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The stability of elliptically perturbed circular vortices is investigated in a two-layer
shallow-water model, with constant background rotation. The fluid is bounded above
and below by rigid and flat surfaces. The linear stability analysis shows that ellip-
tical perturbations are most unstable for moderate Burger numbers and vorticity
shears. Shorter waves dominate for more sheared vortices. Shallow-water and quasi-
geostrophic growth rates exhibit a striking similarity, except at each end of the Burger
number domain. There, cyclones (anticyclones) with finite Rossby numbers are more
(less) unstable than their quasi-geostrophic counterparts. A simple model gives a
first-order trend for this bias.

Nonlinear model runs with initially perturbed vortices also show the similarity
between the two dynamics. In these runs, elliptically deformed vortices stabilize as
stationary rotating tripoles for moderate linear instability; on the other hand, strongly
unstable vortices break as dipoles. During these nonlinear processes, energy transfers
indicate that barotropic instability is at least as active as the baroclinic one. For tripole
formation, the modal analysis of the perturbation exhibits a dominant contribution
of the original wave and of the mean flow correction. The ageostrophic and divergent
parts of the flow are respectively weak and negligible. The Lighthill equation proves
that few internal gravity waves are generated during tripole formation or dipolar
breaking. Finally, the effects of triangular perturbations on circular vortices and the
formation of quadrupoles are briefly addressed.

1. Previous work and problem setting
Vortices are long-lived features of rotating flows, both natural and experimental.

This robustness is due in part to their resistance to external perturbations. Such
perturbations often consist of large-scale shear or strain fields, which induce anti-
symmetric or elliptical deformations on circular vortices. The initial value problem of
an elliptically perturbed vortex, in a two-layer shallow-water flow, is considered here.
This problem has already been the subject of many studies, for quasi-geostrophic and
shallow-water flows.

In two-dimensional incompressible flows, both numerical and laboratory experi-
ments showed that elliptically deformed, shielded vortices† can transform into long-
lived tripoles if the perturbation amplitude is moderate and if the mean horizontal
vorticity shear is not too large (Carton, Flierl & Polvani 1989; van Heijst, Kloost-
erziel & Williams 1991; Orlandi & van Heijst 1992). Once formed, these tripoles

† Shielded vortices possess a sign reversal in the radial vorticity profile; they are isolated if their
total circulation vanishes.
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are stationary and uniformly rotating for many turnover periods (Carton & Legras
1994). In the long term, they can break asymmetrically into a monopole and a dipole;
this evolution is favoured by viscosity and by the β-effect (Carton & Legras 1994).
More complex, less robust, multipoles can be obtained by perturbing strongly sheared
circular vortices with higher wavenumbers (Carnevale & Kloosterziel 1994; Morel &
Carton 1994).

In two-layer quasi-geostrophic flows, stationary tripoles with various vertical struc-
tures (the more robust being barotropic) have been obtained by perturbing circular
vortices elliptically (Corréard & Carton 1999). Steady baroclinic tripoles can also
result from the head-on collision of finite-area hetons (Sokolovskiy & Verron 2000).
On the other hand, vertically antisymmetric vortices form periodically oscillating,
counter-rotating ellipses (Carton & McWilliams 1996).

The nonlinear evolution of elliptically perturbed vortices has also been addressed
in rotating shallow-water flows. In one-and-a-half layer reduced-gravity flows, ageo-
strophic effects favour anticyclone rather than cyclone stability at finite Rossby
number, while small Burger numbers stabilize all vortices (Stegner & Dritschel 2000).
Ford (1994) found a mixed type of instability with Rossby waves interacting with
an internal gravity wave; this instability was either weak or dominated by inertial
instability. In two-layer flows, warm eddies, with Gaussian radial profile, are usually
more stable than their cold counterparts (Dewar & Killworth 1995). These large warm
eddies are all the more stable as their shallow and deep flows are co-rotating. With
cubic exponential profiles, warm co-rotating vortices are essentially stable, while cold
vortices are not stabilized by a deep like-signed flow (Killworth, Blundell & Dewar
1997; Dewar, Blundell & Killworth 1999).

The present work is concerned with the formation and evolution of tripoles in a
two-layer rotating shallow-water flow. Several questions are addressed:

What is the influence of the horizontal and vertical vorticity shears, of the Rossby
and Burger numbers, and of vortex polarity on the linear and nonlinear instability of
elliptically perturbed, circular vortices on the f-plane?

When tripoles are formed, what is their three-dimensional structure? How important
are ageostrophic or divergent flows? Are these tripoles stationary in a rotating frame
of reference? Are they long-lived and resistant to perturbations?

This paper is organized as follows: § 2 presents the model equations, initial condi-
tions and numerical implementation. In § 3, the linear stability of circular vortices is
described and the influence of physical parameters investigated. Parity bias is given
special attention. Then the finite-amplitude regimes observed in initial-value simu-
lations are classified and tripole formation is analysed (§ 4): modal decomposition,
energy budgets, and final stationary states are presented. Ageostrophic and divergent
flows are investigated. Finally (§ 5), the formation of more complex multipoles is
briefly described and conclusions are given.

2. The model
2.1. Model equations

The dimensionless two-layer shallow-water equations, with uniform background ro-
tation, rigid lid and flat bottom, are written in polar coordinates:

Ro
duj
dt

+
(

1 + Ro
vj

r

)
k ∧ uj = −∇pj, (1)

dhj
dt

+ hj∇ · uj = 0, (2)
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where uj = (uj, vj), hj and pj are the (radial, azimuthal) velocity, thickness and pressure
normalized by density, in the jth layer (counted from the top). The layer thickness is

hj = Hj

(
1 + (−1)j

Ro

Bu

η

Ĥj

)
,

where Ro = U/fL and Bu = g′H/f2L2 are the Rossby and Burger numbers, f
is the dimensional background rotation and Ĥj = Hj/H are the normalized layer
thicknesses at rest. The elevation of the density interface is η.
The Lagrangian derivative is

d

dt
= ∂t + uj∂r +

vj

r
∂θ.

These equations can be combined to prove the conservation of potential vorticity
anomaly (computed from a state of rest):

dqj
dt

= 0, qj =
ζj + (−1)j+1η/(BuĤj)

1 + (−1)j(Ro/Bu)(η/Ĥj)
. (3)

2.2. Nonlinear model implementation and initial conditions

The numerical implementation of these equations is performed via a pseudo-spectral
projection/truncation in a biperiodic domain. The number of nodes in each direction
is 128 for the general parameter search and 256 for specific case analysis. The
momentum equations are given a minimum biharmonic viscosity compatible with
numerical stability (namely ν4 = 2×10−7 at 1282 resolution; physically, the dissipative
timescale is 600 turnover periods at the core of a vortex with Ro = 0.1). An Asselin
filter helps stabilize fast waves. Total mass conservation is ensured by subtracting the
barotropic divergent velocity from the flow field at each time step. The barotropic
streamfunction is also used to compute the surface pressure diagnostically (Baraille &
Filatoff 1995). Finally, though most results presented here correspond to equal layer
thickness at rest, many simulations have been performed with Ĥ1 = 0.2, Ĥ2 = 0.8, a
case for which triadic interactions of the first baroclinic mode are non-zero (Flierl
1978); they yield qualitatively similar results.

