NH⁺₄ turnover in intertidal sediments of Marennes-Oléron Bay (France): effect of sediment temperature

Florence VOUVÉ ^{a*}, Gérard GUIRAUD ^b, Christine MAROL ^b, Michelle GIRARD ^a, Pierre RICHARD ^a, Mario J.C. LAIMA ^c

^a UMR 10 CNRS-IFREMER, Centre de Recherche en Ecologie Marine et Aquaculture, B.P. 5, F-17137 L'Houmeau, France
^b DEVM – CEA.CE Cadarache, F-13108 Saint-Paul-lez-Durance Cedex, France
^c Department of Earth Sciences, University of Aarhus, Ny Munkegade Build. 520, DK-8000 Aarhus C, Denmark

Received 4 February 2000; revised 17 April 2000; accepted 18 April 2000

Abstract – NH_4^+ turnover plays an important role in benthic compartment as source of nutrient for primary production. The intertidal mudflats of the Marennes-Oléron Bay are characterized by high fluctuations of sediment temperature that generally ranges from 10 to 30 °C during emersion periods. Influence of sediment temperature on NH_4^+ processes was investigated. Gross ammonification and NH_4^+ incorporation kinetics were studied using the ¹⁵N isotope dilution method. The method was first adapted to these very fine sediments and applied to 2 upper sediment layers (0–2 and 2–4 cm) at different incubation times of up to 120 h. The effect of sediment temperature on gross ammonification and NH_4^+ incorporation rates was investigated at 10, 20 and 30 °C. There was a strong increase of both rates as a function of temperature, gross ammonification rates ranged from 0 to 17 µg NH_4^+ -N.g⁻¹ dw.d⁻¹ and NH_4^+ incorporation rates from 2 to 13 µg N.g⁻¹ dw.d⁻¹ between 10 and 30 °C. This study showed that short-term temperature variations during the emersion period should be taken into account in quantifying NH_4^+ turnover in intertidal sediments and that benthic regeneration of NH_4^+ significantly supports benthic and planktonic primary production in Marennes-Oléron Bay. It suggests also that there is no N-limitation for benthic primary production in this bay and that there is up to 44 % of NH_4^+ produced in surface sediments, which can diffuse to the water column and become available to phytoplankton. © 2000 Ifremer/CNRS/IRD/Éditions scientifiques et médicales Elsevier SAS

Résumé – Régénération du NH_4^+ dans les sédiments intertidaux de la baie de Marennes-Oléron (France) : effet de la température du sédiment. La régénération du NH_4^+ joue un rôle important dans le compartiment benthique comme source de nutriment pour la production primaire. Les vasières intertidales de la baie de Marennes-Oléron sont caractérisées par de fortes fluctuations de la température du sédiment généralement comprises entre 10 et 30 °C durant les périodes d'émersion. L'influence de la température du sédiment sur les processus du NH_4^+ a été examinée. Les cinétiques d'ammonification brute et d'incorporation du NH_4^+ ont été étudiées par la méthode de dilution isotopique au ¹⁵N. Cette méthode a d'abord été adaptée sur ces sédiments très fins et appliquée à deux couches du sédiment que les incubations de 24 h sont les plus fiables pour les calculs des taux. L'effet de la température du sédiment sur les taux bruts d'ammonification et d'incorporation du NH_4^+ a été étudié à 10, 20 et 30 °C dans le sédiment de surface. Il y avait une forte augmentation des deux taux en fonction de la température, les taux bruts d'ammonification varient de 0 à 17 μ g N-NH₄⁺, g⁻¹ ss j⁻¹ et les taux d'incorporation

^{*} Correspondence and reprints: Tel.: + 05-46-50-94-40; fax: + 05-46-50-06-00 *E-mail address:* fvouve@ifremer.fr (F. Vouvé).

^{© 2000} Ifremer/CNRS/IRD/Éditions scientifiques et médicales Elsevier SAS. PII: S0399-1784(00)01104-X/FLA

du NH_4^+ de 2 à 13 µg $N.g^{-1}$ ss j⁻¹ entre 10 et 30 °C. Cette étude montre que les variations de température à court-terme durant l'émersion doivent être prises en compte dans l'estimation de la régénération du NH_4^+ dans les sédiments intertidaux et que la régénération benthique du NH_4^+ soutient significativement la production primaire benthique et planctonique dans la baie de Marennes-Oléron. Cela suggère aussi qu'il n'y a pas de limitation par l'azote pour la production primaire benthique dans cette baie et qu'il y a jusqu'à 44 % du NH_4^+ produit dans les sédiments de surface, qui peut diffuser dans la colonne d'eau et devenir disponible pour le phytoplancton. © 2000 Ifremer/CNRS/IRD/Éditions scientifiques et médicales Elsevier SAS

