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INTRODUCTION

Haplosporidian parasites can infect several species
of oysters. Haplosporidium nelsoni and H. costale
cause extensive mortalities of the eastern oyster Cras-
sostrea virginica on the east coast of the United States
(Andrews 1966). Haplosporidian parasites also occur in
European flat oysters Ostrea edulis (Van Banning
1977, Pichot et al. 1979, Cahour et al. 1980, Vivares et
al. 1982, Bachère & Grizel 1983), Olympia oysters O.
lurida (Mix & Sprague 1974), pearl oysters Pinctada
maxima (Hine & Thorne 1998), and Pacific oysters C.
gigas (Rosenfield et al. 1966, Katkansky & Warner
1970, Kern 1976, Comps & Pichot 1991, Friedman et al.
1991, Friedman 1996, Burreson et al. 2000). For these
affected bivalve species, there is no evidence that the

haplosporidian parasites are responsible for significant
mortality similar to those reported among eastern oys-
ters C. virginica; however, Katkansky & Warner (1970)
described a heavy haplosporidian infection in the con-
nective tissues of a moribund Pacific oyster.

Haplosporidian parasites have been detected in
Pacific oysters from different parts of the world, includ-
ing Korea (Kern 1976), Taiwan (Rosenfield et al. 1966),
Japan (Friedman et al. 1991, Friedman 1996), Cali-
fornia, USA (Friedman 1996), and France (Comps &
Pichot 1991), during routine histological examination
for bivalve parasites. In this study, the discovery of
haplosporidian plasmodial stages is reported in juve-
nile Pacific oysters from the French Atlantic coast dur-
ing epizootiological surveys for bivalve pathogens. The
lack of spores in infected oysters prohibited positive
identification by morphological criteria; therefore,
DNA-based diagnostics were used to identify the
haplosporidian as Haplosporidium nelsoni.

© Inter-Research 2000

*E-mail: trenault@ifremer.fr

Haplosporidiosis in the Pacific oyster
Crassostrea gigas from the French Atlantic coast

Tristan Renault1,*, Nancy A. Stokes2, Bruno Chollet1, Nathalie Cochennec1, 
Franck Berthe1, André Gérard1, Eugene M. Burreson2

1IFREMER, Laboratoire de Génétique et Pathologie, BP 133, 17390 La Tremblade, France
2Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, Virginia 23062, USA

ABSTRACT: Two cases of haplosporidian infection occurred during 1993 in Pacific oysters Crassostrea
gigas from the French Atlantic coast. The localization and ultrastructure of the plasmodia are de-
scribed. In situ hybridization of infected tissue sections was conducted with DNA probes for oyster-
infecting haplosporidians. The Haplosporidium nelsoni-specific DNA probe MSX1347 hybridized
with the C. gigas parasite, and the H. costale-specific probe SSO1318 did not hybridize. Total genomic
DNA was extracted from the infected tissue sections for polymerase chain reaction (PCR) amplifica-
tion of the haplosporidian. PCR amplifications with H. nelsoni-specific primers and with ‘universal’
actin primers did not yield the expected products of 573 and 700 bp, respectively. A series of primers
was designed to amplify short regions of small subunit ribosomal DNA (SSU rDNA) from most haplo-
sporidians. The primers encompass a highly variable region of the SSU rDNA and did not amplify
oyster DNA. PCR amplification of the infected C. gigas genomic DNA with these primers yielded the
expected-sized product from the primer pair targeting the shortest region (94 bp). This PCR product
was sequenced and it was identical to the corresponding SSU rDNA region of H. nelsoni.

KEY WORDS:  Pacific oyster · Crassostrea gigas · Haplosporidiosis · Haplosporidium nelsoni

Resale or republication not permitted without written consent of the publisher



Dis Aquat Org 42: 207–214, 2000

MATERIALS AND METHODS

Source of specimens. 617 adult and 174 juvenile cul-
tured Pacific oysters Crassostrea gigas were collected
for routine histological surveys from different locations
along the French Atlantic coast between January 1993
and October 1993.