The mean flow is a circular vortex, with a power exponential radial profile and
annular shielding in the relative vorticity:

ζ̄1 =
(
1− 1

2
αrα
)

exp (−rα), ζ̄2 = κζ̄1.

This vortex is isolated and its velocity and pressure are in cyclogeostrophic balance:

Ro
v̄2
j

r
+ v̄j =

dp̄j
dr
.

A general investigation of this vortex instability has been performed by varying
α ∈ [2, 9], l ∈ [1, 4], Ro ∈ [0.05, 1], Bu ∈ [0, 5], κ ∈ [−1, 1]. Only specific aspects of this
whole parametric investigation are given hereafter.

3. Linear stability
3.1. Barotropic and baroclinic instabilities

The linear instability of a normal-mode disturbance over the circular vortex is com-
puted:

(u′j , v
′
j , p
′
j , h
′
j) = (u0j , v0j , p0j , h0j)(r) exp[il(θ − ct)];
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the elliptical perturbation corresponds to l = 2, the triangular one to l = 3. The
momentum and continuity equations (1) and (2) are linearized to yield

h̄j

(
c− v̄j

r

)
d2p0j

dr2
+

(
c− v̄j

r

)((
1

r
− Vj2

Vj1

)
h̄j +

dh̄j
dr

)
dp0j

dr

+

(
h̄j

r

(
1

Ro

(
1

r
+
Vj2

Vj1

)
− l2c

r
− 2

r

dv̄j
dr

+

(
4 + l2

r
+ 2

Vj2

Vj1

)
v̄j

r

)
−
(
h̄j

r
+

dh̄j
dr

)
×
(

1

Ror
+ 2

v̄j

r2

))
p0j + (−1)jVj1

(
c− v̄j

r

)
Ro2

Bu
(p01 − p02) = 0, (4)

with

Vj1 =

(
1

Ro
+ 2

v̄j

r

)(
1

Ro
+
v̄j

r
+
dv̄j

dr

)
− l2

(
c− v̄j

r

)2

Vj2 =

(
1

Ro
+ 2

v̄j

r

)
d2v̄j

dr2
+

1

r

(
dv̄j
dr
− v̄j

r

)
+

(
2

dv̄j
dr

+ (4− 2l2)
v̄j

r
+

3

Ro
+ 2l2c

)
.

The boundary condition at infinity is no normal flow:(
c− v̄j

r

)
dp0j

dr
−
(

1

Ror
+ 2

v̄j

r2

)
p0j = 0.

At r = 0, regularity of the two linear differential equations leads to simpler equations:

dp0j

dr
− l2

r
p0j = 0.

This problem is discretized in r and the growth rates of the perturbation σ = l Im (c)
are computed by a Newton–Raphson method. Setting p01(r = 0) = 1, this method
uses first guesses for c and c1 = p02(r = 0) which are either the quasi-geostrophic
values (for small Ro, large Bu) or the result of the previous calculation when available
(with the closest value of Ro, Bu). This method advects p0j and dp0j/dr from r = 0
to large r, where the boundary condition of no normal flow is usually not satisfied at
first iteration. By computing the variation of this discrepancy with respect to c and c1,
a correction is introduced for these two values to satisfy the boundary conditions after
a few iterations. This method fails to converge for cyclones at small Bu, even when
such small increments in Bu as 10−6 are used from one calculation to the following
one. This can be attributed to the very fast variation of c with Bu in this case or to a
change in the family of eigenmodes which alters c1. For all other cases, this algorithm
has been checked against results available in the literature with great accuracy.

3.2. Inertial instability

Inertial instability does not affect our mean flow for the range of parameters given
at the end of § 2. Indeed, following Holton (1992), an inertial instability criterion for
circular flows can be derived. The radial displacement of a potentially unstable fluid
particle obeys the equation

d2δr

dr2
= −(1 + RoΩj)(1 + Roζj)δr,

with Ωj = v̄j/r. The flow will be unstable if (1 + RoΩj)(1 + Roqj) < 0. This implies
that Ro < −1 and/or |κ| > 1 which is not the case here.
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Figure 1. Influence of the Rossby number on the linear instability of circular vortices: growth

rates versus α, for Bu = 0.25, κ = 0, Ĥ1 = 0.5. The left-hand column (a, b) is for anticyclones, the
right-hand one for cyclones (c, d ). The upper row (a, c) is for shallow-water vortices with Ro = ±0.1,
the lower row (b, d ) with Ro = ±0.25. The modes are l = 1 (dashed line), l = 2 (solid line), l = 3
(dotted line), l = 4 (dot-dash line).

3.3. Variation of growth rates, most unstable wavelengths and the nature of the
instability with physical parameters

The elliptical perturbation (l = 2) is the most unstable for moderate horizontal
vorticity shears (α ∈ [2, 5]) and for order-unity values of the Burger number (see
figure 1). This predominance does not depend on the Rossby number nor on vortex
polarity. For increasingly stronger barotropic instability (κ ∼ 1, α � 1, Bu > 1), or
baroclinic instability (κ 6 0, α ∼ 2, Bu� 1), shorter and shorter waves become more
unstable (particularly so as the mean flow is baroclinic). In most cases, the growth
rate of the asymmetric perturbation (l = 1) is half the size of that for the dominant
mode and it is significant only in regimes of strong baroclinic instability. These results
are similar in the quasi-geostrophic framework and for unequal layer thicknesses (not
shown).