NH₄⁺ turnover / sediment temperature / intertidal sediments / ¹⁵N

régénération du NH₄⁺ / température du sédiment / sédiments intertidaux / ¹⁵N

1. INTRODUCTION

The role of benthic regeneration in supporting the primary productivity of coastal waters is now well-established (Klump and Martens, 1983). The process of organic matter mineralization within the sediment returns NH_{4}^{+} back into the environment (Bowden, 1984), thus making it potentially available both for benthic and planktonic primary production. This ammonification process is controlled by a few key factors, such as temperature (Bowden, 1984; Thamdrup and Fleischer, 1998), oxygen depth penetration in the sediment (Henriksen et al., 1981), the nature of organic matter (Blackburn and Henriksen, 1983) and the physiological characteristics of microbial communities (Harder and Veldkamp, 1971). The effects of these environmental factors on NH_4^+ production and incorporation by microbial communities must be quantified to establish an N-budget in coastal environments, where N is frequently considered as a limiting factor (Ryther and Dunstan, 1971). Some studies of N cycling have been devoted to intertidal sediments (Rocha, 1998; Trimmer et al., 1998) because these play an important role in primary productivity (Blanchard et al., 1997) and in the nutrient cycling (Feuillet-Girard et al., 1997) of littoral areas.

The intertidal environment is further characterized by large and rapid changes of the factors which might control N cycling. For example, sediment surface temperature is likely to influence NH_4^+ production and incorporation rates since it varies at several time scales: seasonally, fortnightly due to the tidal cycle and hourly due to the emersion period (Guarini et al., 1997). It is therefore necessary to quantify the relationship between NH_4^+ production, incorporation rates and temperature – as well as the other N cycle processes, including nitrification (Laima et al., 1999) – to be able to model the dynamics of NH_4^+ in intertidal sediments and thus the contribution of benthic regeneration to coastal productivity.

This study aimed at quantifying, for the first time, gross NH₄⁺ production rates and NH₄⁺ microbial incorporation rates in the sediment of the Marennes-Oléron Bay so as to complement earlier studies of N cycling in this bay (Feuillet-Girard et al., 1988). Since the surface sediment is subjected to strong temperature fluctuations during the emersion period, we also studied the influence of sediment temperature variations on these rates. By using ¹⁵N isotope labelling techniques, which allow a precise quantification of NH_4^+ turnover processes (Guiraud, 1984), this study was carried out in two steps: (i) to achieve reliable rate estimates, the ¹⁵N isotope dilution method was first adapted to the very fine grained sediments of the Marennes-Oléron Bay and (ii) the second step involved the short-term effect of temperature (range 10-30 °C) on the rates of gross NH₄⁺ production and incorporation.

2. MATERIALS AND METHODS

2.1. Study area characteristics

The Marennes-Oléron Bay is located on the French Atlantic coast and extends over about 170 km² between Oléron Island and the mainland (*figure 1*). It includes large intertidal mudflats that cover about 110 km². The studied area is the largest eastern mudflat where sediment consists of silt and clay particles (95 % of sizes < 63 μ m). General characteristics

Figure 1. Location of the sampling station on the study area in the Marennes-Oléron Bay. Pale grey areas represented the intertidal zones.

for this sediment are shown in *table I*. Temperature variations in the surficial sediment are high and rapid. Sediment surface temperature ranges typically from 10 °C in winter to 30 °C in summer, but it can be as low as 3 °C or can peak at 34 °C. In the surface sediment, the maximum temperature daily change during the course of a single emersion period in June can reach 18 °C at a rate of 3 °C h⁻¹ (Guarini et al., 1997).

2.2. Sediment sampling and composition

Sediment samples were collected at low tide in the central part of the eastern intertidal mudflat of the Marennes-Oléron Bay (*figure 1*). A first set of 3 cores sampled in May 1997 was used to adapt the ¹⁵N isotope dilution technique to this silt-clay sediment and to measure the ammonification and NH_4^+ incorporation kinetics at *in situ* temperature (22 °C). A second set of 3 cores were sampled in June 1997 at the same site and were used to study the temperature effects on these processes. Sediments were quickly brought to the laboratory and stored at 4 °C before being processed (Sumi and Koike, 1990). Sediments

were sliced into two sections: 0-2 cm and 2-4 cm. Plant and shell particles were removed and each sediment layer was thoroughly homogenized.

Specific density was determined by weighing a known sediment volume and water content by drying to constant weight at 105 °C. Organic C and N contents were measured with a CHN analyzer (Carlo Erba Instruments 1500) after decarbonatation of the dried sediment using 1N HCl. Some sediment characteristics are shown in *table I*.

Table I. Main characteristics of the studied sediment.

