : DEIMOS Engn, P-1998023 Lisbon, Portugal.
7 : IFREMER, F-29280 Plouzane, France.
8 : RUAG Space GmbH, A-1120 Vienna, Austria.
9 : Environm & Climate Change Canada, Victoria, BC V8P 5C2, Canada.
10 : Inst Ciencies Mar, Barcelona 08003, Spain.
11 : Barcelona Expert Ctr Remote Sensing, Barcelona 08003, Spain.
12 : Natl Oceanog Ctr, Southampton SO14 3ZH, Hants, England.
13 : Alfred Wegener Inst Polar & Marine Res, D-27570 Bremerhaven, Germany.
14 : ECMWF, Reading RG2 9AX, Berks, England.
15 : Univ Oslo, Dept Phys, N-0371 Oslo, Norway.
16 : Univ Bern, Astron Inst, CH-3012 Bern, Switzerland.
17 : Harp Technol Oy, Espoo 02150, Finland.
18 : Tech Univ Denmark, Natl Space Inst, DK-2800 Lyngby, Denmark.
19 : OHB Syst AG, D-82234 Weling Oberpfaffenhofen, Germany.
20 : CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91125 USA.
21 : Univ Roma La Sapienza, Dept Informat Elect & Commun Engn, I-00185 Rome, Italy.
22 : Finnish Meteorol Inst, Helsinki 101, Finland.
23 : Ohio State Univ, Columbus, OH 43210 USA.
24 : Collecte Localisat Satellites SA, F-31520 Ramonville St Agne, France.
25 : Karl Franzens Univ Graz, Wegener Ctr Climate & Global Change, A-8010 Graz, Austria.
26 : TRYO Grp, La Garriga 08530, Spain.
Source Ieee Access (2169-3536) (Ieee-inst Electrical Electronics Engineers Inc), 2018 , Vol. 6 , P. 13980-14018
DOI 10.1109/ACCESS.2018.2814072
WOS© Times Cited 53
Note SPECIAL SECTION ON ADDRESSING ECONOMIC, ENVIRONMENTAL AND HUMANITARIAN CHALLENGES IN THE POLAR REGIONS
Keyword(s) Polar science, GNSS, reflectometry, GNSS-R, sea ice, altimetry, polarimetry, radio-occultation, Low Earth Orbiter
Abstract

The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploriNg system (G-TERN) was proposed in response to ESA's Earth Explorer 9 revised call by a team of 33 multi-disciplinary scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean, atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover (ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and the atmosphere with frequent and dense coverage over polar areas, becoming a "dynamic mapper" of the ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment. Over polar areas, the G-DERN will measure sea ice surface elevation (<10 cm precision), roughness, and polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025-2030 or optimally 2025-2035, covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally, it estimates the expected performance.

Full Text
File Pages Size Access
Publisher's official version 39 4 MB Open access
Top of the page

How to cite 

Cardellach Estel, Wickert Jens, Baggen Rens, Benito Javier, Camps Adriano, Catarino Nuno, Chapron Bertrand, Dielacher Andreas, Fabra Fran, Flato Greg, Fragner Heinrich, Gabarro Carolina, Gommenginger Christine, Haas Christian, Healy Sean, Hernandez-Pajares Manuel, Hoeg Per, Jaggi Adrian, Kainulainen Juha, Khan Shfaqat Abbas, Lemke Norbert M. K., Li Weiqiang, Nghiem Son V., Pierdicca Nazzareno, Portabella Marcos, Rautiainen Kimmo, Rius Antonio, Sasgen Ingo, Semmling Maximilian, Shum C. K., Soulat Francois, Steiner Andrea K., Tailhades Sebastien, Thomas Maik, Vilaseca Roger, Zuffada Cinzia (2018). GNSS Transpolar Earth Reflectometry exploriNg System (G-TERN): Mission Concept. Ieee Access, 6, 13980-14018. Publisher's official version : https://doi.org/10.1109/ACCESS.2018.2814072 , Open Access version : https://archimer.ifremer.fr/doc/00438/54994/