The analysis of linear energy transfers between the mean flow and the perturbation
was performed for many cases (see Appendix A for the expressions for energies and
energy fluxes). A typical case is that of surface-intensified, cubic exponential vortices
with an elliptical perturbation, for two values of the Rossby number (Ro = 0.1, 0.5;
figure not shown). For small Burger numbers, the perturbation kinetic energy comes
from the potential energy of the mean flow and from the baroclinic conversion
(between potential and kinetic energy of the perturbation). On increasing the Burger
number, the kinetic energy of the perturbation is fed by that of the mean flow and
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Figure 2. Influence of the horizontal shear on the linear instability of surface-intensified (κ = 0),
circular vortices: growth rates of mode l = 2 versus Bu for various values of Ro (Ro = 0.05: red;
Ro = 0.25: yellow; Ro = 0.5: green; Ro = 0.75: blue and Ro = 1: pink). The steepness of the
vorticity profile increases from top to bottom: (a, c) α = 2, (b, d ) α = 3; (a, b) anticyclones, (c, d )

cyclones; Ĥ1 = 0.5.
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Figure 7. Evolution of the angular modes for the evolution of an anticyclonic vortex into: (a, b)
a barotropic tripole (Ro = 0.1, Bu = 0.25, κ = 1, α = 3, l = 2); (c, d ) a surface-intensified tripole
(Ro = 0.25, Bu = 0.25, κ = 0.5, α = 3, l = 2); (e, f ) a baroclinic tripole (Ro = 0.5, Bu = 1, κ = 0,
α = 3, l = 2). The various modes are l = 0 (green line), l = 1 (black line), l = 2 (red line), l = 3
(yellow line), l = 4 (blue line). The upper (lower) layer is on the left-hand (right-hand) column.
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Ro −1.0 −0.75 −0.5 −0.25 0.25 0.5 0.75 1.0
BuF 0.375 0.305 0.219 0.116 0.2 0.285 0.45 0.63
Buoutcrop 0.34 0.278 0.2 0.108 0.123 0.26 0.412 0.58

Table 1. Comparison of Burger number values for zero growth rate (anticyclone) or lack of
numerical convergence (cyclone) in the frontal limit, BuF , with those for outcropping (interface

deviation equal to layer thickness), Buoutcrop, for α = 2, κ = 0, l = 2, Ĥ1 = 0.5.

the baroclinic conversion is reversed. This confirms the predominance of barotropic
or of baroclinic instability in the two extreme regimes as described above.

3.4. Parity bias at small and large Burger numbers and onset of baroclinic instability

We next analyse the difference in instability between cyclones and anticyclones, an
effect absent from the quasi-geostrophic model results. To do so, we use a surface-
intensified vortex (κ = 0) with an elliptical perturbation; two horizontal shears
(α = 2, 3) are considered, for which barotropic instability is weak or moderate in
two-dimensional flows (Carton et al. 1989; Orlandi & van Heijst 1992). On each plot
of figure 2, growth rates obtained for different values of Ro are superimposed: a
remarkable similarity between quasi-geostrophic and shallow-water model results is
seen in most of the Bu domain. Nevertheless a noticeable asymmetry appears at small
Bu (see frames (a) and (c)) and a less intense one at large Bu (see frames (b) and
(d )). The first case corresponds to important frontal effects as soon as Ro/Bu ∼ 1 (i.e.
vertical deviations of the density interface are large for the mean vortex). Note that
similar results are found for the triangular perturbation (l = 3), namely anticyclone
stability for Gaussian vortices in the frontal limit, and cyclone/anticyclone asymmetry
in the large Bu limit for strong horizontal shears (α = 4).

3.4.1. Small Burger number, frontal limit

In this limit, we consider the values of Bu for which growth rates vanish (for
anticyclones) or for which the Newton–Raphson method stops converging (for cy-
clones), called BuF . Table 1 compares them with the values of Bu corresponding to
the out/incropping of the mean vortex, Buoutcrop. We always have BuF > Buoutcrop, but
the two values are fairly close. This suggests that the asymmetry in the instability of
cyclones and anticyclones in this regime could be connected with the strong deviation
of density interfaces.

To investigate this connection, a simple model is derived (see Appendix B) from the
linearized conservation of potential height anomaly (PHA, the inverse of potential
vorticity). In the frontal limit, mean potential vorticity diverges and cannot be used for
a linear stability analysis. We assume moreover that the perturbation is geostrophic;
this assumption implies that Ro remains small (here we choose Ro 6 0.4); conse-
quently Bu must be small enough to keep Ro/Bu of order unity. Obviously, the simple
model will only be a crude approximation of the shallow-water model.

Figure 3 shows the growth rates versus Burger number for cyclones and anti-
cyclones in this simple model. Very weak asymmetry is observed at large Bu, but
cyclones become notably more unstable than anticyclones at small Bu. This ten-
dency is comparable with that of the shallow-water model. Two possible physical
interpretations of this phenomenon are as follows:

(i) The decrease/increase of mean potential thickness below the vortex core is
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Figure 3. Growth rates of mode l = 2 versus Bu in the simple model for the frontal limit. Plots for
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Ro −0.5 −0.25 −0.05 0.05 0.25
Buc 1.56 1.69 1.84 2.19 2.46
Buth 1.6 1.7 1.9 2.1 2.8

Table 2. Comparison of critical Burger number for baroclinic instability found numerically Buc,
with that derived theoretically with a local deformation radius Buth (same parameters as table 1).

associated with a weaker/stronger possibility of development of a perturbation in the
lower layer, hence of a vertical phase shift necessary for baroclinic instability.

(ii) By analogy with quasi-geostrophic theory, the stronger the radial gradient of
mean PHA is, the stronger the instability will be. Figure 4 shows this radial gradient
for cyclones and anticyclones at Ro = 0.05 and Ro = 0.4. The PHA gradient for
cyclones at small Ro is antisymmetrical with respect to that for anticyclones, hence
the comparable growth rates for both vortex types. On the other hand, at larger Ro,
the cyclone PHA gradient is large and negative, while the anticyclone gradient is
smaller and changes sign. This is associated with the stronger instability of cyclones.

Our simple model does not reproduce the stabilization of anticyclones at small Bu,
which could be due to ageostrophic components of the velocity. Indeed, (a) they grow
with Ro, and at first order correspond to a cyclostrophic correction (see Appendix C)
and (b) they contribute to the decrease of anticyclone instability compared to that of
cyclones, for a symmetric mean flow at large Bu (see below).

3.4.2. Critical value of the Burger number for the onset of baroclinic instability

The onset of baroclinic instability occurs at smaller values of Bu for anticyclones
than for cyclones in the shallow-water model (figure 2a, c). The critical value of
the Burger number in the quasi-geostrophic case lies in between, Buc(QG) ∼ 2. The
shallow-water model value, Buc(Ro), is given in table 2 for several values of Ro. For
small Ro, it can be approximated as follows. We know that baroclinic instability
occurs when the characteristic scale of motion is larger than the deformation radius
(Pedlosky 1987). For a vortex concentrated in the upper layer, we choose a local
radius of deformation as that based on the upper layer only,† at the centre of the
vortex

L > Rdloc =

√
g′h̄1(r = 0)/f.

The corresponding (theoretical) Burger number for the onset of baroclinic instability
is

Buth =
g′H

f2Rd2
loc

=
H

h̄1(r = 0)
=

H

H1 − η̄(r = 0)
.