Light microscopy. Oysters were examined for con-
dition and gross signs of disease. After individuals were
removed from the shell, they were sagitally sectioned,
then half was placed in Davidson’s fixative and the
other half in Carson’s fixative. Samples fixed in David-
son’s fixative were dehydrated through an ascending
ethanol series, cleared in xylene and infiltrated in
paraffin in a tissue processor. Following these steps,
samples were embedded in paraffin, sectioned at 3 or
4 µm thickness, stained by hematoxylin and eosin
(H&E) and carefully checked for lesions and parasites.

Electron microscopy. Pieces of gill and digestive
gland tissue stored in Carson’s fixative were rinsed for
48 h in 0.2 M cacodylate buffer, fixed in 2.5% glutar-
aldehyde in 0.2 M cacodylate buffer at pH 7.2 and
post-fixed in 1% osmium tetroxide in the same buffer.
Specimens were dehydrated in an ascending ethanol
series, cleared in propylene oxide and embedded in
Epon resin. Blocks were cut on a LKB ultramicrotome.
One µm thick sections for light microsopy were stained
in 2.5% toluidine blue in 1% aqueous sodium borate
solution. Ultra thin sections were collected on copper
grids and double stained with uranyl acetate and lead
citrate (Reynolds 1963) and observed in a JEOL JEM
1200 EX transmission electron microscope at 60 kV.

In situ hybridization. In situ hybridization was per-
formed on Davidson’s fixed, paraffin-embedded tissue
of the oyster collected at Morlaix using 5 ng µl–1 of the
Haplosporidium costale-specific DNA probe SSO1318
or the H. nelsoni-specific DNA probe MSX1347, as de-
scribed elsewhere (Stokes & Burreson 1995). These
probes, which target one of the variable regions of the
small subunit ribosomal RNA (SSU rRNA) gene are
sensitive and specific for the target organisms (Stokes
& Burreson 1995, 1999). Positive control in situ hybrid-
izations consisted of tissue sections of Crassostrea vir-
ginica infected with H. costale, collected from Burton
Bay, on the Atlantic coast of Virginia, in May 1984 and
C. virginica infected with H. nelsoni, collected from
York River, a tributary of the lower Chesapeake Bay,
in Virginia in November 1995. Negative controls con-
tained no probe in the hybridization solution.

Polymerase chain reaction (PCR). DNA was isolated
from tissue sections of the Morlaix oyster by 3 different
methods, as previously described (Wright & Manos
1990, Vachot & Monnerot 1996, Shedlock et al. 1997).
The genomic DNA isolated from each of these methods
was subjected to PCR amplification using Haplospo-

ridium nelsoni-specific primers MSX-A’ and MSX-B
(Table 1). PCR reaction mixtures contained reaction
buffer (10 mM Tris, pH 8.3; 50 mM KCl; 1.5 mM MgCl;
10 µg ml–1 gelatin), 400 µg ml–1 bovine serum albumin,
25 pmol of each primer, 200 µM each of dATP, dCTP,
dGTP, dTTP, 0.6 units AmpliTaq DNA polymerase
(Perkin-Elmer), and template DNA in a total volume of
25 µl. The MSX-A’ + B reaction mixtures were cycled
in a GeneAmp PCR System 9600 thermal cycler
(Perkin-Elmer) 35 times at 94°C for 30 s, 59°C for 30 s,
and 72°C for 1.5 min with final extension at 72°C for
5 min. Genomic DNA was tested for amplifiability
using ‘universal’ eukaryotic actin gene primers 480
and 483 designed by G. Warr (Medical University
of South Carolina) and M. Wilson (Mississippi State
Medical Center). Amplification of oyster genomic DNA
with these primers yields an expected product of about
700 bp. The actin PCR reaction mixtures were pre-
pared and cycled as above, except the annealing tem-
perature was 45°C and extension temperature was
65°C. Lack of amplifiability with either the H. nelsoni-
specific primers or the actin primers prompted design
of a series of primers that would amplify small re-
gions of the small subunit ribosomal DNA (SSU rDNA)
(approximately 90 to 360 bp) of most haplosporidians.
The PCR primers, designated HAP-F1, HAP-F2, HAP-
R1, HAP-R2, and HAP-R3 (Table 1), encompassed the
variable region targeted by the DNA probes MSX1347
and SSO1318. The HAP PCR reaction mixtures were
prepared and cycled as described above, except the
annealing temperature was 48°C for the HAP-F1 reac-
tions and 44°C for the HAP-F2 reactions and the exten-
sion time was 1 min per cycle. An aliquot (10% of reac-
tion volume) of each PCR reaction was checked for
amplification product by agarose gel electrophoresis
and ethidium bromide staining (see Table 2).

