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Abstract: Comparative methods are used to investigate the attributes of present species or higher 
taxa. Difficulties arise from the phylogenetic heritage: taxa are not independent and neglecting 
phylogenetic inertia can lead to inaccurate results. Within-species variations in life-history traits are 
also not negligible, but most comparative methods are not designed to take them into account. Taxa 
are generally described by a single value for each trait. We have developed a new model which 
permits the incorporation of both the phylogenetic relationships among populations and within-species 
variations. This is an extension of classical autoregressive models. This family of models was used to 
study the effect of fishing on six demographic traits measured on 77 populations of teleost fishes. 
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Abstract

Comparative approach in Biology is used to investigate the atributes of actual
species or higher taxa. Difficulties arise from the phylogenetic heritage: taxa are not
independent and neglecting phylogenetic inertia can lead to inaccurate results. More-
over intraspecific variations in life history traits are not negligible, most comparative
methods are not designed to take them into account. Classically, taxa are described
by a single value for each trait. In this paper, we propose a new modelling approach
which permits to incorporate both the phylogenetic relationships among populations
and intraspecific variations. This approach is an extension of classical autoregressive
models. We applied this family of models to study the fishing effect on six demographic
traits measured on 77 ppulations of Teleost fishes.

1 Introduction

Comparative methods are more and more used to test adaptive hypotheses in such diverse
fields as ethology(reviewed in Foster & Cameron 1996), population dynamics and life his-
tory evolution (Stearns 1983; Gaillard et al. 1989; Promislow & Harvey 1990; Sinervo
1990; Pontier et al. 1993; Shine & Iverson 1995; Gaillard et al. 1997; Clobert et al. 1998),
zoology (Gittleman & Luh 1992; Gordon & Bergstad 1992), parasitology (Skorping et al.
1991) and more recently in molecular biology (Bromham et al. 1996). Modern methods
include phylogenetic information and are used to estimate or correct for phylogenetic iner-
tia that might otherwise obscure the role of natural selection in trait variation (Wanntorp
1983; Harvey & Pagel 1991; Martins & Hansen 1997). Until now most of these methods
have been based on between-species or higher order taxa data (e.g. Western 1979; Stearns
1983; Gaillard et al. 1989; Promislow & Harvey 1990; Winemiller & Rose 1992; Clobert et
al. 1998). This implicitly assumes intraspecific variability in life history traits is negligible
compared to inter-taxons variability. However a lot of studies has now demonstrated that
traits may largely vary among populations of a same species (Leggett & Carscadden 1978;
Brown 1983; Jennings & Beverton 1991; Sedinger & Flint 1995 Juanes et al. 1996; Reznick
et al. 1996; Rose et al. 1998).
Despite this fact, most modern comparative methods are not designed to properly estimate
the relationships between changes in trait and environment at the species level (Martins &
Hansen 1997). Comparative studies of such variation, by enhancing the quality of higher-
order comparisons, would greatly improve insight into evolutionary process (Gittleman
& Kot 1990; Foster & Cameron 1996; Martins & Hansen 1997). The major problem
is to combine different time-scales: historical (macroevolutionary processes) and present
ecological time (microevolutionary processes).
Here we propose a new comparative method designed to incorporate the population level
in interspecific comparative analyses. Our method is derived from autoregressive meth-
ods. These methods have been developed to statistically decompose trait variation into
two parts: a phylogenetic autoregressive component based on the assumption that closer
relatives will have more similar traits than less related species; and a residual specific com-
ponent which includes the remaining variability (Cheverud et al. 1985; Gittleman & Kot
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1990). We extended this framework by splitting the phylogenetic autoregressive component
into two parts: the inter- and the intra-specific autoregressive components. We explicitely
included environmental influence into the residual specific component.
Our method has been applied to analyze life history traits variation among 77 fish popula-
tions. These populations undergo various fishing pressures constituting novel environments
for individuals. Therefore environmental effects can be estimated independently of phylo-
genetic influence. Our statistical approach allowed first to characterize covariation of fish
life history characters when the effects of phylogeney and adult body size is removed; sec-
ond to estimate and compare the effects of fishing on life history traits among species. We
compared the results of our method with a non phylogenetic approach and with a classical
autoregressive method.
The organization of this paper is as follows: in section 2, we introduce the classical au-
toregressive comparative model and explain the limits of this method. We propose a new
family of models to take into account intraspecific variations. In section 3 we compare
linear modeling of the effect of fishing to our family of models and discuss the differences.
Finally section 4 contains our conclusions.