We use the cyclogeostrophic balance to obtain an order of magnitude of the interface
deviation at the center of the vortex:

η̄(r = 0)/H ∼ (1− κ)Ro(1 + (1 + κ)Ro)/Buc(QG).

With κ = 0, we obtain an approximation of Buth in dimensionless form

Buth ∼ Buc(QG)

Ĥ1Buc(QG)− Ro− Ro2
.

† Note that choosing a two-layer radius of deformation would lead, by an equivalent calculation,
to the same physical result, but with far less asymmetry between cyclones and anticyclones.



160 J.-M. Baey and X. Carton

0

–0.5

–1.0

–1.5

–2.0

–2.5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Buc –Bu

Ro = 0.75
0.5

0.25

lo
g(

1–
r

/r
(Q

G
))

Figure 5. Difference between shallow-water and quasi-geostrophic growth rates: log(1− σ/σ(QG))

versus Buc − Bu for Ro = −0.75,−0.5,−0.25; l = 2, α = 2, κ = 0, Ĥ1 = 0.5.

The agreement between Buc and Buth is fair (see table 2). But note that this formula
was derived for the present case; it should not be applied directly for other parameters.
Physically, the stronger instability of cyclones compared with anticyclones is a general
phenomenon. Note finally that for stronger barotropic (α = 3) or baroclinic (κ = −1)
instabilities, several families of unstable eigenmodes exist and overlap in Bu space so
that no value of Buc can be found.

Following Stegner & Dritschel (2000), the growth rate of elliptical perturbations
could assume a simple variation with respect to Bu in the vicinity of Buc. The plot
of log[(σ − σ(QG))/σ(QG)] = f(Buc − Bu) for three values of Ro (all correspond
to anticyclones, for enough values of σ were available) is shown on figure 5. The
variation is nearly linear, with slope ∼ −3.3. Further work could strengthen this result
by extending its range of validity.

3.4.3. Large Burger number limit

Figure 2(b, d ) indicates that cyclones are more unstable than anticyclones at finite
Bu (near Bu = 2); other linear calculations extend this result to larger Bu for more
sheared vortices, more so as Ro grows. In that limit, cyclogeostrophic effects could
be responsible for this asymmetry. In Appendix D, a simple model is derived from
the linearized potential vorticity anomaly equation for 1/Ro < Bu < ∞. This model
contains a cyclone/anticyclone asymmetry in the Ro-order terms for the perturbation.
Obviously in exact (incompressible) two-dimensional flows, the cyclone–anticyclone
asymmetry disappears. Table 3 presents some values of growth rates in this model
when Ro is varied: cyclones are indeed more unstable than anticyclones. Nonlinear
advection terms in the perturbation could explain the cyclone–anticyclone asymmetry
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Ro −0.75 −0.5 −0.25 0 0.25 0.5 0.75
σ × 102 0.29 0.54 0.82 1.1 1.37 1.63 1.9

Table 3. Growth rates obtained for various values of Ro in the simple model for large
Bu(α = 2, l = 2).

α\κ +1 +0.5 0 −1
2 S S + F BCTP DPBK
3 BTTP SITP DPBK DPBK
4 DPBK DPBK DPBK DPBK

Table 4. Effect of baroclinicity κ on the nonlinear evolutions of power-exponential vortices perturbed

on mode l = 2, for Ro = ±0.1, Bu = 0.25, Ĥ1 = 0.5. Abbreviations: S = nonlinearly stable, F =
filamentation, BTTP = barotropic tripole, SITP = surface intensified tripole, BCTP = baroclinic
tripole, DPBK = dipolar breaking. Vortex polarities (C = cyclone, AC = anticyclone) are specified
only when they correspond to different nonlinear evolutions.

α\(κ, Ro) (0,±0.1) (0,±0.25) (0.5,±0.1) (0.5,±0.25)
2 BCTP BCTP S + F S + F(AC), SITP(C)
3 DPBK BCTP SITP SITP + F(AC), DPBK(C)
4 DPBK DPBK DPBK DPBK

Table 5. Effect of Rossby number Ro on the nonlinear evolutions of power-exponential vortices

perturbed on mode l = 2, for two values of the baroclinicity κ = 0, 0.5 and for Bu = 0.25, Ĥ1 = 0.5.
Abbreviations are as for table 4.

in this limit. Again, such simple models must be used with caution since many other
effects are neglected and only first-order terms are retained.

4. Nonlinear evolution of elliptically perturbed circular vortices
The finite-amplitude regimes of the elliptical perturbation, initially superimposed

on a power-exponential shielded vortex, are now analysed in the (Ro, Bu)-plane.

4.1. Phenomenology of nonlinear regimes and their distribution in the parameter space

The nonlinear numerical model is initialized with the mean vortex and a very weak
monochromatic perturbation (to satisfy the linear theory); this perturbation is in the
upper layer:

v′r = εrl exp (−rα) sin(lθ), v′θ = 2εr
(
1− 1

2
αrα
)

exp (−rα) cos(lθ),

and the pressure is computed via the gradient wind balance. Here l = 2, ε = 0.001.
The vertical ratio of layerwise intensity is also κ, but a π/4 vertical phase shift is
introduced.

Six main types of behaviour are observed, ranging from strong barotropic to
strong baroclinic instabilities (see tables 4–7 for their classification with respect to the
physical parameters):

(i) Barotropic dipolar breaking (figure 6a): the perturbation amplifies continuously
with time; the core vortex becomes very elliptical due to the shear and strain exerted
by the two satellite vortices located at its tips; the core splits into two poles which
propagate away with the satellites as dipoles. More generally, barotropic dipolar
breaking occurs when the horizontal shear α is large and only for barotropic vortices
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α\(κ, Ro) (0,±0.1) (0,±0.5) (0,±1.0) (0.5,±0.1) (0.5,±0.5) (0.5,±1.0)
2 S BCTP BCTP S S S(AC), SITP(C)
3 BCTP BCTP(AC), BCTP SITP SITP SITP

DPBK(C)
4 DPBK DPBK DPBK SITP SITP(AC), SITP(AC),

DPBK(C) DPBK(C)

Table 6. As table 5 but Bu = 1.0.

α\(κ, Bu) (0, 0.065) (0, 0.25) (0, 1.0) (0.5, 0.065) (0.5, 0.25) (0.5, 1.0)
2 DPBK BCTP S + F DPBK S + F S + F
3 DPBK DPBK BCTP DPBK SITP SITP
4 DPBK DPBK DPBK DPBK DPBK SITP

Table 7. Effect of Burger number Bu on the nonlinear evolutions of power-exponential vortices

perturbed on mode l = 2, for two values of the baroclinicity κ = 0, 0.5 and for Ro = ±0.1, Ĥ1 = 0.5.
Abbreviations are as for table 4.