Sequencing. PCR product was ethanol precipitated,
ligated into the plasmid vector pCR2.1 (Invitrogen),
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Table 1. PCR primers. MSX-A’ is MSX-A with an additional 8
bases at the 5’ end; the latter primer, along with MSX-B, was
reported previously (Stokes et al. 1995). MSX-A’ and MSX-B
are Haplosporidium nelsoni-specific, targeting a 565 bp re-
gion of the SSU rDNA. The HAP primers amplify small
regions of the SSU rDNA of most haplosporidians. All of the
HAP amplification products encompass the variable region 

targeted by the H. nelsoni and H. costale DNA probes

Primer name Primer sequence (5’–3’)

MSX-A’ CGACTTTGGCATTAGGTTTCAGACC
MSX-B ATGTGTTGGTGACGCTAACCG
HAP-F1 GTTCTTTCWTGATTCTATGMA
HAP-F2 GCCRTCTAACTAGCTS
HAP-R1 CTCAWKCTTCCATCTGCTG
HAP-R2 GATGAAYAATTGCAATCAYCT
HAP-R3 AKRHRTTCCTWGTTCAAGAYGA
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and transformed into Escherichia coli INVF’ cells.
Clones with inserts were cycle sequenced via simulta-
neous bidirectional sequencing using M13 forward
and reverse primers labeled with the fluorescent dyes
IRD-700 and IRD-800 (LI-COR). Sequencing reactions
were electrophoresed on a 41 cm 5% polyacrylamide
gel in a Li-Cor Model 4200 automated sequencer.
Sequence data were aligned with haplosporidian SSU
rDNA sequences using the MacVector software pack-
age (Oxford Molecular).

RESULTS

Pathology

Adult oysters appeared gravid or in different stages
of gonad resorption during the sampling period. Histo-
logical examination of stained sections showed the
presence of haplosporidian-like infections within the
digestive gland and gill connective tissues of juvenile
oysters. Among the 791 individuals examined, 2 were
found infected (prevalence 0.27%): a 7 mo old spat
from Arcachon Bay (south French Atlantic coast—July
1993) and a 14 mo old individual collected in Morlaix
area (Brittany—August 1993). This oyster had been
transferred to Brittany from Arcachon Bay. The proto-
zoan infection was accompanied by infiltration of host
hemocytes into the areas of parasitic infection. Numer-
ous early plasmodial stages (2 to 8 nuclei), 8 to 15 µm
in diameter, were found in connective tissues of gills
and digestive gland (Fig. 1). No sporogonic stages or
spores were observed. The normal architecture of af-
fected tissues was altered; necrosis and cell lysis were
observed within host tissues surrounding parasites.