2 A family of autoregressive models

Comparative methods assume that a collection of p estimates of phenotypic means for a
trait are available. Let denote Y = (Y1 · · · Yp)′ the vector of the p measurements. As
described in Cheverud et al. we assume that every trait for a given species i can be written
as a linear function

Yi = Zi + εi + Liγ,

where Zi is the phylogenetic (or inherited) part, εi represents the adaptation of species i
and Liγ a dependence with r covariates, typically size in an allometric context.
This decomposition into 2 or 3 parts (presence/absence of covariates) is the same as those
used by Cheverud et al. (1985) or Lynch (1991) in two different models. That is what we
can call the basic phylogenetic assumption.
It follows from this equation that we need to make more assumptions to know the precise
form of Zi, the phylogenetic value. Using Cheverud et al.’s (1985) or Gittleman and Kot’s
(1990) assumption, Zi the inherited value of population i can be reconstructed from the
other observations of the trait Y . Because phylogenetic neighbors are thought to have close
values of the trait, the phylogenetic part is written as a weighted mean of Y

Zi =
p∑

j=1,j �=i

ρWijYj.

W is an p × p weighting matrix where Wij are close to 1 for species i and j who have
a recent common ancestor (who are neighbors on the phylogenetic tree) and close to 0
otherwise. The weights are chosen as the inverse of the distance between species i and j.
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If no precise information on the distance between ancestors are known, which is usually
the case, every edge of the phylogenetic tree is set equal to 1 in order to capture only the
shape of the tree. The parameter ρ is unknown and has to be estimated. It represents the
intensity of the phylogenetic part in the analyzed trait Y . We can afford this simplification
because autoregressive methods are known to be robust to inaccuracies in branch length
(Gittleman & Luh, 1992).
To fit the environmental residual part we can use again the classical assumption of Cheverud
et al. (1985) or Gittleman & Kot (1990), that is for each species the environmental part
follows an identically independent distributed normal law with mean μ and variance σ2

εi ≡ N (μ, σ2). (1)

In other words for each species the adaptation of species is the same in mean and fluctuate
around μ with the same magnitude σ2. Thus this hypothesis is tenable only if each species
is suspected to have the same environment. When it is not the case this hypothesis has
to be relaxed. Moreover recall that for classical comparative studies, each measure Yi is a
phenotypic mean in the species i.
To take into account intra-specific variations, which is our goal, we have to work on n
measures of the trait Y on different populations. The hypothesis (1) of the same envi-
ronment for each population is too restrictive : we want to model intra-specific variation
and we suppose with (1) that there is the same intra-specific contribution μ for all the n
populations. The best formulation is to make an intra-specific contribution μi different for
each population i but it will be impossible to estimate all these coefficients. Thus we have
to suppose the existence of G groups of homogeneous environments. We relax hypothesis
(1) as

εi ≡ N (μg(i), σ
2), (2)

where g(i) ∈ {1 · · ·G} denote a group of homogeneous environment to which the population
i belongs. G is chosen small to have enough populations in each group for the coefficients
to be estimable. We also can do a more complex assumption on the environmental effect

εi ≡ N (μg(i), σ
2
g(i)). (3)

Thus we have now 3 possibilities to model the environmental part. When the most complex
one (3) is true, there exists G groups of homogeneous environmental variation around the
mean μg(i) with magnitude of σ2

g(i). Difference due to adaptation and thus intra-specific
variation is now accounted by these G groups. The model (2) is just an intermediary level
between the simplest hypothesis of Cheverud et al. and the complex one.
Using population instead of species dictates adaptations for the phylogenetic effect. Be-
cause there still exists some links between populations of the same species we can use traits
of population in the same species to estimate the phylogenetic part. But we cannot use
the same scale for the inter-specific evolution and these intra-specific links. Thus we split
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the inherited part into 2 terms, the intra-specific (within) autoregression and inter-specific
(between) autoregression

Zi =
n∑

j=1,j �=i

ρ(w)W
(w)
ij Yj +

n∑
j=1,j �=i

ρ(b)W
(b)
ij Yj.