(α > 4, κ = 1). Obviously, this strong barotropic instability does not depend on the
Burger number.

(ii) Barotropic tripole† formation (figure 6b): the initial evolution is similar to the
previous one, but the satellite vortices exert a weaker shear on the core vortex, whose
ellipticity remains more moderate. The satellite vortices rapidly reach an equilibrium
position on both sides of the core; in the final state, the core–satellite distance is such
that the rotation rate of the whole structure and the ellipticity of the core remain
constant (cf. Carton & Legras 1994). More generally, barotropic tripoles form only
for moderately unstable barotropic vortices (α = 3, κ = 1). Again, this behaviour
does not depend on the Burger number.

(iii) Surface-intensified tripole formation (figure 6c): in the upper layer, potential
vorticity evolves as for the barotropic tripole; in the lower layer, the dynamics are
driven by the dominant potential vorticity of the upper layer and by layer coupling
via vortex stretching: the lower-layer vortex breaks into three (weak) like-signed poles
which align vertically under the upper-layer tripole. More generally, surface-intensified
tripoles form when the baroclinic component of the flow is non-zero. They are due
to barotropic instability at fairly large Bu and α. The Rossby number influences this
process only for steep cyclones (for which Ro must be small to obtain tripoles, e.g.
Ro 6 0.1 when α = 4). This can be understood as follows: for cyclones, increasing
the Rossby number augments the radial pressure gradient for a given velocity (via
cyclogeostrophic balance), more so as the vortex profile is steep. Therefore, for κ 6= 1,
the vertical difference in pressure (or interface displacement) increases with Ro, which
is equivalent to decreasing the Burger number (since η/H ∼ Ro/Bu). Therefore, there
must be an upper limit for Ro to the formation of surface-intensified tripoles from
cyclones.

(iv) Baroclinic tripole formation (figure 6d ): the evolution is similar to that of
the surface-intensified tripole, except that the lower-layer vortex breaks into only
two satellite vortices; baroclinic instability is stronger than in the previous case, and
the evolution becomes closer to baroclinic dipolar breaking. The final structure is

† The term barotropic should not be taken stricto sensu here since the original mean flow
is barotropic, but not the perturbation; nevertheless, the final tripole has a negligible baroclinic
component
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vertically arch shaped: two pillars (the vertically aligned satellites) are connected in
the upper layer by the core vortex. More generally, baroclinic tripoles develop in
more baroclinic conditions than the two other types of tripoles (here κ = 0, small α).
To appear, they require opposite-sign potential vorticity anomaly in the two layers.
There is also a lower bound on Bu, below which vortices break into baroclinic dipoles
(e.g. Bu = 0.25 for α = 2): baroclinic instability dominates barotropic instability and
it is too intense to form a baroclinic tripole. Limits for Ro to form baroclinic tripoles
apply to cyclones for α = 3 (as above).

(v) Baroclinic dipolar breaking (figure 6e): the upper-layer core becomes increas-
ingly elongated in the shear exerted by the satellites in both layers. Finally, the two
fragments of the core in the upper layer couple with the lower satellites as two baro-
clinic dipoles which drift in opposite directions (conserving a null linear momentum).
More generally, baroclinic dipoles grow in strongly baroclinic conditions (α = 2 or
3, −1 < κ < 0.5, small Bu). For this process, Bu needs to be small as κ increases.
Cyclonic vortices tend to break into baroclinic dipoles more often than anticyclones
(confirming the linear stability analysis).

4.2. Modal analyses and energy budgets

A modal decomposition of the potential velocity perturbation is performed during
the formation and evolution of barotropic, surface-intensified and baroclinic tripoles.
For each angular wavenumber l, the modal components are defined as

Cl(r, t) =
1

π

∫ 2π

0

q′j(r, θ, t) cos(lθ)dθ,

Sl(r, t) =
1

π

∫ 2π

0

q′j(r, θ, t) sin(lθ)dθ,

and the modal amplitude is

Al(r, t) =
1

rmax

∫ rmax

0

[C2
l (r, t) + S2

l (r, t)]1/2dr,

where q′j(r, θ, t) = qj(r, θ, t)− qj(r, θ, t = 0).
Figure 7 (page 156) shows the modal decomposition for the three kinds of tripoles.

For each structure, mode l = 2 is always dominant in the upper layer. This corresponds
to the global tripolar structure and to the elliptical shape of the core vortex. Also note
that the period of oscillation of this modal amplitude around the equilibrium value
decreases with increasing baroclinicity. A weakly nonlinear theory (e.g. Pedlosky 1987,
chap. 7) would be necessary to explain this observation, but it is beyond the scope of
the present study. The modes following in intensity are l = 0 and l = 4, which directly
result from the self-interaction of the initial mode l = 2. These results are comparable
with those of the two-dimensional case (Carton & Legras 1994), though the formation
of the barotropic tripole is less nonlinear than that of the two-dimensional tripole (see
also the following paragraph). The more baroclinic the vortex is, the more intense the
modification of the mean flow becomes in the lower layer (see previous subsection).
In the case of the baroclinic tripole, the finite amplitude of mode l = 4 indicates that
filamentation still occurs at the tips of the ellipse (see figure 6d ) at late times. This
filamentation is correlated with a slow alteration of the mean flow. Finally, note that
odd modes remain very weak in all the present cases. No asymmetric breaking of the
tripoles is observed within the duration of the simulations.
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(a)

(b)

(c)

Figure 6 (a–c). For caption see facing page.

The total (kinetic and potential) energy and potential enstrophy were computed
for the formation of each type of tripole (not shown). In each case, the total energy
in both layers is nearly conserved (within the weak decay due to hyperviscosity).
The enstrophy decay is negligible for barotropic tripoles and only weak for the
two other types of tripoles. This appears to contrast with the two-dimensional re-
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(d)

(e)

Figure 6. Time-evolution of potential vorticity maps showing: (a) the barotropic dipolar breaking
of an anticyclonic vortex in the upper and lower layers (upper and lower rows; Ro = 0.1, Bu = 0.25,
κ = 1, α = 4, l = 2, time interval = 2.4 τ, where τ is the turnover period of the mean vortex at its
centre, contour interval = 0.06); (b) formation of a barotropic tripole (Ro = 0.1, Bu = 0.25, κ = 1,
α = 3, l = 2, time interval = 2.4 τ, contour interval = 0.06); (c) formation of a surface-intensified
tripole (Ro = 0.25, Bu = 0.25, κ = 0.5, α = 3, l = 2, time interval = 12 τ, contour interval = 0.15);
(d ) formation of a baroclinic tripole (Ro = 0.5, Bu = 1, κ = 0, α = 3, l = 2, time interval = 8 τ,
contour interval = 0.15 for the upper plots and 0.075 for the lower plots); (e) baroclinic dipolar
breaking (Ro = 0.1, Bu = 0.25, κ = 0, α = 3, l = 2, time interval = 1.2 τ, contour interval = 0.1).

sults where a significant enstrophy decrease was observed during tripole formation.
This difference is physically related to the weak filamentation occurring here at
the tip of the central ellipse. Here the process of tripole formation is less non-
linear than in the two-dimensional case where high modes of deformation reach
a substantial amplitude. This may be attributed to the effect of the finite radius
of deformation which damps barotropic instability and leads to more linear, os-
cillatory evolutions for both barotropic and baroclinic instabilities (see the one-
and-a-half layer quasi-geostrophic results in Carton et al. 1989, and the two-layer
quasi-geostrophic results in Carton & McWilliams 1996 and Corréard & Carton
1999).