Sediment characteristics	0–2 cm	2–4 cm
pН	7.02 ± 0.11	7.00 ± 0.06
Eh (mV)	236 ± 74	149 ± 12
Specific density	1.37 ± 0.01	1.41 ± 0.01
Water content (% ww)	50.4 ± 0.7	46.7 ± 0.6
Granulometry <63 µm (%)	94	96
Total N (mg.g ⁻¹ dw)	1.6 ± 0.2	1.3 ± 0.0
Organic C (mg.g ⁻¹ dw)	10.3 ± 0.9	8.6 ± 0.3
C/N	6.5 ± 0.1	6.6 ± 0.1
Organic matter (% dw)	1.85 ± 0.16	1.55 ± 0.06

2.3. ¹⁵N labelling and extraction procedures

¹⁵N labelling and extraction procedures were carried out on sediment slurries as described by Laima (Laima, 1994). Slurrying was used to achieve a homogeneous tracer repartition and Blackburn and Henriksen (1983) showed that compared to intact cores, slurrying did not affect the NH₄⁺ production rates in muddy sediments. Nitrification was inhibited by adding a dicyandiamide solution (450 mg.l⁻¹) to the sediment to obtain a final concentration of 15 µg inhibitor per gram of wet sediment (Guiraud et al., 1989; Laima, 1994). The initial NH₄⁺ pool (porewater plus exchangeable NH₄⁺) was extracted anaerobically with 2M KCl by shaking for 160 min at 0 °C in the dark. Supernatants were centrifuged at 3000 × g for 10 min and were frozen at -20 °C until analysis.

An ¹⁵N-labelled NH₄Cl solution, containing 49.4 μ mol NH₄⁺.ml⁻¹ with 2 atom % ¹⁵N, was added to N-free artificial sea water (ASW) for homogeneous tracer dispersion. The mixture was then added to the homogenized sediment in a proportion of 4 ml ASW per gram of wet sediment, equivalent to the addition of about 50 μ g NH₄⁺-N per gram of sediment dry weight.

Subsamples of the slurries were transferred into 4×3 glass tubes under N₂ and incubated in the dark. Sediments sampled in May 1997 were incubated at *in situ* sediment temperature (22 °C) for 0, 24, 48 and 120 hours. The second set of samples (June 1997) was incubated during 24 h at 10, 20 and 30 °C to reflect the range of sediment surface temperatures generally recorded during the year in the study area.

After each incubation period, $^{(14+15)}NH_4^+$ was extracted by 2M KCl (1:1, v:w) and analyzed for $^{(14+15)}NH_4^+$ concentration. An aliquot of this extract was stored at -20 °C for later isotopic analysis.

The microdiffusion technique was used to transfer the $^{(14+15)}NH_4^+$ from the KCl extracts to an acidified Al₂O₃ matrix (Laima, 1993). The maximum NH₄⁺ transfer rate onto the Al₂O₃ matrix (95%) was obtained after 96 hours of diffusion time.

The 15 N-labelled sediment residues were dried at 60 °C for 2 days, ground into fine powder and stored in the dark.

2.4. NH₄⁺ and ¹⁵N analysis

The KCl-extractable NH_4^+ in unlabelled and ¹⁵N-labelled samples was measured with a Skalar autoanalyzer. The % ¹⁵N excess of NH_4^+ fixed on the Al_2O_3 matrix and in the N of the dried residues of sediment was measured using a mass spectrometer coupled to a CHN analyzer (Isochrom, Fisons).

KCl-extractable NH_4^+ is defined as the inorganic N pool, whereas the organic N pool is given by the fraction measured in the dried residues of sediment. The NH_4^+ -N and the N contents (¹⁵N-labelled and unlabelled) in the inorganic N and organic N pools of sediment are expressed relative to sediment dry weight, as $\mu g NH_4^+$ -N.g⁻¹ dw and $\mu g N.g^{-1}$ dw, respectively.

2.5. Rate calculations

The kinetics of NH_4^+ at different incubation times was used to calculate the gross ammonification and NH_4^+ incorporation rates, as shown by the model of Kirkham and Bartholomew (1954, 1955). A simplified form of this model is often used for marine sediments (Blackburn, 1979). However, this model does not take into account ¹⁵N losses from the system (volatilization). In this study, we used Guiraud's model (Guiraud, 1984), which is also simplified assuming that (i) the variation of the isotopic excess of the inorganic nitrogen fraction during incubation is linear for short intervals as few days and (ii) the incorporated ¹⁵N is not remineralized during the experiment.

We first calculated leaks (f), which represented the decrease of ^{15}N in the inorganic N pool during one incubation, by using the following equation:

$$f = \frac{P_0 E_0 - PE}{t \left(\frac{E_0 + E}{2}\right)}$$

where P_0 and P are the pool size of NH_4^+ (µg NH_4^+ -N.g⁻¹ dw) at the beginning and end of incubation, E_0 and E are the corresponding atom % ¹⁵N excesses in the NH_4^+ pool and t is the incubation period (days).

