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Abstract:  
 
The Catch-Survey Analysis method of assessment aims at estimating stock abundance from relative 
indices by filtering measurement error in the latter through a simple two-stage population dynamics 
model. The method is not widely used and the associated literature is still limited. The objective of this 
work is to improve current understanding of the properties of the method, using data generated from a 
known fully age-structured population. A sensitivity analysis confirms that CSA is capable of providing 
reliable information about general stock trends. However, absolute estimates are sensitive to the 
parameter relating survey catchabilities of the two stages, which needs to be estimated externally with 
methods that warrant further validation. Biased results are also obtained when changes in the 
catchability of the fleet providing indices are not corrected for during data preparation. Conventional 
diagnostics fail to detect violations of the constant-q assumption and improved diagnostics are thus 
needed. CSA is proved to be a very valuable method to support management advice in data-limited 
contexts in which age data are lacking or uncertain. Subject to some refinements, it can even 
challenge VPA-based assessments, notably when the latter use uncertain age data.  
  
 
Keywords: stock assessment; catch-survey analysis; Collie-Sissenwine model; data-limited 
environments. 
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1. Introduction 
 

The fish stock assessment community generally proclaims strong preference for 
age structured models and strives to use some variant of Sequential Population Analysis 
methods to estimate the parameters of these models. In many instances, age structured 
models are effectively superior in that they give detailed insight into the dynamics of 
stocks and provide means to explore a large variety of management measures. However, 
this advantage is obtained at considerable cost since the continuous provision of reliable 
age data over long periods is required. Estimating the age composition of catches usually 
involves age-length keys, which need to be rebuilt anew every year. Processing the 
hundreds of otoliths (or other hard pieces) required is often the most expensive 
component of data preparation for assessments. Moreover, there are many species for 
which the determination of age is still an unresolved issue or is at best uncertain, making 
age-based approaches inappropriate. For assessing such stocks a classical alternative is to 
use surplus production models. However, fitting these apparently simple models raises 
arduous statistical problems, and they often fail to produce reliable estimates for 
management purposes, notably when there is insufficient contrast in the data (Hilborn 
and Walters, 1992) or when variations in stock abundance are driven more by fluctuations 
in recruitment than by changes in harvesting intensity (NRC, 1998). In addition, even 
though some information additional to catch and cpue might be available, for example 
about recruitment strength from surveys, surplus production models are unable to utilise 
it. Length-based methods may be another option but most require that the growth 
pattern can be modelled properly, which again poses the problem of age determination in 
the first place. The same constraint holds for applications of the delay difference model 
(Deriso, 1980) in which the growth coefficient is an important parameter. This means that 
there is currently a lack of operational methods to handle stocks for which age structures 
are uncertain, such as crustaceans, or more generally for the so-called “data-limited” 
situations. Nevertheless, fisheries scientists are requested to provide management advice 
and giving no response is detrimental to their credibility if not, at times, to the welfare of 
the fisheries. 
 

With its moderate demand in data, the Catch-Survey Analysis (CSA) method based 
on the two-stage model first proposed by Collie and Sissenwine (1983) fits well in that 
niche. In essence, it aims at extracting the real stock abundance signal from often noisy 
survey data by smoothing the latter through a simple dynamic model. The approach is 
particularly designed for cases in which a full age structure is lacking, but where a 
“recruits” stage can be easily distinguished from older ages lumped into a “fully-recruited” 
component (e.g. a distinct threshold can be seen in length compositions plots), and where 
time series of abundance indices for each stage are available (from commercial cpue or 
preferably from surveys). The method seems to be used regularly in North America, 
notably for assessments of shellfish stocks (e.g. Conser, 1991; Conser and Idoine, 1992; 
Collie and Kruse, 1998; Cadrin et al., 1999; Zheng et al., 1997, 1998), but has not 
attracted much attention in Europe despite the positive appreciation by the ICES Methods 
Working Group (ICES, 1995). However, the associated literature is still very limited. Most 
papers deal with specific applications and are confined in rather confidential "grey 
literature". Understandably they tend to focus on those results of immediate relevance for 
management advice for the particular fishery, rather than on the inherent behaviour of 
the method, and there is some divergence between authors regarding the consequences 
of changes in some settings upon various results.  
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The main objective of this paper is thus to improve the current understanding of 
the properties and limitations of this method.  It tries to clarify the relative importance 
and the effects of varying key input parameters. It also examines the extent to which 
standard diagnostics may help to guide the choices or to detect problems. Like Collie and 
Kruse (1998) and Cadrin (2000), this evaluation uses simulated data from a known 
underlying population. Moreover, the data were generated with a very different, fully age-
structured model then aggregated into one (catch) or two (indices) stages. Deterministic 
and stochastic simulations were carried out. The latter involved a Monte Carlo approach 
whereby multiple sets of abundance indices were generated, with variable amount of 
observation error, and input to CSA yielding series of estimates whose distributions were 
examined for dispersion and bias. However, the outcomes of this trial were qualitatively 
the same as those found in the literature, notably in the last two cited papers. Therefore, 
only the results of the deterministic simulations (data sets without stochastic error, except 
in bootstrap runs used to assess confidence bounds) are presented and discussed in this 
paper. 
 

The essentials of the model and of the estimation procedure are first recalled. 
Then results of a sensitivity analysis and outputs of common diagnostics are presented. 
Finally, implications of the results are discussed. 
 
 
2. Methods 
 
2.1. The two-stage model 
 

Following Collie and Sissenwine (1983),  it is assumed that the population consists 
of two stages: the recruits, and the fully recruited animals. The time step is annual, with 
years defined either on a calendar basis or as the interval between regular surveys. The 
year range is [1, T]. 
 

The population dynamics is described by a discrete difference model: 
)1(

1 )( τ−−−
+ −+= M

t
M

ttt eCeRNN    [1]  
where Nt is the population size, in number, of fully recruited animals at start of year t; 
Rt the population size, in number, of recruits at start of year t; Ct the catch in number 
during year t (known); M the instantaneous rate of natural mortality (equal for both 
stages, assumed); τ the fraction of the year when the catch is taken, e.g. 0 if the fishing 
season is early in the year, or 0.5 if the catch is taken midway through the year or, by 
resemblance with Pope's (1972) cohort approximation, evenly over the year. 
 