W
(b)
ij is the inverse of path’s length on the phylogenetic tree between the species of pop-

ulation i and the species of population j (Cheverud et al., 1985). W
(w)
ij are the same

everywhere and chosen without loss of generality equal to 1.
Finally we have a family of models defined by

Y = ρ(w)W (w)Y + ρ(b)W (b)Y + ε + Lγ

and εi ≡ N (μ, σ2) model 1, same environment
εi ≡ N (μg(i), σ

2) model 2, equal variance in all groups of environment

εi ≡ N (μg(i), σ
2
g(i)) model 3.

From these equations the log-likelihood of models can be found. For model 3:

L = ln |B| − 1
2

ln |Σ| − 1
2

[BY − θ]′ Σ−1 [BY − θ]

where B = In − ρ(w)W (w) + ρ(b)W (b)

Σ = diag
(
· · · σ2

g(i) · · ·
)

and θ′ =
(· · ·μg(i) · · ·

)
+ (Lγ)′.

We use maximum likelihood estimates of the parameters of the three models. Maximization
of L implies an iterative method. To decrease the number of parameters involved in the
maximization we can compute the concentrated likelihood. For example in the model 3
(or in the model 1), we first set the partial derivatives of L with respect to

{
σg(i)

}
equal

to zero to obtain the estimate of all σg(i)

σ2
g(i) =

1
#(g)

[BY − θ]′ Dg [BY − θ] (4)

where #(g) denote the cardinal of group g

Dg = diag
(· · · 1g(i) · · ·

)
and 1g(i) indicator function of group g(i).

Using this estimation in the log-likelihood equation leads to the concentrated likelihood
(for models 1 and 3)

M =
1
2

G∑
g=1

#(g) ln
{
[BY − θ]′ Dg [BY − θ]

} − ln |B|. (5)

The parameter estimators are the minimum of M. It can be seen easily that a minimization
of such a function is not possible in a formal way and we use an iterative algorithm:
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the steepest descent algorithm, see for instance Hager et al. 1993 (Appendix B). Using
concentrated likelihood for model 3 allows to decrease the number of parameters to be
calculated by an iterative method of optimization by G: {σg} are no longer present in the
definition of M. We could use (5) for model 2 too, but it eliminates only one parameter:
σ. Therefore we use another concentrated likelihood which does not involve the {μg} (see
appendix A) and decrease the number of parameters by G.
Finally we have a family of models among which we have to select the best one. As these
models are nested, we can apply a likelihood ratio test procedure. For instance if we want
to test a classical model (model 1, μg = μ, σg = σ, ∀g ∈ {1, · · · , G}) with q0 = 4 + r
parameters, H0, against the environmental model 2 (μg, σg = σ, ∀g ∈ {1, · · · , G}) with
q1 = G + 3 + r parameters, H1, we use twice the difference between the log-likelihood
estimated under H1 (L̂H1) and the log-likelihood estimated under H0 (L̂H0). This statistic
follows a Chi-square distribution with q1 − q0 = G − 1 degrees of freedom

λ = 2
(
L̂H1 − L̂H0

) ∼= χ2(q1 − q0).

If observed λ is greater than χ2
1−α(q1 − q0), the (1 − α)th quantile, then the model H0 is

rejected. The size of test α is chosen by the user and usually equal to 5%.
To guarantee a familywise error rate equal to α chosen by the user the first test is model
1 (H0) against model 2 (H1), and if H0 is rejected then we perform a second test: model
2 (H0) against model 3 (H1) (see for instance Marcus & Peritz, 1976)(Marcus, Peritz,
& Reitmeir, 1976). We can apply the same procedure to test whether a phylogenetic
effect exits or not, we just need to estimate the parameters with ρ(w) = ρ(b) = 0. The
corresponding models are also nested within their counterpart with phylogenetic effect. We
can build an intermediary family of models with ρ(w) = 0, close to the classical model. A
comparison of these models with informative criterion such as Akaike Informative Criterion
(Akaike, 1974) is also possible and gives usually the same results. For sake of completeness
the maximum likelihood theory allows us to compute asymptotic confidence intervals for
parameters from the Fisher information matrix.