The gross ammonification rate (m) is calculated as:

Table II. Parameters used for the calculation of gross ammonification and NH_4^+ incorporation at incubation times at 22 °C (May 1997), in the 0–2 cm and 2–4 cm layers. The variations with incubation time of the NH_4^+ pool (P) and the atom % excess in NH_4^+ pool (E) are presented before ammonification rates (m). Values of P_{org} represent the organic N pool, E_{org} the atom % excess in the organic N pool and i the NH_4^+ incorporation rate. The values are the means of three replicates. Standard deviations are given only for the rates (\pm SD).

Ammonification			NH ₄ ⁺ incorporation		
$ \begin{array}{c} P \\ (\mu g \ NH_4^+ - N.g^{-1} \ dw) \end{array} $	E (%)	$\begin{array}{c} m \\ (\mu g \ NH_4^+\text{-}N.g^{-1} \ dw.d^{-1}) \end{array}$	$\frac{P_{org}}{(\mu g N.g^{-1} dw)}$	E _{org} (%)	i (μ g N.g ⁻¹ dw.d ⁻¹)
58	1.466		1483	0.0035	
<u>()</u>		9.7 ± 3.1	1.400	0.0070	4.7 ± 1.2
60	1.243	57 + 38	1483	0.0078	48 ± 13
58	1.124	5.7 <u>1</u> 5.6	1483	0.0116	4.0 <u>1</u> 1.5
		6.6 ± 1.5			1.7 ± 0.7
73	0.828		1483	0.0150	
64	1.404		1409	0.0033	
50	1 200	5.3 ± 3.0	1.400	0.00(1	3.0 ± 1.1
59	1.288	4.1 ± 4.1	1409	0.0061	5.4 ± 1.4
53	1.196	4.1 <u>1</u> 4.1	1409	0.0109	<u> </u>
		2.1 ± 1.1			1.3 ± 0.8
58	1.069		1409	0.0140	
	Ammonification P (μg NH ⁺ -N.g ⁻¹ dw) 58 60 58 73 64 59 53 58	Ammonification P E (μg NH ⁺ ₄ -N.g ⁻¹ dw) (%) 58 1.466 60 1.243 58 1.124 73 0.828 64 1.404 59 1.288 53 1.196 58 1.069	Ammonification P E m (μ g NH ₄ ⁺ -N.g ⁻¹ dw) ($\%$) (μ g NH ₄ ⁺ -N.g ⁻¹ dw.d ⁻¹) 58 1.466 9.7 ± 3.1 60 1.243 5.7 ± 3.8 58 1.124 6.6 ± 1.5 73 0.828 64 1.404 59 1.288 4.1 ± 4.1 53 1.196 58 1.069	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

$$m = f + \frac{P - P_0}{t} \quad (\mu g NH_4^+ - N.g^{-1} dw.d^{-1})$$

The NH_4^+ incorporation rate (i) in the organic pool is calculated as:

$$i = \frac{P_{org}E_{org} - P_{org}^{0}E_{org}^{0}}{t\left(\frac{E_{0} + E}{2}\right)} \quad (\mu g \ N.g^{-1} \ dw.d^{-1})$$

where P_{org}^0 and P_{org} are the pool sizes of organic N (µg N.g⁻¹ dw) at the beginning and end of incubation and E_{org}^0 and E_{org} are the corresponding atom %¹⁵N excesses in the organic N pool.

3. RESULTS AND DISCUSSION

3.1. Kinetics of gross ammonification and NH_4^+ incorporation

Variations with incubation time of the inorganic and organic pools and isotopic excesses are shown in *table II*. In the inorganic pool of both layers, the NH_4^+ -N contents (P) exhibited only small changes, whereas the ¹⁵N isotopic excess (E) decreased continuously

with incubation time. This ¹⁵N decrease, indicating ¹⁴NH₄⁺ production owing to mineralization of organic matter, was used to estimate the ammonification rates (m) which ranged between 2.1 and 9.7 μ g NH₄⁺-N.g⁻¹ dw.d⁻¹. These rates decreased with incubation time in both layers and were higher in the 0-2cm layer. The organic N content (P_{org}) of both layers was constant during the incubation. The isotopic excesses (E_{org}) increased with time in both layers, contrasting with the decrease in the inorganic pool (E). This accumulation of ¹⁵N in the organic pool indicated NH_4^+ incorporation in living cells. NH_4^+ incorporation rates (i) ranged between 1.3 and 5.4 μ g $N.g^{-1}$ dw.d⁻¹. The influence of incubation time depended on the analysed stratum : in the 0-2 cm layer, rates remained constant up to 48 h of incubation and then decreased afterwards, whereas no clear trend was observed in the 2-4 cm layer.

The experimental procedure involved incubation under anoxic atmosphere although surface sediment was oxidized. But the penetration of O_2 was small, about 2 mm depth (Laima et al., 1999), and influenced only slightly the rates.