Estimating the time series of Nt and Rt given the catches is the basic task of any 
assessment but, as with other methods, this requires additional information in the form of 
relative indices nt and rt of abundance for each stage, typically from surveys, which are 
assumed to be proportional to absolute population sizes Nt and Rt. The indices are 
deemed to be measured with some (log-normal) observation error: 

)exp( ttnt Nqn η=  ; t= 1, T   [2] 

)exp( ttrt Rqr δ=  ; t= 1, T-1   [3] 
where qn and qr are the catchability coefficients of fully recruited and recruits, 
respectively, in the survey, supposed to be constant with time; η and δ are normally 
distributed random variables. 
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Whereas Collie and Sissenwine (1983) considered a unique catchability coefficient 

for both stages, Conser (1994) has added the specification that the catchability of the 
recruits is a fraction s of that of the fully recruited: 

nr qqs =      [4] 
This addition is essential because s is often less than unity and the estimation 

would fail without the possibility of adjusting it. The difficulty, though, is that s has to be 
pre-set based on external information. Although it is not formally correlated with other 
parameters in the equations above and is estimable in principle, s is in practice strongly 
(negatively) correlated with qn (Collie and Kruse, 1998). If the necessary information is 
available, year-specific values can be set for s. 
 
 
 
2.2. Estimation 
 

Two approaches for estimation are mentioned in the literature depending on the 
assumed error structure, which can be either a mix of observation and process errors, or 
only observation errors. In both cases the estimation equation is arrived at by substituting 
the expectations of [2] and [3] into [1], yielding : 
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where, if relevant, ε is a normally distributed process error, which can be multiplicative as 
used by default here but is sometimes considered additive (Mendelssohn, 1988; Cadrin, 
2000). 
 

In a least-squares approach, the parameters are estimated by minimising an 
objective function of the general form : 

∑∑∑
−

===

++=
1

1

2

1

2

2

2)(
T

t
t

T

t
t

T

t
tSS δληελθ δε  [6] 

where λε and λδ are the (user defined) relative weights of the process error and of the 
observation error on recruits, relative to the observation error on the fully recruited, and θ 
is the set of parameters. The function SS is non-linear with respect to the parameters and 
may be minimised with any suitable NLLS algorithm such as Levenberg-Marquardt or 
Nelder-Mead simplex. 
 

With a mixed-error structure, given time series of catches C and of abundance 
indices r and n for T years, 2T parameters have to be estimated: qn + {r1 … rT-1} + {n1 … 
nT}, using a set of T equations [2], T-1 equations [3] and T-1 equations [5] (i.e. 3T-2 
residual terms, leaving T-2 degrees of freedom). When only observation errors are 
considered, the first term in [6] is ignored and there are also T-2 degrees of freedom but 
only T+1 parameters to estimate: qn + {r1 … rT-1}+ the index n1 for the first year. In 
either case the catch and the recruitment index in the terminal year are not used. Use of 
equation [5] implies that indices must be available for all years (no missing data). 
 

The procedure yields the set of estimated parameters (noted with a hat), from 
which the time series of population sizes can be reconstructed using the equations: 
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The procedure does not estimate a recruitment index for the final year. The most 
recent recruitment is thus estimated with equation [8], but using the observed index (rT). 
 

Total biomass is derived in the usual way, by multiplying the population sizes by 
the observed mean weights in each stage and year, and summing: 

tNttRtt WNWRB ,, +=    [9] 

 
By analogy with an age structured model, Conser (1994) suggested to measure 

the overall fishing mortality (here noted F*) using: 
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F* is not defined for the final year, which may be annoying since this is often the year of 
major interest for managers. An alternative measure of fishing pressure is the harvest 
rate which, in its simplest form, is calculated in each year as the catch divided by the sum 
of recruits and fully recruited. The variant proposed by Collie and Kruse (1998) is simply 
scaled by eMτ and therefore shows the same trends with time. 
 
 
2.3. Data simulation 
 

The basic data required by CSA are time series of total catch in number, and of 
“survey” indices for the recruits and for the fully recruited. Annual mean weights for each 
stage are also needed for translating stock numbers into biomass, but play no role in 
model fitting. These data were generated from an artificial population of known 
characteristics, comprising 15 age groups, simulated over 40 years of exploitation using 
an age-structured model. The biological parameters roughly mimic those of Atlantic cod. 
Only the data for the final 25 years were retained. Details of the simulation and input data 
preparation are presented in Appendix A. All results considered hereafter are based on 
true values of catches and of indices obtained from deterministic data generations. 
Results are displayed for one survey selection pattern only since the findings regarding 
CSA behaviour were qualitatively the same when input data were generated with the 
alternative pattern. 
 
 In this approach, the true population numbers and the indices for each stage are 
known in each year, thus the catchabilities for each stage can be easily obtained. Then 
the ratio of the two catchabilities gives the true value of the s parameter (equation [4]) in 
each year. Although the selection parameters of the survey were constant over the whole 
period, the age composition of the underlying population changed considerably in 
response to recruitment variability and fishing, which resulted in large fluctuations of the 
true s as shown in Fig. 1. Since this evaluation of the CSA method considers only the 
simple case where a single constant s is assumed in the estimation, these variations in the 
true s are akin to a process error in the data passed to CSA. This was not the intention, 
and is caused by the vagaries of the age structure of the population, not by changes in 
the survey protocol. In contrast, the model specification error due to the generation and 
estimation models being different is intentional. 
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 In this instance, the true catchability of the recruits is practically constant over the 
period (Table 4). Therefore, the calculated s varies inversely with changes in the 
catchability of the fully recruited. This creates a difficulty for this evaluation since 
catchability is also a key parameter in CSA and departures from a constant-q assumption 
are confounded with departures from the constant-s assumption. To try to resolve this 
ambiguity, indices were generated with and without a steady trend (+3% per annum) in 
survey efficiency over the final 15 years without changing the selectivity parameters. This 
ensured that the annual true s remained the same in both scenarios. 
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Fig. 1. Time trajectory of the true value of the catchability ratio s between the simulated 
indices. Solid line: base selection pattern; dashed line: alternative selection pattern. 
 
 
2.4. Diagnostics 
 

Modern standards require that all assessment methods be accompanied by 
adequate sets of diagnostics to evaluate the quality of the results and identify potential 
shortcomings in the data and/or the model, notably when the outcome serves to support 
management advice. Diagnostics may apply to the estimation of individual “primary” 
parameters (those of equation [5]) or to derived quantities (e.g. biomasses) of 
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management interest. The discussion here concentrates on a small set of simple statistics 
commonly mentioned in the CSA literature. 
 
 The overall goodness-of-fit is evaluated with the residual mean square error 
(RMSE) which is the value of SS (equation [6]) computed at the minimum divided by the 
number of degrees of freedom (T-2 for both error structures, where T is the number of 
data years). The contribution of each residual can also be examined to look for patterns 
or trends. The residuals considered here are log-residuals, in line with the log-normal type 
of error assumed in equations [2], [3] and [5], standardised to the square root of the 
RMSE, e.g. for observation residual on recruits δ: 

RMSE
rr tt

t
)logˆ(log −

= δλδ   [11] 

The share of each residual term (squared and weighted by the appropriate λ) in the total 
sum of squares can also be examined to identify influential data and to judge the relative 
importance of each source of error. 
 
