GERBAM — Deuxième Colloque International de Bactériologie marine — CNRS, Brest, 1-5 octobre 1984 IFREMER, Actes de Colloques, 3, 1986, pp. 311-317

36

METABOLISM OF CO AND CH4 BY NITRIFIERS AND THE DETERMINATION OF THE NITRIFICATION RATE

R.Y. MORITA and R.D. JONES

Department of Microbiology and the College of Oceanography, Oregon, State University, CORVALLIS, Oregon, 97331-3804 (USA)

ABSTRACT - The nitrifying bacteria were found to survive 24 weeks in the absence of ammonium without decreasing their number or cell size. Because H_2 , CO, and CH₄ are present in the marine environment, these substrates were investigated as a possible source of the energy of maintenance for the nitrifying bacteria. ¹⁴CO and ¹⁴CH₄ were found to be oxidized by the nitrifiers. N-serve was found to inhibit the oxidation of CO. Using the nitrifiers' ability to oxide CO, a method for the determination of the nitrification rate was developed. The ability of nitrifiers to oxidize CO may play a significant role in the cycling of CO₂ in the marine environment. Whether CO and CH₄ oxidation play a role in the survival of nitrifiers in the absence of ammonium is currently being tested.

Key words: survival, CO oxidation, CH4 oxidation, nitrifiers, CO2 cycling.

RÉSUMÉ - Les bactèries nitrifiantes peuvent survivre 24 semaines en absence d'ammonium sans diminution de leur nombre ou de la taille des cellules. H₂, CO et CH₄ étant présents dans l'environnement marin, ces substrats sont envisagés comme une source éventuelle d'énergie de maintenance pour les bactéries nitrifiantes. On a montré que ¹⁴CO et ¹⁴CH₄ sont oxydés par les nitrifiants et que N-Serve inhibe l'oxydation de CO. En utilisant la capacité des nitrifiants à oxyder CO, une méthode pour déterminer le taux de nitrification est développée. Dans l'environnement marin, la capacité des nitrifiants à oxyder CO peut jouer un rôle important dans le cycle du CQ₂. D'autre part, le rôle que joue l'oxydation de CO et CH₄ dans la survie des nitrifiants en absence d'ammonium a été fréquemment testé.

Mots-clés : survie, oxydation de CO, oxydation de CH₄, nitrifiants, cycle de CO₂.

During our studies on starvation survival, the chemolithotrophic ammonium oxidizing bacteria were selected to determine if they could survive long periods of time in the absence of ammonium as the energy source. Since ammonia cannot be detected chemically in some water masses, the ability of the nitrifiers to survive this condition was viewed to be important, especially when one considers the cycling of nitrogen in the addition of ammonium to the starvation menstruum, the nitrifiers remained viable until the termination of the experiment (24 weeks). During this period, the nitrifiers did not decrease in numbers or size. Therefore, the question of the possibility of an alternative energy source(s) for cellular maintenance was addressed.

In assessing the possible energy sources available in the oligotrophic waters of the oceans, it became clear that the gases $(CH_4, CO, and H_2)$ should not be overlooked as potential sources of maintenance energy, but not necessarily as a source of energy for growth and reproduction. Some of these gases are supersaturated in the ocean. The distribution and

concentrations of these gases are well documented not only in the marine environment, but also in soil and the atmosphere. The average concentration of CH₄ in the marine environment is 49.5 n1/1 (Swinnerton and Lamontagne, 1974). On the other hand, carbon monoxide is also in n1/1 quantities and it is formed in the aquatic environment by photochemical action on organic matter (Wilson, Swinnerton, and Lamontagne, 1980). Approximately 10 to 20 trillion g of CO/year is added to the atmosphere with the ocean as the main biogenic source of this gas (Seiler, 1978) ; whereas 122 to 237 trillion g of CH₄/year are biogenically produced (Seiler, 1984). The aquatic environment is a source of these gases to the atmosphere whereas the soil in a sink (Conrad, 1984). The quantities of both these gases should be sufficient for maintenance energy, especially when one considers the residence time of water masses.