The general decrease or instability of ammonification and NH_4^+ incorporation rates after 24 h of incubation in a closed environment (*table II*), is probably due to the decreasing intensity of biological processes. This implies a depletion of available substrate with time because of its use by microbial communities. This suggests that the rates measured with incubations exceeding 24 h no longer reflect the *in situ* dynamics. Therefore, incubation time must be short to minimize the differences between laboratory and *in situ* conditions (Bowden, 1984), and furthermore to avoid ¹⁵N remineralization (Blackburn, 1993).

Comparing the m and i rates obtained in this study with other studies, our results lie in the same range as Blackburn (1979) and Blackburn and Henriksen (1983) but are somehow lower than in other reports (*table III*). Most of these sites are subtidal, thus differing in parameters such as temperature, sediment type and biotic communities. In the Mokbaai Bay, which is an intertidal sandy site with similar temperatures (Goeyens et al., 1987), the m values were much higher than those calculated in the Marennes-Oléron Bay.

In Marennes-Oléron intertidal sediments, ammonification and NH_4^+ incorporation rates are higher in the 0-2 cm layer than in the 2-4 cm layer, as often reported by others (Blackburn, 1979; Iizumi et al., 1982; Sumi and Koike, 1990; Hansen and Blackburn, 1991). This is attributed to higher availability of fresh organic matter in surface sediments (Bowden, 1984).

Labile organic N, which is the first mineralized organic matter fraction, can be estimated from measurements of the labile protein N. Garet (1996) found on the Marennes-Oléron mudflat that protein N represented, on average, 32 % of the particulate N content in the surficial sediment. Furthermore, it was found in an intertidal mudflat in the USA that only 25 % of protein N was degradable by bacterial enzymatic activity at the sediment-water interface (Mayer and Rice, 1992). With a total N content of 1442 mmol N per m⁻² of sediment wet weight (mmol N.m⁻² ww) in the surficial sediment, we estimated the labile protein N content to be about 115 mmol N.m⁻² ww in May 1997. In our experiments, ammonification rates (0–24 h incubations) reached 9.5 mmol NH_4^+ $.m^{-2}$ ww.d⁻¹ in the 0–2 cm layer at 22 °C. Assuming that all the labile protein N has been ammonified, we estimated that the time necessary to mineralize the labile protein N fraction in the surficial sediment of the Marennes-Oléron Bay is 12 days at 22 °C.

3.2. Temperature effects on the gross ammonification and NH_4^+ incorporation rates

Taking into account the results of the first experiment, incubations were limited to 24 h in the second experiment.

The rates of ammonification and NH₄⁺ incorporation obtained at 10, 20 and 30 °C are shown in *figure 2*. There was a major effect of temperature on both rates, which strongly increased from 10 to 30 °C. Although lower rates were obtained in the 2–4 cm layer compared to the 0–2 cm layer, rates increased in both layers. A one-way ANOVA was performed to test whether the mean ammonification and NH₄⁺ incorporation rates differed between temperatures and a multiple comparisons Tukey test showed that the rates at 30 °C were significantly different from those obtained at 10 and 20 °C (P < 0.05) (*figure 2*). However, in the 2–4 cm layer, the NH₄⁺ incorporation rate at 30 °C was significantly different only from the rate obtained at 10 °C (P < 0.05).

A higher increase of the ammonification rates was observed between 20 and 30 °C than between 10 and 20 °C. The corresponding Q_{10} values between these temperature ranges (10–20 °C and 20–30 °C) were 1.7 and 3.0 in the 0–2 cm layer and 2.3 and 4.0 in the 2–4 cm layer. The Q_{10} values for NH₄⁺ incorporation were constant (around 2.5) in the 0–2 cm layer from 10 to 30 °C and increased in the 2–4 cm layer (1.7 between 10 and 20 °C; 2.7 between 20 and 30 °C).

 Q_{10} values for the ammonification lie in the range values reported by Bowden (1984) in surficial coastal sediments ($Q_{10} = 2.6$) and by Sumi and Koike (1990) $(Q_{10} = 2.2)$. Processes were stimulated between 20-30 °C compared to 10-20 °C, thus reflecting a more intense activity of microbial communities at higher temperatures. An exception was noticed for NH_4^+ incorporation process in the 0-2 cm layer, where microbial communities were similarly active between 10-20 °C as between 20-30 °C. This could be due to the microalgae activity in the surface sediment, which is already high between 10 and 20 °C (Blanchard et al., 1997). As shown by their high Q_{10} , ammonification rates seem to be more sensitive to temperature than NH_4^+ incorporation rates at high temperatures. This could be explained by a different adaptation to temperature of microbial communities involved in each process.