Electron microscopy

Electron microscopic examination showed uni- and
multinucleated plasmodia, 8 to 15 µm in diameter,

scattered in connective tissues of gills
and digestive gland (Fig. 2). Uninu-
cleated and binucleated forms were
the most frequently seen (Figs. 3 &
4), multinucleated plasmodia (more
than 2 nuclei) were rarely observed
(Fig. 5). Parasitic cells at this devel-
opment stage were not delimited by
a wall. The fine structure of plas-
modia in affected tissues was di-
verse; however, most plasmodial
stages possessed osmophilic round
bodies 150 to 180 nm in diameter
scattered throughout the cytoplasm

(Figs. 2, 4 & 5). These structures were limited by a
membrane and identified by an inner electron-lucent
configuration usually having appearance of a ‘squat
vase’ (Fig. 6). The area within this configuration was
usually not as electron-dense as the area to its
exterior. The haplosporidian electron-dense bodies
or haplosporosomes were physically asociated with
membrane-limited regions and numerous membrane
‘spherules’. The round dense bodies appeared to
bud off from these areas (Fig. 7). The number of
haplosporosomes within any given plasmodium var-
ied greatly, but these structures were often abundant
(average 51 ± 19, n = 20, per plasmodium section).
An additional structure consistently found in the
plasmodium cytoplasm was round, approximately
130 nm in diameter, membrane-limited, and had a
dense core which appeared to be connected to the
periphery by fine radiating fibers arranged in a
spike-like fashion (Fig. 8). The cytoplasmic fine
structure included large distended oval or round
mitochondria with vesicular cristae (Figs. 3, 4 & 5).
Endoplasmic reticulum was sparse and free of ribo-
somes, the latter being found in high density in the
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Table 2. Expected PCR product sizes from haplosporidian DNA with the primer
pairs listed. Oyster (Crassostrea gigas or C. virginica) DNA does not yield ampli-

fication product with any of these primer pairs

Primer pair Expected PCR product (bp)
Haplosporidium nelsoni H. costale Minchinia teredinis

MSX-A’ + MSX-B 573 None None
HAP-F1 + HAP-R1 186 191 185
HAP-F1 + HAP-R2 331 336 327
HAP-F1 + HAP-R3 348 353 344
HAP-F2 + HAP-R1 94 99 93
HAP-F2 + HAP-R2 239 244 235
HAP-F2 + HAP-R3 256 261 252

Fig. 1. Haplosporidian parasitizing Crassostrea gigas. Early
plasmodial stages in connective tissue of the digestive gland 

(arrows). Light microscopy. H&E stain. Scale bar = 1 µm
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Figs. 2 to 7. Electron micrographs of haplosporidian parasitizing Crassostrea gigas. Fig. 2. Uni- and multinucleated plasmodia
in connective tissue of the digestive gland (arrows). Scale bar = 2 µm. Fig. 3. Uninucleated plasmodium. Scale bar = 500 nm.
Fig. 4. Binucleated plasmodium. Scale bar = 1 µm. Fig. 5. Multinucleated plasmodium. Scale bar = 1 µm. Fig. 6. High magnification
of haplosporosomes. Note internal electron-lucent configuration of polar-oriented haplosporosomes (arrow). Scale bar = 50 nm. 

Fig. 7. Budding off of haplosporosomes from electron-dense areas (arrows). Scale bar = 200 nm
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ground cytoplasm. The nuclei were usually paired
and each was characterized by a single prominant
endosome which was round or oval and against the
nuclear envelope (Figs. 4 & 5). The nucleal Feulgen
and Rossenbeck reaction indicated primarily periph-
eral location of the DNA. Degenerating parasites
were occasionally found with pycnotic nuclei, swollen
mitochondria and leached plasma membranes (Fig. 9).

DNA-based assays

In situ hybridization of DNA probe MSX1347 (Hap-
losporidium nelsoni ) to infected oyster tissue sections
yielded strong hybridization of the probe to plasmo-
dia, while DNA probe SSO1318 (H. costale) did not