The energy budgets (see Appendix A) were computed for the formation of the
three types of tripoles (see figure 8a–l ). An exponentially growing energy conversion
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Figure 8. Time evolutions of kinetic energy of perturbation K , kinetic energy transfer Tk, potential
energy of perturbation P and potential energy transfer Tp during the formation of a barotropic
tripole (a–d ), a surface-intensified tripole (e–h) and a baroclinic tripole (i–l ). The time scale is
normalized by the rotation period of the initial vortex at its centre. The dashed line indicates the
lower layer.

from the mean flow to the perturbation appears at early times as predicted by linear
instability theory. The maximum value of this transfer increases with baroclinicity,
in agreement with linear theory, and confirming the more intense deformation of
baroclinic vortices. During nonlinear stabilization, part of the energy is transferred
back from the perturbation to the mean flow. During the subsequent evolution, these
transfers change sign quasi-periodically while decreasing in amplitude. The ratio
Tp/Tk increases with baroclinicity, but remains lower than unity, indicating that the
instability driving the formation of tripoles is either barotropic or mixed, but never
purely baroclinic.

4.3. Stationarity and stability of tripoles

If the tripoles resulting from vortex instability are stationary in a uniformly rotat-
ing frame of reference, their potential vorticity anomaly should be related to their
Bernoulli function. Indeed, replacing the time evolution by the angular variation
∂t = −Ω∂θ (where Ω is the rotation rate of the tripole), and setting v̂j = vj − rΩ, the



Vortex multipoles in two-layer rotating flows 167

2.4

2.2

2.0

1.8

1.6
0 0.02 0.04 0.06 0.08

(a)

Q1

2.4

2.0

1.6

1.2

0.8
0 0.04 0.08 0.12 0.16

(c)

Q1

2.4

1.8

1.2

0.6

0 0.06 0.12 0.18 0.24

(e)

Q1

B1

2.4

2.2

2.0

1.8

1.6
0 0.02 0.04 0.06 0.08

(b)

Q2

2.4

2.0

1.6

1.2

0.8
0 0.04 0.08 0.12 0.16

(d)

Q2

2.4

1.8

1.2

0.6

0 0.06 0.12 0.18 0.24

( f )

Q1

B2

Figure 9. Scatter plots of potential vorticity versus Bernoulli function at t = 16 τ for: (a, b)
a barotropic tripole (Ro = 0.1, Bu = 0.25, κ = 1, α = 3, l = 2), with Ω = −0.0058; (c, d ) a
surface-intensified tripole (Ro = 0.25, Bu = 0.25, κ = 0.5, α = 3, l = 2), with Ω = −0.011; (e, f )
a baroclinic tripole (Ro = 0.5, Bu = 1, κ = 0, α = 3, l = 2), with Ω = −0.0245. The upper (lower)
layer is the left-hand (right-hand) column.

dynamical equations become

v̂j(Roζj + 1) = ∂rBj,

uj(Roζj + 1) = −1

r
∂θBj,

∇(hj ûj) = 0,

with

Bj = pj + 1
2
Ro(u2

j + v̂2
j )− 1

2
RoΩ(1 + RoΩ)r2,

which is the relative Bernoulli function. These equations are combined to provide the
relation J(qj, Bj) = 0.

The scatter-plot of layerwise potential vorticity anomaly versus Bernoulli function
for the barotropic tripole shows three branches, corresponding to the surrounding
fluid (qj = 0), to the anticyclonic core of the tripole (qj < 0) and to the cyclonic
satellites (qj > 0, see figure 9a). In the case of a surface-intensified tripole (figure 9b),
the upper-layer scatter plot is similar to that of the barotropic tripole. In the lower
layer, the two branches with non-zero qj indicate the core and the satellites which
are like-signed now. For the baroclinic (arch shaped) tripole, the upper-layer plot is
as before, and the single lower-layer branch corresponds to the two identical positive
satellites which have aligned vertically under the upper ones.
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(b)

(c)

(a)

Figure 10. For caption see facing page.
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To evaluate the robustness of tripoles, we perturb them with white noise for new
model runs. The white noise amplitude in interface deviation is NL. For NL 6 0.025,
barotropic, baroclinic and surface-intensified tripoles rapidly regain their smooth
stationary structure. For NL = 0.125, a mode l = 1 disturbance grows on the
baroclinic tripole which starts drifting; the two other tripoles remain stable (see
figure 10). The surface-intensified tripole becomes unstable for NL = 0.25. The
barotropic tripole is the most robust when perturbed by white noise.

4.4. Ageostrophic and divergent circulations; the Lighthill equation

Finally, the ageostrophic and divergent circulations are analysed during tripole for-
mation to understand the similarity between quasi-geostrophic and shallow-water
model results. The layerwise ageostrophic circulation is, in dimensionless form,

vag = v − k ∧ ∇p,
where layer indices have not been added for simplicity. A straightforward analysis of
the simulations where tripoles form (see figure 6) shows that this ageostrophic flow is
originally circular and finally elliptical and mostly corresponds to the cyclostrophic
component of the flow (not shown). Indeed

k · ∇ ∧ vag = 2RoJ(u, v).

Its amplitude is therefore directly related to the Rossby number.
Since this analysis provides no original information, we compute the horizontal

divergence of the velocity:

∇H · (uj ) = ∇2χj

using the traditional decomposition

uj = k ∧ ∇ψj + ∇χj. (5)

Note that this divergence is directly linked to the vertical velocity via the continuity
equation:

wj =
dhj
dt

= −hj∇2χj.

In the quasi-geostrophic model, the divergent circulation is always weak. In the
shallow-water model, its evolution is now computed for stable tripoles.