Location	Sediment type	Sections (cm)	Ammonification rates (m)	NH ₄ ⁺ incorporation rates (i)	Temperature in situ (°C)	References
Denmark	Coastal marine	0-2 and 2-4	103–367 ^a	22–120 ^a	17	Blackburn, 1979
Alaska (USA) Japan	Eelgrass beds	0–3 0-1	46–150 ^ь 24–35 ^ь	38–77 ^ь 11–21 ^ь	11–17 20–22	Iizumi et al., 1982
Denmark	Coastal	0-2 and 2-4	24–152 ^a	18–84 ^a	3.5–10	Blackburn and Henriksen, 1983
The Netherlands	Intertidal marine	0–2	1170 ^a	-	20	Goeyens et al. 1987
Japan	Coastal and Estuarine	0–1	5.8-220 ^b	2.5–110 ^b	6–24	Sumi and Koike, 1990
Jamaica	Seagrass beds	0-4 and 4-8	204 ^a	13 ^a	29-31	Blackburn et al., 1994*
France	Intertidal Mudflat	0–2 and 2–4	111–475 ^a 3–14 ^b	$69-288^{a}$ $2-8^{b}$	22	Present paper**

Table III. Comparison with literature of m and i values obtained in the present paper, using the ¹⁵N isotope method.

^a nmol.cm⁻³ wet sediment.d⁻¹.

^b nmol.g⁻¹ wet sediment.h⁻¹.

* Recalculated rates.

** Rates are expressed in the 2 different units for comparison purposes.

Another way to assess the temperature effect on both rates is to calculate the *i:m* ratio, which indicates the fraction of produced NH_4^+ that is assimilated by the sediment microorganisms (table IV). In the 0-2 cm layer, the highest ratio (0.87) indicates that almost all regenerated NH₄⁺ has been incorporated by microorganisms. This incorporation is higher than that reported by Sumi and Koike (1990) for surficial coastal sediments, where about 50 % of the regenerated NH_4^+ was assimilated by benthic microorganisms. In our experiments, the highest *i:m* ratio was obtained at 20 °C. This variation of the i:m ratio could be explained by differences in the activities of the microbial communities in the sediment. For example, benthic microalgae activity was maximum at around 25 °C on this mudflat and decreased above this temperature due to thermo-inhibition effects (Blanchard et al., 1997). Bacterial populations involved in the NH⁺ turnover could also have such maximal activities at different temperatures, leading to variations in the *i*:m ratio. In the 2-4 cm layer, the *i*:m ratios showed that NH₄⁺ incorporation was much higher than NH_4^+ production at 10 and 20 °C. This was due to a weakness of the ammonification process at these temperatures, as indicated by the low rates (figure 2). This was also observed in deeper layers in Danish sediments (Blackburn, 1980).

In surficial sediments where the microorganism activity is intense, *figure 2* shows that produced NH_4^+ from ammonification is always available in excess compared to microorganism consumption between 10 and 30 °C. This clearly demonstrates that there is no limitation for benthic microorganisms concerning NH_4^+ . Since this form of inorganic nitrogen is preferentially assimilated by microalgae (Admiraal et al., 1987; Dortch, 1990), this thus suggests that benthic microalgae are not N-limited in our study site, in the sediment temperature range.

The excess of produced NH₄⁺ can be estimated by calculation of net ammonification rates defined as the difference between gross NH₄⁺ production and NH₄⁺ incorporation rates (m-i). This net ammonification represents the part of NH₄⁺ which can diffuse to overlying water by flushing during immersion period (Rocha, 1998) and can become available for phytoplancton (Blackburn and Henriksen, 1983). The net ammonification rates vary from 1.5 to 3.8 μ g NH₄⁺-N.g⁻¹ dw.d⁻¹ for 10 and 30 °C, respectively, and show the lowest value 0.8 μ g NH₄⁺-N.g⁻¹ dw.d⁻¹ at 20 °C. As previously for *i:m* ratio, this low value at 20 °C could be due to high NH_4^+ incorporation by benthic microalgae which have the maximal activity around 25 °C (Blanchard et al., 1997). This net ammonification represents 44, 14 and 23 % of produced

Figure 2. Comparison of gross ammonification and NH_4^+ incorporation rates obtained at 10, 20 and 30 °C during a 0–24 h incubation period. Experimentations were made in June 1997 in the 0–2 cm (a) and 2–4 cm (b) layers. Values are means of three replicates \pm standard deviation, except for rates at 10 °C for ammonification, where standard deviation could not be calculated. Results of ANOVA show that rates at 10 and 20 °C are never significantly different. The symbol * indicates that the rates at 30 °C are significantly different from those at 10 and 20 °C (P < 0.05), while the symbol \blacklozenge shows that rate at 30 °C is significantly different only from that at 10 °C (P < 0.05).

 NH_4^+ at 10, 20 and 30 °C, respectively. We can conclude that, in addition to benthic microalgae, phytoplankton potentially benefits of an important part, up to 44 %, of produced NH_4^+ from mineralization of organic matter in surface sediments of this bay.