3 Example

We are interested in measuring the effect of fishing among 77 diversely exploited fish
populations from 49 species. Numerous examples of influence of fishing on fishes are
discussed in the literature (e.g. Schaffer and Elson 1975; de Veen 1976; Ricker 1981;
Nelson and Soulé 1987; Jorgensen 1990; Rijnsdorp 1991; Trippel 1995; Trippel et al. 1997).
Monostock studies seem a natural way to investigate this effect on a given population, but
it is often mixed with other, generally unknown variations. To circumvent this difficulty we
are led to comparative approach on populations. To take into account both intraspecific
variation due to fishing and phylogenetic links between these 77 populations, we use the
method of the previous section. We compare the results to an linear model fitting including
effect of fishing and a phylogenetic effect.
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We analyze fishing pressure, thus we build G = 3 homogeneous groups of environments
with low, moderate and high fishing pressure. Each population was assigned to a fishing
pressure group on the basis of the ratio of fishing mortality F to natural mortality M: low
fishing pressure group (F/M<1), intermediate (1<F/M<2) and high fishing pressure group
(F/M>2).
The constitution of these groups is independent of other possible variation : phylogenetic
part and other intraspecific variation. For instance fishing pressure is independent of taxa,
and uniformly spread along the phylogenetic tree. Thus we can state that the mean of
these fluctuations, in one given group g is zero, and they just contribute to the fluctuation
around the mean (i.e. σg). This is obviously our environmental hypothesis. If there is
some effect of fishing it would be reflected in the coefficients {μg} and the selected model
have to be one with different means (hypothesis (2) or (3)). A contrario, if no effect of
fishing on the analyzed trait is present then the chosen model is (1).
We analyzed five life history traits : time-to-5%-survival (T05), the time elapsed from sexual
maturity until 95% of a cohort is dead, which is an index of life-span as affected by fishing
mortality; length-at-5%-survival (L05) was used as adult size parameter; median age and
length at sexual maturity (Am and Lm); and Fb, the slope of the log-log fecundity-length
relationship. Only the topology of the phylogenetic tree is known, based on morpho-
anatomical characters, and branch lengths were set equal to one. For further detail and
data sources refer to Rochet (1998). Prior to all the studies, we use a log transformation
on each trait except for the coefficient Fb.
In order to estimate effect of fishing on these traits, we performed a non-phylogenetic
analysis by fitting a linear model to log-transformed data, with adult size and fishing
pressure group as explanatory variables. Fishing has a significant effect on two traits,
length at maturity and time-to-5%-survival (Tab. 1). We can also incorporate a rough
phylogenetic constraint in the linear model: a categorical variable which represents the
order to which a population belongs (3-factor model with or without interaction). Whereas
the latter model shows significant effect of phylogeny on three traits (Am, T.05, Fb), there
is no significant interaction between phylogeny at the order-level and fishing; moreover,
this rough phylogenetic approach does not change the results, compared to the 2-factor
model (Table 1).
By contrast, our models reveal both a significant phylogenetic effect on each trait except
length at maturity, and a significant effect of fishing on all traits except adult size (Table
2). The fishing effect on Am and Fb is concealed when phylogenetic constraints are not
properly taken into account.
The phylogenetic part for Length at Maturity (Lm) is not significant in any of the models.
This may be explained by the regression performed on Length at 5% survival, which
removes most of the phylogenetic constraint. Our family of models provides a test to know
whether a phylogenetic component is significant, and which links are important (within
or between species). A formal examination of phylogenetic part, if present, can help to
understand evolutionary patterns (Rochet et al. 2000). This type of analysis is beyond
the scope of this paper.
To interpret fishing pressure we have to look at the parameters {μg} when present (all
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traits except L05). Thus we can notice on Fig. 1 that, unsurprisingly, fishing decreases
time-to-5%-survival, but also affects other traits: increasing fishing pressure decreases
age at maturity and increases length at maturity and the slope of the fecundity-length
relationship. Populations compensate for the high adult mortality caused by fishing by
maturing earlier, growing faster and by a higher fecundity.