Methane oxidizers were found to be capable of oxidizing ammonia (Hutton and ZoBell, 1949; O'Neill and Wilkinson, 1977; and Hyman and Wood, 1983) as well oxidizing carbon monoxide (Ferenci, 1974, Hubley, Mitton, and Wilkson, 1974; and Hutton and ZoBell, 1949), but Suzuki, Kwok, and Dular (1976) and Drozd (1946) could not demonstrate the oxidation of methane or carbon monoxyde by the nitrifying bacteria employing the oxygen uptake (manometric method). Yet there is a similary in NH₄ and CH₄ structure and both start with a cytochrome based mono-oxygenase which requires an unknown reducing equivalent and molecular oxygen. Both the oxidation of CH₄ and NH₄ start with the hydroxylation of the substrates (Ferenci, Strom, and Quayle, 1975; Swinnerton and Lamontagne, 1974; and Wilkinson, 1975).

Because of the dearth of NH_4 in most marine environments, the presence of the above mentioned gases in the marine environment, the similarity of structure between NH_4 and CH_4 , and the mono-oxygenase required for metabolism of NH_4 and CH_4 , we decided to investigate the possibility of the oxidation of methane by the nitrifiers employing radioactive ${}^{14}CH_4$ instead of the less sensitive manometric technique. It was found that all nitrifiers (Tab. 1) tested including *Nitrosococcus oceanus* and *Nitrosomonas europaea*, possessed the ability to oxidize CH_4 . Most of the CH_4 was respired as ${}^{14}CO_4$; however, some of the CH_4 was incorporated into the cell (Jones and Morita, 1983a). The nitrite

Organism		Methane oxidat	Ratio	
	Source	¹⁴ CO ₂ produced	¹⁴ C-cells	¹⁴ C-cellular Material/ ¹⁴ CO ₂
Nitrosococcus oceanus Nitrosomonas europaea Nitrosomonas marinus sp. strain C-15	Marine, North Atlantic Soil Marine, South Pacific	15,051 596 233	293 60 13	0,019 0,101 0,055
Nitrosomonas sp. strain 1510 Nitrosomonas sp. strain 250 Nitrosomonas sp. strain 6530 Nitrosomonas sp. strain 9W0 Nitrosomonas sp. strain 11W30 Nitrosomonas sp. strain 11W30 Nitrospina gracilis Nitrospina gracilis	Estuarine, Florida coast Feshwater, Louisiana marsh Marine, Alaskan coast Freshwater, Oregon marsh Marine, Oregon coast Marine, Oregon coast Marine, South Atlantic Marine, South Atlantic	924 179 2,285 782 2,590 2,983 3 0	194 19 27 85 370 51 0 1	0,210 0,106 0,021 0,109 0,143 0,017

Table 1 : Methane oxidation by nitrifiers in the absence of ammonium.

* Activity is expressed as dpm of ¹⁴C ml of standard inoculum⁻¹ 24 h⁻¹.

oxidizers did not oxidize CH₄. Methane oxidation by *Nitrosococcus oceanus* occurred at 0.0119 x 10^{-4} mM, the lowest concentration employed in the study (Fig. 1). The presence of NH₄ stimulated the oxidation of 14 CH₄ to 14 CO₂ and cellular- 14 C (Tab. 2). Increasing the carbonate concentration decreased the amount of 14 CH₄-C incorporated into the cells

in cultures containing NH4 (Tab. 3) indicating that the organisms have the ability as chemolithotrophs to incorporate CO_2 . The ability of nitrifiers to oxidize CH_4 was also confirmed by Hyman and Wood (1983).