hybridize (Fig. 10). Both probes hybridized with the
plasmodia in the respective postive controls (data not
shown). Repeated attempts to amplify DNA isolated
from tissue sections were unsuccessful using the
‘universal’ actin primers and the H. nelsoni-specific
primers, MSX-A’ and MSX-B. Consequently, the
HAP primers were developed to specifically amplify
smaller regions of haplosporidian SSU rDNA from
infected host tissue DNA. All 6 HAP primer pair
combinations were used in PCR amplifications of the
Morlaix oyster tissue DNA; only HAP-F2 + HAP-R1
yielded PCR product, which was the size expected
for a haplosporidian (Table 2). Eight clones of the
PCR product were sequenced. The sequence was
94 bases long and was identical to the published
sequence for bases 1305 to 1398 of the H. nelsoni
SSU rDNA.
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Figs. 8 & 9. Fig. 8. Concentric bodies in the plasmodium cyto-
plasm (arrows). Scale bar = 200 nm. Fig. 9. Degenerating
plasmodium containing pycnotic nuclei, swollen mitochondria
and leached plasma membranes (arrows). Scale bar = 2 µm

Fig. 10. In situ hybridizations with DNA probes on adjacent
tissue sections of haplosporidian-infected Crassostrea gigas
collected in Morlaix. Scale bar = 100 µm. (a) Positive reaction
with plasmodia using 5 ng µl–1 of Haplosporidium nelsoni-
specific probe MSX1347. (b) Absence of reaction with plas-
modia using 5 ng µl–1 of H. costale-specific probe SSO1318
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DISCUSSION

The haplosporidian parasite observed in Crassostrea
gigas from the French Atlantic coast is similar to Haplo-
sporidium nelsoni of C. virginica in tissue location,
morphology and size of plasmodial stages. Infection
with the haplosporidian parasite is characterized by
the presence of uni- and multinucleated plasmodia
througout gill, gonad and digestive gland connective
tissues. Parasites elicit a hemic response. These ob-
servations are consistent with early systemic infections
of H. nelsoni (Andrews 1966, Perkins 1968, 1969). The
dense bodies reported here are typical of those ob-
served in the cytoplasm of H. nelsoni plasmodial stages
(Scro & Ford 1990), in contrast with the round, oval or
pyriform haplosporosomes of H. costale (Perkins 1969).
In addition to difference in shape, the electron-dense
bodies of H. costale were found less abundantly than
those in H. nelsoni. Such differences were used to help
distinguish the plasmodia of both species; for example,
a section through a H. nelsoni plasmodium often
showed more than 70 free electron-dense bodies,
whereas in a comparable sized plasmodial section of
H. costale a maximum of 15 structures were counted
(Perkins 1968, 1969). The average number of haplo-
sporosomes counted here (51) is more comparable to
the number 70, previously observed in H. nelsoni
plasmodia, than to the 15 observed in H. costale plas-
modia (Perkins 1968, 1969). The amount of haplo-
sporosomes within plasmodia in C. gigas, however,
varied greatly per parasite section (Perkins 1968,
1969). The additional structures seen in the cytoplasm
of C. gigas haplosporidian parasites are similar to the
‘concentric bodies’ described by Scro & Ford (1990) in
the H. nelsoni cytoplasm.

Results of the DNA-based diagnostic assays sup-
ported each other. Plasmodia in the Morlaix Crassos-
trea gigas sample hybridized only with the Haplo-
sporidium nelsoni-specific DNA probe MSX1347 and
the sequence of the PCR-amplified DNA was identical
to the corresponding SSU rDNA sequence of H. nel-
soni. Even though DNA isolated from tissue sections
of the oyster collected from Morlaix was not amplifi-
able with the primer pairs MSX-A’ + MSX-B or actin
480 + 483, it did yield amplification product with the
haplosporidian SSU rDNA primers HAP-F2 + HAP-R1.
This is consistent with observations that PCR amplifi-
cation of target regions greater than 200 to 500 bp is
very difficult to achieve on DNA from archival sam-
ples, due to fragmentation of DNA and crosslinking of
histones to DNA during formaldehyde fixation of
tissues (Pääbo 1990, Hamazaki et al. 1993, Vachot &
Monnerot 1996).