4 Conclusion

The comparative method presented here estimates the relative contribution to trait vari-
ability of phylogeny, allometry and environment. This method analyses patterns of vari-
ability and does not aim to infer the processes underlying these patterns. Among the exist-
ing comparative methods, many assume an evolutionary process underlying phylogenetic
similarity, e.g. a Brownian motion model (Felsenstein 1985; Grafen 1989) or stabilizing
selection (Hansen 1997). A phylogeny with known branch lengths is necessary to esti-
mate the parameters of these models (Felsenstein 1985; Hansen 1997). On the other hand,
phylogenetic autoregression has been criticized because the interpretation of the estimated
parameters is not clear in evolutionary terms (Gittleman & Luh 1992; Martins 1996). How-
ever, as we do not have any information about the history of the selective regime on the
phenotypic traits analyzed, a method accurately describing existing patterns seems more
reasonable than inferring untestable evolutionary processes.
Our method extends the previous autoregressive method developed by Cheverud et al.
(1985) and Gittleman & Kot (1990) in two manners. First by splitting the autoregressive
component into two parts, one inter-specific and one intraspecific. This additional com-
plexity is required because branch lengths are not known. When inter and intra-specific
variations are not specified in the model, the difference of time scale between evolution-
ary and ecological processes has to be described by arbitrary differences of branch lengths
between or within species (Rochet 1998). The second extension relative to classical autore-
gression is the estimation of an environmental component. In the classical autoregression,
the influence of environment can be sought by examining correlation of environmental vari-
ables with the residual ’specific’ component after it has been estimated (Gittleman & Kot
1990; Rochet 1998). Our method both estimates and tests for environmental effects while
fitting the autoregressive model. The simultaneous incorporation of all effects in a single
model allows a better estimation of each component. This is exemplified by the fact that,
for some traits, effect of fishing are significant only when phylogenetic effects are described
in the model. That the significance of effects of fishing differs when phylogenetic effects
are taken into account or not is one more plea to incorporate phylogenetic information into
the analysis of comparative data.
A further advantage of the likelihood procedures used here is that they allow to test
for each separate effect by likelihood ratio test. It has been suggested that comparative
methods should not be used unless phylogenetic effects are evidenced by various tests
(Gittleman & Kot 1990; Björklund 1997 ). However, to detect whether a phylogenetic
pattern exists in the data (H1) or not (H0), we need a statistic which is a function of the
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observations. Because data are distributed in a random unknown fashion, this function
also has an unknown distribution. The assumptions needed for deriving the distribution
of the statistics are directly linked to the models supposed to be true under H0 (Cliff
& Ord 1981). Moreover, to have a good control on the power of the test, the probability
distribution under H1 needs to be known (Lehmann 1986). Here H1 is not entirely specified:
we just know that independence of observations is not satisfied, this is the second difficulty
with testing independence. As these informations required to conduct a classical test are
not available, we prefer an alternative to this approach: we first define models and then
conduct a statistical choice between them.
A strong assumption of the present approach is that there is no interaction between the
various components (phylogenetic, allometric, environmental). Each component is consid-
ered as a constraint which cannot be influenced by the other components. This clearly may
be partially wrong, and for example we can reasonably assume that fish from different taxa
will respond differently to fishing. Hence interaction between phylogeny and environment
may exist, which has not been modeled here. The estimation of interaction terms requires
a much larger sample than the one used here. The present model could easily be extended
to account for interactions between components. The analyses performed in this paper
are univariate; an extension to multivariate modeling would also be possible. As done by
Lynch (1991) simplification for the covariance structure is necessary to limit the increase in
the number of parameters; further work is needed on this topic to obtain tractable models.
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A concentrated likelihoods

Recall that for models 1 and 3 the concentrated likelihood is

M =
1
2

G∑
g=1

#(g) ln
{
[BY − θ]′ Dg [BY − θ]

} − ln |B|. (6)
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The first partial derivatives are then

∂M
∂μg

= −card(I)
1l′gDg (BY − θ)

(BY − θ)′ Dg (BY − θ)
, (7)

where 1lg =
(· · · 1g(i) · · ·

)′ (8)

∂M
∂ρ(b)

= −
G∑

g=1

#(g)
Y ′W (b)′Dg (BY − θ)