The turnover time of NH_4^+ , defined as the ratio of average NH_4^+ pool to gross NH_4^+ production rates, was estimated in surficial sediments. It is inversely related to temperature: 15 days at 10 °C, 9 days at 20 °C and 3 days at 30 °C. These values are similar to Bowden (Bowden, 1984), who calculated an NH_4^+ residence time of about 1–2 weeks at 13 °C in surface marsh sediments. These results showed that the sediment temperature strongly influences the NH_4^+ turnover, which becomes shorter at higher temperatures. This fast return of NH_4^+ back to the environment is essential during spring and summer, because NH_4^+ rapidly becomes available to primary producers.

Table IV. Variations with sediment temperature of the ratio between NH_4^+ incorporation rates and gross ammonification rates *(i:m)*.

(i:m) ratio	10 °C	20 °C	30 °C	
0–2 cm	0.57	0.87	0.77	
2–4 cm	18.77	1.15	0.77	

4. CONCLUSION

Our results show that NH_4^+ production and incorporation rates greatly depend on sediment temperature. Hence, the emersion period should be considered for the NH_4^+ turnover studies in intertidal sediments where the variations of sediment temperature are high. However, a more detailed relationship between rates and temperature could be gained by shortening the temperature interval between measurements and increasing the temperature range.

This paper highlights that benthic regeneration of NH_4^+ is significant in intertidal sediments of Marennes-Oléron bay as source of nutrient for primary production. In the range of field sediment temperature, this regeneration provides all the NH_4^+ necessary to benthic microalgae in surface sediment and supports also a part of the phytoplankton production in overlying water.

Since the quality of organic matter inputs is highly variable on the Marennes-Oléron intertidal mudflat (Galois et al., 1996), a seasonal study should show the influence of the nature of the organic matter on the NH_4^+ turnover. Future work should also include the development of a benthic nutrient model taking into account these short-term temperature fluctuations in the ecosystem functioning.

Acknowledgements

We are grateful to V. Huet, L. Joassard and F. Mornet for their technical assistance and to O. Delfosse (INRA, Laon) for the ^{15}N analysis. We thank G.F. Blanchard, D. Delmas for constructive criticisms and the reviewers for their valuable remarks. The Poitou-Charentes Region is thanked for supporting this study and for awarding a thesis grant to F. Vouvé. Thanks are due to R. Knudsen, who corrected the English.

REFERENCES

- Admiraal, W., Riaux-Gobin, C., Laane, R.W.P.M., 1987. Interactions of ammonium, nitrate, and D- and L-amino acids in the nitrogen assimilation of two species of estuarine benthic diatoms. Mar. Ecol. Prog. Ser. 40, 267–273.
- Blackburn, T.H., Henriksen, K., 1983. Nitrogen cycling in different types of sediments from Danish waters. Limnol. Oceanogr. 28 (3), 477–493.

- Blackburn, T.H., Nedwell, D.B., Wiebe, W.J., 1994. Active mineral cycling in a Jamaican seagrass sediment. Mar. Ecol. Prog. Ser. 110, 233–239.
- Blackburn, T.H., 1979. Method for measuring rates of NH⁴₄ turnover in anoxic marine sediments using ¹⁵N-NH⁴₄ dilution technique. Appl. Environ. Microbiol. 37 (4), 760–765.
- Blackburn, T.H., 1980. Seasonal variations in the rate of organic-N mineralisation in anoxic marine sediments. In: Daumas, R. (Ed.), Biogéochimie de la matière organique à l'interface eausédiment marin. Centre National de la Recherche Scientifique, Paris, pp. 173–183.
- Blackburn, T.H., 1993. Turnover of ¹⁵NH₄⁺ tracer in sediments. In: Kemp, P., Sherr, B.F., Sherr, E.B., Cole, J.J. (Eds.), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, pp. 643–648.
- Blanchard, G.F., Guarini, J.-M., Gros, Ph., Richard, P., 1997. Seasonal effect on the photosynthetic capacity of intertidal microphytobenthos and temperature. J. Phycol. 33, 723– 728.
- Bowden, W.B., 1984. A nitrogen-15 isotope dilution study of ammonium production and consumption in marsh sediment. Limnol. Oceanogr. 29 (5), 1004–1015.
- Dortch, Q., 1990. The interaction between ammonium and nitrate uptake in phytoplankton. Mar. Ecol. Prog. Ser. 61, 183–201.
- Feuillet-Girard, M., Héral, M., Sornin, J.-M., Deslou-Paoli, J.-M., Robert, J.-M., Mornet, F., Razet, D., 1988. Eléments azotés de la colonne d'eau et de l'interface eau-sédiment du bassin de Marennes-Oléron : influence des cultures d'huîtres. Aquat. Living Resour. 1, 251–265.
- Feuillet-Girard, M., Gouleau, D., Blanchard, G.F., Joassard, L., 1997. Nutrients fluxes on an intertidal mudflat in Marennes-Oléron Bay, and influence of the emersion period. Aquat. Living Resour. 10, 49–58.
- Galois, R., Richard, P., Fricourt, B., 1996. Seasonal variations in suspended particulate matter in the Marennes-Oléron Bay, France, using lipids as biomarkers. Estuar. Coast. Shelf Sci. 43 (3), 335–357.
- Garet, M.-J., 1996. Transformation bactérienne de la matière organique dans les sédiments côtiers. Relation entre les métabolismes respiratoires et les activités exoprotéolytiques bactériennes, Univ. thesis, Microbiology, Bordeaux 2 University, 116 p.
- Goeyens, L., de Vries, R.T.P., Bakker, J.F., Helder, W., 1987. An experiment on the relative importance of denitrification, nitrate reduction and ammonification in coastal marine sediment. Neth. J. Sea Res. 21, 171–175.
- Guarini, J.-M., Blanchard, G.F., Gros, Ph., Harrison, S.J., 1997. Modelling the mud surface temperature on intertidal flats to investigate the spatio-temporal dynamics of the benthic microalgal photosynthetic capacity. Mar. Ecol. Prog. Ser. 153, 25-36.
- Guiraud, G., Marol, C., Thibaud, M.C., 1989. Mineralization of nitrogen in the presence of a nitrification inhibitor. Soil Biol. Biochem. 21 (1), 29–34.