 Some minimisation routines estimate the variance or CV of each parameter 
assuming linearity of the objective function SS near the minimum. However, the 
approximation is often poor, resulting in inflated variances, and it may not be easy to 
compute the variance and bias of management quantities derived from the parameters. 
Bootstrap analysis is now a well established way of evading such problems. The option for 
this study was to use a non-parametric model-conditioned bootstrap. For each set of 
options a base fit of the model provided reference estimates and raw residuals. Artificial 
survey indices were generated by applying randomly selected residuals, drawn within 
each error type separately, to the reference estimates. Five hundred bootstrap runs were 
made and empirical percentiles of annual biomasses were extracted. No bias correction 
was applied to the percentiles. Bootstrap estimates of bias and CV were computed only 
for the fully recruited catchability qn which is a key parameter in this method. 
 
 Retrospective analyses are now standard in assessment circles and are quite easy 
to implement with CSA. They are used to check the consistency of past estimates as the 
data series is augmented. Large and systematic year-to-year revisions of estimates are 
indicative of violations of some model assumptions, notably constancy of parameters over 
time. In this instance, retrospective runs were made starting from the complete 25-year 
data set and removing the terminal year recursively until there were at least 10 years of 
data left to fit the model. The deviations in successive estimates of biomass, recruitment 
and fully recruited abundance in the terminal year of each subset were summarised using 
Mohn’s (1999) ρ statistic, e.g. for biomass: 

tt
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where m is the number of years removed (15 in this instance: years 11-25) and BB(1-x),t 
denotes the result for year t using all data until year x. This statistic has the advantage of 
taking into account the sign of the updates. A positive ρ indicates that the addition of new 
data has mostly implied downward revisions of the estimates. 
 
 
3. Results 
 
3.1. Sensitivity analysis 
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Sensitivity of the CSA results to various optional settings was explored by varying 

input parameters one at a time from a base case where the following were assumed: s = 
0.09 (close to the mean of the true s, 0.093); τ = 0.5 (consistent with the Baranov catch 
equation used in generating the data); mixed error structure with equal weight for the 
process error and the observation error on indices for the fully recruited (λε = 1). 
Throughout this study no attempt is made to vary the weight of the observation error on 
recruitment indices (default λδ = 1) since these were generated with the same procedure 
as the fully recruited indices. Comparisons among options and with the true values are 
displayed in Fig. 2. 
 

5 10 15 20 25

20

40

60

80

100

120 a)

B
io

m
a
s
s

(
,0

0
0

t)

5 10 15 20 25

20

40

60

80

100

120 b)

5 10 15 20 25

20

40

60

80

100

120 c)

5 10 15 20 25

5

10

15

20 d)

R
e
c
r
u
it
s

(
M

)

5 10 15 20 25

5

10

15

20 e)

5 10 15 20 25

5

10

15

20 f)

5 10 15 20

-0.1

0.0

0.1

0.2

0.3 g)

F
*

5 10 15 20

-0.1

0.0

0.1

0.2

0.3 h)

5 10 15 20

-0.1

0.0

0.1

0.2

0.3 i)

5 10 15 20 25

0.00

0.05

0.10

0.15

0.20 j)

H
a
r
v
e
s
t
R

a
te

5 10 15 20 25

0.00

0.05

0.10

0.15

0.20 k)

Year

5 10 15 20 25

0.00

0.05

0.10

0.15

0.20 l)

 
 

 8



Fig. 2. Sensitivity analysis of CSA estimates, from top to bottom: biomass, number of 
recruits, fishing mortality F* and harvest rate. Left: sensitivity to s (dashed line: s= 0.10; 
solid line: s= 0.09; dotted line: s= 0.08). Middle: sensitivity to τ (dashed line: τ= 0.0; 
solid line: τ= 0.5). Right: sensitivity to assumed error structure and weighting (solid line: 
mixed error, λε= 1; dotted line: mixed error, λε= 10; dashed line: observation error only). 
In all panels, the solid circles represent the true values and the solid lines the base case. 
 
 
 From a glance over Fig. 2 it is apparent that the general pattern in the trajectory 
of each variable is fairly similar under all options and broadly follows that of the true 
values. High or low estimates consistently occur in the same years and there is only one 
exception (in panel 2.i) where an option indicates a decrease while others show an 
increase or vice versa. Nevertheless, in terms of absolute estimates, the analysis shows 
that the single most influential parameter is the catchability ratio s (panels on the left) 
which acts as a scaling factor. As s is increased, all estimates of biomass and recruitment 
are inflated and this mechanically results in lower estimates of fishing mortality F* and 
harvest rate. Although the variations in s considered are relatively small (±11%), well 
within the range of uncertainty a user would have to confront in a field case, the effects 
can be quite large: absolute biomass, for example, is estimated to be 28% larger in the 
peak year (year 4) or 27% larger in the terminal year when s is varied from 0.09 to 0.1. 
However, estimates of year-to-year relative changes in biomass are practically the same 
under the three s options. Still larger sensitivity coefficients were obtained when s was 
varied about its mean value under the alternative selection pattern, indicating that the 
results above are not simply an artefact related with the very low s value in the base 
case. Because the true s has been very variable (Fig. 1) but a single constant value is 
assumed in the estimation, estimates deviate from the true values in one direction or the 
other depending on the year. Biomass estimates are generally closer to the truth for 
s = 0.09 in the earlier years and for s = 0.1 in the recent period. The latter choice seems 
more appropriate for recruitments, which are systematically underestimated with the 
other options, but note that the method is more accurate for very poor than for strong 
year classes. There is a clear problem with fishing mortality, as measured by F* (panel 
2.g and also 2.h-i), in that senseless negative estimates are obtained for the start of the 
series, a period when the true s fell sharply. Fishing mortalities are also very close to zero 
in the terminal years for s = 0.1. A lower s would remedy these problems but would 
amplify the discrepancies for other years and other quantities. In brief, no single value of 
s is adequate for all variables and years. Options that result in negative F* mark the 
upper bound of the feasibility domain for s, at least for years when this occurs. A lower 
bound for s is signalled at the extreme when the estimated population is less than the 
catch (and more evidently by a program crash). 
 