(BY − θ)Dg (BY − θ)
+ tr

{
(BY − θ)−1 W (b)

}
(9)

∂M
∂γ

= −#(g)
L′Dg (BY − θ)

(BY − θ)′ Dg (BY − θ)
. (10)

The partial derivative with respect to ρ(w) is obviously obtained from equation (9) by
exchanging superscript (w) for (b). The gradient of M is then

∇M =
(

∂M
∂ρ(b)

,
∂M
∂ρ(w)

, · · · ∂M
∂μg

· · · ,
∂M
∂γ

′)
. (11)

For the model 2 we first set partial derivatives of the log-likelihood with respect to μg equal
to zero leading to

μ̃g =
1

#(g)
[
Y ′B′ − γ′L′] 1lg. (12)

Thus we obtain the concentrated likelihood for model 2

M = − ln |B| + n ln σ +
1

2σ2
[BY − (μ̃ + Lγ)]′ [BY − (μ̃ + Lγ)] ,

where μ̃ is a vector of n coordinates where the ith is μ̃g(i).
Partial derivatives of M are then

∂M
∂σ

=
n

σ
− 1

σ3
(BY − θ)′(BY − θ),

∂M
∂ρ(b)

= tr(B−1W (b)) − 1
σ2

(
W (b)Y +

∂μ̃

∂ρ

)′
(BY − θ) ,

∂M
∂γ

= − 1
σ2

[
L +

∂μ̃

∂γ

]′
[BY − θ] .

We can exchange the superscript ρ(w) for ρ(b) to get the missing partial derivative. The
gradient is defined by

∇M =
(

∂M
∂ρ(b)

,
∂M
∂ρ(w)

,
∂M
∂σ

,
∂M
∂γ

′)
. (13)
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B steepest descent algorithm

To implement our method we need to estimate for each model the parameters Φ. For
model 1, Φ is (ρ(b), ρ(w), μ, σ, γ) ; for model 2, Φ is equal to (ρ(b), ρ(w), · · ·μg(i) · · · , σ, γ)
and for model 3 it is (ρ(b), ρ(w), · · ·μg(i) · · · , · · · σg(i) · · · , γ). To obtain this estimation we
minimize the function M(φ) (equation (6) for models 1 and 3 or equation (13) for model
2). The value φ̂ which achieves the minimum is the estimation of φ. To get the estimation
of the missing parameters (σ for model 1, · · ·μg(i) · · · for model 2 and · · · σg(i) · · · we use
equation (4) with g = 1, (12) or (4) respectively. This procedure is summarized in the
table (3). To obtain φ̂, we use the following minimization iterative algorithm :

steepest descent algorithm for model 1 or 3

Require: In−ρ(b)(k)
W b−ρ(w)(k)

W w non singular ∀k {That algorithm stop whenever this
condition is not satisfied anymore}

Search: φ̂ = arg maxφ = M(φ) {the estimation of the coefficient of the chosen model}
φ(0) ← (ρ(b)(0), ρ(w)(0), · · · μ(0)

g(i) · · · , γ(0)) {2 + g + r initial values, chosen by the user}
H(0) ← I2+g+r{Common choice for the starting approximation of the Hessian}
δ and ν {absolute function and parameters convergence tolerances}
while

∣∣M(φ(k+1)) −M(φ(k))
∣∣ ≤ δ or max

∣∣φ(k+1) − φ(k)
∣∣ ≤ ν do

φ(k+1) ← φ(k) − s(k)H(k)−1 ∇M′ {updating the parameters for the steepest descent of
M, where ∇M is the gradient of M, see appendix A, s(k) is the step size chosen (with
Armijo’s rule for instance) and H(k) is an approximation of the Hessian}
H(k+1) ← H(k) − ∇M′ ∇M

∇M H(k)−1 ∇M
{updating the approximation of the Hessian}

end while
σ̂2

g = [By − θ]′ Dg [BY − θ] /#(g) {equation (4)}
Calculus of V̂ ar(φ̂) ≈ I(φ̂)−1 {where I(φ̂) is the Fisher information matrix}