Figure 1 : Effects of methane concentration on rate of methane oxidation by *Nitrosococcus oceanus*. Activity is expressed as dpm of ¹⁴C ml of standard inoculum ⁻¹ 24 h ⁻¹ multiplied by the dilution factor. Symbols: (O) ¹⁴CO₂ produced, 0,0 ppm of NH₄-N: (**①**) ¹⁴CO₂ produced, 10 ppm of NH₄-N: (**①**) ¹⁴CO₂ cellular material, 10 ppm of NH₄-N

		Methane oxidation rate (dpm)* with given addition						
			NH4-N NO2-N NO3-N		NO2-N		93-N	Yeast
Organism	Fraction	None	(10 ppm)	10 ppm	40 ppm	10 ppm	40 ppm	extract 10 ppm
Nitrosococcus oceanus	¹⁴ CO ₂ ¹⁴ C-cells	15,558 240	76,020 575	39,416 43	38,973 ND	34,776 379	32,337 ND	61,395 931
Nitrosomonas europaea	¹⁴ CO ₂ ¹⁴ C-cells	674 31	26,783 3,383	1,618 320	1,792 ND	1,159 286	1,170 ND	3,513 543

Table 2 : Effects of ammonium, nitrite, nitrate and yeast extract on methane oxidation by *Nitrosococcus* oceanus and *Nitrosomonas europaea*.

 Activity is expressed as dpm of ¹⁴C ml of standard inoculum⁻¹ 24 h⁻¹ ND. Not determined.

Organism	Ratio ¹⁴ C-cellular material/ ¹⁴ CO ₂ at given carbonate concn (ppm)					
	0	01	50	200	500	
Nitrosococcus oceanus Nitrosomonas europaea	0.018 0.276	0.015 0.239	0.012 0.200	0.007 0.193	0.006 0.185	

Table 3 : Effects of carbonate concentration on cellular incorporation of $^{14}\rm CH_4-C$ in the presence of 10 ppm of NH4-N

Using ¹⁴CO, the nitrifying bacteria were found to be capable of oxidizing CO at extremely low CO concentrations (Jones and Morita, 1983a). All the nitrifiers tested had the ability to oxidize CO but extremely little or none of the carbon monoxide was incorporated into the cells (Tab. 4). The rate of CO oxidation for *Nitrosomomas* sp. 4W30 is shown in Figure 2. During short incubations (up to approximately 4 h) the presence of NH₄ did not stimulate the oxidation of CO and attempts to grow NH_4 oxidizers on CO as the sole source of carbon and energy failed.

Figure 2 : Time course of CO oxidation by *Nitrosomo*nas sp. 4W30. Oxidation is expressed as nanomoles per hour per 25 ml at a cell concentration of 10^6 /ml. Symbols :

O, 0.0 mg/L NH₄ N.

●, 10 mg/L NH₄ N.

Organism	Source	Carbon monoxid (DP	Carbon monoxide oxidation rate (DPM)*		
		¹⁴ CO ₂ produced	¹⁴ C incorporated into cells		
Nitrosococcus oceanus	Marine, North Atlantic	31565	0		
Nitrosomonas europaea	Soil	36888			
N. sp. 4W30	Marine,				
l	Alaskan coast	110256	3		
N. sp. 1S10	Estuarine,				
· · · · ·	Florida coast	23431	10		
N. sp 2S0	Freshwater,	1			
	Louisiana marsh	28834	0		
N. sp 6830	Marine,				
	Alaskan coast	36561	2		
N. sp. 9WO	Freshwater,	17005			
N . 2020	Oregon coast	17205	U		
N. sp. 3530	Marine,	217(2			
N 1111/20	Oregon coast	21762	U		
7v. sp. 11 w 30	Marine,	17227	2		
Nitrohastan on Nh 207	Oregon coast	1/32/	3		
Nitropage webile	Marine	9	o		
Aurococcus mobilis	South Posifie	1	0		
	South Fachic	1	0		

Table 4 : Carbon monoxide oxidation by nitrifiers in the absence of ammonium

* CO oxidation rate is expressed as DPM ¹⁴C per 5 ml of cells and filters per 3 h.