During the formation of a baroclinic tripole, the velocity divergence concentrates
in the periphery of the anticyclonic core vortex (figure 11) where the horizontal shear
is maximum. The amplitude of the divergence oscillates with time (not shown on the
figure which has a large time sampling). These characteristics suggest the presence
of an inertial wave (known to be favoured by anticyclonic vorticity). A quadrupolar
pattern is rapidly established, showing the alternance of upward and downward flow
around the central ellipse. For the barotropic tripole, this concentration in anticyclonic
regions and the oscillating amplitude are also observed, but the spatial pattern of
velocity divergence is more intricate.

Figure 10. Time-evolution of potential vorticity maps showing the effect of a white noise of
level NL = 5 on (a) a barotropic tripole (Ro = 0.1, Bu = 0.25, κ = 1, α = 3, time interval = 0.64 τ,
contour interval = 0.06); (b) a surface-intensified tripole (Ro = 0.25, Bu = 0.25, κ = 0.5, α = 3,
time interval = 0.8 τ, contour interval = 0.15); (c) a baroclinic tripole (Ro = 0.5, Bu = 1, κ = 0,
α = 3, time interval = 0.64 τ, contour interval = 0.15 for the upper plots and 0.075 for the lower
plots). For each tripole, the two upper (lower) rows correspond to the upper (lower) layer; for each
row, the lower panel is the time continuation of the upper one.
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Figure 11. Time evolution of the horizontal velocity divergence during the formation of a baroclinic
tripole (see Figure 6d ). The first frame is at t = 3 τ and the time interval is δt = 6 τ. The contour
interval is 5× 10−4.

The quadrupolar pattern of velocity divergence for a baroclinic tripole can be
explained by using the relative vorticity equation on the f-plane:

dζj
dt

= (1 + Roζj)∇2χj.

This equation can be simplified, assuming that the flow is stationary, that the velocity
is essentially rotational and that the Rossby number is moderate:

J(ψj − 1
2
Ωr2,∇2ψj) = ∇2χj,

where Ω is the rotation rate of the tripole. Further simplication is based on the
circular form of the mean flow and on the weak amplitude of the perturbation:

J(ψ̄j − 1
2
Ωr2,∇2ψ′j) + J(ψ′j ,∇2ψ̄j) = ∇2χj, (6)

The Jacobian of the perturbation streamfunction with its relative vorticity is one
order smaller than the two terms retained on the left-hand side of this equation,
and is thus neglected. This final equation demonstrates that the vertical velocity has
the same angular structure as the dominant rotational mode of perturbation, here
elliptical in the upper layer (note that the nonlinear correction to the mean flow has
a null contribution to the velocity divergence in this equation).

Quantitatively, the two terms of (6) have been computed numerically and sub-
tracted. This difference also has an elliptical shape and amounts to 1.6% of the
velocity divergence. This justifies the approximations leading to (6).

In all cases, this velocity divergence is very weak compared with relative vorticity
(the rotational part of the flow); the ratio |∇2χ/∇2ψ| is at most 10−3. This also explains
why little difference is observed between quasi-geostrophic and shallow-water tripole
formation and evolution.

Finally, information on the propagating part of the divergent circulation can be
gained from the Lighthill equation (Lighthill 1952). It is derived from the momentum
and continuity equations (1) and (2) and is written in dimensionless form:

2Ro2 ∂3
t η + 2∂tη − Bu

2
∂t∇2η = RoBu ∂t(DS2 − DS1)

− Ro ∂t∇ · [η∇(p1 + p2)] +
Bu

2
[u2 · ∇ζ2 − u1 · ∇ζ1]

+
Bu

2
[D2ζ2 − D1ζ1]− ∇ · [η(u2 − u1)]

+ Ro ∂t[∂x[η(v1 + v2)]− ∂y[η(u1 + u2)], (7)

where Dj = ∂xuj+∂yvj , DSj = ∂2
x(hju

2
j )+2∂2

xy(hjujvj)+∂
2
y(hjv

2
j ). This equation is applied
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(a) (b)

Figure 12. Comparison of upper-layer potential vorticity and the Lighthill term for the generation
of internal gravity waves, (a) for the baroclinic tripole of figure 6(d ) at time t = 19 τ, and (b) for the
formation of a baroclinic dipole of figure 6(e) at time t = 3.8 τ. Contour interval is 0.1 for potential
vorticity (upper plots) and 0.001 for the Lighthill term (lower plots).

to the formation of a baroclinic tripole (example of figure 6d ) and to baroclinic dipolar
breaking in the frontal limit (example of figure 6e). In both cases, the Lighthill term
for the generation of internal gravity waves (the right-hand side of (7)) is the weak
(on order of 5 × 10−3 times the upper-layer potential vorticity maximum) and it is
quadrupolar (see figure 12 and also Polvani et al. 1994). Thus, little generation of
gravity waves occurs even during energetic events such as dipolar breaking. This
confirms our previous analysis of a weak divergent flow.

5. More complex multipoles? Conclusions
A similar stability study has been conducted for the same family of isolated vortices

perturbed with a triangular wave (mode l = 3). Linear instability characteristics of
this mode are very similar to those of the elliptical mode as stated in § 3. Triangular
perturbations can also stabilize nonlinearly at finite amplitude and form barotropic,
or surface-intensified, or baroclinic quadrupoles, with simple (q, B) relations; they are
more short-lived than comparable tripoles. Their decay occurs asymmetrically, due
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to the interaction of elliptical and triangular waves which have similar growth rates.
Numerically, more complex multipoles than quadrupoles were not observed as robust
states.

In summary, the study of isolated vortex stability in a two-layer rotating shallow-
water fluid has shown a striking similarity with quasi-geostrophic model results, a
similarity already noticed by Stegner & Dritchel (2000). Asymmetry between cyclones
and anticyclones was found mostly in the frontal limit, and to a lesser degree, for
large Burger numbers. In both cases, physical arguments (difference of radial gradients
of mean PHA in the frontal case, and/or cyclostrophic asymmetry of perturbation
velocity) and simple models partially accounted for the slightly stronger instability of
cyclones. This weak asymmetry may seem surprising considering that strong parity
bias was often found in intermediate models (Tang 1989; Sutyrin 1994; Stegner &
Zeitlin 1995); however, exaggerated parity bias in intermediate models compared
with the shallow-water model has been recently attributed to the truncated dynamics
of these intermediate models (Ben Jelloul & Carton 2001). A stronger instability
of cyclones than of anticyclones was also found for a divergent elliptic vortex in
one-and-a-half layer shallow-water flow (Arai & Yamagata 1994).