DNA-based diagnostics have been used previously
(Burreson et al. 2000) to identify haplosporidian plas-

modia that were detected in Crassostrea gigas from
Korea (Kern 1976) and Japan and California, USA
(Friedman 1996). Lack of sporogonic stages in the
latter survey precluded definite identification of the
haplosporidian. Therefore, in situ hybridizations using
MSX1347, the same DNA probe used in this study,
were performed on paraffin-embedded tissue sections
of the infected oysters from Japan and California, and
one of the non-sporulating oysters from Korea. The
Haplosporidium nelsoni probe hybridized with haplo-
sporidian plasmodia in all of these oysters (Burreson
et al. 2000). In addition, genomic DNA was isolated
from the infected California oysters and subjected to
PCR amplification with the primers MSX-A and MSX-
B (Stokes et al. 1995). DNA from the California oys-
ters amplified with the H. nelsoni PCR primers and
the 565 bp sequence was identical to the H. nelsoni
SSU rDNA target region, with only one nucleotide
difference (Burreson et al. 2000). In this study, the H.
nelsoni primers MSX-A’ (same as MSX-A, but with an
additional 8 bases at the 5’ end) and MSX-B did not
amplify the plasmodial DNA but the haplosporidian
primers HAP-F2 and HAP-R1 did. Even though
the PCR product generated by the HAP primers was
shorter, it amplified a variable region of the SSU rDNA
that contains sequence unique to each haplospo-
ridian.

Tissues from the California oysters were fixed for
only 24 h in neutral buffered formalin (Burreson et al.
2000), whereas tissues from the French oysters in this
study were fixed for at least 1 wk in Davidson’s AFA.
The former fixation treatment has been shown to
yield DNA that can PCR amplify longer target regions
than DNA from long-term storage in unbuffered fixa-
tive (Vachot & Monnerot 1996). Davidson’s AFA is the
fixative of choice for marine invertebrates. Traditional
fixation procedures include tissue storage in David-
son’s AFA from 1 d up to a few months. Diagnosis of
parasites by histological examination is not affected
by this practice; however, the quality of DNA isolated
from fixed tissues is reduced the longer those tissues
are stored in fixative (Hamazaki et al. 1993, O’Leary
et al. 1994). The HAP primers were developed in
order to work with archived samples that were fixed
for indeterminate periods. The smaller target regions
are more amenable to PCR amplification and the
primers specifically amplify most haplosporidians
from the total genomic DNA isolated from infected
hosts.

The morphological observations, in situ hybridiza-
tion with the Haplosporidium nelsoni-specific probe,
and sequence of the PCR amplified product that was
identical to an SSU rDNA variable region of H. nelsoni
confirm that the haplosporidian parasite in Crassostrea
gigas from the French Atlantic coast is H. nelsoni or a
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very closely related parasite. Indeed, the molecular
methods used can only confirm identification in rela-
tion to known species or strains. Other parasites for
which sequence data are not available could conceiv-
ably give the same identification.

The prevalence of infected oysters found in this
study was very low (0.27%). The 2 infected oysters
originated from the same area (Arcachon Bay, south
Atlantic French coast). Other disease survey studies
of Crassostrea gigas have found similarly low pre-
valences of haplosporidian infection. During a 4 yr
sampling of 1438 oysters from Korea, 4 (0.28%) were
infected with haplosporidians (Kern 1976). In a survey
of C. gigas from Japan, 10/100 spat and 1/171 adult
oysters were infected with haplosporidians that closely
resembled Haplosporidium nelsoni (Friedman et al.
1991). In a subsequent study, Friedman (1996) ob-
served haplosporidian infections in 1 to 3% of oysters
from Japan and up to 7% of oysters from California. In
2 yr of routine surveys of C. gigas from Etang de Thau,
France, Comps & Pichot (1991) found 3 oysters infected
with haplosporidians. Based on electron microscopic
studies of the spores, the parasite seemed similar to H.
costale. The low prevalence of haplosporidian parasite
infections in C. gigas suggests that this oyster species
is less sensitive to the infection than C. virginica and
that C. gigas can react against the parasite and limit its
spread. Moreover, early plasmodial stages are mainly
observed in infected C. gigas oysters, suggesting that
the parasite is not able to develop normally in this
bivalve species.
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