The ability of nitrifieres to oxidize CO in the presence and absence of N-serve (2-chloro-6-(trichloromethyl) pyridine) was determined (Jones and Morita, 1984). It was found that 100 mg/1 of N-serve would inhibit CO oxidation and this N-serve sensitive CO oxidation was related to the rate of ammonium oxidation and a detailed description of the method is given in Jones *et al.* (Jones, Morita, and Griffiths, 1984). The oxidation of CO is linear within the time range of test (3 to 6 h). Blockage of CO oxidation is complete with 100 mg/1 of N-serve. Basically these calculations involve using ratios of NH₄ to CO oxidized in pure cultures and back calculation using the *in situ* NH₄ concentrations. The method should be used in a situation where the ammonium oxidizers rather than the methane oxidizers are the main group responsible for the oxidation of CO. By examining the ratio of CH₄ and CO oxidation one can determine which is major group responsible for the oxidation (CH₄ oxidizers have ratios between 0.380 to 1.87, ammonium oxidizers have a value between 0.0007 to 0.0428). Therefore, if the *in situ* NH₄ concentrations are known and the value for N-serve inhibited CO oxidation is known the rates of nitrification can be calculated, assuming that we have first order kinetics. This method has been applied not only to marine waters, but also to lakes and soil and represents a very sensitive method for rate measurements of nitrification that can reflect the activity at the *in situ* temperature, pH, and salinity.

Johnson, Davis and Sieburth (1983) suggested the CH₄ producers and CH₄ oxidizers play a significant role in CO₂ cycling. This could be through the cycling of the nonconservative gases, CH₄, CO, and H₂ and link between chemotrophy and phototrophy (Fig. 3). They also suggest that temporal TCO₂ changes appear to indicate the net direction of microbiological activity and join a body of literature showing dynamic variation in CO₂ and O₂ that exceed estimates by ¹⁴C bottle assays of CO₂ fixation. We believe the contribution of the nitrifying bacteria assumes a greater role in the cycling of CO an CH₄ to CO₂ than the methane oxidizers. Carboxydobacteria do not play an important role in the oxidation of CO in the environment (Conrad and Weiler, 1982; and Conrad, Meyer, and Seiler, 1981).

Figure 3 : Potential role of ammonium oxidizers in carbon monoxide, methane, carbon dioxide and ammonium cycling.

From all the studies dealing with microbes in the ocean, it appears that many microbes are smaller (ultramicrocells) than when cultured in the laboratory. This is also true with microbes in the soil (R. A. Olsen, personal communication). All forms of life seek energy and other nutrients for growth and metabolism but the availability of these materials is generally limited. As for microbes, the vast majority of them are not in environments where there is sufficient energy sources for growth and metabolism and there they exist in various degrees of starvation. Therefore the primary mode of bacteria in nature is a starvation mode, the «normal» states of most bacteria in nature. For some organisms, a mechanism exists to satisfy their energy of maintenance, but not for growth and reproduction. Since all organisms survive to produce progeny, the energy of maintenance, if any is needed, must come from alternative energy sources as in the case of the nitrifiers. Some organisms may not require a maintenance energy source. We do not as yet address this «normal» state of bacteria when we study microbial ecology. For the nitrifying bacteria in the oceans we believe that the energy of maintenance for their survival lies in the ability to utilize alternative energy sources, mainly CO and CH₄. Conformation of this hypothesis is currently being tested in our laboratory.

ACKNOWLEDGEMENTS

This research was supported by NSF grant OCE 8018366 and the Tartar Fellowship Award. All Tables and Figures are reproduced by permission from the Publications Department, National Research Council of Canada and the American Society for Microbiology Publications Office. Published as Technical Paper No. 7218, Oregon Agricultural Experiment Station.

CONRAD R., and W. WEILER, 1982. Utilization of traces of carbon monoxide by aerobic oligotrophic microorganisms in ocean, lake and soil. Arch. Microbiol. 132:41-46.

CONRAD R., O. MEYER and W. SEILER, 1981. Role of carboxydobacteria in consumption of atmospheric carbon monoxide by soil. *Appl. Environ. Microbiol.* 42: 211-215.