- Guiraud, G., 1984. Contribution du marquage isotopique à l'évaluation des transferts d'azote entre les compartiments organiques et minéraux dans les systèmes sol-plante, Doc. Sci. thesis, Natural Sciences, Paris 6 University, 335 p.
- Hansen, L.S., Blackburn, T.H., 1991. Aerobic and anaerobic mineralization of organic material in marine sediment microcosms. Mar. Ecol. Prog. Ser. 75, 283–291.
- Harder, W., Veldkamp, H., 1971. Competition of marine psychrophilic bacteria at low temperatures. Antonie Leeuwenhoek 37, 51–63.
- Henriksen, K., Hansen, J.I., Blackburn, T.H., 1981. Rates of nitrification, distribution of nitrifying bacteria, and nitrate fluxes in different types of sediment from Danish waters. Mar. Biol. 61, 299–304.
- Iizumi, H., Hattori, A., McRoy, C.P., 1982. Ammonium regeneration and assimilation in eelgrass (*Zostera marina*) beds. Mar. Biol. 66, 59–65.
- Kirkham, D., Bartholomew, W.V., 1954. Equations for following nutrient transformations in soil, utilising tracer data. Soil Sci. Soc. Am. Proc. 18, 33–34.
- Kirkham, D., Bartholomew, W.V., 1955. Equations for following nutrient transformations in soil, utilising tracer data: II. Soil Sci. Soc. Am. Proc. 19, 189–192.
- Klump, J.V., Martens, C.S., 1983. Benthic nitrogen regeneration. In: Carpenter, E.J., Capone, D.G. (Eds.), Nitrogen in the Marine Environment. Academic Press, New York, pp. 411–457.

- Laima, M.J.C., Girard, M., Vouvé, F., Richard, P., Blanchard, G., Gouleau, D., 1999. Nitrification rates related to sedimentary structures in an Atlantic intertidal mudflat (Marennes-Oléron Bay, France). Mar. Ecol. Prog. Ser. 191, 33–41.
- Laima, M.J.C., 1993. Recovery of ¹⁵NH₄⁺ in labelling experiments on coastal marine sediments. Mar. Chem. 44, 31–42.
- Laima, M.J.C., 1994. Is KCl a reliable extractant of ¹⁵NH₄⁺ added to coastal marine sediments. Biogeochemistry 27, 83–95.
- Mayer, L.M., Rice, D.L., 1992. Early diagenesis of protein: a seasonal study. Limnol. Oceanogr. 37 (2), 280–295.
- Rocha, C., 1998. Rhythmic ammonium regeneration and flushing in intertidal sediments of the Sado estuary. Limnol. Oceanogr. 43 (5), 823–831.
- Ryther, J.H., Dunstan, W.M., 1971. Nitrogen, phosphorus, and eutrophication in the coastal marine environment, Science. NY 171, 1008–1013.
- Sumi, T., Koike, I., 1990. Estimation of ammonification and ammonium assimilation in surficial coastal and estuarine sediments. Limnol. Oceanogr. 35 (2), 270–286.
- Thamdrup, B., Fleischer, S., 1998. Temperature dependence of oxygen respiration, nitrogen mineralization, and nitrification in Arctic sediments. Aquat. Microb. Ecol. 15, 191–199.
- Trimmer, M., Nedwell, D.B., Sivyer, D.B., Malcolm, S.J., 1998. Nitrogen fluxes through the lower estuary of the river Great Ouse, England: the role of the bottom sediments. Mar. Ecol. Prog. Ser. 163, 109–124.