The next option considered is the parameter τ which adjusts for the timing of the 
fishery within the year (panels in the middle column). As pointed out by Collie and Kruse 
(1998), the effects are predictable because qn in equation [5] is simply scaled down by a 
constant factor exp(-τM) and thus all estimates of biomass and recruitment inflated by 
exp(τM), i.e. +10.5% for τ = 0.5 compared to τ = 0 when M = 0.2. This is relatively 
minor except when it adds up to the effects of setting s too high. Note in panel 2.h that 
this option has no effect at all on the estimates of fishing mortality F*.  
 

The choice of error structure is an important issue in modelling and the 
consequences for this method are examined in the rightmost panels of Fig. 2. For the 
options considered, the estimates are practically unaffected. Compared to the base case 
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(mixed error, equal weight), a better match with the true values is obtained for two 
seemingly opposite options: either observation error only, or mixed error with a 
comparatively large relative weight (10) for the process error. The improvement is visible 
for biomass at the start of the period (panel 2.c), and for fishing mortality (2.i) also at the 
start of the period, where both remove the problem of negative F* discussed above, and 
in years 17-20 where they smooth out the erroneous sequence of drop and rise. The 
latter is caused by a fall in true s following the recruitment of a very poor year class and is 
akin to a process error. So, even though process error does exist in the data, it may be 
better to ignore it altogether, either by using an all-observation-error approach or, 
equivalently, by weighting it strongly in the mixed error option. 
 
 Since the results are so sensitive to errors in s, it was felt worthy to check whether 
results would improve if the true annual s were input, although knowing these would be 
impossible in real applications. Results of this trial are shown in Fig. 3 for biomass and 
recruitment estimates only. Compared to runs with a constant s close to the average, 
improvements are fairly minimal, if any, and the method does not do much better in 
approaching the true values when it is provided with the true s. This indicates that it is 
more important to set the overall magnitude of s right than to refine the details of its 
variations through time. 
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Fig. 3. CSA estimates of biomass (top) and recruitment (bottom) using the true annual  
catchability ratios s. Solid line: assuming a mixed error structure with λε= 1; dashed line: 
assuming observation error only; solid circles: true values. 
 
 
 In common with most surplus production and VPA tuning methods, the basic form 
of CSA makes the strong assumption that catchability in the survey or fleet providing the 
indices has been constant over the period of interest. Violations of this assumption are the 
major cause of blunders in assessments and advice (e.g. ICES, 2002a). The effects of a 
trend in catchability, when it is not corrected for in the cpue calculations, have been 
explored using data generated with a 3% increase in survey efficiency during the last 15 
years (this implies that effective catchability of both stages in year 25 is about 1.5 times 
that in year 10). The outcome under two error structures is shown in Fig. 4, again for 
biomass and recruitment estimates only. Other settings are as in the base case (s = 0.09, 
τ = 0.5). As expected, the trajectories of both quantities diverge gradually from those of 
the true values in recent years, resulting in a gross overestimation of terminal stock 
abundance. More troubling is the observation that the method estimates smaller 
catchabilities when an increasing trend in the latter is simulated (Table 1, right): the only 
mechanism it knows for increasing stock size estimates given a series of indices is to 
reduce the catchability estimate. CSA definitely has the same problem with catchability 
trends as other stock assessment methods. 
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Fig. 4. CSA estimates of biomass (top) and recruitment (bottom) when indices are subject 
to a catchability trend of 3% per annum in years 10-25. Solid line: assuming a mixed 
error structure with λε= 1; dashed line: assuming observation error only; solid circles: 
true values. 
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Table 1. Estimates of fully-recruited catchability and diagnostics for various combinations of input parameters (top panel) considered in the 
sensitivity analysis. 
 
 
s 0.10 0.09 0.08 0.10 0.09 0.09 0.10 0.09 0.08 0.09 0.09
Error type mix mix mix mix mix mix obs obs obs mix obs 
Process wt λε 1 1 1 1 1 10 - - - 1 - 
τ 0.5 0.5 0.5 0 0 0.5 0.5 0.5 0.5 0.5 0.5
q trend no no no no no no no no no +3% +3% 
            

Estimated qn 4.83E-4 6.21E-4 7.91E-4 5.34E-4 6.86E-4 6.15E-4 4.74E-4 6.03E-4 7.64E-4 5.75E-4 5.56E-4
RMSE 4.90E-3 4.99E-3 5.35E-3 4.90E-3 4.99E-3 1.16E-2 1.59E-2 1.51E-2 1.50E-2 4.63E-3 1.33E-2
% process error 57.24 54.15 51.21 57.24 54.15 20.49 - - - 53.35 - 
% obs. error on 
recruits 

3.36 4.19 5.44 3.36 4.19 11.46 14.92 17.99 22.70 4.09 16.40

% obs. error on 
fully recruited 

39.40 41.65 43.35 39.40 41.65 68.05 85.08 82.01 77.30 42.56 83.60

CV(q) :   
   Linear approx. 1.721 1.339 1.057 1.723 1.361 0.614 0.538 0.447 0.380 1.647 0.540
   Bootstrap 0.037 0.030 0.025 0.036 0.030 0.038 0.062 0.049 0.041 0.035 0.057
Rel. Bias(q) % 2.4 1.2 0.2 2.7 1.4 0.0 3.1 1.3 0.1 1.5 1.2
Biomass ρ 0.064 0.071 0.080 0.064 0.071 0.149 0.239 0.193 0.172 0.059 0.157
Recruits ρ 0.060 0.066 0.075 0.060 0.066 0.128 0.199 0.160 0.148 0.056 0.134
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3.2. Diagnostics 
 

The standard estimation diagnostics for a few variations in the settings are 
summarised in Table 1 which also shows the corresponding estimates of catchability qn. 
Unfortunately, most of these diagnostics are unhelpful to decide about a “best” choice, 
and some are actually misleading since they indicate an improvement in the fit whereas 
the plots in the previous figures show more divergence from the true values, which we 
are fortunate to know in this case. RMSE, for example, is smaller for a mixed error 
structure (except of course when the process weight is increased) than when only 
observation error is assumed, or when there is a trend in catchability. For reasons already 
given, it is unchanged when τ is varied. It is right in indicating that an s value of 0.08 is 
worse than 0.09 or 0.1 under a mixed error structure, but the opposite would be wrongly 
concluded under an observation error assumption. Options are ranked differently when 
their quality is judged by the CV of the catchability estimate, with the additional difficulty 
that its measure by linear approximation  is one or two orders of magnitude larger than 
the bootstrap estimate. 
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Fig. 5. Plots of standardised residuals against time assuming a mixed error structure with λε= 1. 
Top: observation residuals on fully recruited; middle: observation residuals on recruits; bottom: 
process error residuals. Open circles: using the true annual catchability ratios; solid line: assuming 
s= 0.09; dashed line: same with a catchability trend; dotted line: assuming s= 0.1. 
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 Fig. 5 shows plots of each type of residuals against time for some variations in the 
settings. It is apparent that the pattern of residuals is very similar across the options 
considered, including in the presence of a trend in catchability, with differences which are 
even not discernible in some instances. One might have expected that informing the 
method with the right annual s would result in smaller residuals, in particular those 
related with process error, but this does not occur. As noticed by a referee, the reason is 
that the fully recruited catchability is not constant. He showed that the indices can be 
reproduced exactly when a variant of equation [5] is used, in which a correction is made 
for changes in qn from one year to the next. This is feasible in a simulation context where 
the true annual catchabilities are known, but would unfortunately be impossible in 
practice. He also pointed out the negative correlation between process errors and recruits 
observation errors in Fig. 5: when indices predicted by equation [5] are less than 
estimated (negative process residuals), the fitting procedure tries to correct this by 
increasing the recruits estimates, which results in positive observation residuals on 
recruits, or vice versa. 
 