The algorithm is the same for model 2 except that φ is now (ρ(b), ρ(w), σ, γ) and M(φ) is
defined by equation (13). In this case, the computation of σ̂2

g at the end of the while loop is
replaced by the computation of μ̂g using the equation (12). We do not show the equation of
the Fisher information matrix because of its length. The step size can be chosen as constant
s(k) = s ∀k, or as optimal step size s(k) = arg mins>0 M(φ(k))−M(φ(k)−sH(k)−1 ∇M′) or
by using a method to select it : Armijo’s rule, Goldstein or Wolfe methods (Hager et al.,
1993). Recall that the implementation of a steepest gradient algorithm is straightforward in
mathematical or statistical softwares such as Splus, matlab, mathematica etc... Splus
programs are available from the first author.
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Models Am Lm T05 Fb
A) 2 factor model: Yi = γL05 + μg(i)

L05 89.32*** 1361.18*** 70.57***
Fishing 2.29(NS) 6.14** 21.40*** 1.86(NS)

B) 3 factor model: Yi = γL05 + μg(i) + Orderi
L05 130.98*** 1537.40*** 87.29***

Order 5.64*** 1.68(NS) 4.79*** 3.26**
Fishing 1.81(NS) 8.93*** 19.93*** 3.00(NS)

C) 3 factor model with interaction:
Yi = γL05 + μg(i) + Orderi + μg(i) ∗ Orderi

L05 137.18*** 1818.99*** 89.80***
Order 5.91** 1.99(NS) 4.93*** 3.17**
Fishing 1.89(NS) 10.57*** 20.50*** 2.92(NS)

Interaction 1.34(NS) 2.32(NS) 1.21(NS) 0.79(NS)

Table 1: F-values for linear models fitted to life-history traits: A) with two factors (non
phylogenetic approach). B) with three factors (rough phylogenetic approach). C) with
three factors with interaction (rough phylogenetic approach with interaction). NS: P >
0.05; *: 0.05 > P > 0.01; **: 0.001 < P < 0.01; ***: P < 0.001.

Models Am Lm T05 L05 Fb
“Between-Within” Models: ρ(b) and ρ(w)

(1) 15.6146 98.5432 8.6155 3.6635 -29.9463
(2) 23.7192 104.5312 27.3791 5.0536 -25.3097
(3) 26.4237 113.4313 27.6976 7.9291 -20.1064

“Between”: ρ(w) = 0
(1) 18.3908 98.5432 6.2175 -10.9749 -31.6265
(2) 20.7376 104.5312 23.9823 -9.5576 -29.2779
(3) 24.1296 113.4313 23.5953 -6.5538 -21.3669

“Independent observations”: ρ(b) = 0 and ρ(w) = 0
(2) 20.7376 104.5312 23.9823 -12.2362 -30.5127
(3) 24.1296 113.4313 24.4058 -8.4790 -22.9660

Table 2: Log-likelihood of the nested autoregressive models, (3) full model: μ1 · · ·μG,
σ1 · · · σG; (2) σI = σ ∀I; (3) μI = μ ∀I and σI = σ ∀I ; threshold value for an increase of
2 parameters χ2

0.95(2) ≈ 3 or 1 parameter 1
2χ2

0.95(1) ≈ 1.95. Selected model in bold font.
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Model 1 Model 2 Model 3
Models Parameters Φ (ρ(b), ρ(w) , μ, σ, γ) (ρ(b), ρ(w), · · ·μg(i) · · · , σ, γ) (ρ(b), ρ(w), · · ·μg(i) · · · , · · ·σg(i) · · · , γ)

(all the parameters)
Parameters φ of the (ρ(b), ρ(w) , μ, γ) (ρ(b), ρ(w), σ, γ) (ρ(b), ρ(w), · · ·μg(i) · · · , γ)

concentrated likelihood
Concentrated equation (6) equation (13) equation (6)

Likelihood M(φ) with G = 1
Estimation of φ Steepest descent Steepest descent Steepest descent
Gradient ∇M equation (11) equation (13) equation (11)

Calculus of equation (4) equation (12) equation (4)
missing parameters with G = 1

Table 3: Parameters to be estimated and equation number for models 1,2 and 3.
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Figure 1: Fishing effect on demographic traits: estimated μg and its asymptotic confidence
interval for the groups of fishing pressure (1: low fishing mortality, 2: moderate fishing
pressure, 3: high fishing pressure).
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