DROZD J.W., 1946. Energy coupling and respiration in Nitrosomonas europaea. Arch. Microbiol. 110: 257-262.

- FERENCI T, 1974. Carbon monoxide-stimulated respiration in methane-utilizing bacteria. FEBS Microbiol. Lett. 41 : 94-98.
- FERENCI T., T. STROM, and J.R. QUAYLE. 1975. Oxidation of carbon monoxide and methane by *Pseudomonas* methanica. J. Gen. Microbiol. 91: 79-91.

HUBLEY J.H., J.R. MITTON and J.F. WILKINSON, 1974. The oxidation of carbon monoxide by methaneoxidizing bacteria. Arch. Microbiol. 95: 365-368.

HUTTON W.E., and C.E. ZOBELL, 1949. The occurrence and characteristics of methane-oxidizing bacteria in marine sediments. J. Bacteriol. 58: 463-473.

HYMAN M.R. and P.M. WOOD, 1983. Methane oxidation by Nitrosomonas europaea. Biochem. J. 121: 31-37.

JOHNSON K.M., P.G. DAVIS and J. McN. SIEBURTH, 1983. Diel variation of TCO₂ in the upper layer of oceanic waters reflects microbial composition, variation and possibly methane cycling. *Mar. Biol.* 77 : 1-10.

JONES R.D. and R.Y. MORITA, 1983a. Carbon monoxide oxidation by chemolithotrophic ammonium oxidizers. Can. J. Microbiol. 29 : 1545-1551.

JONES R.D. and R.Y. MORITA, 1983b. Methane oxidation by Nitrosococcus oceanus and Nitrosomonas europaea. Appl. Environ. Microbiol. 445: 401-410.

JONES R.D., R.Y. MORITA and R.P. GRIFFITHS, 1984. Method for estimating *in situ* chemolithotrophic ammonium oxidation using carbon monoxide oxidation. *Mar. Ecol. Prog. Ser.* 17: 259-269.

JONES R.D. and R.Y. MORITA, 1984. Effect of several nitrification inhibitors on carbon monoxide and methane oxidation by ammonium oxidizers. *Can. J. Microbiol.* 10: 1276-1279.

ONEILL J.G. and J.F. WILKINSON, 1977. Oxidation of ammonia by methane-oxidizing bacteria and the effects of ammonia on methane oxidation. J.Gen. Microbiol. 100: 407-412.

SEILER W., 1978. The influence of the biosphere on the atmospheric CO and H₂ cycles. p. 773-810. In W.E. Krumbein (ed.), Methods, Metals and Assessment. Vol. 3. Ann Arbor Science Publ., Ann Arbor, MI.

CONRAD R., 1984. Capacity of aerobic microorganisms to utilize and grow on atmospheric trace gases (H₂, CO, and CH₄). p. 461-467. *In M. J. Klug and C.A. Reddy (eds.), Current Perspectives in Microbial Ecology.* American Society for Microbiology. Washington, D.C.

SEILER W., 1984. Contribution of biological processes to the Global Budget of CH₄ in the atmosphere. p. 468-477. In M.J. Klug and C.A. Reddy (eds.), Current Perspective in Microbial Ecology. American Society for Microbiology. Washington, D.C.

SUZUKI I., S.C. KWOK and U. DULAR, 1976. Competitive inhibition of ammonia oxidation in *Nitrosomonas* europaea by methane, carbon monoxide or methanol. *FEBS Microbiol. Lett.* 72 : 117-120.

SWINNERTON J.W., R.A. LAMONTAGNE, 1974. Carbon monoxide in the south Pacific Ocean. Tellus 26:136-142.

WHITTENBURY R., K.C. PHILIPS and J.F. WILKINSON, 1970. Enrichment isolation and some properties of methane-utilizing bacteria. J. Gen. Microbiol. 61: 205-218.

WILSON D.F., SWINNERTON J.W. and R.A. LAMONTAGNE, 1970. Production of carbon monoxide and gaseous hydrocarbons in seawater : Relation to dissolved organic carbon. *Science 168* : 1577-1579.