Other ways of analysing the residuals were explored, taking advantage that the 
true values of s or q were known, but the attempts were inconclusive. In particular, plots 
of the observation residuals for the fully recruited (ηt in equation [2]) against the error in 
s or in qn seemed to indicate patterns wherein the largest positive residuals tended to be 
associated with years when the true s was larger than assumed, and vice versa for large 
negative residuals, but the same pattern also emerged when the true s were used; it may 
thus not provide a reliable diagnostic for general cases. Fig. 5 eventually carries bad news 
in that residuals provide no help to detect errors in the magnitude of s nor violations of 
the constant-q assumption which are potentially pathological for this method as seen 
above. 
 
 Additional elements of diagnostic are provided by the bootstrap analysis. Fig. 6 
shows the estimated 10, 50 (median) and 90 percentiles of the empirical distributions for 
one key quantity, biomass, under two error structures. Patterson et al. (2001) found that 
the usual 5 and 95 percentiles may not be reliably estimated with such methods, and this 
is why less extreme values were considered here, also keeping in mind that the number 
of residuals to draw from is small. The “confidence interval” is quite narrow in most years 
and symmetrical around the median, giving an impression that the assessment is of high 
quality in terms of precision. This is also confirmed by the low estimates of CV and of 
relative bias in catchability obtained with the bootstrap (Table 1). However, Fig. 6 shows 
that this impression is false since the interval does not include the true value in most 
years, a discrepancy which is even worse when a larger s is assumed or when there is a 
trend in survey catchability. For the case shown in Fig. 6, the observation error 
assumption again performs somewhat better than the mixed error with respect to this 
criterion. The conclusion is that the bootstrap analysis is not reliable to rank the various 
options, nor to detect errors in s or catchability trends. 
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Figure 6. Bootstrap estimates of confidence intervals on biomass assuming s= 0.09 and a 
mixed error structure (top) or observation error only (bottom). Solid line: median; dashed 
lines: 10 and 90 percentiles; solid circles: true values. 
 
 Retrospective analyses were carried out using data with and without catchability 
trend. For biomass and recruitment, the retrospective plots are nearly identical in either 
scenario. Therefore, only those for the former (with trend) and for a mixed error structure 
are presented, with a further restriction to runs ending in the last 10 years  (Fig. 7). In 
general, the revisions due to the addition of later data are fairly small. This is confirmed 
by the low ρ values shown in Table 1 which, incidentally, are positive for all options. One 
exception is the run with year 19 as the terminal year, which remains atypical over the 
whole time series, and this may be associated with the sharp drop in true s in that year. 
Plots obtained when only observation error is assumed (not shown) display still tighter 
trajectories for assessments starting in the last 10 years, but larger divergence for some 
shorter data series and this is the cause for the larger ρ values in Table 1 for this option. 
There is some indication of systematic upward revisions for recent years, which are also 
affected by increasing departures from the true estimates (Fig. 4), but this pattern is far 
from being as dramatic as seen for tuned VPA in presence of catchability trends (e.g. 
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Mohn, 1999; ICES, 2002a). Readers familiar with VPA will also note that estimates for the 
earlier years always remain distinct since, unlike VPA, CSA does not benefit from a 
convergence property. Trials reported in ICES (2002a) show that very nice retrospective 
VPA plots can be obtained when the tuning data are taken from the same source as the 
total catch data, implying that both are highly correlated and subject to simultaneous 
errors. To some extent, this explanation might apply here in view of the procedure used 
to generate the data for most years (survey indices are a constant fraction of the 
population at each age and the selection curve is the same for the survey and the catch in 
the base case). However, it does not hold for the recent years, when the catchability 
trend affects only the indices, and only partially for the runs using indices generated with 
the alternative selection curve, which also show tight retrospective plots. Thus, it appears 
that retrospective CSA analyses are not helpful either to detect catchability trends. 
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Fig. 7. Retrospective analysis of CSA estimates of biomass (top) and recruitment (bottom) 
when indices are subject to a catchability trend (s= 0.09; mixed error structure). 
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Fig. 8. CSA estimates of biomass (top) and recruitment (bottom) when recruits comprise 
ages 1 and 2 and the fully recruited are ages 3+. Solid circles are the true values. 
 
 
3.3. Aging error 
 

The literature is equivocal about the seriousness of aging errors (“staging errors” 
would be a more appropriate terminology in this case) for CSA results. The simplicity of 
this simulation framework gave an opportunity to look at this issue with a case which 
might arise in practice, keeping in mind that CSA is particularly aimed at data-limited 
contexts. For example, a threshold size may be adopted to partition the survey catch into 
recruits and fully recruited, but the recruits stage defined in that way may in fact include 
two year classes. To mimic this, the simulated data for ages 1 and 2 were combined to 
obtain the indices and mean weights for recruits, and likewise for the fully recruited using 
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the data for ages 3 and older. The total catches and the true biomasses are the same as 
in the base case. Results of a run assuming s = 0.1 (mean of the true values is 0.103), 
τ = 0.5 and observation error only (no perceptible difference with mixed error) are shown 
in Fig. 8. It is clear that such an exaggerated staging error results in a major blunder, 
with estimated biomasses and recruits abundance consistently reduced to about one third 
of the true values. There is little effect on estimates of the relative changes in biomass 
from year to year but, as expected, the recruitment signal is considerably smoothed. 
Clearly, there is a need to define the stages carefully. 
 