The nonlinear evolution of these isolated vortices, elliptically perturbed, confirmed
this similarity between quasi-geostrophic and shallow-water evolution. It also showed
that formation of tripoles with various vertical structures was not an exceptional
occurrence. Note that tripoles can also form from piecewise-constant vortices, el-
liptically perturbed, in a two-layer rotating shallow-water model (Baey & Carton
2001). Shallow-water tripoles are stationary in rotation and long lived like their
quasi-geostrophic counterparts (Corréard & Carton 1999). The weakness of the
ageostrophic and divergent circulations during shallow-water tripole formation and
evolution may account for the similarity between the two models.

Tripole formation was also shown not to substantially dissipate energy nor enstro-
phy. It could be of interest to investigate if tripole formation and dipolar breaking
correspond to noticeably different angular momentum distributions in the initial
circular vortices leading to these final states (see Carton & Legras 1994).

A complex relation was found between the rotating tripole Bernoulli function
and potential vorticity anomaly. From this relation, the mathematical form of the
spatial vorticity distribution of the tripole could be derived (though this appears very
difficult). With such an expression, the tripole parameters (amplitude and radius)
could be related to those of the original vortex and a rule could be established on
the possibility of a transition between these two states. Again, this prospective task
seems particularly arduous.

In conclusion, vortex stability, at least in our parameter ranges, is not a good candi-
date to explain the parity bias in oceanic vortices. For instance, though Mediterranean
water eddies have sometimes been observed to form as dipoles over the Portimao
canyon south of Portugal (Serra & Ambar 2001), their cyclonic counterpart has rarely
been found beyond a few hundred miles away from the formation sites (Carton et al.
2002). Vortex interaction with waves, topography, beta-effect and large-scale currents
should thus be investigated to explain this asymmetry in the ocean.

This work was performed at SHOM/CMO and at IFREMER/LPO; it is a con-
tribution to both institutes’ research program “Mesoscale turbulent processes in the
Northeastern Atlantic Ocean”. The first author worked under SHOM/CMO contract
787007-004702925. The authors thank Professors W. K. Dewar, J. C. McWilliams,
D. G. Dritschel and G. R. Flierl, and Drs L. Hua and P. Klein for fruitful discussions,
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and three anonymous referees whose suggestions helped improve the manuscript. We
dedicate this work to the memory of our friend and colleague, Dr Rupert Ford.

Appendix A. Energy transfers
Multiplying the nonlinear momentum and continuity equations for the perturbation

by the complex conjugates of u′j , η′ = p′2 − p′1 we obtain∫ ∞
0

r dr

[
2∑
j=1

h̄j
d

dt
〈K ′j〉+

d

dt
〈P ′〉

]

=

2∑
j=1

TKj + TP +

∫ ∞
0

〈
η′2

Bu

[
∂ru
′
1 +

u′1
r

+
1

r
∂θv

′
1

]〉
r dr

−
∫ ∞

0

〈
p′2

[(
2∑
j=1

∂r(ru
′
jh
′
j)

)
− ∂θ(η′v′1)

]〉
dr

with K ′j = |u′j |2 + |v′j |2, P ′ = |η′|2/Bu, h′j = (−1)jη′ and the angular average

〈a〉 =

∫ 2.π

0

a dθ

The kinetic and potential rates of energy conversions and the baroclinic conversion
are

TKj = −
∫ ∞

0

(
dv̄j
dr
− v̄j

r

)
〈u′jv′j〉h̄jr dr, j = 1, 2,

TP =

∫ ∞
0

(v̄1 − v̄2)〈p′2∂θη′〉 dr,

TPK =

2∑
j=1

∫ ∞
0

〈p′j(∂r(rh̄ju′j) + h̄j∂θ(v
′
j))〉 dr;

the last two terms on the right-hand side of the energy equation are a nonlinear
contribution of the perturbation.

Appendix B. Linear instability in the frontal limit
In the frontal limit (Ro/Bu ∼ 1), the shallow-water conservation of potential height

anomaly

dθ̄j
dr

= 0, θ̄j =
η̄j/Bu− ζ̄j
1 + Roζ̄j

is linearized, assuming geostrophy for the normal-mode perturbation; this implies
that Ro is small, which is compatible with Ro/Bu ∼ 1 when Bu is also small. The
resulting equation is

(v̄j − rc)θ′j − dθ̄j
dr
p′j = 0, θ′j =

η′j/Bu− θ̄jζ ′j
1 + Roζ̄j

,

with ζ ′j = ∇2p′j , η′j = (−1)jη′/Ĥj .
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This equation is solved by a matrix method with the condition of null perturbation
at the origin and at infinity.

Appendix C. Shallow-water perturbation velocity in the linear theory
Using the linearized (layerwise) shallow-water equations, and assuming that the

pressure is normalized by the layer density, the expression for radial and azimuthal
perturbation velocities is, in dimensionless form,

u′j =
il[Ro(c− v̄j/r) dp′j/dr − (1 + 2Ro v̄j/r)p

′
j/r]

(1 + 2Ro v̄j/r)(1 + Ro v̄j/r + Ro dv̄j/dr)− l2Ro2(c− v̄j/r)2
,

v′j =
(1 + Ro v̄j/r + Ro dv̄j/dr) dp′j/dr − l2Ro2(c− v̄j/r) p′j/r

(1 + 2Ro v̄j/r)(1 + Ro v̄j/r + Ro dv̄j/dr)− l2Ro2(c− v̄j/r)2
.

Setting Ro = 0, we immediately obtain the quasi-geostrophic form.

Appendix D. Linear instability in the large-Bu limit
For 1/Ro < Bu < ∞, we neglect the 1/Bu terms in front of the Ro-order correction

terms. Then, the layers decouple and a quasi-two-dimensional equation is obtained
for the normal mode perturbation:

(v̄ − rc)ζ ′ − dζ̄

dr
p′ = 0.

Due to our choice of mean flow, ζ̄ is antisymmetric for cyclones and anticyclones.
But due to the (linearized) gradient wind approximation, the perturbation vorticity is
not antisymmetric:

ζ ′ = ∇2p′ − 2Ro J(u′, v̄).
This equation is solved by a matrix method with condition of null perturbation at
the origin and at infinity.

REFERENCES

Arai, M. & Yamagata, T. 1994 Asymmetric evolution of eddies in rotating shallow water. Chaos 4,
163–176.

Baey, J. M. & Carton, X. J. 2001 Piecewise-constant vortices in two-layer rotating shallow-water
flows. Proc. IUTAM Symp. on Advances in Mathematical Modeling of Atmosphere and Oceans,
pp. 87–92. Kluwer.

Ben Jelloul, M. & Carton, X. J. 2001 Asymptotic models and application to vortex dynamics.
Proc. IUTAM Symp. on Advances in Mathematical Modeling of Atmosphere and Oceans, pp.
105–110. Kluwer.
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