 
4. Discussion 
 

The foremost conclusion emerging from this study is the confirmation of the broad 
applicability of CSA for stock assessment. Its ability to capture with a fair degree of 
exactness the major events in the evolution of a fully age structured population is striking 
given that it uses only very condensed data. It seems capable of providing quite useful 
indications about when stock abundance has been high or low, decreasing or increasing, 
whether it is currently larger or smaller than in earlier years, when strong, poor or 
average year classes occurred. All too often advisory bodies, particularly in Europe, have 
been paralysed by their inability to find justifications for sensible management 
recommendations in absence of VPA based assessments. For many stocks full analytical 
assessments (i.e. using some variant of VPA) remain a remote prospect due to 
considerable difficulties in assembling adequate series of age disaggregated data. From 
scientists the excuse that the data do not fit with conventional assessment tools is not 
tenable and can only lead to disastrous management. In circumstances where the less 
elaborate data needed by CSA are available, this method can be regarded as a worthy 
substitute able to provide grounds for valuable advice on the state of stocks for 
management decisions. Some institutes possess a wealth of survey data which are under-
utilised for species not included in the main stream of assessments, and the method also 
offers a chance of making good use of such data. Comparative tests using real (ICES, 
1995) or simulated (Cadrin, 2000) data indicate that CSA outperforms surplus production 
approaches, probably due to its ability to use information about recruitment variability. It 
is certainly not less reliable than a VPA using poor age data. Moreover, many experts (e.g. 
ICES, 1995; NRC, 1998) sensibly recommend that different assessment models should be 
applied to the same or similar data as this can shed light on the quality of the results. 
Thus, even when a VPA is feasible, CSA is a reasonable candidate for alternative 
assessments to cross-check the results. 
 
 Although straight applications of CSA are fine to elucidate general trends in the 
stock and fishery, input parameters deserve attention when, as is usually the case, 
absolute estimates of abundance or of harvest rate are needed for management. This 
study highlights in particular the large sensitivity of absolute estimates to the choice of 
recruit-to-fully-recruited catchability ratio s, which is not so apparent in the literature. The 
pioneering work of Collie and Sissenwine (1983) ignores this parameter, but mentions 
that higher natural mortality of the recruits may counterbalance the effects of their lower 
catchability on the estimate of adult q. Zheng et al. (1997, 1998) assume s to be unity on 
the grounds that recruits are large enough to be equally vulnerable to the survey gear, 
which seems reasonable in their case, and mostly focus on the inverse relationship 
between s and qn or M. The same comment applies to Collie and Kruse (1998) who also 
assume s to be unity but with the bizarre justification that “both stages are of legal size” 
(implicitly in the fishery, whereas s actually has to do with the survey). Such ambiguity is 
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also commonplace in Cadrin et al. (1999) where the reader is often in trouble to sort out 
the exact role of data obtained from the 44 mm mesh commercial fishery or from the 32 
mm mesh survey. They find that results, in terms of stock diagnostic and total mortality 
estimates, are very similar over a range of s. The effects on absolute abundance 
estimates are not shown. It is to be noted that their assessment takes some account of 
the temporal variability in s. Cadrin (2000) indicates that CSA results are sensitive to 
incorrect model assumptions, including errors in setting s, but the latter are not the focus 
of his paper. At least, all papers agree on the qualitative effects of errors in setting s upon 
the various CSA estimates, and on the need to estimate s externally using additional 
information. In principle, s may be estimated (and adjusted annually) on the basis of the 
mean size in each stage, and of the selection curve of the survey gear. However, the 
example treated here shows that the actual s is influenced by variability in the age and 
size composition of the population in addition to gear selectivity. This study also indicates 
that refining the estimation of s by year is less important than setting its magnitude right. 
Perhaps the next step will be to develop a simulation with a length- and age-structured 
artificial population and a length selective survey to examine whether information about 
the mean sizes in each stage and the gear selection properties is sufficient for adequate 
estimation of the general level of s. 
 
 The literature is also unclear about the issue of aging errors. However, as now 
recognised, a fundamental assumption of this model is that recruits should consist of 
those animals that grow to the fully recruited stage in one year. Collie and Kruse (1998) 
simulate moderate aging errors and find that these result in a small bias in q, but mention 
that larger bias might be a problem if aging errors are more serious and asymmetric. 
Cadrin (2000) insists that a correct definition of the recruits and fully recruited stages is of 
major importance. This is probably why Cadrin et al. (1999) were compelled to go 
through a rather tedious data processing in order to exclude the pre-recruits. Zheng et al. 
(1997, 1998) also consider the need for a three-stage model, with pre-recruits, although 
their concern is mostly the prediction of recruits in the terminal year. Preliminary trials on 
Nephrops by ICES (2002b) indicated that pooling the first two ages as recruits made little 
difference in absolute abundance estimates compared to using only the first age. The 
example here effectively shows that a severe and asymmetric staging error may lead to 
grossly erroneous results. The reason is not so much the switch of age 2 from the fully 
recruited to the recruits (it makes only 5% in average of the indices for the former) but 
rather that age 1, which makes 20-56% of the indices for ages 1+2 recruits, stays two 
years in the recruits stage instead of growing to the fully recruited at the end of each 
year. This upsets the rationale of the dynamics equation [1]. Thus, it is important to not 
overrate the simplicity of this model and of the two-stage structure in general, and to 
carefully allocate members to either stage. 
 
 In common with a number of assessment methods which assume constant 
catchability of the survey or fleet providing abundance indices, CSA is bound to produce a 
misleading picture of stock development if there is a trend or shift in catchability that is 
not corrected for beforehand when cpue data are processed. It is also counterintuitive 
that CSA produces lower estimates of the overall catchability in cases where an increasing 
trend in q is present. In principle, scientific surveys should not be affected by changes in 
efficiency, but protocols may vary (if only due to bad weather) and survey catchability 
may be altered by changes in the fish distribution. Like with tuned VPA, catchability 
adjustments cannot be dealt with internally by the method but have to be based on 
independent analyses of the survey or fleet data leading to appropriate selection of the 
stations or vessels used to construct the indices (e.g. ICES, 2002a). A practical difficulty 
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highlighted in this study is that conventional diagnostics do not help to detect violations of 
the constant-q assumption. More work is needed to understand what is effectively 
reflected in the current diagnostics, and to develop more perspicacious new diagnostics. 
 
 Sensitivity of CSA results to errors or variations in natural mortality M was not 
addressed in this work because the issue is well settled in the literature. M and survey 
catchability qn are negatively correlated, implying that underestimating M translates into 
overestimation of qn then into underestimation of abundance and overestimation of 
fishing mortality or harvest rate. There is a broad consensus, already since Collie and 
Sissenwine (1983), that M cannot be estimated along with the other CSA parameters 
using only the basic input data (catch and indices). Zheng et al. (1998) add data about 
commercial effort, and corresponding terms in the objective function SS, but even this is 
not sufficient to improve the estimation of M. The model is presented here in its simplest 
form, with M constant by stage and over time, but allowing for variations in M is a simple 
matter. The real constraint is to have external data and analyses to estimate stage or 
year specific values. For the latter case, Collie and Kruse (1998) consider a potential 
relationship with sea temperature but confess mixed results. It should be noted that the 
definition of fishing mortality F* as given by equation [10] is valid only if M is the same 
for both stages. This study indicates that this measure of fishing mortality is problematic 
anyway, and that other measures of fishing pressure (e.g. harvest rate or variants 
thereof) have to be considered. There is also consensus that a precise determination of 
when the catch should be discounted within the year (parameter τ) needs not be a major 
concern, unless M is large. The effect is a simple scaling which is perfectly predictable. 
 
 This work provides another contribution to the debate about the choice of an 
appropriate error structure for estimation, which is always a difficult question in 
modelling. Following the original presentation of the method (Collie and Sissenwine, 
1983), one school (e.g. Cadrin et al., 1999; Cadrin, 2000) has adopted a mixed error 
estimation procedure, whereas another school (Collie and Kruse, 1998; Zheng et al., 
1997) gives preference to an all-observation-error approach on common sense grounds of 
parameter parsimony. One may also argue that the process-error residuals should  be 
based on differences between genuine independent observations and model predictions, 
rather than between two internally computed quantities as currently used. In the case of 
surplus production models, Polacheck et al. (1993) or Punt and Hilborn (1996) show that 
estimations based on process error estimators have larger variance and conclude that, if a 
choice has to be made, the option of observation error only is generally preferable. NRC 
(1998) expresses another view: “ … stock assessment methods incorporating both 
measurement and process error reflect the uncertainty in both the data and the 
population more accurately”. Incidentally, it is unfortunate that CSA was not selected for 
the large scale testing exercise conducted for the NRC review. The findings from this 
study give some support to the second school. At least they indicate that there is no 
degradation in the assessment if process error is ignored, even though it is known to exist 
in the data as in this example where a unique value of s is assumed whereas true s varies 
considerably. If the route of observation error only can be safely taken, a practical 
advantage is that users elude some difficult choices. One is the choice of relative process 
weight. The sensitivity analysis above confirms previous findings (Collie and Sissenwine, 
1983) that CSA estimates are weakly sensitive to changes in λε within a reasonable range, 
which is fortunate because finding defensible justifications for a weighting scheme is 
generally a problem (Thompson and Bakkala, 1990). Another difficult choice is the form of 
the process error. Collie and Sissenwine (1983) consider an additive normal error, a form 
also advocated by Mendelssohn (1988), whereas other applications (e.g. Cadrin, 2000) 
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consider a multiplicative log-normal error as often assumed, by default at times, in fishery 
science. Since process error combines a variety of factors (M, s, catch), justifying one 
form or the other is challenging. In addition, if the objective function SS is constructed 
with additive process errors and logarithms of observation errors, the former are of a 
much larger magnitude and may drive the estimation entirely. 
 

If we push the idea of an all-observation-error approach further, it may provide an 
opportunity to recast the estimation differently, such that the unknowns would directly be 
the absolute stock sizes of recruits in all years except the last, and of the fully recruited in 
the first year (those for later years being obtained by forward projection with the 
dynamics equation). A similar evolution occurred for surplus production models (Punt and 
Hilborn, 1996) and would afford the same advantages. Firstly, this would allow for 
missing survey years, if very occasional of course, a case which is likely to be encountered 
in data-limited situations and is a barrier to using the current form of CSA. Secondly, it 
would be possible to “tune” the estimation with data from several index fleets, when 
available. An additional advantage is that catchability can be computed outside the NLLS 
search, which is likely to improve the behaviour of the latter. 
 
 This presentation has concentrated so far on the use of CSA for estimation of past 
abundance. However, a complete fish stock assessment has also to consider prediction of 
future states under alternative management scenarios (Hilborn and Walters, 1992). Given 
CSA results, a broad choice of scenarios can be contemplated, including pre-determined 
catch or harvest rate sequences or target biomasses. Multiple fleet versions can even be 
envisaged since it is possible to estimate harvest rates by stage and by fleet if catches are 
known with the same resolution. Like with many other forecasting procedures, the critical 
issue is the prediction of future recruitments but at least CSA gives no less information on 
past year classes than a VPA and the same usual inferences can be made (average, 
random draws, etc.). The two-stage model imposes limitations to the consideration of a 
spawner-recruit relationship unless one is fortunate that the fully recruited stage coincides 
with fully mature animals. Otherwise, it would be very daring to assume that spawners 
are a constant fraction of abundance in that stage (in our artificial population, SSB ranged 
40-70% of the biomass of fully recruited depending on years). The same difficulty applies 
to the definition of precautionary reference points based on spawning biomass. 
 
 In summary, Catch-Survey Analysis is a very attractive method of fish stock 
assessment, notably for data-limited contexts where catch-at-age data are missing or 
uncertain, and deserves consideration for inclusion in standard toolkits. It provides useful 
indications about general stock trends, which may already be a clear improvement on the 
rudimentary information currently passed to managers for some fisheries. More work is 
needed on the specification of key parameters that influence absolute estimates of 
abundance and of fishing pressure, and on the provision of adequate diagnostics for 
identifying violations of the model’s basic assumptions. The method is relatively “young” 
in terms of amount of literature. Perhaps it is worth recalling that it took decades to 
develop VPA after J. Gulland popularised it in the mid 1960’s and that, despite hundreds 
of publications about the theory and application of VPA, the method does not seem to be 
mature yet in view of the persisting problems with its use (NRC, 1998; ICES, 2002a). 
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Table 2. Specifications of the age-structured population and fishery simulation used to 
generate the CSA input data (the notation 'n*value' means that the value applies to the 
next n ages). 
 
 

Natural Mortality M = 0.2, all ages and years 
Growth K = 0.15; Linf = 100; to = 0 
Length Weight a = 0.00001; b = 3 
Maturity at age 4*0.0, 0.3, 0.5, 0.7, 0.9, 0.95, 6*1.0 
Recruitment:  
     Type Beverton-Holt: R = S/(α+βS) 
     Parameters α = 0.67945; β = 5.6621E-5 (steepness = 0.7) 
     Variability Log-Normal; CV = 0.6; auto-correlation ρ = 0.5 
Selectivity at age  
     Base 0.05, 0.1, 0.3, 0.7, 0.9, 10*1.0 
     Alt. 0.15, 0.7, 0.9, 12*1.0 
Survey q 0.001 

 
 
 
Appendix A. Generation of the simulated data. 
 

The data generation procedure used is an adaptation of that used by Restrepo et 
al. (2000) to evaluate uncertainty estimation methods in the context of tuned VPA. It 
considers an age structured population comprising 15 ages (1-15, no plus-group: 
contributions of ages 16 and older are ignored). The specifications are summarised in 
Table 2. The population structure in the first year is generated under equilibrium and with 
a recruitment of 14558 animals. This population is then simulated forward over 41 years, 
with nominal fishing mortality maintained at 0.5*FMSY (FMSY = 0.166) during a burn-in 
period of 17 years, then increased gradually to twice FMSY, maintained there during years 
27-33, and subsequently reduced toward half FMSY ("two-way trip"). Recruitment in each 
year is stochastic about a Beverton-Holt stock-recruitment relationship. In the base case 
survey indices at age are generated assuming that the survey gear has the same 
selectivity pattern as the fishing fleet and a nominal catchability of 0.001. The latter is 
increased by 3% per annum during the last 15 years in the q-trend scenario. In another 
alternative, a steeper selection pattern is assumed for the survey (as might be expected 
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with a small-mesh gear) while the fishery’s selection remains the same, in order to check 
that results are not dependent on the specifics of a single simulation. 
 
 For the analysis, only the final 25 years are retained (re-coded 1 to 25) and data 
are aggregated in line with CSA requirements. Annual catches are the sums of catch 
numbers at age. In the base case, recruit indices are directly the age 1 indices, whilst the 
indices for the fully recruited are the sums over ages 2-15. In the “staging error” scenario, 
recruits are a combination of ages 1 and 2 (it make sense to sum up indices for these 
ages in each year because they belong to distinct cohorts), and the fully recruited are age 
3 and older. Mean weights for each stage are weighted means, taking account of 
population number at each age. The CSA input data for the base case are shown in Table 
3. All estimation runs assumed M = 0.2. Table 4 shows the true values of key variables 
for the base selection pattern. True catchabilities by stage are the survey indices divided 
by the true population numbers in each year; their ratio gives the true s. 
 
 
Table 3. Simulated CSA input data (U: survey indices; W: mean weights by stage). 
 

Year CatchN Urec Ufull Wrec Wfull 
1 2078.7 0.852 27.598 0.027 1.050
2 2681.0 0.451 31.734 0.027 1.163
3 3492.2 0.568 35.927 0.027 1.407
4 3969.8 0.812 35.739 0.027 1.578
5 4156.7 0.438 33.114 0.027 1.564
6 4339.1 0.457 30.181 0.027 1.709
7 4528.1 0.534 27.546 0.027 1.768
8 4505.4 0.232 24.340 0.027 1.722
9 4488.6 0.487 21.060 0.027 1.866

10 4393.9 0.501 18.090 0.027 1.680
11 4268.4 0.495 15.365 0.027 1.472
12 3912.2 0.469 13.971 0.027 1.286
13 3813.1 0.623 13.396 0.027 1.173
14 3744.2 0.411 13.352 0.027 1.021
15 3806.9 0.685 13.269 0.027 1.032
16 3921.0 0.644 13.736 0.027 0.928
17 3905.7 0.258 14.068 0.027 0.901
18 3484.3 0.370 14.446 0.027 1.074
19 3074.7 0.895 14.315 0.027 1.160
20 2601.2 0.748 14.211 0.027 0.937
21 2424.1 0.589 15.584 0.027 0.919
22 2452.3 0.638 18.443 0.027 1.012
23 2370.2 0.818 20.714 0.027 1.096
24 2152.6 0.637 22.440 0.027 1.109
25 2000.5 0.736 24.074 0.027 1.215
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Table 4. True values of selected state variables. 
 
Year Biomass Recruits Fully Recr. F* C/N Catchability s 

  R N   qr qn  
1 65 808.0 17 043.9 62 220.0 0.031 0.026 5.00E-5 4.44E-4 0.113
2 73 430.6 9 032.3 62 929.2 0.043 0.037 4.99E-5 5.04E-4 0.099
3 79 690.4 11 378.3 56 415.3 0.060 0.052 4.99E-5 6.37E-4 0.078
4 82 969.5 16 257.0 52 287.4 0.070 0.058 4.99E-5 6.84E-4 0.073
5 82 109.5 8 777.3 52 347.0 0.080 0.068 4.99E-5 6.33E-4 0.079
6 79 184.3 9 146.8 46 191.1 0.096 0.078 5.00E-5 6.53E-4 0.076
7 73 080.7 10 694.2 41 179.4 0.105 0.087 4.99E-5 6.69E-4 0.075
8 65 989.6 4 655.2 38 253.7 0.125 0.105 4.98E-5 6.36E-4 0.078
9 58 126.9 9 745.3 31 002.7 0.134 0.110 5.00E-5 6.79E-4 0.074

10 49 318.2 10 020.5 29 186.3 0.134 0.112 5.00E-5 6.20E-4 0.081
11 41 577.4 9 900.2 28 062.4 0.134 0.112 5.00E-5 5.48E-4 0.091
12 35 182.8 9 386.0 27 170.0 0.128 0.107 5.00E-5 5.14E-4 0.097
13 31 245.1 12 466.6 26 343.0 0.116 0.098 5.00E-5 5.09E-4 0.098
14 29 100.8 8 227.7 28 288.3 0.123 0.103 5.00E-5 4.72E-4 0.106
15 27 648.8 13 703.4 26 429.9 0.111 0.095 5.00E-5 5.02E-4 0.100
16 27 622.9 12 883.4 29 393.3 0.108 0.093 5.00E-5 4.67E-4 0.107
17 28 131.7 5 168.0 31 068.1 0.127 0.108 4.99E-5 4.53E-4 0.110
18 28 270.3 7 416.4 26 135.4 0.122 0.104 4.99E-5 5.53E-4 0.090
19 28 673.0 17 916.0 24 310.7 0.084 0.073 5.00E-5 5.89E-4 0.085
20 30 204.3 14 972.3 31 791.6 0.064 0.056 5.00E-5 4.47E-4 0.112
21 33 337.9 11 786.4 35 930.9 0.058 0.051 5.00E-5 4.34E-4 0.115
22 37 646.0 12 777.8 36 866.8 0.056 0.049 4.99E-5 5.00E-4 0.100
23 42 541.2 16 372.6 38 426.4 0.049 0.043 5.00E-5 5.39E-4 0.093
24 47 709.2 12 751.1 42 708.4 0.044 0.039 5.00E-5 5.25E-4 0.095
25 53 159.9 14 734.3 43 439.4 0.034 5.00E-5 5.54E-4 0.090
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